
A Flexible and Efficient Protocol
for Multi-Scope Service Registry Replication

Weibin ZhaoandHenning Schulzrinne
Columbia University
New York, NY 10027

{zwb,hgs}@cs.columbia.edu

Abstract

Service registries play an important role in service discovery systems by accepting service
registrations and answering service queries; they can serve a wide range of purposes, such as
membership services, lookup services, and search services. To provide fault tolerant, and en-
hance scalability, availability and performance, service registries often need to be replicated.
In this paper, we present Swift (Selective anti-entropy WIth FasT update propagation), a flex-
ible and efficient protocol for multi-scope service registry replication. As consistency is a less
of concern compared with availability in service registry replication, we choose to build Swift
on top of anti-entropy to support high availability replication. Swift makes two contributions
as follows. First, it defines a more general and flexible form of anti-entropy called selective
anti-entropy, which extends the applicability of anti-entropy from full replication to partial
replication by selectively reconciling inconsistent states between two replicas, and improves
anti-entropy efficiency by fine controlling update propagation within each subset. Selective
anti-entropy is the first that we are aware of in using anti-entropy to support generic partial
replication. Secondly, Swift integrates service registry overlay networks with selective anti-
entropy. Different topologies, such as full mesh and spanning tree, can be used for constructing
service registry overlay networks. These overlay networks are used to propagate new updates
quickly so as to minimize inconsistency among replicas. We have implemented Swift for repli-
cating multi-scope Directory Agents in the Service Location Protocol. Our experience shows
that Swift is flexible, efficient, and lightweight.

1 Introduction

Service registries play an important role in service discovery systems [8, 15, 23, 18] by accepting
service registrations and answering service queries from clients. A client of a service registry can
be a service provider or a service user (or both such as in a peer-to-peer discovery system [18]).
Being used in different ways, service registries can serve for a wide range of purposes, such as
(1) a membership service that maps a group identifier to the members in the group, for instance,
the ENR server in Reliable Server Pooling [20]; (2) a lookup service that maps a service key to a
service entry; and (3) a search service that maps a service description to one or multiple service
keys. Note that a lookup service provides a one-to-one mapping, whereas a search service often

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


results in a one-to-many mapping. Normally, service registries only maintain service information,
real services are provided elsewhere. But service registries can also store service proxies which can
be downloaded and be used to access services [23], or store service contents in which case a service
registry serves as a content server as well. In summary, service registries are very flexible to support
diverse application requirements.

To provide fault tolerant, and enhance scalability, availability and performance, service reg-
istries often need to be replicated. A simple way for service registry replication is to just deploy
multiple service registries, and rely on clients to register with as many service registries as they can
to improve the chances of being discovered. This simple approach is inefficient in that a client needs
to keep track of all service registries so as to register with them. It is also hard to guarantee any con-
sistency among service registries, which totally depends on how clients perform their registrations.
A better way for service registry replication is to use a replication protocol among a set of service
registries such that a client only needs to register with one service registry, then the registration will
be propagated automatically to the rest service registries.

As service registries are used primarily for the query purpose, they should be available at any
time. Compared with availability, consistency is a less of concern since inconsistent service regis-
tration states among replicas may only result in a less optimal service selection, but un-availability
of service registries will lead to no service information at all. Therefore, an asynchronous [2] (or
weakly consistent) replication should be used for service registries, where a registration update is
delivered to one replica first, then it is propagated to other replicas later.

We choose to use anti-entropy [7] as the basic mechanism to build high availability service
registry replication for three reasons. First, it ensures eventual consistency among a set of replicas.
When there is no more updates, replicas are guaranteed to reach consistent states. Second, it is
efficient in that only the differences among replicas are exchanged. Third, it is flexible as both the
differences of states and the differences of updates can be exchanged. Normally, when two replicas
perform anti-entropy between them for the first time, they exchange the differences of their initial
states; in all subsequent anti-entropy sessions, they exchange their newly received updates.

However, two requirements in service registry replication are not well supported by anti-entropy,
namely partial replication and fast update propagation. Anti-entropy was designed and used for
supporting full replication; little work has been done in applying it to partial replication. Moreover,
anti-entropy only guarantee eventual consistency; it dose not specify any mechanism to propagate
updates quickly so as to minimize inconsistency among replicas. To remedy this situation, we
designed Swift (Selective anti-entropy WIth FasT update propagation), a flexible and efficient repli-
cation protocol, which extends existing anti-entropy schemes [14, 19] in two important aspects:
formulating a more generic form of anti-entropy to support partial replication, and efficiently inte-
grating fast overlay propagation with anti-entropy.

The rest of this paper is organized as follows. We first overview full replication, partial replica-
tion, and anti-entropy in Section 2, and describe multi-scope service registry replication in Section 3.
Then we identify the summary problem in applying anti-entropy to partial replication, and present a
novel way to solve the summary problem by using selective anti-entropy in Section 4. Section 5 dis-
cusses how to use registry overlay network to propagate updates quickly, Section 6 describes other
replication issues, including registration version resolution, registry membership service, and the

2



R1

R2 R3 R4 R5

R6

(S1, S2, S3)

(S1)

(S1, S2)

(S1, S2) (S2, S3) (S3)

Figure 1: An example ofP(6, 3), where replicas areR1 to R6, scopes areS1 to S3, and an edge
between two replicas means that they share scopes.

use of soft states. We discuss implementation issues and Swift messages in Section 7, present per-
formance study on selective anti-entropy in Section 8, list related work in Section 9, and conclude
in Section 10.

2 Background

2.1 Full Replication vs. Partial Replication

Full Replication In a full replication system, all replicas maintain the same states. We denote a
full replication system withr replicas asF(r).

Partial Replication In a partial replication system, the whole state set is divided into subsets re-
ferred to asscopes. We denote a partial replication system withr replicas ands scopes as
P(r, s).

In P(r, s), a replica may support any number of scopes from1 to s, and a scope of states may
be replicated to any number of replicas from2 to r. We assume that any state should be replicated
to at least two replicas. In other words, the replication degree of any state is at least two. When all
replicas supports scopes, or all states are replicated tor replicas,P(r, s) is equivalent toF(r). In
this sense, we can viewF(r) as a special form ofP(r, s). P(r, s) is more flexible thanF(r) in that
different scopes may have different replication degrees, for instance, a popular scope may have a
higher replication degree than a less popular scope. Figure 1 shows an example ofP(6, 3).

In F(r), any two replicas are equivalent, but inP(r, s), four different types of relationships
may exist between two replicas based on their shared scopes: equivalent, subset, overlap, and non-
overlap; please refer to Table 1 for definitions and examples.

2.2 Overview of Anti-Entropy

The rational behind anti-entropy is simple. If each replica periodically reconciles its states with the
rest replicas, all replicas will eventually become consistent when there is no further update occurred.

3



Rx vs. Ry S(Rx) vs. S(Ry) Example in Figure 1
equivalent S(Rx) = S(Ry) R3 vs. R6

subset S(Rx) ⊂ S(Ry) or S(Ry) ⊂ S(Rx) R4 vs. R1

overlap S(Rx) ∩ S(Ry) 6= φ R3 vs. R4

non-overlap S(Rx) ∩ S(Ry) = φ R2 vs. R5

Table 1: Relationships between replicaRx andRy in P(r, s), whereS(Rx) andS(Ry) denote the
scopes ofRx andRy, respectively.

In anti-entropy, two replicas only exchange their differences. To determine the differences be-
tween two replicas, an order is defined for all updates and states. An update sequence id (USID)
in the form of(R, t) is assigned to each update, whereR is the originating replica that accepts the
update from the client, andt is the originating timestamp when the update is accepted at its origi-
nating replica. Note that all originating timestamps assigned by the same originating replica must
be monotonically increasing. The USID of a state is the same as that of the last update applied
to it. Two USIDs are comparable only if they have the same originating replica, and the order is
determined by their originating timestamps.

New updates or states are always propagated in order of their USIDs, which enables two replicas
to quickly find out their differences by comparing theirsummary vectors. A summary vector at a
replica includes all the maximum USIDs it has received so far; for each unique originating replica in
the received USIDs, there is a corresponding maximum USID in the summary vector. For example,
if replica Ri has a summary vector of((R1, t1), (R2, t2), ..., (Rr , tr)), thenRi has received all
updates originally accepted by replicaRj up to timestamptj, where1 ≤ j ≤ r.

3 Multi-Scope Service Registry Replication

Unlike the hierarchical namespace and corresponding hierarchical arrangement of servers in DNS
[17] and LDAP [22], service key often has a roughly flat structure (e.g., both Jini [23] and UDDI
[8] use UUID [13] as service key), and a service registry can accept any registration in the whole
service key namespace. To facilitate service management and search, services are often catego-
rized into scopes, which are administrative groupings of services based on geographical locations,
administrative departments, or some other categories. For example, SLP uses service scopes to
group services in addition to service types, and UDDI provides comprehensive classifications for
business web-based services, such as industry codes, product codes and geography codes – all these
can be used for service groupings. The use of scopes effectively partitions a flat service space into
sub-spaces, which provides an efficient, flexible, and scalable way to deploy service registries.

3.1 Multi-Scope Service Registries

There are three different ways to deploy service registries in multiple scopes. The first one is to
have each service registry serve all scopes, which will lead to a coarse grain full replication. The

4



Option2

Option1

Option2

R1(S1) R2(S1, S2) R3(S2)

Reg(S1, S2)

Figure 2: Options for sending a multi-scope service registration to registries

second one is to have each service registry serve a single scope, which will lead to a fine grain full
replication. The third one is to allow a service registry to serve any number of scopes, from one to
all scopes, which will lead to partial replication.

The first configuration is convenient for clients since each service registry is capable to answer
any service query regardless of scopes. But this configuration is heavy-weight as each service
registry needs to support all scopes. It is inefficient in some cases, for instance, when a popular
scope needs to have a higher replication degree than a less popular one, and when a service registry
serves clients that are only interested in some (not all) scopes.

The second configuration is neither efficient nor convenient. First, a multi-scope service regis-
tration needs to be sent to several single-scope registries each serving one of its scopes, whereas it
only needs to be sent to a single multi-scope registry that serves all of its scopes. Secondly, for a
search that targets multiple scopes or all scopes (using a scope wildcard), it needs to query multi-
ple single-scope registries, whereas it only needs to query a multi-scope registry or a registry that
serves all scopes. Finally, a multi-scope registry is more efficient than several single-scope registries
in terms of resource usage.

The third configuration is the most flexible one, which can provide a better efficiency and con-
venience. In this configuration, two registries may share partial scopes, thus partial replication is
needed. For example, assume that registryR1 serves scopesS1, S2, andS3, and registryR2 serves
scopesS2, S3, andS4, thenR1 andR2 need to replicate each other partially – only in their shared
scopesS2 andS3.

3.2 Multi-Scope Service Registrations

A multi-scope service registration needs to be sent to a number of service registries such that the
union of these service registries’ scopes covers its scopes. For example, in Figure 2, a multi-scope
service registration in scopeS1 andS2 may be sent to registryR2 (serving scopeS1 andS2), or
to both registryR1 (serving scopeS1) and registryR3 (serving scopeR2). Clearly, the first option
(usingR2) is more convenient for the client. Note that in the second option,R2 will receive two
copies ofRegpropagated fromR1 andR3, respectively, andR2 will install the first copy but ignore
the second copy as they have the same version id (VID, see Section 6.1).

A multi-scope service registration should always carry its complete scope list whether it is sent
from a client to a registry or propagated form a registry to another one. A service registry can accept

5



State Scope USID
a S1 (R6, t61)
b S2 (R6, t62)
c S3 (R6, t63)

Table 2: The states and their scopes and USIDs atR6, wheret61 < t62 < t63.

a multi-scope service registration only if it supports whole or partial of the scope list of that service
registration. For example, if a service registration has a scope list of “S1, S2”, then a service registry
can accept this registration if its serving scope list comprises “S1”, or “S2”, or both. Furthermore, a
registry propagates a service registration to another registryRx only if Rx supports whole or partial
of the scope list of that registration.

4 Selective Anti-Entropy

We refer to traditional anti-entropy [14, 19] ascomplete anti-entropy, where two replicas reconcile
all inconsistent states between them in a two-way session or two one-way sessions. Complete
anti-entropy works well in full replication, but may cause a summary problem – a replica cannot
summarize its received updates using a summary vector, in partial replication.

4.1 Motivating Example

Let’s use an example to show why complete anti-entropy is not sufficient for partial replication. In
Figure 1, we assume thatR2 andR3 have no state yet;R6 has received three statesa, b andc (their
scopes and USIDs are shown in Table 2) from clients. Consider three sessions amongR2, R3 and
R6 as follows:

• In the session betweenR2 andR6, R2 gets new statesa andc in scopeS1 from R6, thenR2

changes its summary vector from () to ((R6, t63)).

• In the session betweenR3 andR2, R3 gets new statesa andc in scopeS1 from R2, thenR3

changes its summary vector from () to ((R6, t63)). But the summary forR6 is wrong sinceR3

has not receivedb yet, which has a USID of (R6, t62).

• In the session betweenR3 andR6, R3 wants to get new states in scopeS1 andS2 from R6,
but sinceR3 andR6 have the same summary vector of ((R6, t63)), R6 will not sendb to R3.
The anti-entropy fails due to the incorrect summary.

The reason leading to the wrong summary is that updates in different scopes are propagated
separately, but may not in order of their USIDs. For example,R3 receives statec before stateb
(which is not in order of their USIDs) since statec is in scopeS1, stateb is in scopeS2, andR3

receives updates in scopeS1 first.

6



Type Number of Subsets Direct/Indirect
select-one-direct 1 direct

select-one-indirect 1 indirect
select-multiple ≥ 2 but< r − 1 indirect/mixed

select-all r − 1 mixed

Table 3: Types of selective anti-entropy sessions, wherer is the number of replicas in the replica
set.

There are two ways to fix this incorrect summary problem. One way is to use a summary matrix
of sizer× s, which has a timestamp summary for each replica and scope combination. But this will
significantly complicate the summary management, especially when there are many scopes, or/and
when new scopes can be added dynamically. We believe a better and simpler approach is to keep
the summary as a vector and use selective anti-entropy.

4.2 Selective Anti-Entropy

Selective anti-entropyis to selectively reconcile inconsistent states between two replicas in a session,
i.e., a replica specifies the subsets of updates it solicits, and thus controls what it receives from
another replica.

In selective anti-entropy, all updates that are originally accepted by the same replicaRx belong
to the same subsetRx. The subset of a state is the same as that of the last update applied to it. Thus,
if there arer replicas accepting updates from clients, we can divide all updates and states intor
subsets, denoted asR1, R2, ...,Rr.

We useΘ(Rx, {Rx1 , Rx2 , ..., Rxk
}, Rz) to denote a selective anti-entropy session whereRx

requests new updates inRx1, Rx2, ..., Rxk
from Rz. All selective anti-entropy sessions can be

categorized into four types (listed in Table 3) based on the number of subsets requested and whether
the session is direct or indirect. We assume that a replicaRx does not request updates inRx from
other replicas. A session is direct if it only requests updates inRz from Rz (e.g.,Θ(Rx, {Rz}, Rz)),
otherwise the session is indirect (e.g.,Θ(Rx, {Ry}, Rz)) or mixed (e.g.,Θ(Rx, {Ry, Rz}, Rz)). A
select-multiple or select-all session can be viewed as comprisingk (k ≥ 2) select-one sessions,
in which at most one is select-one-direct session, and the rest are select-one-indirect sessions. A
select-all session is equivalent to a complete anti-entropy session.

Figure 3 shows how selective anti-entropy differs from complete anti-entropy. Figure 3(a) gives
the initial states at replicaR1, R2 andR3: R1 has no state yet;R2 has received two statesa andb
from clients, and has propagateda to R3; andR3 has received two statesc andd from clients, and
has propagatedc to R2. Figure 3(b) and Figure 3(c) illustrate howR1 gets new states fromR2 and
R3 via complete and select-one-direct anti-entropy, respectively.

7



R1 R2 R3

φ

State USID
a (R2, t21)
b (R2, t22)
c (R3, t31)

State Sid

a (R2, t21)
c (R3, t31)
d (R3, t32)

(a) The states and their USIDs atR1, R2 andR3

{a, b, c} {a, b, c, d}

{a, b, c} {d}

{a, b, c} {a, c, d}

R1R1R1

R2 R3

(b) R1 performs complete anti-entropy withR2 and
R3

{a, b, c, d}

{a, b, c} {a, c, d}

{a, b} {c, d}

R1R1

R2 R3

(c)R1 performs select-one-direct anti-entropy withR2

andR3

Figure 3: Complete anti-entropy vs. Select-one-direct anti-entropy

4.3 Safe Anti-entropy Sessions

An anti-entropy session issafeif it will not cause incorrect summaries at the summary vector. Using
selective anti-entropy, a replica can choose safe sessions in all cases. The following selective anti-
entropy sessions are safe.

• Any select-one-direct anti-entropy session, such asΘ(Rx, {Rz}, Rz), is safe.

• A select-one-indirect anti-entropy sessionΘ(Rx, {Ry}, Rz) is safe if S(Rx) ∩ S(Ry) ⊆
S(Rz), whereS(Rx), S(Ry) andS(Rz) denote the scopes ofRx, Ry andRz, respectively. In
other words, ifS(Rx)∩ S(Ry) ⊃ S(Rz), Θ(Rx, {Ry}, Rz) may cause incorrect summaries.
In Figure 1, for example,Θ(R3, {R1}, R6) is safe becauseS(R3) ∩ S(R1) = {S1, S2} =
S(R6), butΘ(R3, {R6}, R2) may not be safe sinceS(R3) ∩ S(R6) = {S1, S2} ⊃ S(R2) =
{S1}.

• A select-multiple or select-all anti-entropy session is safe if each of its select-one-indirect
sessions is safe.

In contrast, a replica cannot guarantee a complete anti-entropy session to be safe in some cases.
For example, consider two complete anti-entropy sessions,s1 ands2, in Figure 1:s1 is betweenR3

andR6, s2 is betweenR3 andR2, ands1 is performed befores2. R3 cannot guarantees2 to be safe
since betweens1 ands2, R2 may perform another session withR6 and get new updates inR6.

8



Subset Entry 1 . . . Subset Entry k

Number of Subset EntriesMessage Type Anti−Entropy Type

(a) The message format

Upper Bound TimestampOriginating Replica ID Lower Bound Timestamp

(b) The subset entry format

Figure 4: The anti-entropy request message

4.4 Parallel Anti-entropy Sessions

A replica needs to perform complete anti-entropy sessions sequentially, but it can perform multiple
selective anti-entropy sessions in parallel, such as all select-one-direct sessions. In general,Rx

can performk selective anti-entropy sessions (s1, s2, ..., sk) in parallel if and only if the requested
update subsets (u1, u2, ..., uk) in these sessions do not overlap, i.e.,u1 ∩ u2 ∩ ... ∩ uk = φ. For
example, assumek = 2, u1 = {R2, R4}, u2 = {R3, R5}, then sessions1 ands2 can be performed
in parallel becauseu1 ∩ u2 = φ.

Running anti-entropy sessions in parallel at a replica can improve performance (see Section 8)
since the replica does not need to wait until a session is finished before it can start another session.

4.5 A Generic Message Format for Anti-entropy Requests

While selective anti-entropy can avoid incorrect summaries, complete anti-entropy is simple and
works well for full replication. Thus, it is advantageous to support both selective and complete
anti-entropy sessions in one system. This can be achieved by using a generic message format for
anti-entropy requests, shown in Figure 4(a). This message has four components: message type,
anti-entropy type, number of subset entries, and subset entries. If the anti-entropy type is selective,
then selective anti-entropy is performed, in which only new updates that are in the specified subsets
are requested; otherwise complete anti-entropy is performed, in which both new updates that are
in the specified subsets and all updates that are not in the specified subsets are requested. Clearly,
when the same subset entries are used in an anti-entropy request, the selective anti-entropy type may
request less updates than the non-selective one.

In complete anti-entropy, each subset entry has two components: replica id and lower bound
timestamp. An unspecified subset has a default lower bound timestamp as zero. To facilitate further
fine selection of new updates within each subset, the subset entry in Swift has three component:
replica id, lower bound timestamp, and upper bound timestamp (Figure 4(b)). This way an exact
range of new updates (greater than lower bound but less than upper bound) within each subset can
be specified, which is useful in some cases, for instance, when fast overlay propagation is used
along with anti-entropy (see Section 5). Note that an upper bound timestamp is ignored if it is zero.

9



5 Service Registry Overlay Networks

5.1 Motivations

Normally, anti-entropy sessions are scheduled periodically (e.g., once a day) among all replicas,
where new updates are transferred in batch form one replica to another. As a state may remain
inconsistent between two replicas for as long as the anti-entropy interval, it would be beneficial
to have a way to propagate updates quickly between anti-entropy sessions in order to minimize
inconsistency among replicas.

One way to propagate updates quickly is to use multicast: when the originating replica receives
an update from a client, it multicasts the update to other replicas. However, this simple approach has
two limitations. First, replicated service registries may be deployed across the whole Internet, but
multicast is not readily available in the Internet. Secondly, multicast may be unreliable, and does
not guarantee any order on message arrivals. In contrast, anti-entropy transfers messages reliably
and in order. These mismatches make the integration of multicast with anti-entropy difficult.

A better way to propagate updates quickly is to use service registry overlay networks at applica-
tion layer. An overlay network is a connected graph: each node is a service registry, and each edge is
a connection that provides reliable and in order message transfer, such as TCP connection. Different
overlay network topologies have different update propagation controls; we will discuss this issue in
section 5.5. As both anti-entropy and overlay networks use connections to transfer messages reli-
ably and in order, it is easier to integrate them together. Note that anti-entropy and overlay networks
differ in two aspects in using connections. First, the connections in overlay networks are persis-
tent, though they may fail due to network partitions and registry failures, whereas the connections
used by anti-entropy sessions are created and torn down on demand. Secondly, overlay networks
may use different topologies, such as full mesh, spanning tree, and ring, whereas a replica normally
performs anti-entropy with other replicas in a full mesh style. Nevertheless, if there is an overlay
connection existed between two registries, they shall use this connection in anti-entropy instead of
creating another one.

5.2 Fast Overlay Propagation vs. Anti-Entropy

Propagating updates quickly via service registry overlay networks is referred to as fast overlay
propagation. When fast overlay propagation is used, anti-entropy does not need to be performed
periodically. Instead, anti-entropy becomes a backup mechanism, which is used only for exchanging
initial states and for catching up new updates after failures. In normal condition where there is no
network partition, no registry failure, and no new registry join, fast overlay propagation is sufficient
to distribute any new update from its originating replica to the rest replicas.

Should fast overlay propagation fail, a replica needs a way to detect this failure. For example,
if replica Rx has not received any update originated from replicaRy for a long time,Rx needs to
distinguish a failure (e.g.,Ry failure or network partition) from no update at all originated form
Ry. To achieve this, each replica periodically sends a keepalive message via overlay networks. If
a replica’s keepalive message has been timeout, then some failure has occurred, and anti-entropy
needs to be scheduled.

10



(S2)

R1

R2

R3
R4(S1)

(S1, S2)

(S1, S2)

Figure 5: An example of service registry overlay networks for two scopesS1 andS2: each scope
has its own overlay network, but they share one connection that is between registryR1 andR2.

5.3 Overlay Networks for Multiple Scopes

Service registry overlay networks are formed on scope basis, i.e., each scope has its own registry
overlay network. However, the overlay networks for two different scopes may share one or more
connections. For example, Figure 5 shows the overlay networks for scopeS1 andS2; they share one
connection that is between registryR1 andR2. In general, only one overlay network connection
is needed between any two replicas regardless of how many scopes they share. In other words, if
a connection is between two replicas that share multiple scopes, then this connection is shared by
multiple overlay networks.

5.4 Detecting Missed Updates

A replica sends new updates in order of their USIDs in both fast overlay propagation and anti-
entropy. However, the policies for sending new updates in these two cases are different: pull1 in
anti-entropy, whereas push in fast overlay propagation. Different sending policies at the sender side
lead to different requirements on detecting missed updates at the receiver side. When an update
is received via fast overlay propagation, a mechanism is needed to detect missed updates. This is
because when a replica newly joins (or re-joins) an overlay network, it will begin to receive new
updates via fast overlay propagation right away, but it may have missed some early updates that have
a USID less than that of the current update. For anti-entropy, in contrast, the detection of missed
updates is not needed: when a replica receives an update with a USID asx, it can assume that it has
received all updates with a USID less thanx (i.e., no update is missed). This is because (1) new
updates are sent from the right starting points specified by an anti-entropy request2, and (2) updates
are sent reliably and in order.

As described in Section 2.2, each update carries its USID, which has two components: originat-
ing replica, and originating timestamp. All originating timestamps assigned by the same originating
replica are monotonically increasing, but their values are not necessarily increasing by exactly one.
Thus, from an update’s USID, a receiving replica cannot tell whether it has missed some early up-
dates. To remedy this situation, we let each update carry both its USID and its preceding USID so

1A replica sends new updates to another replica only when it receives an anti-entropy request from that replica.
2The starting point of requested updates in a subset is specified via the lower bound timestamp in the subset entry, see

Figure4(b). If multiple subsets are specified in an anti-entropy, there will be multiple starting points.

11



Topology Full Mesh Spanning Tree Other Topologies

Propagation
Control

One hop Forwarding from
the incoming con-
nection to the rest
connections

Detecting duplicate updates,
and forwarding non-duplicate
updates from the incoming
connection to the rest connec-
tions

Advantages Simple, fast Scalable Balanced scalability and ro-
bustness

Disadvantages Poor scalability Poor robustness A replica may receive dupli-
cate updates

Table 4: Comparison of Different Overlay Network Topologies

that when a replica receives an update havingx andy as its USID and preceding USID, respectively,
the replica can ensure that it does not miss any update if it has already received an update having
y as its USID. Since an update’s USID and preceding USID have the same originating replica, we
represent them in a compact format(R, t, tp) referred to as EUSID (extended USID), whereR is the
originating replica,t is the originating timestamp, andtp is the preceding originating timestamp. In
an EUSID(R, t, tp), tp is less thant except when the EUSID is the first one assigned byR, where
tp equalst.

There are two advantages to use EUSID rather than USID. First, EUSID provides a way to detect
missed updates. In other words, EUSID can be used to determine whether a received update is in
order. An update is delivered and the summary vector is changed only when the update is in order,
otherwise the update is buffered for later processing. Secondly, EUSID provides a way to trigger
anti-entropy in addition to periodic scheduling. Should missed updated are detected, a replica needs
to send an anti-entropy request to the corresponding originating replica to solicit missed updates.
Here a range of updates (with lower and upper bound timestamps) needs to be specified, for which
the subset entry format shown in Figure 4(b) is very useful.

5.5 Topologies and Propagation Controls

Different overlay network topologies have different update propagation controls. Table 4 compares
the advantages and disadvantages of different topologies. Note that all replicas in the same overlay
network must agree on using the same topology.

5.5.1 Full Mesh Topology

The full mesh topology is simple. It provides the quickest way to propagate new updates: when a
replica receives an update from a client, the update only needs to be propagated one hop3 to reach
the rest replicas. Also, a full mesh overlay network can be used for anti-entropy. However, the full

3The hop used here is the overlay network hop from one replica to another; it is not the network routing hop.

12



mesh topology has poor scalability; it is only suitable to a small number of replicas in an overlay
network.

The creation of a full mesh topology is easy: a replica just needs to set up a connection to each
of the rest replicas. The membership information about replicas in each scope can be obtained using
the techniques described in Section 6.2.

The update propagation in a full mesh overlay network is performed as follows. When a replica
receives an update from a client, it assigns an EUSID to the update, then sends the update to the
rest replicas. When a replica receives an update from another replica, no further propagation for the
update is needed.

5.5.2 Spanning Tree Topology

The spanning tree topology is scalable, but less robust in terms of connectivity. The creation of a
spanning tree topology has been investigated in a number of systems, such as INS resolver network
[3] and VIA gateway spanning tree [5].

The update propagation in a spanning tree overlay network is performed as follows. When a
replica receives an update from a client, it assigns an EUSID to the update, then sends the update
to all overlay network connections its has. When a replica receives an update from another replica
via an overlay network connection, it forwards the update to the rest4 overlay network connections
it has. Since there is no loop in the spanning tree topology, the propagation of an update will stop
when the update reaches all replicas.

5.5.3 Other Topologies

The full mesh topology has the maximum connections, whereas the spanning tree topology has the
minimum connections. Other connected topologies, such as ring, have neither the maximum nor the
minimum connections.

The creation of an arbitrary connected topology can be done via configurations. Its update
propagation control is similar to that of the spanning tree topology, but with duplicate detection.
When a replica receives an update from a client, it assigns an EUSID to the update, then sends the
update to all overlay network connections its has. When a replica receives an update from another
replica via an overlay network connection, if it has not received the update before, it forwards the
update to the rest overlay network connections it has; otherwise, the update is discarded.

6 Other Issues

6.1 Registration Version Resolutions

Swift supports two types of service registrations: fresh registration and incremental registration. In
a fresh registration, a client provides complete information about a service aiming to create a new
registration state or overwrite an existing registration state, whereas in an incremental registration,

4Except the one from which the update is received.

13



a client only gives partial information about a service aiming to update an existing registration state.
The rule for performing these two types of service registrations is as follows. When a client uses a
new service registry to register services, first it needs to perform a fresh registration for each service,
then it can perform follow-up incremental registrations at the same service registry.

When service registrations are propagated among replicas5, their arrival timestamps at a replica
cannot be used for registration version resolutions. Considering two fresh registrations for the same
service, the one that arrivals later does not necessarily mean it is a new version. For example, if a
client sends a registration (v1) to replicaR1 first, and a new version of the same registration (v2) to
replicaR2 later, then whenv1 andv2 are propagated, the arrival timestamp ofv1 atR2 is later than
that ofv2, butv1 should not overwritev2 atR2 asv2 is a newer version.

We assume that all registrations for the same service are issued by the same client. In Swift,
registration versions are resolved as follows. At the client side, each client assigns a version id
(VID) in the form of (C, tv) to each registration that it issues, whereC is the originating client’s id
(e.g., UUID), which issues the registration, andtv is the version timestamp. Note that all version
timestamps assigned by the same originating client must be monotonically increasing. At the service
registry side, a registry accepts a registration if (1) the registration has a newer version timestamp
and the same originating client id as that of the corresponding registration state; or (2) it is a fresh
registration, and there is no corresponding registration state existed.

6.2 Membership Service

To support replication, a registry needs to know other registries in its scopes. One way to achieve
this is to deploy a super registry which maintain registry membership information about each scope
[3]. Here we describe another approach to provide membership service via multicasting advertise-
ment and exchanging peer list. If two registries share scopes, they are peer registries. A registry
periodically multicasts its advertisement, which indicates its scopes and other information.

When two peer registries know each other for the first time, they exchange their advertisements
and peer lists. This enables a registry to learn about its peers incrementally from its known peers.
The interactions between registryR1 andR2 are as follows: (1)R1 learns aboutR2 for the first
time,R1 sends its advertisement toR2; (2) R2 replies with its advertisement toR1; (3) R1 sends its
peer list toR2; and (4)R2 replies with its peer list toR1. Note that the peer list message (shown
in Figure 6) carries a list of advertisement entries, one advertisement entry for each peer. Each peer
has two type flags indicating that it is an active registry6, or an originating registry7, or both. The
peer list type field indicates that the peer list is complete or partial. NormallyR1 sends a complete
common peer list toR2, whereasR2 only replies with a partial common peer list toR1, which
indicates the peers thatR2 knows butR1 does not know.

5Note that a registration state is propagated via a fresh registration
6A registry is an active registry if its keepalive message has not been timeout.
7Rx is an originating registry forR1 if R1 maintains registrations that are originated fromRx. This information about

originating registries is useful for selective anti-entropy.

14



. . .Advertisement Entry 1 Advertisement Entry k

Message Type Peer List Type Number of Advertisement Entries

(a) The message format

AdvertisementActive Flag Originating Flag

(b) The advertisement entry format

Figure 6: The peer list message

6.3 Soft State

Service registries [15, 23, 25] often maintain registrations as soft states [6], which have a lifetime,
and will expire unless it is refreshed periodically. A registration can be deregistered, but this is not
required since an expired registration will be removed from the service registry automatically. The
soft state mechanism provides a good support for adapting to dynamically changed service envi-
ronments gracefully. Note that when a soft state registration is propagated, it carries its remaining
lifetime.

7 Implementation Overview

7.1 Control Data Structures for Each Registration

Each registration has two control data structures: EUSID and VID. EUSID= (R, t, tp) (see Sec-
tion 5.4) is assigned by the originating replicaR that accepts the registration from the client. VID
= (C, tv) (see Section 6.1) is assigned by the originating clientC that issues the registration. When
a registration is issued by a client, it only carries its VID, but when registration is propagated from
one registry to another, it carries both its VID and its EUSID.

7.2 Control Data Structure for All Registrations

Each registry maintains a summary vector (see Section 2.2) to summarize all registrations that it
has received. A registry consults its summary vector in detecting duplicate and missed registrations,
and constructing anti-entropy requests. When an in-order registration is accepted at a registry, the
registry updates it summary vector.

7.3 Control Data Structures for Peer Registries

Peer registries share scopes. Each registry maintain two control data structures for its peer registries:
overlay connection table, and peer advertisement table. The overlay connection table keeps infor-

15



mation about all overlay network connections that a registry has. A registry consults this table when
it performs fast overlay propagation, and when it performs anti-entropy with directly connected peer
registries. The peer advertisement table contains advertisement information about all peer registries.
A peer registry can be an active registry, or an originating registry, or both (see Section 6.2).

7.4 Control Data Structure for Overlay Topology

The administrator of a replication system chooses a topology for each overlay network. Swift
supports three topologies: full mesh, spanning tree, and other. Different topologies have different
fast overlay propagation controls (see Table 4): the full mesh topology uses one-hop propagation by
distinguishing a registration sent from a client (only has VID) from a registration propagated from
a registry (has both VID and EUSID); the spanning tree topology utilizes the overlay connection
table to propagate updates; and any other topology uses the summary vector to detect duplicate and
missed updates, and use the overlay connection table to forward updates.

7.5 Swift Messages

The Swift protocol employs four messages and two message extensions. The four messages are
advertisement, peer list, anti-entropy request and anti-entropy reply. The two message extensions
are VID and EUSID. The advertisement message carries registry ID, scope list, boot timestamp,
authentication information, and other optional attributes. The format of the peer list message is
shown in Figure 6. The format of the anti-entropy request message is shown in Figure 4. The anti-
entropy reply has the same format as that of the anti-entropy request message, except with a different
message type; it is used to indicate a corresponding anti-entropy request has been completed.

Swift is designed as a lightweight server-to-server protocol, which can be used to provide server
replication for existing client-server registry protocols. For example, we have implemented Swift for
the Mesh-enhanced Service Location Protocol [26]; the source code can be found at [10]. Currently
our prototype implementation supports all Swift messages and extensions, but only supports the full
mesh topology. We will add the support for spanning tree and other topologies soon.

8 Performance Study for Selective Anti-entropy

Since a select-all anti-entropy session is equivalent to a complete anti-entropy session (see Sec-
tion 4.2), selective anti-entropy can be regarded as a generalization of complete anti-entropy. Al-
though the main goal of using selective anti-entropy is to solve the summary problem in partial
replication efficiently rather than for pure performance purpose, selective anti-entropy can achieve
equivalent or better performance than that of complete anti-entropy.

8.1 Performance Analysis

Two main factors affect the anti-entropy performance: connection properties (such as bandwidth,
delay and loss rate), and replica failures. When connections differ among replicas, a replica should
properly arrange the order of its sequential anti-entropy sessions so that it can get most updates from

16



Number of Registries (r) 3 6 10
Registrations at each of ther registries 15005 30005 50005
Registrations the new registry will have15015 30030 50050

Table 5: Number of registrations at each ofr registries and new registry

replicas that are close to it. Replica failures need to be considered as select-one-direct anti-entropy
cannot be performed with failed replicas.

For the simple case where all connections are roughly equivalent (this is typical in the LAN
environment) and there is no replica failure, parallel select-one-direct sessions can perform better
than sequential complete sessions because (1) the setup time of these sessions can overlap; (2)
any replica only needs to check new updates originated from itself rather than fromr − 1 replicas
(assuming totalr replicas); and (3) if a replica has sufficient in-bound bandwidth and processing
power, it can receive data at a higher speed in parallel sessions than that in sequential sessions. For
other cases where connections differ, or/and there are replica failures, selective anti-entropy can
operate similarly as complete anti-entropy by using sequential sessions and arranging the order of
these sessions properly, and achieve equivalent performance.

8.2 Experiments

To validate that parallel select-one-direct sessions can perform better than sequential complete ses-
sions, we set up a testbed in our department workstation cluster: all machines are Sun Ultra Sparc
(Ultra-1, Ultra-2 or Ultra-10) workstations running Solaris 5.7; and they are connected via10Mb/s
Ethernet. We choser machines as existing registries, one machine as new registry, and one ma-
chine as client. The client feeds5005 different registrations to each of ther registries; and each
registry propagates 5000 registrations originated from it to the rest registries. Thus each registry has
5000 ∗ r + 5 registrations. Considering the new registry join, it gets registrations from the existing
registries. Table 5 lists the number of registrations at each registry for differentr values. Figure 7(a)
shows the times that the new registry needs to accomplish anti-entropy withr registries by using par-
allel select-one-direct sessions and sequential complete sessions. We did each test three times, and
use the average of their values. To further illustrate that parallel select-one-direct sessions perform
better than sequential complete sessions, we define speedup as the ratio of the selective anti-entropy
running time over that of complete anti-entropy, and show speedups in Figure 7(b). For instance,
the speedup is1.23 for r = 10.

9 Related Work

To our knowledge, Swift is the first anti-entropy system that supports generic partial replication, and
use application layer overlay networks for fast update propagation. Swift builds on previous work
on anti-entropy and overlay networks; it is also related to reliable multicast.

17



3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

Number of Replicas (r)

T
im

e 
(S

ec
on

ds
)

Parallel Select−One−Direct Sessions
Sequential Complete Sessions

(a) Time

3 4 5 6 7 8 9 10
1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

Number of Replicas (r)

S
pe

ed
up

(b) Speedup

Figure 7: Parallel select-one-direct sessions vs. sequential complete sessions

9.1 Anti-entropy

Using anti-entropy for high availability replication was first described in [7]. Since then, much work
has been done to enhance this mechanism. The time-stamped anti-entropy (TSAE [14]) proposed
the summary vector technique, and suggested using multicast to propagate updates quickly. Bayou
[19] enhanced anti-entropy flexibility by using uni-direction pair-wise sessions. Swift is closely
related to Bayou and TSAE, but provides two further enhancements: generic partial replication
support and fast overlay propagation. A recent replication system that employs anti-entropy is
UDDI [8], which is a registry framework for description, discovery and integration of web services
using XML [9] and SOAP [1]. Although UDDI only supports full replication, two similarities
exist between UDDI and Swift: (1) Swift uses overlay networks to propagate updates quickly,
whereas UDDI uses a communication graph (e.g., a spinning circle) to perform anti-entropy; and
(2) the response-limit vector and changes-already-seen vector in UDDI is roughly equivalent to the
subset entry with lower and upper bounds in Swift. Note that our work on selective anti-entropy is
described briefly in [27].

9.2 Overlay Networks

Overlay networks have been used for various purposes, including M-bone [11] for multicast, 6-
bone [12] for IPv6, X-Bone [24] for automated overlay network deployment, and resilient overlay
network (RON) [4] for fault detection and recovery. The use of overlay networks in Swift is to
propagate update quickly, and thus improve replication consistency. We focus on update propaga-
tion controls in arbitrary connected topology. For topology creation, we present an automated way
for full mesh, use existing work (e.g., INS [3] and VIA [5]) for spanning tree, and base on config-
uration for other topologies. Note that multi-scope registry overlay networks in Swift is similar to

18



multiple concurrent overlays in X-Bone.

9.3 Reliable Multicast

Swift uses overlay networks to propagate an update from its originating replica to the rest replicas,
which achieves the same effect as that of reliable multicast [16, 21]. In Swift, a receiver is respon-
sible to detect duplicate and missed updates (via EUSID and summary vector) and use anti-entropy
to retrieve missed updates from their originating replicas. This bears some similarity to the negative
acknowledgment (NACK) based reliable multicast protocols.

10 Conclusions

In this paper, we described Swift, a flexible and efficient protocol for multi-scope service registry
replication. Swift makes two contributions: using selective anti-entropy to support generic partial
replication, and employing overlay networks to propagate update quickly. Although Swift is dis-
cussed in the context of service registry replication, it can be applied to other applications which
need partial replication and fast update propagation. For future work, we will investigate the effect
of different overlay topologies on performance and reliability, in addition to our current focus on
update propagation controls. Another issue we plan to explore is to use bulk data transfer in anti-
entropy, which is to encode multiple updates into one message aiming to improve efficiency when
lots of updates need to be transferred.

References

[1] Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/tr/soap/.

[2] ACM. Communications of the ACM 39(4), special issue on group communications systems, April
1996.

[3] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and implementation of an
intentional naming system. InProc. ACM Symposium on Operating Systems Principles, December
1999.

[4] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient overlay networks.
In The 18th ACM Symposium on operating systems principles, Chateau Lake Louise, Banff, Canada,
October 2001.

[5] P. Castro, B. Greenstein, R. Muntz, C. Bisdikian, P. Kermani, and M. papadopouli. Locating application
data across service discovery domains. InACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), July 2001.

[6] David D. Clark. The design philosophy of the DARPA internet protocols. InSIGCOMM Symposium
on Communications Architectures and Protocols, pages 106–114, Stanford, California, August 1988.
ACM. also inComputer Communication Review18 (4), Aug. 1988.

19



[7] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan
Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance. InThe Sixth An-
nual ACM Symposium on Principles of distributed computing, pages 1–12, Vancouver, Canada, August
1987.

[8] Universal Description Discovery and Integration. http://www.uddi.org/.

[9] Extensible Markup Language (XML) 1.0 (Second Edition). http://www.w3.org/tr/rec-xml.

[10] Service Location Protocol Enhancements. http://www.cs.columbia.edu/˜ zwb/project/slp.

[11] H. Eriksson. Mbone: The multicast backbone.Communications ACM, 37(8):54–60, August 1994.

[12] Testbed for deployment of IPv6. http://www.6bone.net/.

[13] ISO International Organization for Standardization). ISO/IEC 11578:1996. Information technology –
open systems interconnection – remote procedure call (RPC).

[14] Richard Golding. Weak-consistemcy group communication and membership. PhD thesis, Computer
Science, University of California at Santa Cruz, December 1992.

[15] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol, version 2. RFC 2608,
Internet Engineering Task Force, June 1999.

[16] B. N. Levine and J. J. Garcia luna Aceves. A comparison of reliable multicast protocols.Multimedia
Systems, 6(5):334–348, September 1998.

[17] P. V. Mockapetris. Domain names - concepts and facilities. RFC 1034, Internet Engineering Task Force,
November 1987.

[18] Napster. http://www.napster.com.

[19] Karin Petersen, Mike J. Spreizer, Douglas B. Terry, Marvin M. T heimer, and Alan J. Demers. Flexible
update propagation for weakly consistent replication. InThe Sixteenth ACM Symposium on operating
systems principles, pages 288–301, Saint Malo, France, October 1997.

[20] Reliable Server Pooling. http://www.ietf.org/html.charters/rserpool-charter.html.

[21] Reliable Multicast Transport. http://www.ietf.org/html.charters/rmt-charter.html.

[22] M. Wahl, T. Howes, and S. Kille. Lightweight directory access protocol (v3). RFC 2251, Internet
Engineering Task Force, December 1997.

[23] Jim Waldo. The Jini architecture for network-centric computing.Communications ACM, 42(7):76–82,
July 1999.

[24] The X-Bone. http://www.isi.edu/x-bone/.

[25] Y. Yaacovi, M. Wahl, and T. Genovese. Lightweight directory access protocol (v3): Extensions for
dynamic directory services. RFC 2589, Internet Engineering Task Force, May 1999.

[26] W. Zhao, H. Schulzrinne, and E. Guttman. Mesh-enhanced service location protocol. Internet Draft,
Internet Engineering Task Force, November 2001. Work in progress.

[27] Weibin Zhao and Henning Schulzrinne. Selective anti-entropy. InThe Twenty-First ACM Symposium
on Principles of Distributed Computing (PODC’02), Monterey, California, July 2002.

20


