
Columbia University Computer Science Department Technical Report CUCS-006-00, March 2000 1

Combining Strategies for Extracting Relations from Text Collections
Eugene Agichtein Eleazar Eskin Luis Gravano

Department of Computer Science
Columbia University

{eugene,eeskin,gravano }@cs.columbia.edu

Abstract

Text documents often contain valuable structured data that is hidden in regular English sentences. This data is
best exploited if available as a relational table that we could use for answering precise queries or for running data
mining tasks. OurSnowballsystem extracts these relations from document collections starting with only a handful of
user-provided example tuples. Based on these tuples,Snowballgenerates patterns that are used, in turn, to find more
tuples. In this paper we introduce a new pattern and tuple generation scheme forSnowball, with different strengths
and weaknesses than those of our original system. We also show preliminary results on how we can combine the two
versions ofSnowballto extract tuples more accurately.

1 Introduction
Text documents often hide valuablestructured data. For example, a collection of newspaper articles might contain
information on thelocation of the headquarters of a number oforganizations. The web contains millions of pages
whose text hides data that would be best exploited in structured form.

Brin [Bri98] proposed the idea of DIPRE, which uses bootstrapping for extracting structured relations (or tables)
from the web. A key assumption is that the table to be extracted appears redundantly in the document collection. As a
result of this assumption, the patterns that DIPRE generates need not be overly general to captureevery instanceof an
organization-location tuple. In effect, a system based on the DIPRE method will perform reasonably well even if certain
instances of a tuple are missed, as long as the system captures one such instance. This approach is in contrast with the
goals of traditional information extraction research, where a system attempts to extract as much information as possible
from eachdocument[Gri97]. DIPRE, on the other hand, attempts to build the most comprehensive table fromall of the
documents in the collection. In [AG00] we built on this approach and introducedSnowball. We developed a method
for defining and representing extraction patterns that is at the same time flexible, so that we capture most of the tuples
that are hidden in the text in our collection, and selective, so that we do not generate invalid tuples. We also introduced
a strategy for estimating the reliability of the extracted patterns and tuples. Finally, we presented a scalable evaluation
methodology and associated metrics, which we used for large-scale experiments over collections of over 300,000 real
documents. Our experiments showed thatSnowballwas able to extract more than 80% of the organization-location
pairs mentioned in the collection with high precision.

Generate Extraction Patterns

Seed Tuples

Generate New Seed Tuples Tag Entities

Augment Table

Find Occurrences of Seed Tuples

Figure 1: The main components ofSnowball.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Organization Location of Headquarters
MICROSOFT REDMOND

EXXON IRVING
IBM ARMONK

BOEING SEATTLE
INTEL SANTA CLARA

Table 1: User-provided example tuples.

The basic architecture ofSnowball is shown in Figure 1. Initially, we provideSnowballwith a handful of in-
stances of valid organization-location pairs such as the tuple<Microsoft, Redmond> (Table 1). Our system searches
for occurrences of the example tuples’ organizations and locations in the documents, identifying text lines where an
organization and its corresponding location occur together. From these tagged example contexts, the system learns
patterns that would indicate the desired relationship. For instance, from examining the occurrences of the seed tuples,
we might learn that a context“<LOCATION>-based<ORGANIZATION>” is likely to indicate thatLOCATIONis
the headquarters of theORGANIZATION. Patterns built from examples like these are then used to scan through the
corpus, discovering new tuples. The new tuples are evaluated, the most reliable ones are used as the new seed tuples,
and the process repeats. A key step in generating and later matching patterns is finding where<ORGANIZATION>and
<LOCATION> entities occur in the text. For this we tag the text documents using the MITRE corporation’s Alembic
Workbench [DAH+97].

Related Work Brin’s DIPRE method and ourSnowballsystem both address issues that have long been the subject of
information extraction research. However, DIPRE andSnowballdo not attempt to extractall the relevant information
from each document, which has been the goal of traditional information extraction systems [Gri97, FSM+95]. One
of the major challenges in information extraction is the necessary amount of manual tagging involved in training the
system for each new task. [Ril96] generates extraction patterns automatically by using a training corpus of documents
that were manually marked as either relevant or irrelevant for the topic. This approach requires less manual labor than to
tag the documents, but nevertheless the effort involved is substantial. [CDF+99] describes machine learning techniques
for creating a knowledge base from the web, consisting of classes of entities and relations, by exploiting the content of
the documents, as well as the link structure of the web. This method requires training over a large set of web pages,
with relevant document segments manually labeled, as well as a large training set of page-to-page relations.

Finally, a number of systems use unlabeled examples for training. This direction of research is closest to our
work. Specifically, the approach we are following falls into the broad category of bootstrapping techniques that have
been successfully applied in other contexts. [Yar95] demonstrated a bootstrapping technique for disambiguating senses
of ambiguous nouns. [CS99] and [RJ99] use bootstrapping to classify named entities in text. [YS99] describes an
extension of DIPRE to mining the Web for acronyms and their expansions. [BM98] presents a methodology and
theoretical framework for combining unlabeled examples with labeled examples to boost performance of a learning
algorithm for classifying web pages. While the underlying principle of using the systems’ output to generate the
training input for the next iteration is the same for all of these approaches, the tasks are different enough to require
specialized methodologies.

Our Contributions In this paper we consider two alternative methods for representing the textual contexts around
the tuples that we want to identify. In Section 2.1 we briefly review the originalSnowballsystem that we presented
in [AG00], and which we refer to asSnowball-VSin this paper.Snowball-VSconsiders the textual context around the
entities as an unordered collection of keywords. In Section 2.2 we introduceSnowball-SMT, a new system that takes
advantage of the order of the words in the contexts. In Section 3 we present our preliminary exploration of methods
to combine these complementary systems. Our approach allows us to exploit different representations of data for the
problem. In Section 4 we outline the experimental setup and evaluation methodology for the experiments in Section 5.

2



Section 6 contains our preliminary conclusions and a discussion of future work.

2 Snowball
In this section, we explore different methods to learn patterns and generate tuples forSnowball: Snowball-VS, our
original implementation [AG00], uses a vector-space model, whereasSnowball-SMT, a new system that we present in
this paper, represents text as an ordered sequence of terms.

2.1 Snowball-VS

Snowball-VSis initially given a handful of example tuples. For every such organization-location tuple< o, ` >,
Snowball-VSfinds segments of text in the document collection whereo and` occur close to each other, and analyzes
the text that “connects”o and` to generate extraction patterns that will later be used to discover new tuples.

Generating Patterns and Tuples A crucial step in the mining process is the generation of patterns that will be
used to find new tuples in the documents. Ideally, we would like patterns both to beselective, so that they do not
generate incorrect tuples, and to have highcoverage, so that they identify many new tuples.

To improve the generality of the patterns, we represent the left, middle, and right “contexts” associated with a pattern
analogously to the way the vector-space model of information retrieval represents documents and queries [Sal89].
Thus, theleft, middle, andright contexts are three vectors associating weights with terms. These weights indicate the
importance of each term in the corresponding context. An example of aSnowball-VSpattern is the 5-tuple<{<the,
0.2>}, LOCATION,{<-, 0.5>, <based, 0.5>}, ORGANIZATION,{}>. This pattern will match strings like “the
Irving-based Exxon Corporation...”. To match text portions with our 5-tuple representation of patterns,Snowball-
VSalso associates a 5-tuplet with each document portion that contains two named entities with the correct tag (i.e.,
LOCATIONandORGANIZATIONin our scenario), and matches it against the 5-tuple patternp, where the degree of
matchMatch(t, p) is calculated as the normalized sum of inner products of the correspondingleft, middle, andright
context vectors.

In order to generate a pattern, we group occurrences of known tuples in documents that occur in similar contexts.
More precisely,Snowball-VSgenerates a 5-tuple for each string where a seed tuple occurs, and then clusters these
5-tuples using a simple single-pass bucket clustering algorithm [FBY92], using theMatch function described above to
calculate the similarity between the 5-tuples, with minimum similarity thresholdτsim. The pattern is represented as the
representative 5-tuple of the cluster: theleft vectors in the 5-tuples of clusters are represented by acentroidl̄s. Similarly,
we collapse themiddleandright vectors intom̄s andr̄s, respectively. These three centroids, together with the original
tags (which are the same for all the 5-tuples in the cluster), form aSnowball-VSpattern< l̄s, tag1, m̄s, tag2, r̄s >. As
an initial filter, we eliminate all patternssupportedby fewer thanτsup seed tuples.

Using these patterns,Snowball-VSscans the collection to discover new tuples. The system first identifies sentences
that include an organization and a location, as determined by the named-entity tagger. For a given text segment with an
associated organizationo and locatioǹ , Snowball-VSgenerates the 5-tuplet =< lc, tag1,mc, tag2, rc >. A candidate
tuple< o, ` > is generated if there is a patterntp such thatMatch(t, tp) ≥ τsim, whereτsim is the clustering similarity
threshold. Each candidate tuple may be generated multiple times from different text segments, using either a single
pattern to match the segments, or different patterns. For each candidate tuple, we store the set ofpatternsthat generated
it, each with an associated degree of match.Snowball-VSuses this information, together with information about the
selectivity of the patterns, to decide what candidate tuples to actually add to the table that it is constructing.

Evaluating Patterns and Tuples We can weigh theSnowball-VSpatterns based on their selectivity, and trust the
tuples that they generate accordingly. Thus, a pattern that is not selective will have a lowconfidencevalue. The tuples

3



generated by such a pattern will be discarded, unless they are supported by selective patterns. Intuitively, the confidence
of a tuple will be high if it is generated by several highly selective patterns.

We estimate the selectivity of each pattern during our scan of the corpus to discover new tuples. If a sentence
matches one of our patterns and contains an organization that we have discovered in an earlier iteration of the system, we
check whether the new location agrees with a previously extracted, “known” headquarters location for this organization.
If so, this new match is consideredpositivefor the pattern. Otherwise, the match isnegative. This allows us to compute
theconfidenceof the pattern. Note that this confidence computation assumes that organization is a key for the relation
that we are extracting (i.e., two different tuples in a valid instance of the relation cannot agree on the organization
attribute). Estimating the confidence of the patterns in discovering relations without such a single-attribute key is part
of our future work. Theconfidenceof a patternP is defined as:

Conf (P ) =
P.positive

(P.positive+ P.negative)

whereP .positive is the number of positive matches forP andP .negative is the number of negative matches. For
illustration purposes, Table 2 lists three representative patterns thatSnowball-VSextracted from the document collection
described in Section 4.

Conf middle right
1 <based, 0.53 >,<in, 0.53 > <, , 0.01 >

0.69 <’, 0.42 > <s, 0.42 >< headquarters, 0.42 ><in, 0.12 >

0.61 <(, 0.93 > <), 0.12 >

Table 2: Actual patterns discovered bySnowball. (For all three of these patterns, theleft vectors are empty,tag1=
ORGANIZATION, andtag2= LOCATION.)

Having scored the patterns, we are now able to evaluate the new candidate tuples. For each tuple we store the set
of patterns that produced it, together with the degree of match between the context in which the tuple occurred and the
matching pattern. Theconfidenceof a candidate tupleT is:

Conf(T ) = 1−
|P |∏
i=0

(1− (Conf(Pi) ·Match(Ci, Pi)))

whereP = {Pi} is the set of patterns that generatedT andCi is the context associated with an occurrence ofT that
matchedPi with degree of matchMatch(Ci, Pi). From the set of discovered tuples, the most reliable ones are selected
as seed for the next iteration of the system. A tupleT is added to the seed set ifConf(T ) ≥ τmin.

2.2 Snowball-SMT

TheSnowball-VSpatterns model each context as a bag of words, ignoring word order. These patterns then concentrate
on the presence or absence of certain keywords. For instance, a context such as “... where Microsoft is located. Which
Silicone Valley startup ...” will match a pattern<{}, ORGANIZATION,{<which, 0.5>, <is, 0.5>, <located, 0.5>,
<in, 0.5>}, LOCATION,{}>, producing an incorrect tuple<Microsoft, Silicone Valley>. In this section we introduce
Snowball-SMT, a variant ofSnowballthat takes into account theorder of the words in each context, while keeping the
patterns flexible enough to have high coverage. For this purpose, we model the textual contexts as ordered sequences of
tokens and try to estimate the probability of sentences containing an instance of the organization-location relationship.

Thus, if a seed organization and its correct location are mentioned in the same sentence, the text context surrounding
the entities is converted into a sequence of tokens, and a positive example is added to the training set. If the location does
not match the “known” headquarters of this organization, a negative example is added. In each iteration,Snowball-SMT
is trained on this set of examples, and builds a model that best describes the training set.Snowball-SMTthen scans the

4



7

61 2 3 4 5

φ

φ φ0 0

based
located

near

near near
at inat in

0

Figure 2: An example sparse Markov tree.

corpus again, generating a tuple each time that a sequence of terms in the context surrounding the entities is accepted
by the model.

We represent contexts as ordered sequences usingsparse Markov transducers(SMTs), which estimate a probability
distribution conditioned on a sequence. In our problem, we compute the probability that a tuple is an organization-
location pair conditioned on the sequence of terms that make up the context of the tuple. The probability distribution
is conditioned on some of these words and not the others. We wish to represent a part of the conditional sequence
of words as “don’t care”, orφ-termsin the probability model. For instance, the probability of a text fragment “near
Boeing’s renovated Seattle headquarters” contaning a tupleT = <Boeing, Seattle> would be calculated as

Conf(T ) = P (T |near, ′s, φ1, headquarters)

where the system ignores the term “renovated” as irrelevant.
More formally, a sparse Markov transducer is a conditional probability of the form:

P (T |φn1t1φ
n2t2...φ

nk tk)

whereT is the output label thatSnowball-SMTreturns upon recognizing a tuple. Eachti is theith term in the context
surrounding the entities, arranged into a sequence by starting from the terms on the left of the leftmost entity, adding
the terms between entities, and followed by the terms to the right of the rightmost entity (as in the example above). In
the equation,φni representsni consecutiveφ-terms, and for a sequence of lengthn, n1 + ...+ nk + k = n.

To estimate SMTs we use a type of prediction suffix tree called asparse prediction tree, which is representationally
equivalent to sparse Markov transducers. These trees probabilistically map the context of a tuple to a probability that
the tuple is an organization-location pair. A sparse prediction tree is a rooted tree where each node is either a leaf node
or contains one branch labeled withφn (n ≥ 0), which forks into a branch for each word. The paths from the root node
to the leaf nodes represent the sequences of terms that make up the contexts surrounding the entities. Each leaf node
stores an estimate of the probability that if the node was reached, the context that was used to generate the path to the
node contains a valid organization-location tuple. Figure 2 shows a sparse Markov tree. For example, the node labeled
3 would be reached by following the terms making up the context“<ORGANIZATION> based in<LOCATION>.”

A tree is used to obtain a probability for a tuple by following the context from the root node to a leaf node skipping
a token in the context for eachφ along the path. The leaf node contains the tuple’s probability of being an organization-
location pair. The topology of a tree encodes the positions of theφ-terms in the probability distribution. Because we
do not know the positions of theφ-terms for each contexta priori, we do not know the best topology of the prediction
tree to use. We approximate the best tree using a Bayesian mixture (weighted sum) technique. Instead of using a single
tree, we use a weighted sum of all possible trees as our predictor. We then use a Bayesian update rule (described in
Section 3) to update the weight of each tree based on its performance on a given element in the data set. At the end
of this process, we have a weighted sum of trees in which the best performing trees in the set of all trees have the
highest weights. The sparse prediction tree is rebuilt from scratch from the set of positive and negative examples on
each iteration ofSnowball-SMT. An in-depth description of SMTs is given in [Esk00]. The sparse Markov transducer
probability modeling method is an extension of adaptive mixtures of probabilistic transducers [Sin97, PS99].

5



Combining 

Algorithm

Generate Extraction Patterns Learn Model

Snowball−VS Snowball−SMT

Find Occurrences of Seed Tuples

Generate New Seed Tuples

Find Occurrences of Seed Tuples

Tag Entities Tag EntitiesGenerate New Seed Tuples

Figure 3: CombiningSnowball-VSandSnowball-SMTinto one system.

3 Combining Snowball-VSand Snowball-SMT

The two systems that we used in our experiments,Snowball-VSandSnowball-SMT, focus on two different aspects of the
textual context: the presence or absence of keywords that tend to indicate the correct relationships (Snowball-VS), and
the order of words in the contexts surrounding the entities (Snowball-SMT). We explore how to combine the two systems
with the goal of improving our overall extraction accuracy. Combining predictors to increase accuracy is an active area
of research. Some of the methods we considered includesleeping-experts[Blu97], boosting by majority[Fre95],
andco-training [BM98]. In this section, we explore preliminary ways in which we can combineSnowball-VSand
Snowball-SMT. (We discuss this issue further in Section 6.)

Initially, both Snowball-VSandSnowball-SMTreceive the same set of seed tuples (Figure 3). Each system runs for
one iteration, producing a set of tuplesSeedV S andSeedSMT , respectively. These two sets of tuples are combined
into one setSeedCombined (we will describe how shortly).SeedCombined is then used as the set of seed tuples for
both Snowball-VSandSnowball-SMTand both systems are run for another iteration. This process repeats until we
stop discovering new tuples. The final step of the extraction process returns the setSeedCombined, containing the
combination of the final set of tuples discovered bySnowball-VSandSnowball-SMT.

We explored three options for combining the tuples discovered bySnowball-VSandSnowball-SMTto create the
new set of seed tuples: theUnion, theIntersection, and the weightedMixture of the tuples produced by the individual
systems. TheIntersectionstrategy was motivated by [BM98]. To implement theUnion and Intersectionstrategies,
the sets of tuples produced bySnowball-VSandSnowball-SMTare filtered using each system’s individual thresholds
for generating seed tuples, and the resulting sets are combined. In theUnion model, seed tuples proposed by either
Snowball-VSor Snowball-SMTare added to the combined set, unless the locations that the two systems propose for
the same organization do not match (based on our unique-key assumption, only one of these can be correct). In the
Intersectionmodel, only seed tuples proposed byboth Snowball-VSandSnowball-SMTare added.

To implement the weightedMixture model, a tupleT is added to the combined set ifConf(T ) ≥ τmin where
Conf(T ) is calculated as the weighted sum of the confidence values that each system assigns to tupleT . The weights
are based on the accuracy of each system over the training data. To calculate these weights, we use an implementation
of a Bayesian update rule. We first calculate the absolute weightW ′V S of Snowball-VSas:

W ′V S =
∑

correct tuples T

log(Conf(T )) +
∑

incorrect tuples T

log(1− Conf(T ))

The absolute weight ofW ′SMT of Snowball-SMTis calculated similarly. Then the relative weightsWV S andWSMT

are:

WV S =
W ′V S

W ′V S +W ′SMT

and WSMT =
W ′SMT

W ′V S +W ′SMT

Finally, the combined confidence in tupleT is defined as:

Conf(T ) = WV S · ConfV S(T ) +WSMT · ConfSMT (T )

In our experiments, we compare the performance ofSnowball-VSand Snowball-SMTas well as that of the three
combining strategies.

6



Organization-Location Pairs
Occurrences Training Collection Test Collection

0 5455 4642
1 3787 3411
2 2774 2184
5 1321 909
10 593 389

Table 3: Occurrence statistics of the test tuples in the experiment collections.

4 Experimental Setting
The goal ofSnowballis to extract as many valid tuples as possible from the text collection. We do not attempt to
capture everyinstanceof such tuples. Instead, we exploit the fact that these tuples will tend to appear multiple times
in the types of collections that we consider. As long as we capture one instance of such a tuple, we will consider our
system to be successful for that tuple.

Methodology To evaluate this task, we adapt the recall and precision metrics from information retrieval to quantify
how accurate and comprehensive ourcombined table of tuplesis [Sal89]. Our metric for evaluating the performance
of an extraction system over a collection of documentsD is based on determiningIdeal, the set of all the known
test tuples that appear in collectionD. After identifying Ideal, we compare it against the tuples produced by the
system,Extracted, using adapted precision and recall metrics [AG00]. To create theIdealset automatically, we start by
considering a large, publicly available directory of more than 13,000 organizations provided on the “Hoover’s Online”
web site1. To determine the target set of tuplesIdeal from the Hoover’s-compiled table above, we keep only the tuples
that have the organization mentioned together with their location in the collection. We match possible variations of
companies’ names by using Whirl [Coh98], a research tool developed at AT&T Research Laboratories for integrating
similar textual information.

An alternative to using ourIdeal metric to estimate precision could be to sample the extracted table, and check
each value in the sample tuples by hand. (Similarly, we could estimate the recall of the system by sampling documents
in the collection, and checking how many of the tuples mentioned in those documents the system discovers.) For
completeness, we also report precision estimates using sampling in Section 5. Please refer to [AG00] for more details
on our evaluation methodology.

Document Collections Our experiments used large collections of real newspaper articles from the North American
News Text Corpus, available from LDC2. This corpus includes articles from the Los Angeles Times, The Wall Street
Journal, and The New York Times for 1994 to 1997. We split the corpus into two collections: training and test.
The training collection consists of 178,000 documents, all from 1996. Thetestcollection is composed of 142,000
documents, from 1995 and 1997.

Both Snowballand DIPRE rely on tuples appearing multiple times in the document collection at hand. To analyze
how “redundant” the training and test collections are, we report in Table 3 the number of tuples in theIdeal set for
each frequency level. For example, 5455 organizations in theIdeal set are mentioned in the training collection, and
3787 of them are mentioned in the same line of text with their location at least once. So, if we wanted to evaluate
how our system performs on extracting tuples that occur at least once in the training collection, theIdeal set that we
will create for this evaluation will contain 3787 tuples. The first row of Table 3, corresponding to zero occurrences,
deserves further explanation. If we wanted to evaluate the performance of our system onall the organizations that were

1http://www.hoovers.com
2http://www.ldc.upenn.edu

7



System Parameter Value Description
τsim 0.6 degree of match
τt 0.9 seed confidence

Snowball-VS τsup 2 pattern support
τfinal 0.3 tuple confidence

window 2 length ofleft andright contexts
Snowball-SMT τt 0.99 seed confidence

τfinal 0.99 tuple confidence

Table 4: Parameter values used for evaluatingSnowball-VSandSnowball-SMTon the test collection.

Strategy Snowball-VS Snowball-SMT Combined
τseed τfinal τseed τfinal τseed τfinal

Intersection 0.9 0.3 0.99 0.99 - -
Union 0.9 0.3 0.99 0.99 - -

Mixture - - - - 0.97 0.6

Table 5: Parameter values used for generating new seed tuples by combiningSnowball-VSandSnowball-SMT.

mentioned in the corpus, even if the appropriate location never occurred near its organization name anywhere in the
collection, we would include all these organizations in ourIdeal set. So, if the system attempts to “guess” the value of
the location for such an organization, any value that the system extracts will automatically be considered wrong in our
evaluation.

5 Experimental Results
In [AG00] we extensively examined the performance ofSnowball-VS, together with an implementation of DIPRE. In
this paper we compare the performance ofSnowball-VSandSnowball-SMT, and explore the effect of combining the
two into a single system.

In the training phaseof our experiments, we empirically determined the best individual operating parameters for
Snowball-VSandSnowball-SMTby running the systems on the training collection. We then evaluated the systems on
the test collection using the parameters in Table 4. As we discussed, the only input to bothSnowballsystems during
this evaluation on the test collection were the five seed tuples of Table 1. All the extraction patterns were learned from
scratch by running eachSnowballsystem on a previously unseen test collection using the operational parameters of
Table 4.

Figure 4 shows the performance of the individual systems as they attempt to extract test tuples that are mentioned
more times in the test collection. For example,Snowball-VScorrectly extracts 85% of the tuples that occur at least three
times in the collection, with precision of 89%. Not surprisingly,Snowball-VSperforms increasingly well as the number
of times that the test tuples are required to be mentioned in the collection is increased. Also, notice that while DIPRE
has better precision thanSnowball-VSat the 0-occurrence level (72% vs. 69%),Snowball-VShas at all occurrence
levels significantly higher recall than DIPRE. However,Snowball-SMThas the highest precision when we consider all
tuples (75%), and its precision steadily increases for more frequently occurring tuples.

We explored the three combining strategies on the training collection and used the parameters in Table 5 to run the
combined system on the test collection. The individual systems were run using the parameters in Table 4. Theτseed
parameter of Table 5 is the minimum confidence value for a tuple to be chosen as seed by each individual system,
and theτfinal parameter is the threshold used to filter the final table. As we can see in Figure 5, the simple combining

8



(a) (b)

Figure 4: Recall (a) and precision (b) of DIPRE,Snowball-VS, andSnowball-SMT(test collection).

(a) (b)

Figure 5: Recall (a) and precision (b) of the combined system for theIntersection, Union, andMixture strategies,
againstSnowball-VS(test collection).

strategies we explored do not help us discover new tuples, but can be used to improve the precision of the extracted table.
This claim is further supported by randomly sampling the tables produced bySnowball-VS, Snowball-SMT, and those
produced by using theIntersection, Union, andMixture combining strategies. The samples were manually checked
for accuracy of the discovered tuples, with results shown in Table 6. We classify the errors into three types (Location,
Organization, andRelationship), where the former two are due to the errors of the named-entity tagger, and the latter is
completely the extraction system’s fault. As we can see,Snowball-SMTproduces few incorrect tuples (24 out a sample
of 100) whileSnowball-VSis less selective, producing 48 incorrect tuples out of a sample of 100. The incorrect tuples
are due mainly to erroneously tagging phrases as organizations (41 out of the 48 incorrect tuples forSnowball-VS). If
we were querying the table extracted bySnowball-VSby organization, we would expect to find the correct headquarters
for the organization approximately 88% of the time ( 52 correct tuples

52+6 incorrect locations+1 incorrect relationship ·100%). Observe that
the Intersectionstrategy appears to produce the cleanest table overall (81 tuples out of 100 are correct).

Thus, if we want a high-recall system, we should runSnowball-VS. Alternatively, if we want to create a table of
high-quality tuples, we should runSnowball-SMT. Finally, we could combine the two systems using theIntersection
strategy to create a table with high precision that also approachesSnowball-VS’s recall values for high-frequency tuples.

6 Conclusions and Future Work
This paper presents significant extensions ofSnowball, a system for extracting relations from large collections of plain-
text documents that requires minimal training for each new scenario. We compared two alternatives for representing
text for our extraction task, and presented preliminary results on combining the systems.

9



Type of Error
Correct Incorrect Location Organization Relationship

Snowball-VS 52 48 6 41 1
Snowball-SMT 76 24 3 19 2
Union 49 51 6 42 3
Mixture 73 27 4 19 4
Intersection 81 19 4 14 1

Table 6: Manually computed precision estimate, derived from a random sample of 100 tuples from each extracted
table.

We only evaluated our techniques on plain text documents, and it would require future work to adopt our method-
ology to HTML data. While HTML tags can be naturally incorporated intoSnowball’s pattern representation, it is
problematic to extract named-entity tags from arbitrary HTML documents. State-of-the-art taggers rely on clues from
the text surrounding each entity, which may be absent in HTML documents that often rely on visual formatting to
convey information.

In the context of processing HTML data, we plan to explore the question of combining complementary information
as part of theSnowballsystem. In present work, we only had two systems to combine, and sophisticated methods
for combining predictors (e.g., [Fre95, Blu97] ) were not likely to make a significant impact. In addition to the two
systems that operate on the text immediately surrounding the entities, we could have a third system that considers the
links between documents, each containing one of the attributes in the relation. Having one or multiple systems operating
over this additional information will allow us to compare and exploit the benefits of more sophisticated methods for
combining predictors. More importantly, this might result in even higher quality extraction strategies.

We have assumed throughout that the attributes of the relation we extract (i.e., organization and location) correspond
to named entities that our tagger can identify accurately. As we mentioned, named-entity taggers like Alembic can be
extended to recognize entities that are distinct in a context-independent way (e.g., numbers, dates, proper names). For
some other attributes, we will need to extendSnowballso that its pattern generation and matching could be anchored
around, say, a noun phrase as opposed to a named entity as in this paper. In the future, we will also generalizeSnowball
to relations of more than two attributes. Finally, another open problem is how to extend our tuple and pattern evaluation
strategy of Section 2.1 so that it does not rely on an attribute being a key for the relation.

Acknowledgements This material is based upon work supported by the National Science Foundation under Grant
No. IIS-9733880. We also thank Kazi Zaman for his helpful comments.

References
[AG00] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from large plain-text collections.To

appear in Proceedings of the 5th ACM International Conference on Digital Libraries, June 2000. Acces-
sible athttp://www.cs.columbia.edu/˜eugene/papers/dl00.pdf .

[Blu97] Avrim Blum. Empirical support for winnow and weighted-majority algorithms: Results on a calendar
scheduling domain.Machine Learning, 1997.

[BM98] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. InProceedings
of the 1998 Conference on Computational Learning Theory, 1998.

[Bri98] Sergey Brin. Extracting patterns and relations from the World-Wide Web. InProceedings of the 1998
International Workshop on the Web and Databases (WebDB’98), March 1998.

10



[CDF+99] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery. Learning to
construct knowledge bases from the World Wide Web.Artificial Intelligence, 1999.

[Coh98] William Cohen. Integration of heterogeneous databases without common domains using queries based
on textual similarity. InProceedings of the 1998 ACM International Conference on Management of Data
(SIGMOD’98), 1998.

[CS99] Michael Collins and Yoram Singer. Unsupervised models for named entity classification. InProceedings
of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora, 1999.

[DAH+97] David Day, John Aberdeen, Lynette Hirschman, Robyn Kozierok, Patricia Robinson, and Marc Vilain.
Mixed-initiative development of language processing systems. InProceedings of the Fifth ACL Conference
on Applied Natural Language Processing, April 1997.

[Esk00] Eleazar Eskin. Detecting errors within a corpus using anomaly detection.To appear in Proceedings of
2000 Conference of the North American Association for Computational Linguistics, April 2000.

[FBY92] William B. Frakes and Ricardo Baeza-Yates, editors.Information Retrieval: Data Structures and Algo-
rithms. Prentice-Hall, 1992.

[Fre95] Yoav Freund. Boosting a weak learning algorithm by majority.Information and Computation, 1995.

[FSM+95] D. Fisher, S. Soderland, J. McCarthy, F. Feng, and W. Lehnert. Description of the UMass systems as used
for MUC-6. In Proceedings of the 6th Message Understanding Conference. Columbia, MD, 1995.

[Gri97] Ralph Grishman. Information extraction: Techniques and challenges. InInformation Extraction (Interna-
tional Summer School SCIE-97). Springer-Verlag, 1997.

[PS99] Fernando Pereira and Yoram Singer. An efficient extension to mixture techniques for prediction and deci-
sion trees.Machine Learning, 36(3):183–199, 1999.

[Ril96] Ellen Riloff. Automatically generating extraction patterns from untagged text. InProceedings of the
Thirteenth National Conference on Artificial Intelligence, pages 1044–1049, 1996.

[RJ99] Ellen Riloff and Rosie Jones. Learning dictionaries for information extraction by multi-level bootstrapping.
In Proceedings of the Sixteenth National Conference on Artificial Intelligence, 1999.

[Sal89] Gerard Salton.Automatic Text Processing: The transformation, analysis, and retrieval of information by
computer. Addison-Wesley, 1989.

[Sin97] Yoram Singer. Adaptive mixtures of probabilistic transducers.Neural Computation, 9(8):1711–1733,
1997.

[Yar95] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. InProceedings of
the 33rd Annual Meeting of the Association for Computational Linguistics, pages 189–196. Cambridge,
MA, 1995.

[YS99] Jeonghee Yi and Neel Sundaresan. Mining the web for acronyms using the duality of patterns and relations.
In Proceedings of the 1999 Workshop on Web Information and Data Management, 1999.

11


