
PF IPOPTION: A Kernel Extension for IP Option Packet

Processing

Ping Pan

Bell Laboratories

101 Crawfords Corner Road

Holmdel, NJ 07733

pingpan@research.bell-labs.com

Henning Schulzrinne

Computer Science Department

Columbia University

New York, NY 10027

schulzrinne@cs.columbia.edu

June 15, 2000

Abstract

Existing UNIX kernels cannot easily deliver IP packets containing IP options to applications. To

address this problem, we have defined and implemented a new protocol family calledPF IPOPTION for

the FreeBSD kernel. We have verified the implementation with some of the commonly used IP options.

Measurements in kernel and user space showed that BSD socket I/O is the performance bottleneck.

1 Introduction

IPv4 packets can carry optional information in IP header extensions [1]. IP options are inspected by all

network routers. Some of the commonly used IP options include source routing, timestamp and router alert

[2]. The router alert (RA) option asks transit routers to intercept and process packets that are not addressed

to them directly. However, existing UNIX-based platforms do not offer a clean mechanism to capture IP

option packets, as shown by investigating some of the possible approaches:

PF INET raw sockets: Thesocket()call allows a user process to create a network I/O interface that delivers

network packets to a user process. A socket is described by three properties, namely protocol family,

type and protocol. For example, to intercept RSVPPATH messages, a user process uses family

PF INET , typeSOCKRAWand protocolIPPROTORSVP. However, these parameters cannot restrict

the delivery of packets to those containing IP options. For example, RSVP packets are captured only

because the IP protocol type is RSVP (46), not because they may contain router alert options. In the

current BSD implementation, the IP input routine delivers all incoming RSVP messages to the raw

socket bound to theIPPROTORSVP, regardless of the IP option type or whether packet contains IP

options.

Another problem with using this approach is that, in some versions of BSD [3, 4], raw sockets cannot

intercept TCP or UDP packets. Hence, there is no way for these systems to capture IP option packets

carrying TCP or UDP transport layers.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BPF [5] and libpcap [6]: BPF and libpcap allow nodes to selectively capture packets from data links. How-

ever, thelibpcap capture process is non-intrusive, meaning that a copy of the packet is delivered to

the application, while another is forwarded normally. For example, in the case of Router Alert, the

IP input routine in the kernel needs to capture and pass up the IP option packets to the user space,

without forwarding it to the next hop. Otherwise, the end user will receive multiple copies of the same

message, namely the original message and modified copies generated by the transit routers.

Another problem withlibpcap is that all packets are captured at the link-layer. Thus, the user process

needs to parse link-layer protocols before it can read IP option headers. The kernel has already parsed

the link layer, resulting in needless duplication of work.

divert [7]: Divert sockets enable routers and end systems to intercept packets using filters in the kernel. In

this approach, users create several filters on IP options, and opendivert sockets to intercept the option

packets. However, the filters are tightly coupled with the firewall table in the kernel. This causes two

potential problems: first, we need to make sure that the IP option filters do not cause security risks.

For instance, the IP option filters can only be applied after all firewall filters are completed. Second,

the firewall table is designed to read and check multiple packet header fields. The filter lookup routine

can be very CPU intensive. We argue that setting up firewall filters for IP options impacts performance

without providing additional functionality.

In conclusion, we need a new and cleaner solution to process IP option packets when received by routers.

1.1 Design Alternatives

There are many ways to change the kernel to intercept option packets. First, we can define a new socket

type that is dedicated to handling IP option packets. One example on such approach is theSOCKPACKET

socket type in Linux, which was designed to intercept packets base on the LLC ether-types1. However, in

BSD, the socket type is mainly used to describe socket transport behavior, for example reliable or stream.

Thus, we considered defining a new socket type as orthogonal to our goal.

We can also implement a new virtual interface, and attach it to the physical interface. For all packets

going through this virtual interface, a routine is added to intercept IP option packets. This is the design

principle behind BPF. However, IP message processing has little to do with physical interfaces. It is simpler

to process packets within the IP input routine than processing packets at interface input, as it avoids having

to attach virtual interfaces to each physical interface.

Another idea is to define a new protocol type for IP option packets, similar to the one that has used

by divert. On receive, we redirect packets containing IP options to a user socket. However, this approach

requires significant changes in the IP protocol processing functions.

This leaves the addition of a new protocol family. The new family provides a new, simple and clean

socket interface between the user process and the kernel.

Below, we describe the design, the kernel implementation and the performance of the new socket proto-

col family.

1Linux has declared this socket type as obsolete.

2

2 PF IPOPTION: a new protocol family

We have defined and implemented a new protocol family,PF IPOPTION, that allows users to intercept IP

packet with options via the socket interface. In this section, we explain how users can program sockets with

the new family.

To receive IP packets with option type,type, a user needs to open a raw socket2.

socket(PF_IPOPTION, SO_RAW, type);

Users can modify thePF IPOPTION sockets with the following options:

IPOPT RECVLOCAL: If this option is set, the kernel sends copies of local traffic to the process. (Local

traffic consists of packets originating at the node or addressed to the node.) We allow users to “listen”

for local packets but not to intercept them. If not set, local traffic will bypass thePF IPOPTION

sockets.

IPOPT RECVRA: If this option is set, the kernel captures all incoming IP packets with IP router alert

options.

IPOPT RESVRSVP: If this option is set, the kernel captures incoming RSVP packets that have a router

alert option in the IP header.

IPOPT RECVRTCP: If this option is set, the kernel captures incoming RTCP messages that have a router

alert option in the IP header.

IP RECVIF: If this option is set, the kernel captures the interface index indicating the interface on which

the IP packet was received. This option was originally developed by Bill Fenner for UDP in FreeBSD.

Ingress interface information is important when processing signaling protocol packets.

The IPOPTION extension works only for packets received. To send packets containing IP options,

programs can create raw sockets and set theIP HDRINCLsocket option.

2.1 ipodump: an IP Option Display Program

We illustrate the usage ofPF IPOPTION by describing the operation of a new UNIX command,ipodump.

ipodumpis a utility that displays IP option headers of packets passing through a system. Its manual page is in

Appendix A. The source code can be found athttp://www.cs.columbia.edu/˜pingpan/software/ipodump.

Figure 1 shows the data path of intercepted option packets.ipodumpconsists of three parts, shown

as shaded boxes, for intercepting packets, printing headers, and packet reinjection. The program can be

configured from the command line to choose, for example, the IP option type and incoming interface. For

example, when asked to intercept IP RSVP packets with router-alert options,ipodumpexecutes roughly the

following code, omitting details:

2We use a raw socket because its handling is simple. To intercept IP option packets, it does not make sense to runbind() or
connection(), which is required in stream and datagram sockets. But, using raw sockets restricts the use to processes running as
root.

3

IP InputRoute LookupIP output

Recvfrom()
Parsing and

PrintingSendto()

Input
Device Driver

Output
Device Driver

KernelKernel

User SpaceUser Space Raw socket, PF_IPOPTIONRaw socket, PF_INET

Figure 1: Packet forwarding path used byipodump. Regular packets go directly from IP Input to route
lookup (dotted line); intercepted packets are sent to user space, and reinjected back into the kernel after
processing.

4

int sock, on=1;

sock = socket(PF_IPOPTION, SOCK_RAW, IPOPT_RA);

setsockopt(sock, IPPROTO_IP, IP_RECVRSVP, &on, sizeof(on));

...

The packet receiving and reinjection procedure is similar to other socket applications. When receiving a

packet, the function invokes therecvmsgsystem call, which requires the user to provide the receiving control

and data buffer pointers. The reason for usingrecvmsgis to be able to receive control messages, such as

ingress interface data.

struct iovec iov; /* provide data buffer info */

struct cmsghdr *cmsg; /* pointer to control message */

char *packet = (char *)malloc(MAX_PKT_SIZE);

char *ctrl = (char *)malloc(MAXCTRLSIZE);

...

iov.iov_base = (char *)packet;

iov.iov_len = MAX_PKT_SIZE;

msg.msg_iov = &iov;

msg.msg_control = ctrl;

msg.msg_controllen = MAXCTRLSIZE;

...

len = recvmsg(sock, &msg, 0);

for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;

cmsg = CMSG_NXTHDR(&msg, cmsg)) {

if (cmsg->cmsg_type == IP_RECVIF)

if_index = CMSG_IFINDEX(cmsg);

...

}

rsvp_read(packet, len, if_index); /* process RSVP message */

...

After parsing and printing,ipodumpsends the packet back to the kernel using a raw socket. The socket

option IP HDRINCLallows the caller to supply a completed IP header so that the kernel does not have to

construct an IP header. It is used here to reinject the previously received raw IP packets.

int tx_sock, on=1;

/* initialize the transmit socket */

tx_sock = socket(PF_INET, SOCK_RAW, 0);

5

setsockopt(tx_sock, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on));

...

/* send out the packet */

sendto(tx_sock, packet, len, 0, ...);

...

3 Implementation

In this section, we describe how we implementedPF IPOPTION in the BSD kernel. Figure 2 shows where

thePF IPOPTION extension is inserted into the IP input processing path.

TCP Input UDP Input ICMP, RSVP
Input

IP Protocol Type Switch

IP Option Type Switch

RA, LSRR, ...
 Input

Receive
IP option
packets

ProcessProcess

KernelKernel

PF_INET
STRAEM
 Sockets

PF_INET
DGRAM
Sockets

PF_INET
RAW

Sockets

PF_IPOPTION
RAW

Sockets

Route Lookup

Transmit
packets

local
packets

Figure 2: Relationship of IPOPTION processing to rest of kernel

One of our main objectives is to introduce as little processing overhead in the forwarding path as pos-

sible. To achieve this, we have used two bitmap variables:ipopt cfg and ipopt pkt. Users choose the type

of IP option packets that they want to receive by calling thesetsockopt()system function, which invokes

ipopt ctloutput() in the kernel. Based on the selected option type,ipopt ctloutput()sets a corresponding bit

in ipopt cfg. Only one bit is set in the bitmap even if multiple sockets are opened to “listen” on the same

option type. When receiving an IP options packet, the IP input routine records the options present in the

packet and sets the corresponding bits inipopt pkt. Then, the IP option processing function can quickly

determine whether or not to intercept the packet with one “and” operation (that is,ipopt cfg&ipopt pkt).

6

0

20

40

60

80

100

120

140

160

1 56 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

ICMP Packet Size (in bytes)

P
ro

ce
ss

in
g

T
im

e
(in

 u
se

c)

NETOPTION on,
capturing packets

NETOPTION on, not
capturing packets

NETOPTION off

Figure 3: Kernel Packet processing time

To further improve performance, we allocate one PCB (Protocol Control Block) chain per option type,

instead of the traditional approach, where one PCB chain is responsible for keeping track of all the socket

id’s of a socket type or a socket family. Readers can refer to Stevens’ UNIX TCP/IP book [3] that describe

the operation of PCBs in detail.

After the kernel sends an intercepted packet to user space, it has to decide whether to drop or forward

the original packet. If the system is operating as a router, the user process is responsible for processing

and forwarding the intercepted packet. Therefore, the kernel needs to discard the original packet. But

if the system is the packet’s destination, there may be other sockets waiting for the arrival of the packet.

In this case, the kernel cannot drop the packet and has to continue to process the packet. In our BSD

implementation, we inserted IP option processing routine in two places: one is right before IP route lookup,

the other just before IP protocol type switching. The first insertion is to catch routed packets, and the second

insertion is to catch local packets. We always drop the routed packets after interception, and forward the

local ones.

4 Performance

We evaluated the performance of our implementation on an Intel Celeron 500 MHz PC running FreeBSD

3.4. This PC was connected to two other PC’s through 10 Mb/s Ethernet interfaces; we confirmed that it

could route traffic between the interfaces at media speed. We used theping -Rcommand to generate record

7

route IP option packets.

We modified theipodumpcommand such that it reinjects IP option packets back into the network im-

mediately after intercepting them. We also added two timing checks in the kernel, one at the beginning of

the IP input, the other at the end of IP output routine. Using this timing information, we could measure the

overall network processing delay caused by usingPF IPOPTION sockets.

The results of our measurements are shown in Figure 3. The average packet processing time for a kernel

withoutPF IPOPTION implementation was 40.74�s. When usingPF IPOPTION, the time for processing

option packets, but not intercepting them, was 44.59�sec on average. Thus, the extra checks for IP option

packets taking place in the IP forwarding loop caused delay to increase by 8.6%. However, an intercepted

packet spent 124.64�s traversing kernel and user space, for a 67.3% increase in delay. In this mode, the

system could only forward at most 8,023 IP option packets per second.

We observed that the processing delay did not depend significantly on the packet size. Out of the 16 sets

of data we have collected, the delay for processing 1-byte ICMP packets with IP record route option was

116.4�sec, compared with 132.6�s for 1400-byte ICMP packets.

To understand the causes of this performance degradation, we added several timers in a modified version

of the ipodumpcommand to measure the time needed to read a packet from a rawPF IPOPTION socket

and the time needed to write a packet to a raw socket3 The results are shown in Figure 4.

We observed that reading and writing did not take much time, approximately 20-25�s. The total time

that a packet spent in the user space was 46.28�s on average. In other words, out of 124.64�s total process-

ing delay, the BSD socket interface contributed as much as 78.36�s or 62.87%.

Kernel performance is affected by CPU clock speed and caching architecture. We ran the same tests on

a 600 MHz Pentium PC. As shown in Figure 5, the total processing delay is reduced to 60.28�sec (or by

51.64%) with processor that has a 20% higher clock speed.

5 Discussion

We have defined and developed a new socket protocol familyPF IPOPTION on FreeBSD. The implemen-

tation does not depend on other socket operations, and thus integrating the change into the kernel was fairly

simple.

We have measured the packet processing delays both in kernel and in user space. We discovered that

the socket I/O seems to be the performance bottleneck, with the delay being almost unaffected by the packet

size.

The performance numbers raise some interesting issues. ThePF IPOPTION can be used to support

RSVP at routers. The routers in a reasonabily sized network may need to process large number of RSVP

refresh messages. Given the BSD’s kernel performance constraint, it would be to costly and difficult to

support these refresh messages. To achieve high performance, one solution is to implement signaling pro-

tocols (such as RSVP) in the kernel, with users defining socket operations to control protocol operation. A

3More precisely, we measured the read time as the time from after returning fromselect()to after executingrecvmsg().. The
write duration was measured as the time fromrecvmsg()to sendto(). Refer to Section 2.1 for the actual code.

8

0

20

40

60

80

100

120

140

160

1 56 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

ICMP Packet Size (in bytes)

T
im

e
(in

 u
se

c)

Total Kernel I/O

Total socket
read/write

Write to socket

Read from socket

Figure 4: Comparing the kernel and user processing overhead

different solution is to develop the protocol in the user space, but to “bundle” the refresh messages into a

large message before sending them to the neighbors. This “scatter-gather I/O” mechanism can avoid the

per-packet delay in the socket I/O. An example of such mechanism can be found in [8].

I/O performance can be enhanced by streamlining the socket implementation, although we are unable to

suggest any concrete steps. Our comparison between two different Pentium processors showed that cache

size, more than raw clock speed, affects the overall protocol performance.

6 Code availability

The source and object code for theIPOPTION extension andipodumphave been available since April 2000

athttp://www.cs.columbia.edu/˜pingpan/software.

We have tested the kernel extension on FreeBSD 3.x and 4.x machines to capture RTCP and RSVP mes-

sages, using a modified version of thertptoolsto generate and record RTCP messages with IP router alert op-

tion. The latestrtptoolssource code incorporating these change can be found athttp://www.cs.columbia.edu/˜hgs/rtptools.

7 Acknowledgments

Bernard Suter, Rohit Dube and Ram Ramjee helped by discussing implementation options.

9

0

20

40

60

80

100

120

140

160

1 56 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

ICMP Packet Size (in byte)

P
ro

ce
ss

in
g

T
im

e
(in

 u
se

c)

Pentium 600 MHz
PC

Celeron 500 MHz
PC

Figure 5: Processing overhead for different CPU’s

References

[1] R. T. Braden, “Requirements for internet hosts - communication layers,” Request for Comments 1122,
Internet Engineering Task Force, Oct. 1989.

[2] D. Katz, “IP router alert option,” Request for Comments 2113, Internet Engineering Task Force, Feb.
1997.

[3] W. R. Stevens,TCP/IP illustrated: the implementation, vol. 2. Reading, Massachusetts: Addison-
Wesley, 1994.

[4] W. R. Stevens,UNIX Network Programming: Networking APIs - Sockets and XTI, vol. 1. Upper Saddle
River: Prentice Hall, 1998.

[5] S. McCanne and V. Jacobson, “A BSD packet filter: A new architecture for user-level packet capture,”
in Proc. of Usenix Winter Conference, (San Diego, California), pp. 259–269, Usenix, Jan. 1993.

[6] V. Jacobson and S. McCanne, “libpcap: Packet capture library.” ftp://ftp.ee.lbl.gov/libpcap.tar.Z.

[7] A. Cobbs, “The divert manual page.” http://www.freebsd.org/.

[8] L. Berger, D. Gan, G. Swallow, and P. Pan, “RSVP refresh reduction extensions,” Internet Draft, Internet
Engineering Task Force, July 1999. Work in progress.

10

A ipodump Manual Page

NAME

ipodump - dump IP option packet

SYNOPSIS

ipodump [-ix] [-c count] [-s snaplen] [-T expres-

sion]

DESCRIPTION

Ipodump prints out the IP option headers of packets rout-

ed through a system.

In default operation, ipodump captures and displays all

passing IP options packets. Ipodump can also print out the

option packets that match the expression. After a captured

packet is printed, ipodump puts it back onto the wire. The

packet can then be forwarded to its original destination.

To run this command, the user needs to have superuser

privileges. The system needs to have the IPOPTION kernel

extension. The kernel extension source code is available

at

http://www.cs.columbia.edu/˜pingpan/software/netipopt.

OPTIONS

-i Set the IP_RECVIF option on the socket being used.

Ipodump displays the receiving interface index for

all captured packets.

-x Print each received packet (starting from IP

header) in hex. The smaller of the entire packet

or snaplen bytes will be printed.

-c count

11

Stop after receiving count IP option packets. If

this option is not specified, ipodump will operate

until interrupted.

-s snaplen

Specify the number of data bytes to display. The

default is 128.

-T expression

Set the kernel to intercept the packets specified

in "expression. Currently known filters are rr

(route record), ts (timestamp), sec (security),

lsrr (loose source route), ssrr (strict source

route), ra (router alert), rsvp (RSVP in router-

alert) and rtcp (RTCP in router-alert).

AVAILABILITY

The ipodump command works in FreeBSD 3.3, 3.4 and 4.0.

BUGS

The ipodump command takes packets from the kernel. After

parsing and printing, it puts packets back into the ker-

nel. This impacts packet forwarding performance.

AUTHORS

The ipodump command and IPOPTION kernel extension were

written by Ping Pan <pingpan@cs.columbia.edu> while at

Bell Labs. The idea was cooked up by Ping and Henning

Schulzrinne <hgs@cs.columbia.edu>.

12

