
Technical Report CUCS-017-02
Columbia University, August 2002

Optimizing Top-K Selection Queries over Multimedia

Repositories�

Surajit Chaudhuri

Microsoft Research

surajitc@microsoft.com

Luis Gravano

Columbia University

gravano@cs.columbia.edu
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Abstract

Repositories of multimedia objects having multiple types of attributes (e.g., image, text) are be-

coming increasingly common. A query on these attributes will typically request not just a set of ob-

jects, as in the traditional relational query model (filtering), but also agrade of matchassociated with

each object, which indicates how well the object matches the selection condition (ranking). Further-

more, unlike in the relational model, users may just want thek top-ranked objects for their selection

queries, for a relatively smallk. In addition to the differences in the query model, another peculiarity

of multimedia repositories is that they may allow access to the attributes of each object only through

indexes. In this paper, we investigate how to optimize the processing of top-k selection queries over

multimedia repositories. The access characteristics of the repositories and the above query model lead

to novel issues in query optimization. In particular, the choice of the indexes used to search the repos-

itory strongly influences the cost of processing the filtering condition. We define an execution space

that issearch-minimal, i.e., the set of indexes searched is minimal. Although the general problem

of picking an optimal plan in the search-minimal execution space is NP-hard, we present an efficient

algorithm that solves the problem optimally when the predicates in the query are independent. We

also show that the problem of optimizing top-k selection queries can be viewed, in many cases, as that

of evaluating more traditional selection conditions. Thus, both problems can be viewed together as an

extended filtering problem to which techniques of query processing and optimization may be adapted.

�Work done in part while the authors were at Hewlett-Packard Laboratories.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The problem of content management of multimedia repositories is becoming increasingly important with

the development of multimedia applications and the web [21]. For example, digitization of photo and art

collections is becoming popular, multimedia mail and groupware applications are getting widely available,

and satellite images are being used for weather predictions. To access such large repositories efficiently,

we need to store information on attributes of the multimedia objects. Such attributes include the date the

multimedia object was authored, a free-text description of the object, and features like color histograms.

These attributes provide the ability to recall one or more objects from the repository. There are at least

three major ways in which accesses to a multimedia repository differ from that to a structured database

(e.g., a relational database). First, rarely does a user expect anexactmatch with the feature of a multimedia

object (e.g., color histogram). Rather, an object does not either satisfy or fail a condition, but has instead

an associatedgradeof match [14, 15, 16]. Thus, an atomic filter condition will not be an equality between

two values (e.g., between a given colorc0 and the coloroid.colorof an object), but instead an inequality

involving the grade of match between the two values and some target grade (e.g.,Grade(color,c0)(oid)

> 0:7). Next, every condition on an attribute of a multimedia object may only be evaluated through calls

to a system or index that handles that particular attribute. This is in contrast to a traditional database

where, after accessing a tuple, all selection predicates can be evaluated on the tuple. Finally, the process

of querying and browsing over a multimedia repository is likely to be interactive, and users will tend to

ask for only a few best matches according to a ranking criterion.

The above observations lead us to investigate a query model withfilter conditionsas well asranking

expressions, and to study the cost-based optimization of such queries1. In general, a query will specify

both a filter conditionF and a ranking expressionR. The query answer is a rank of the objects that satisfy

F , based on their grade of match for the ranking expressionR.

Optimizing a filter condition in this querying model presents new challenges. An atomic condition can

be processed in two ways: by asearch, where we retrieve all the objects that match the given condition

(access by value), and by aprobe, where instead of using the condition as an access method, we only test

it for each (given) object id (access by object id). For example, consider a filter condition consisting of

a conjunction of two atomic conditions. If we search on the first condition and probe on the second, the

latter benefits from the reduction in the number of objects that need probing, due to the selectivity of the

1The queries identify a candidate set (or list) of objects for displaying. How to actually display these objects is an important
problem that we do not address in this paper.
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first condition.

The costs of these two kinds of accesses, search and probe, in multimedia repositories can vary for

a single data and attribute type as well as across types. How to order a sequence of probes without

considering the search costs, as well as how to determine a set of search conditions when the probing

cost is zero (or a constant) has been studied before. When the filter condition is a conjunction of atomic

conditions, the problem becomes closely related to that of ordering joins. However, to the best of our

knowledge, no work has studied the optimization problem when both searches and probes have non-zero

costs and the filter condition is an arbitrary boolean expression.

To optimize the processing of a filter condition, we define a space ofsearch-minimal executions, and

show an optimal strategy in that space for the case when the conditions present in the filter condition are

independent. Although the search-minimal execution space is a restricted space, our experiments indicate

that if we introduce a simple post-optimization step for conjunctive conditions, we obtain plans that are

nearly always as efficient as the plans obtained when plans are not restricted to be search minimal. Our

experiments also show that considering both the search and probe costs during query optimization impacts

the choice of an execution plan significantly. Also, we prove that if the conditions in the filter condition

are not independent, the problem of determining an optimal search-minimal execution is NP-hard.

Our paper also contributes to the problem of optimizing the evaluation of queries that contain ranking

expression. Previous significant work in this area is due to Fagin [14, 15, 16], who shows his approach

to be asymptotically optimal under broad assumptions. A key contribution of our paper is to show that

ranking expressions can be processed “almost” like filter conditions efficiently. Our experimental results

indicate that such processing of ranking expressions as filter conditions is often quite efficient. Unlike

Fagin’s work, our optimization and evaluation technique is heuristic (as in relational query optimization).

However, from a practical systems perspective, our technique is of significance since for the first time it

provides an ability to treat queries that contain both filter and ranking expressions in a uniform framework

for query optimization and evaluation with few extensions to core query processing techniques.

The rest of the paper is organized as follows. Section 2 describes the query model that we use.

Sections 3 and 4 present the results on evaluating filter conditions and ranking expressions, respectively.

Section 5 discusses our experimental results. Section 6 is devoted to related work. We conclude with a

summary and a few interesting questions for future work in Section 7.
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2 Query Model

In this section we introduce a query model toselectmultimedia objects from a repository. (See [32] for a

similar model.) Such a query model needs to satisfy the following requirements:

1. Consider that a match between the value of an attribute of a multimedia object and a given constant

is not exact, i.e., must account for the grade of match.

2. Allow users to specify thresholds on the grade of match of the acceptable objects.

3. Enable users to ask for only a few top-matching objects.

Given an objecto, an attributeattr, and a constantvalue, the notion of agrade of match Grade(attr,

value)(o)betweeno and the givenvaluefor attributeattr addresses the first requirement. Such a grade is

a real number in the[0; 1] range and designates the degree of equality (match) betweeno:attr andvalue.

We address the second requirement by introducing the notion of afilter condition. Theatomicfilter

conditions are of the formGrade(attr, value)(o)� grade. An object o satisfies this condition if the

grade of match between its valueo.attr for attributeattr and constantvalueis at leastgrade. Additional

filter conditions are generated from the atomic conditions by using the^ (“and”) and_ (“or”) boolean

connectives. Filter conditions evaluate to either true or false.Exactmatches such aso.attr = valuecan be

represented by the filter conditionGrade(attr,value)(o)� 1. However, in this paper, we will not discuss

how exact matches can be treated especially.

Following [14, 15, 16], we address the third requirement for the query model through the notion of

a ranking expression. The ranking expression computes acomposite gradefor an object from individual

grades of match and the composition functionsMin andMax. (Fagin’s expressions are more general in

that he allows other composition functions.) Every object has a grade between 0 and 1 for a given ranking

expression. Users can then use a ranking expression in their queries, and ask fork objects with the top

grades for the given ranking expression. In this paper, we assume that ties are broken arbitrarily. An

alternative semantics, which we do not pursue in this paper, is that if there are ties, all objects with the

same grade are returned, even if that exceeds the required number of objectsk.

We use the following SQL-like syntax to describe the queries in our model:

SELECT oid

FROM Repository
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WHERE Filter condition

ORDER [k] by Ranking expression

The above query asks fork objects in the object repository with the highest grade for the ranking

expression, among those objects that satisfy the filter condition. Intuitively, the filter condition eliminates

unacceptable matches, while the ranking expression orders the acceptable objects.

Example 2.1: Consider a multimedia repository of information on criminals. A record on every person

on file consists of a textual description (profile), a scanned fingerprint (fingerprint), and a recording of a

voice sample (voicesample). Given a fingerprint F and a voice sample V, the following example asks for

records whose fingerprint matches F well. Alternatively, a record is also acceptable if its profile matches

the string ‘on parole’ with grade 0.9 or higher, and its voice sample matches V with grade 0.5 or higher.

The ranking expression ranks the acceptable records by the maximum of their grade of match for the

voice sample V and for the fingerprint F. The answer contains the top 10 such acceptable records. (For

simplicity, we omitted the parameter oid in the atomic conditions below.)

SELECT oid

FROM repository

WHERE (Grade(voice_sample, V) >= .5 AND Grade(profile, ‘on parole’) >= .9)

OR (Grade(fingerprint, F) >= .9)

ORDER [10] BY Max(Grade(fingerprint, F), Grade(voice_sample, V))

2.1 Expressivity of the Query Model

The filter conditionF in a queryQ selects the set of objects in the repository that satisfy the condition,

whereas the ranking expressionR computes a grade for each object. We use these grades for ordering the

objects that satisfy the filter condition.

Given a filter conditionF and a ranking expressionR, an interesting expressivity question is whether

we actually need bothF andR. In other words, we would like to know whether we can “embed” the filter

conditionF in a new ranking expressionRF such that the top objects according toRF are the top objects

for R that satisfyF . (Note that a filter condition does not impose an order on the objects, therefore we

cannot expressR andF using a single filter conditionFR. However, see Section 4.)
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Object e1 e2 Min(e1; e2) Max(e1; e2)
o1 0.1 0.6 0.1 0.6
o2 0.2 0.4 0.2 0.4
o3 0.5 0.3 0.3 0.5

Table 1: The three objects in the database, and their grades for each of the four possible definitions ofRF .

More formally, givenF andR, a ranking expressionRF that replacesF andR should verify the

following two conditions for any databasedb and for any givenk, assuming that at leastk objects satisfy

F in databasedb. (If k0 objects satisfyF in db, andk0 < k, then usek0 instead ofk below.)

1. An objecto 2 db is among the topk objects according toRF only if o satisfiesF .

2. If objectso, o0 2 db satisfyF andR(o) < R(o0), thenRF (o) < RF (o
0).

The following example establishes the need for both a filter condition and a ranking expression in our

model. It shows that it is not possible to find such a ranking expressionRF for an arbitrary filter condition

F and an arbitrary ranking expressionR.

Example 2.2:Lete1 = Grade(A1; v1) ande2 = Grade(A2; v2), whereA1 andA2 are different attributes,

and v1 and v2 are constants. Consider the filter conditionF = e1 � 0:2, and the ranking expression

R = e2. The query associated withF andR ranks the objects that have grade 0.2 or higher fore1

according to their grade fore2. Suppose that there is a ranking expressionRF that satisfies the two

conditions above. Then,RF is necessarily equivalent to (i.e., always produces the same grades as) one

of the following expressions:e1, e2, Min(e1; e2), or Max(e1; e2). Consider the database of three objects

described in Table 1, and that we are interested in the top object (k = 1) for R that satisfiesF . The actual

answer to the query should be objecto2, which has the highest grade forR (0.4) among the two objects

(o2 ando3) that pass the filter conditionF . We will show that any of the four possibilities forRF produces

a wrong answer for the query:

� CaseRF = e1, or RF = Min(e1; e2): The top object forRF is o3, which is a wrong answer.

� CaseRF = e2, or RF = Max(e1; e2): The top object forRF is o1, which is a wrong answer.
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2.2 Storage Level Interfaces

A repository has a set of multimedia objects. We assume that each object has an id and a set of attribute

values, which we can only access through indexes. Given a value for an attribute, an index supports

access to the ids of the objects that match that value closely enough, as we will discuss below. Indexes

also support access to the attribute values of an object given its oid.

The following are several storage-level access interfaces that we assume multimedia repositories sup-

port. (See for example [29].) Key to these interfaces is that the objects match attribute values with a grade

of match, as we discussed above.

� GradeSearch(attribute, value, mingrade): Given a value for an attribute, and a minimum grade

requirement, returns the set of objects that match the attribute value with at least the specified

grade, together with the grades for the objects.

� TopSearch(attribute, value, count): Given a value for an attribute, and the count of the number of

objects desired, returns a list ofcountobjects that match the attribute value with the highest grades

in the repository, together with the grades for the objects.

� Probe(attribute, value,foidg): Given a set of object ids and a value for an attribute, returns the

grade of each of the specified objects for the attribute value.

Not all repositories have to support all of these interfaces at the physical level. For example, a reposi-

tory may implement aProbecall atopGradeSearchby requesting all objects that match a given attribute

value with at least some specified grade, and then decreasing this grade until the grade for the object

requested in theProbecall is obtained. A similar strategy could be implemented atopTopSearch. Next,

we briefly describe how text and image attributes may support the above interfaces.

Text Attributes:

Consider a repository of objects with a textual attributeT . For this attribute, the repository might have an

index that handles queries using thevector-spacemodel of document retrieval [36, 1]. In such a model,

the value of an object for attributeT is regarded as a traditional document. Then, given a query value

for attributeT (i.e., a sequence of words), this index assigns a grade to every object in the repository,

according to howsimilar its value forT and the query value are. To compute these similarities, vector-

space retrieval systems typically represent both documents and queries as weight vectors, where each
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weight corresponds to a term in the vocabulary. Given a query, a vector-space retrieval system returns a

list of the matching documents sorted by their grade for the query. The grade –or similarity– of a document

and a query is usually computed by taking the inner product of their weight vectors. Vector-space retrieval

systems usually provide theGradeSearchinterface, theTopSearchinterface, or both.

Some text-retrieval systems allow access to the document weight vectors by document id. If this is

the case, theProbeinterface is readily provided by accessing the weight vectors of the objects requested,

and computing the similarity of these vectors and the query vector. If this direct access is not provided,

Probecan be simulated byGradeSearchor TopSearch, as discussed above.

Image Attributes:

Other popular attributes are features of images. If the objects of a repository contain an image, an attribute

of the objects could be the color histogram of this image. Then, a filter condition on such an attribute can

ask for objects whose image histogram matches a given color histogram closely, for example. The QBIC

system supports this type of queries [29]. One of the most popular ways of handling such attributes and

queries is by usingR trees [22] and its variants [3, 38] to index the feature vectors associated with the

attributes. The grade between two feature vectors is computed based on the semantics of the attributes,

and sophisticated algorithms have been developed in the context of the QBIC project, for instance [18].

Given one feature-vector attribute, a valuev for the attribute, and a grade,GradeSearchcan be im-

plemented over anR tree by determining a box around the given valuev that contains all vectors that

matchv with the given grade or higher, for a given grade-computation algorithm. We then process the

corresponding range search. [34] has presented an algorithm to find nearest neighbors onR trees. This

algorithm can be used for implementingTopSearch.

3 Filter Conditions

In this section we will consider processing and cost-based optimization of queries that have only a filter

condition, i.e., they are of the form:

SELECT oid

FROM Repository

WHERE Filter condition
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We will assume that the filter conditions areindependent. Similar restrictions have been traditionally

adopted since the System-R optimization effort [37].

Definition 3.1: We say that a filter conditionf is independentif:

1. Every atomic filter condition occurs at most once inf .

2. Everyn atomic filter conditionsa1; : : : ; an2 satisfy the following:p(a1 ^ : : : ^ an) = �n
i=1p(ai),

wherep(a) is the probability that the filter conditiona is true.

Independence rules out filter conditions with repeated attributes, and also filter conditions with, for exam-

ple, two atomic conditionsa1 anda2 such thata1 is true (or false) whenevera2 is true.

We assume that our repository requires that we use an index to evaluate every atomic filter condition.

One way to process such queries is to retrieve object ids using oneGradeSearchfor each atomic condition

in the filter condition, and then merge these sets of object ids through a sequence of unions and intersec-

tions. Alternatively, we can retrieve a set of object ids usingGradeSearchfor someconditions, and check

the remaining conditions on these objects throughProbeoperations.

The key optimization problem is to determine the set of filter conditions that are to be evaluated using

GradeSearch. The rest of the conditions will be evaluated by usingProbe. In order to efficiently execute

the latter step, we will exploit the known techniques in optimizing the processing of expensive filter

conditions [26, 23, 24, 27, 11].

In this section, we first define a space ofsearch-minimalexecutions, which access as few attributes as

possible usingGradeSearch, and sketch the cost model and the optimization criteria. Next, we describe an

optimization algorithm and explain the conditions under which it is optimal. Finally, we show how we can

further improve the execution plan produced by our algorithm through a simple “post-optimization” step

to lower the cost of the original plan, and conclude with a result that indicates that the general problem of

determining an optimal search-minimal execution is NP-hard.

The results in this section are complemented by the experiments in Section 5, which show that con-

sidering both the search and probe costs leads to significantly better execution strategies, and that post-

optimized search-minimal executions behave almost as well as the best (not necessarily search-minimal)

executions.
2We useaj as a shorthand for an atomic condition specifying an attribute, value, and grade, e.g.,Grade(attr,val)(o)�

grade.

9



3.1 Execution Space

As an introduction, we begin by discussing the possible space of execution for simple filter conditions, i.e.,

conditions that consist of a disjunction (or a conjunction) of atomic conditions. We will then generalize

our description for arbitrary filter conditions with disjunctions and conjunctions.

To process an atomic conditionGrade(attr, value)(o)� grade, we use theGradeSearch(attr, value,

grade)access method described in the previous section.

Consider now the case where the filter condition is a disjunction of atomic filter conditionsa1_: : :_an.

All objects that satisfy at least one of theai satisfy the entire filter condition. Evaluation of an atomic

conditionai requires the use of theGradeSearchaccess method associated withai. Since we assume that

the atomic conditions are independent, use of aGradeSearchis needed for each atomic condition not to

miss any object that satisfies the entire condition.

Consider now the case where the filter condition is a conjunction of atomic filter conditionsa1 ^ : : :^

an. There are several execution alternatives. In particular, we can retrieve all the objects that may satisfy

the filter condition by usingGradeSearchon any of the atomic conditionsa1; : : : ; an. Subsequently, we

can test each retrieved object to verify that it satisfies all of the remaining conditions. The cost of using

one atomic condition forGradeSearchinstead of another may lead to significant differences in the cost.

Thus, we can process a conjunction of atomic filter conditions by executing the following steps:

1. Search:Retrieve objects based on one atomic condition (usingGradeSearch).

2. Probe:Test that the retrieved objects satisfy the other conditions (usingProbe).

An important optimization step is to carry out Step (2) efficiently by ordering the atomic-condition probes

(Section 3.3).

We call the above class of execution alternatives for a conjunctive querysearch-minimalsince only a

minimal set of conditions (in this case, only one condition) is used forGradeSearch. The search-minimal

strategies represent a subset of the possible executions. In particular for a conjunctive filter condition,

instead of searching on a single subcondition and probing on the others, it is possible to search on any

subset of the atomic conditions and to take the intersection of the sets of object-ids retrieved. However,

the space of all such executions is significantly larger. In particular, there are exponentially many subsets

of conjuncts to search on, but only a linear number of minimal conjunct sets for searching.

Intuitively, a search-minimal execution evaluates a minimal set of atomic conditions usingGradeSearch,

and evaluates the rest of the conditions usingProbe. A simple conjunctive filter condition needs to use

10



GradeSearchfor only one atomic condition. However, an arbitrary filter condition involving^’s and_’s

might need to search more than one atomic condition, like the disjunction above.

We are motivated by several factors to focus on search-minimal executions. First, as discussed in

the context of conjunctive queries, search-minimal executions avoid an explosion in the search space.

Next, as we will discuss in Section 3.4 as well as demonstrate experimentally in Section 5, simple post-

optimizations allow us to derive from the optimal search-minimal execution a cheaper execution that is

not necessarily search-minimal.

By searching on a condition usingGradeSearch, we obtain a set of objects. However, we may need to

do additional probes to determine the subset of objects that satisfy the entire filter condition. Thus, given

an atomic conditionai and a filter conditionf , the residueof f for ai, R(ai; f), is a boolean condition

that the objects retrieved usingai should satisfy to satisfy the entire conditionf . The following definition

captures how we construct residues for independent filter conditions.

Definition 3.2: Letf be an independent filter condition, represented as a tree in which the internal nodes

correspond to the boolean connectives (hence there are “^ nodes” and “_ nodes”) and the leaf nodes

correspond to the atomic conditions inf . Leta be an atomic condition off . Consider the path from the

leaf node for (the only occurrence of)a to the root of the tree forf . For every^ nodei in this path, let�i

be the condition consisting of the conjunction of all the subtrees that are children of the nodei and that

do not containa. Then theresidueof f for a, R(a; f), is
V
i �i. If there are no such nodes, thenR(a; f) =

true.

Example 3.3:Consider the filter condition:

f = a4 ^ ((a1 ^ a2) _ a3)

Consider the residue of the atomic conditiona2 using the definition above. Thus,�1 = a1 and�2 = a4.

Hence,R(a2; f) = a1^a4. As another example,R(a4; f) = (a1^a2)_a3. Then, any object that satisfies

a4 and also satisfiesR(a4; f) satisfies the entire conditionf .

Proposition 3.4: Let f be an independent filter condition, anda be an atomic condition off . Then

a ^ R(a; f)) f .

Proof: By induction on the structure of the filter conditionf . If f = a, thenR(a; f) = true. Thus the

proposition follows trivially.
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Now, consider the casef = f1 ^ : : : ^ fn. Assume thata appears inf1 (and nowhere else, becausef

is independent). From the definition of residue,R(a; f) = R(a; f1) ^ f2 ^ : : : ^ fn. From the inductive

hypothesis,a^R(a; f1)) f1. Then,a^R(a; f) = a^R(a; f1)^f2^ : : :^fn ) f1^f2^ : : :^fn = f .

Next, consider the casef = f1 _ : : : _ fn. Assume thata appears inf1. From the definition of

residue,R(a; f) = R(a; f1). From the inductive hypothesis,a ^ R(a; f1) ) f1. Then,a ^ R(a; f) =

a ^ R(a; f1)) f1 _ : : : _ fn = f .

Given a filter conditionf , we would like to characterize the smallest sets of atomic conditions such

that by searching the conditions in any of these sets we retrieve all of the objects that satisfyf (plus some

extra ones that are pruned out by probing).

Definition 3.5: A completeset of atomic conditionsm for a filter conditionf is a set of atomic conditions

in f such that any object that satisfiesf also satisfies at least one of the atomic conditions inm. A

complete setm for f is a search-minimal condition setfor f if there is no proper subset ofm that is also

complete forf .

Example 3.6:Consider Example 3.3. Each offa4g, fa2; a3g, andfa1; a3g is a search-minimal condition

set. If we decide to search onfa2; a3g, the following three steps yield exactly all of the objects that satisfy

f :

1. Search ona2 and probe the retrieved objects with residueR(a2; f) = a1 ^ a4. Keep the objects that

satisfyR(a2; F ).

2. Search ona3 and probe the retrieved objects with residueR(a3; f) = a4. Keep the objects that

satisfyR(a3; F ).

3. Return the objects kept.

Proposition 3.7: Letm be a complete set of atomic conditions for an independent filter conditionf . Then,

f �
_

a2m

(a ^R(a; f))

In particular, the above holds ifm is a search-minimal condition set forf .

Proof:
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�
W
a2m(a ^R(a; f))) f : Follows directly from Proposition 3.4 and from the fact that every condi-

tion has at least one atomic condition.

� f )
W
a2m(a ^ R(a; f)): By induction on the structure off . If f = a, then the results follows

directly.

Now consider the casef = f1 ^ : : : ^ fn. Becausem is complete forf , there must existmi � m

such thatmi is a complete set of atomic conditions forfi, for some1 � i � n. Sincemi is

complete forfi, and using the inductive hypothesis, it follows thatfi )
W
a2mi

(a^R(a; fi)). Then,

f = f1 ^ : : : ^ fn )
W
a2m(a ^R(a; fi) ^ f1 ^ : : : fi�1 ^ fi+1 ^ : : : ^ fn) =

W
a2m(a ^R(a; f)).

Finally, consider the casef = f1 _ : : : _ fn. Becausem is complete forf , there existsmi � m

such thatmi is a complete set of atomic conditions forfi, for all i = 1; : : : ; n. From the inductive

hypothesis,fi )
W
a2mi

(a^R(a; fi)). Then,f1_: : :_fn )
W
a2m(a^R(a; f)), becauseR(a; fi) =

R(a; f), for all i = 1; : : : ; n.

Now we are ready to define the space of search-minimal executions.

Definition 3.8: A search-minimal executionof an independent filter conditionf searches the repository

using a search-minimal condition setm for f , and executes the following steps:

� For each conditiona 2 m:

– Search ona to obtain a set of objectsSa.

– Probe every object inSa with the residual conditionR(a; f) to obtain a filtered setS 0
a of

objects that satisfyf .

� Return the union
S
a2m S 0

a.

We now present algorithms to pick a plan from the space of search-minimal executions. We then show

how to further optimize these plans to lower their cost (Section 3.4). The strategies that result from these

post-optimizations are not search-minimal executions.

3.2 Assumptions and Cost Model

Our optimization algorithm is cost-based and makes statistical assumptions about the query conditions as

well as about the availability of certain statistical estimates. We describe these assumptions in this section.
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Statistical Parameters:

We associate the following statistics with each atomic conditiona. We assume that we may extract these

statistics from the underlying object repository and its indexes.

� Selectivity Factor Sel(a): Fraction of objects in the repository that satisfy conditiona.

� Search CostSC(a): Cost of retrieving the ids of the objects that satisfy conditiona usingGradeSearch.

� Probe CostPC(a; p): Cost of checking conditiona for p objects, using theProbeaccess method.

The probe costPC(a; p) depends onp, the number of probes that need to be performed. Ifp is large

enough, it might be cheaper to implement thep probes by doing a single search ona, at costSC(a). This

observation will be the key of the post-optimization step of Section 3.4.

We now sketch how to estimate these parameters over multimedia repositories for text and image

attributes. Consider first a textual attribute that is handled by a vector-space retrieval system. Typically

such a system has inverted lists associated with each term in the vocabulary [36, 1]. For each term we

can extract the number of documentsd that contain the term, and the added weightw of the term in the

documents that contain it. Thus, we can use the methodology in [20] to estimate the selectivity of an

atomic filter condition, as well as the cost of processing the inverted lists that the condition requires.

Consider now an attribute over an image that is handled with anR tree. We can then use the method-

ology in [19], which uses the concept of the fractal dimension of a data set to estimate the selectivity of

atomic conditions, and the expected cost of processing such conditions using theR tree.

Assumptions on Conditions:

As we mentioned before, we will restrict our discussion to optimizing independent filter conditions. We

can compute the selectivities of complex independent filter conditions using the following two rules as in

traditional optimization [37]:

� Sel(e1 ^ : : : ^ en) = �n
i=1Sel(ei)

� Sel(e1 _ : : : _ en) = 1� �n
i=1(1� Sel(ei))
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3.3 Optimization Algorithm

In this section, we present the results on optimization of filter conditions. First, we define our optimization

metric over the search-minimal execution space. Next, we sketch how we can use the past work in

optimizing boolean expressions for the task of determining a strategy for probing. Subsequently, we

present our algorithm, which is optimal for independent filter conditions, and discuss how we can adapt it

for non-independent filter conditions. We conclude with an NP-hardness result that shows that if the filter

condition is not independent, then the complexity of determining an optimal execution is NP-hard.

Cost of Search Minimal Executions:

To pick the least expensive search-minimal execution, we need to define the cost of such executions. As

we can see from the definition of the search-minimal executions, the cost of one such execution depends

on (a) the choice of the search conditions, (b) the probing costs of the remaining conditions, and (c) the

cost of taking the union of the answer sets. Value (c) dominates only when the selectivity of the filter

condition is low. Therefore, to simplify the optimization problem, we focus only on the search and probe

costs.

Given a search-minimal condition setm for a filter conditionf and an algorithmw for probing con-

ditions, we now defineCw(f;m), the cost of searching the conditions inm plus the cost of probing the

other conditions using algorithmw, as follows:

Cw(f;m) =
X

a2m

(SC(a) + PCw(R(a; f); jOaj))

wherejOaj is the number of objects that satisfy conditiona andPCw(R(a; f); jOaj) is the cost of probing

conditionR(a; f) for jOaj objects using algorithmw. This cost depends on the probing algorithmw, as

we discuss next. Note that if there areO objects in the repository,jOaj = Sel(a) �O.

Optimizing Evaluation of Residues:

Given a residueR(a; f), the task of determining an optimal evaluation forR(a; f) maps to the well

studied problem of optimizing the execution of selection conditions containing expensive predicates [26].

(See also [24, 27, 23, 11].)

If R(a; f) is a conjunction of atomic conditionsa1 ^ : : : ^ an, there is an efficient algorithmw that

finds the optimum probing strategy. Specifically, it can be shown [24, 27] that the order in which the
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atomic conditions for each object should be probed is given by therank of each conditionai, defined as

Sel(ai)�1
ci

if we assume thatPC(ai; p) = ci �p for some constantci and wherep is the number of objects to

probe. Then, we can calculate the costPC(R(a; f); p) as follows, assuming for simplicity thata1 : : : an

represents the increasing rank ordering of the conjuncts:

PC(R(a; f); p) =
nX

i=1

Si

whereSi = Sel(a1) � : : : � Sel(ai�1) � p � ci. (Note thatSel(a1) � : : : � Sel(ai�1) � p is the number of objects

that satisfy conditionsa1; : : : ; ai�1 out of the originalp objects; we only need to probe these objects for

conditionai, at a cost ofci for each object.) This result is well known and was observed in the database

context by [24, 27]. We can take a similar approach to order the evaluation of a disjunction of atomic

conditions.

Example 3.9: Consider the filter conditiona1 ^ a2 ^ a3, whereSel(a1) = :01, Sel(a2) = :02, and

Sel(a3) = :05. Let c1 = c2 = 1, andc3 = :5. The increasing rank sequence is thenc3; c1; c2. Then, the

probing cost for 1000 objects is as follows:

(:5 + :05 � 1 + :05 � :01 � 1) � 1000 = 550:5

In caseR(a; f) is an arbitrary boolean condition, the problem of evaluating it optimally is known to be

intractable. However, several good heuristics are available [26]. Therefore, we assume that we exploit one

of these available techniques to optimize the evaluation of residues. As we mentioned above, depending

on the strategyw used to evaluateR(a; f), we can parameterize our cost function. Thus, we denote the

cost corresponding to evaluation strategyw by Cw. However, for the rest of the discussion, we assume

that such a choice ofw is implicit and therefore omit references tow.

Optimality:

Given that we can compute the cost metricC(f;m) for any independent filter conditionf and condition

setm, our goal is to pick an optimal search-minimal condition set. LetM(f) be the set of all search-

minimal condition sets forf .

Definition 3.10: A search-minimal condition setm for an independent filter conditionf is optimal if

C(f;m) = minm02M(f) C(f;m
0)
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We now describe how we determine the optimal search-minimal condition set for an independent

filter condition. The algorithm is implicit in the following inductive definition. Intuitively, the algorithm

traverses the condition tree in a bottom-up fashion to create the optimal set of search-minimal conditions.

Definition 3.11: Let f be a filter condition andf 0 be a subcondition off . Theinductivesearch-minimal

condition set forf 0 with respect tof , SMf (f
0), is defined inductively as follows:

1. Casef 0 = a: SMf(f
0) = fag, wherea is an atomic condition

2. Casef 0 = f1 ^ : : : ^ fn: SMf(f
0) = SMf (fi), where

C(f; SMf(fi)) = minfC(f; SMf(f1)); : : : ; C(f; SMf (fn))g (Break ties arbitrarily.)

3. Casef 0 = f1 _ : : : _ fn: SMf(f
0) = SMf (f1) [ : : : [ SMf (fn)

Theorem 3.12: Let f be an independent filter condition. ThenSMf(f) is an optimal search-minimal

condition set forf .

Before we can prove Theorem 3.12, we need the following auxiliary result.

Proposition 3.13: Let f1 andf2 be two independent filter conditions with no atomic conditions in com-

mon. Then:

1. M(f1 ^ f2) =M(f1) [M(f2)

2. M(f1 _ f2) = M(f1) �M(f2), wherem 2 M(f1) �M(f2) if and only if9m1 2 M(f1), m2 2

M(f2) such thatm = m1 [m2

Proof:

We will first show thatM(f1 ^ f2) =M(f1) [M(f2) (part 1 of the proposition):

� M(f1 ^ f2) �M(f1) [M(f2).

Considerm 2 M(f1 ^ f2). Then, either9m1 complete forf1 such thatm1 � m, or9m2 complete

for f2 such thatm2 � m. (Otherwise,m would not be complete forf1 ^ f2.) Assume that9m1

complete forf1 such thatm1 � m. Any object that satisfiesf1 ^ f2 also satisfiesf1, and at least

one condition ofm1, becausem1 is complete forf1. Then,m1 is also complete forf1 ^ f2. But

m1 � m, andm 2M(f1 ^ f2). Therefore,m = m1 2M(f1).
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� M(f1) [M(f2) �M(f1 ^ f2).

Considerm 2 M(f1) [M(f2). Furthermore, suppose thatm 2 M(f1). It is easy to see thatm is

complete forf1 ^ f2. To see thatm is also search-minimal forf1 ^ f2, considerm0 � m that is

also complete forf1 ^ f2. Becausem is search-minimal forf1, it must be the case thatm0 is not

complete forf1. Then, there is an objecto that satisfiesf1 and none of the conditions inm0. But

then we can build a new objecto0 that also satisfiesf2, and still does not satisfy any of the conditions

in m0, becausef1 andf2 do not share any conditions, andm0 � m 2 M(f1). However,o0 would

contradict the completeness ofm0 for f1 ^ f2. Therefore,m is also search-minimal forf1 ^ f2.

Now, we will show thatM(f1 _ f2) = M(f1)�M(f2) (part 2 of the proposition).

� M(f1 _ f2) �M(f1)�M(f2):

Considerm 2M(f1_f2). Letm1 (resp.,m2) be the restriction ofm to conditions inf1 (resp., inf2).

It is easy to see thatm1 2M(f1) andm2 2M(f2). Therefore,m = m1 [m2 2M(f1)�M(f2).

� M(f1)�M(f2) �M(f1 _ f2): Straightforward.

Proof (Theorem 3.12):From Proposition 3.13 it is clear thatSMf (f
0) is a search-minimal condition

set for f 0. We will use induction on the structure off 0 to show that8 subconditionf 0 of f , 8m 2

M(f 0); C(f; SMf(f
0)) � C(f;m).

� Casef 0 = a: Straightforward.

� Casef 0 = f1 ^ : : : ^ fn: Let m = SMf(f
0). Suppose that9m0 2 M(f 0) such thatC(f;m0) <

C(f;m). From Proposition 3.13,m0 2M(fi), for some1 � i � n. From the inductive hypothesis,

C(f;m0) � C(f;mi), wheremi = SMf (fi). And from construction ofSMf(f
0), C(f;m) �

C(f;mi). Therefore,C(f;m0) � C(f;m), contradicting our choice ofm0.

� Casef 0 = f1 _ : : : _ fn: Let m = SMf(f
0). Suppose that9m0 2 M(f 0) such thatC(f;m0) <

C(f;m). From Proposition 3.13,m0 = [i=1;:::;nm
0
i, wherem0

i 2 M(fi). From the inductive

hypothesis,C(f;m0
i) � C(f;mi), wheremi = SMf(fi), i = 1; : : : ; n. Therefore, becausef

is independent and using the definition ofSMf , C(f;m) =
Pn

i=1 C(f;mi) �
Pn

i=1 C(f;m
0
i) =

C(f;m0), contradicting our choice ofm0.
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Our strategy requires that we compute the cost of each atomic condition at most once, since the cost

and search-minimal set are computed “bottom-up.”

The problem of determining an optimal evaluation strategy for a filter condition as discussed in this

paper is related to the problem of choosing access paths for traditional selection queries in the presence of

indexes for a query processor that supports index union and intersection [33, 28]. In this paper, we restrict

ourselves to search-minimal executions but do allow for probe costs. Please see the related work section

for additional details.

The proof of optimality ofSMf (f) depends on the fact that the given filter conditionf is inde-

pendent.3 Nonetheless, with the following simple modification, we can still provide a search-minimal

condition set in case the given condition is not independent. However, this set is is no longer guaranteed

to be optimal:

1. DeriveSMf (f) assumingf is an independent condition and treating each occurrence of a condition

as a new atomic condition.

2. Identify a subsetm � SMf (f) that is search minimal forf .

Observe that the first step ensures completeness whereas the second step ensures that the setm is minimal

and can be determined efficiently. However, as the following example shows, such a heuristic does not

always result in an optimal search-minimal condition set.

Example 3.14:Assume that the filter condition is(a^b)_(a^c). The first step of the algorithm treats every

instance ofa as a different condition. So, the query is viewed by Step (1) as(a1 ^ b) _ (a2 ^ c). Assume

that the algorithm determinesSMf (f) = fb; cg. Step (2) of the algorithm does not changeSMf(f),

althoughfag could be a significantly better search-minimal condition set. Therefore, the algorithm may

fail to identify the best search-minimal condition set if the subconditions are not independent, as in this

example.

The above result is not surprising given that the general optimality problem, where no assumptions

are made about independence, is intractable even for the very simple cost model where search cost is 1

and probe cost is 0, as the following theorem shows.

3Less expensive executions might be possible if independence does not hold and extra information is available during query
planning. As a simple example, consider a filter conditiona1 _ a2, wherea2 is true every time thata1 is true. In this case,
there would be no need to search ona2 to find all objects that match the whole condition.
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Theorem 3.15:The problem of determining an optimal search-minimal condition set for a filter condition

is NP-hard.

Proof: We prove the result by a reduction from the vertex-cover problem. To map an instance of the

vertex-cover problemG = (V;E) to our problem we generate a filter conditionF such thatG has a

vertex cover of sizek or less if and only if there is a processing strategy forF that retrieves objects using

searches overk or fewer atomic conditions. We associate a unit cost for every search, and zero cost for

the probes to complete the proof.

Given the (undirected) graphG = (V;E), we generate the following filter condition:

F =
_

(vi;vj)2E

(vi ^ vj)

where thevi’s are atomic conditions. We definePC(f; p) = 0 for all f , p, andSC(vi) = 1 for all the

vi’s. Therefore, the cost of any search-minimal condition setm is the number of atomic conditions inm.

Now,G has a vertex cover of sizek or less if and only if there is a search-minimal condition set forF

with k conditions or less:

� ): AssumeG has a vertex coverV 0 of sizek or less. Then, there is a set of atomic conditionsV 0

of sizek or less such that for each subconditionvi ^ vj of F , eithervi 2 V 0 or vj 2 V 0.

� (: Assume that there is a search-minimal condition setm for F with k or fewer conditions. Sup-

pose that there is a subexpressionvi ^ vj such thatvi; vj 62 m. Then suppose that there is an object

o that satisfies only atomic conditionsvi andvj, and none of the others. Theno satisfiesF , from the

construction ofF , but it does not satisfy any of the conditions inm, contradicting the completeness

of m. Therefore, eithervi or vj are inm. Consequently,m defines a vertex cover forG with k or

fewer elements.

3.4 Post-optimization: Beyond Picking a Search-Minimal Set

While choosing an optimal search-minimal condition set is a key step in selecting an efficient execution

plan, there are several other opportunities for optimization.

First, we note that a search-minimal execution for a filter conditionf always handles the residue

of a search conditiona by probing the conditionR(a; f). However, when the number of objects to be
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probed is high, the cost of probingR(a; f) may exceed the cost of searching on the atomic conditiona

usingGradeSearch. Thus, in case of a conjunctive query, it may be more efficient to use more than one

condition for searching. In other words, it could be convenient to allow the conditions that are used for

searching to no longer form a search-minimal condition set. However, our optimization algorithm does

not consider such a plan.

To address this lack of flexibility, we introduce a post-optimization step that locally replaces probes

on one or more conditions by the corresponding searches, as the following example illustrates.

Example 3.16:Assume that the optimal search-minimal execution fora1 ^ a2 ^ a3 searches on condition

a1, and probes on conditionsa2 anda3. Let the number of objects probed bya2 be 1000, and the probe

cost be 1 unit for every probe. Thus, the total cost of probing ona2 is 1000 units. If the search cost ona2

is 800, then we can modify the execution plan a posteriori to search on conditionsa1 anda2, and to probe

just ona3.

In Section 5 we report results on an experimental evaluation of this simple post-optimization step.

In addition to turning certain probes into searches, our algorithm presents other less critical opportuni-

ties for post-optimization. For example, when processing several atomic conditions we could also improve

how we “merge” the objects retrieved using each of these conditions: (1) An object that is retrieved by

searches on botha1 anda2, can be probed using either the residueR(a1; f) or the residueR(a2; f). Such

a choice can be cost-based and influences the order in which we merge results from multiple searches.

(2) The merging order is also influenced by the cost of detecting and eliminating duplicate objects, and

by the size of the answer sets resulting from searches. Evaluating alternatives for this “merging” and

determining their effect on the execution costs remains as future work.

4 Filter Conditions and Ranking Expressions

In this section, we consider queries each of which consists not only of a filter condition, but also of a rank-

ing expression. The answer to such queries consists of the top objects for the ranking expression that also

satisfy the filter condition. We first look at queries consisting only of ranking expressions (Section 4.1).

Section 4.2 describes an algorithm for processing this type of queries that has been presented in references

[14, 15, 16]. Finally, Section 4.3 presents our main result regarding this class of queries. We show that we

can map a given ranking expression into a filter condition, and process the ranking expression “almost”
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as if it were a filter condition. This mapping is central to processing queries with ranking expressions

applying the techniques of Section 3 for processing filter conditions. The experimental results of Sec-

tion 5 show that, in some cases, the number of objects retrieved and probed when processing a ranking

expression as a filter condition can be considerably smaller than when processing the ranking expression

using the algorithm in [14, 15, 16].

4.1 Ranking Expressions

A query consisting of only a ranking expression has the form:

SELECT oid

FROM Repository

ORDER [k] by Ranking expression

The result of this query is a list ofk objects in the repository with the highest grade for the given

ranking expression. The ranking expressions are built from atomic expressions that are combined using

theMin andMaxoperators that we defined in Section 2.

Example 4.1: Consider the ranking expressione1 =Max(Grade(fingerprint, F), Grade(profile, P)). Ex-

pressione1 favors objects with either fingerprints matching the given valueF closely, or with text profiles

matching the given profileP closely. Alternatively, consider the ranking expressione2 =Min(Grade(fingerprint,

F), Grade(profile, P)). Expressione2 favors objects with good matches for both their fingerprints and pro-

files.

4.2 Fagin’s Strategy

Fagin presented a novel approach to processing a query consisting of a ranking expression in refer-

ences [14, 15, 16]. In this section we briefly describe his approach. In Section 5, we experimentally

compare this algorithm against our approach for processing ranking expressions using a modified version

of our techniques of Section 3.

Consider a ranking expressionR = Min(a1; : : : ; an), where theai’s are independent atomic expres-

sions. Suppose that we are interested ink objects with the highest grades forR. Fagin’s algorithm uses

theTopSearchaccess method to retrieve these objects from the repository. It does so by retrieving the top

22



objects from each of the subexpressionsai, i = 1; : : : ; n, until there are at leastk objects in the intersec-

tion of then streams of objects that he retrieves. (There is one stream per subexpression ofR.) Fagin

proved that the set of objects retrieved contains the necessaryk top objects. Therefore, he can compute

the final grade forR of each of the objects retrieved, doing the necessary probes, and output thek objects

with the highest grades. Fagin has proved the important result that the above algorithm to retrievek of

the best objects for an expressionR that is aMin of independent atomic expressions is asymptotically

optimal with arbitrarily high probability.

Now, consider a ranking expressionR = Max(a1; : : : ; an), where theai’s are independent atomic

expressions. Suppose that we are interested ink objects with the highest grades forR. In this case,

another algorithm by Fagin requests exactlyk objects from each of the subexpressionsai, i = 1; : : : ; n,

with no need to probe any objects. It follows that there arek top objects forR among thesek � n objects.

4.3 Processing Ranking Expressions as Filter Conditions

As discussed in Section 2, a query may have both a filter condition as well as a ranking expression. A

naive query-execution strategy might stage the processing of these two components of the query, leading

to two alternatives: (a) evaluate the filter condition first using the techniques in Section 3.3, and then rank

the results by probing on the necessary attributes; (b) use techniques for efficient top-k query processing

to identify the top-k0 objects for the ranking expression (for somek0 � k), and then filter out any objects

that do not satisfy the filter condition by probing on the necessary attributes. Note that the second strat-

egy requires deriving a value ofk0 from the givenk by somehow taking into account the selectivity of

the filter condition. Both of these alternatives ignore the possible synergy in optimizing the execution of

queries by considering filter conditions and ranking expressionssimultaneously. Our goal in this section

is to precisely identify if we could view filtering and ranking in a uniform framework. This brings up the

challenge of “mapping” ranking expressions into a filter condition without significant loss of efficiency as

compared to using techniques that are optimized for ranking expressions. However, since such mapping

takes place as part of query optimization, we must depend on estimation techniques to derive a suitable fil-

ter condition. We do so by techniques similar to those adopted for cost estimation in traditional relational

databases. Thus, our “mapped” ranking expressions are optimized not in an absolute sense but leveraging

approximate statistics that are available. This is in sharp contrast to the techniques by Fagin [14, 15, 16]

that we outlined above, which provide theoretical performance guarantees. However, our mapping tech-

nique has the benefit of enabling a smooth integration with the broader class of queries involving filter
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conditions. Moreover, as our experiments will suggest, our technique compares favorably to Fagin’s.

Although in this section we show how toprocessa ranking expression as a filter condition, the se-

mantics of both the filter condition and the ranking expression remain distinct. (See Section 2.) We still

need to specify a ranking expression to get a sorted set of objects. Filter conditions have unordered sets

as their answers. In the strategy that we describe below, after processing a ranking expression as a filter

condition, we will have to compute the grade of the retrieved objects for the ranking expression, and sort

them before returning them as the answer to the query.

Given a ranking expressionR and the numberk of objects desired, we give an algorithm to assign a

grade to each atomic expression inR, and a filter conditionF with the same “structure” asR that retrieves

the top objects according toR.

Example 4.2:Consider a ranking expression:

e = Min(Grade(A1; v1);Grade(A2; v2))

whereAi is an attribute, andvi a constant value. We want two objects with the top grades fore. Now,

suppose that we can somehow find a gradeG such that there are at least two objects with gradeG

or higher for expressione. Therefore, if we retrieve all of the objects with gradeG or higher for e,

we can simply order them according to their grades, and return the top two as the result to the query.

Furthermore, such a gradeG should be as high as possible, to retrieve as few objects as possible.

In other words, we can processe by processing the following associatedfilter conditionf , followed

by a sorting step of the answer set forf :

f = (Grade(A1; v1)(o) � G) ^ (Grade(A2; v2)(o) � G)

By processingf using the strategies in Section 3, we obtain all of the objects with gradeG or higher

for A1 andv1, and forA2 andv2. Therefore, we obtain all of the objects with gradeG or higher for the

ranking expressione. If there are enough objects in this set (i.e., if there are at least two objects), then we

know we have retrieved the top objects that we need to answer the query with ranking expressione.

Now, consider a ranking expression:

e0 = Max(Grade(A1; v1);Grade(A2; v2))
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whereAi andvi are as before,i = 1; 2. We want two objects with the top grades fore0. If we somehow

find a gradeG0 such that there are at least two objects with gradeG0 or higher for expressione0, we can

processe0 by processing the following filter conditionf 0:

f 0 = (Grade(A1; v1)(o) � G0) _ (Grade(A2; v2)(o) � G0)

By processingf 0 we retrieve all of the objects having gradeG0 or higher for the ranking expression

e0, with no need to probe any objects. If there are at least two such objects, then we can answere0 by

returning two objects with the top grades fore0 from among the set of objects that we retrieved.

As we have seen in the example above, we can process a ranking expressione as a filter condition

f followed by a sorting step. The key point in the mapping of the problem from a ranking problem to

a (modified) filtering problem lies in finding the gradeG to use inf , as in the example. Ideally, grade

G should be thekth largest grade of any object in the database: the resulting filter conditionf that uses

such a value ofG would then retrieve exactly the top objects for the query. Unfortunately, such grade is

unknown at query-optimization time, so we need to rely on estimates to approximate it.

To determine the gradeG for the filter conditionf for e, we find the largest (or a close-to-largest)

gradeG such that the selectivity off is at leastk
O

, whereO is the number of objects in the repository.

If the selectivity estimates used to determineG are accurate (see Section 3.2) and the independence

assumption holds fore, thenf is likely to retrieve the desired top-k objects, based on cost and cardinality

estimates derived as in relational-model optimization as described above. However, in a realistic setting

the selectivity estimates might not be completely accurate, which might result inf retrieving fewer or

more thank objects. In case the number of objects retrieved is less thank, we say that queryf needs to

berestartedusing a lower value forG, and the process repeats until we retrieve at leastk objects.

We now present the algorithmRank, which takes as input the number of objects desiredk, a ranking

expressione, the desired number of objectsk, and the number of objects in the databaseO, and produces

the top-k objects fore using selectivity statistics.Rankrelies on two auxiliary functions,FilterGrade,

which finds a suitable gradeG for the filter condition used to compute the query results4, andFilterMap,

which simply maps a ranking expression to a filter condition that is equivalent “in structure,” for a given

4In [9] we presented a different strategy for identifying gradeG; our experimental evaluation of this alternative strategy
revealed that it is comparable to or less efficient than the version that we present here. Furthermore, the older strategy suffers
in performance when the distribution of grades varies significantly across attributes. Therefore we do not discuss the strategy
from [9] any further in this paper due to space limitations.
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grade. These two auxiliary functions are defined below.

Algorithm Rank(ranking expressione; objects desiredk; objects in databaseO)

// Returns top-k objects fore among theO objects in database.

1. reqK = k //Number of objects requested; might be adjusted later if restarts needed.

2. G=FilterGrade(0; 1; e; reqK ;O) // Identify search grade.

3. f=FilterMap(e; G) // Build filter condition equivalent toe “in structure” using gradeG.

4. Use algorithm in Section 3 to find set of objectsM that satisfy filter conditionf

5. If jM j < k: // Not enough objects retrieved; need torestartquery.

6. If jM j > 0: // Some objects retrieved.

7. reqK = dreqK � reqK
jM j

e // Increase number of objects requested, to get lower search grade.

8. newG =FilterGrade(0; 1; e; reqK ;O)

9. Else:newG = G2 // No objects retrieved; object grades “squeezed” in[0; G) range.

10. G = minfnewG;G � �g // DecreaseG by at least a small constant� > 0, for termination.

11. Go to step 3.

12. Else: Returnk objects fromM with highest grade fore // Enough objects retrieved; done.

Steps 5–11 handle the case where the original filter conditionf with associated gradeG did not

manage to identifyk or more objects. In this case, the query needs to be restarted, as explained above.

This undesirable scenario is due to inaccurate selectivity estimations. We distinguish two cases: (1) Iff

matchedk0 objects with0 < k0 < k (steps 6–8), then a new, lower gradeG is computed by inflating the

number of objects requested proportionally to thek
k0

ratio. (2) If f matched no objects (step 9), then all

objects in the database have grades in the[0; G) range. The original gradeG was computed assuming that

grades were distributed in the[0; 1] range, so we shrink gradeG to the[0; G) range by multiplying it by

G, the new upper bound on the object grades.

The auxiliary functionsFilterMapandFilterGradeare defined next. Given a gradeG, FilterMapmaps

a ranking expressione into a filter conditionf with e’s same basic structure such thatf matches exactly

those objects that have a grade ofG or higher fore. FilterGradeimplements binary search to find a grade

that yields the desired selectivity for a filter condition. (Reference [13] followed a similar approach to

evaluate top-k queries over relational databases.)

Function FilterMap(ranking expressione; search gradeG)

// Mapse into a filter conditionf with the same structure, such that
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// any objects that satisfyf have a grade no lower thanG for e.

1. If e = Grade(Ai; vi): f = Grade(Ai; vi)(o) � G // e is an atomic expression.

2. Else: //e is not an atomic expression.

3. If e = Min(e1; : : : ; en): f = (FilterMap(e1; G) ^ : : : ^ FilterMap(en; G))

4. Else:f = (FilterMap(e1; G) _ : : : _ FilterMap(en; G)) // e = Max(e1; : : : ; en)

5. Returnf

Function FilterGrade(grade-range bounds̀, h; ranking expressione; objects desiredk;

objects in databaseO)

// Binary-searches for high gradeG in [`; h] range withSel(FilterMap(e;G)) � k

O
.

1. If selectivity-estimate granularity too coarse to distinguish between` andh:

2. Returǹ //Return` rather thanh to help avoid restarts.

3. Else:

4. G = `+h
2

5. If Sel(FilterMap(e;G)) < k

O
: h = G

6. Else:` = G

7. ReturnFilterGrade(`; h; e; k; O)

The Rankalgorithm maps an arbitrary ranking expression into a filter condition. Note that when a

query contains a filter conditionF and a ranking expressionR, the query asks fork top objects by the

ranking expressionR that satisfyF . UsingRank, we can translate the problem of optimizing such a query

into the problem of optimizing the filter conditionF ^F 0, whereF 0 is the filter condition associated with

R andk0 = k
Sel(F )

. We can then apply the query-processing methodology of Section 3 over this composite

filter condition. In practice, it is likely that some attribute might appear both inF and inR in the original

query, as in Example 2.1. In such a case, the filter conditionF ^F 0 will not be independent, and hence the

guarantees of Section 3.3 will not hold. However, the experimental evaluation that we report next shows

that the filter-condition processing techniques of Section 3.3 perform well even when the independence

assumption does not hold and the data set exhibits attribute correlation.
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5 Experimental Results

In this section we report an experimental evaluation of the techniques presented in Section 3 and 4, over

synthetic data. In the “default” setting of our experiments, the number of objectsO in each generated data

set is 10,000, and objects have 6 attributesAi, 1 � i � 6. We vary these and other parameters throughout

our experiments.

Individual attribute scores for each object are generated in three different ways:

� Uniform data set: We assume that attributes are independent of each other; scores are uniformly

distributed within each attribute (default setting).

� Correlateddata set: We assume that attributes are divided in two groups so that the scores of

objects for attributes within the same group are correlated; scores are uniformly distributed within

each attribute. We use this data set to study the performance of our algorithms when independence

assumptions do not hold.

� Gaussiandata set: We assume that attributes are independent of each other; scores are generated

via five overlapping multidimensional Gaussian bells [39].

We build exact selectivity estimates over the generated data with information at a grade granularity of

0.01. We also report experiments over selectivity estimates that do not represent the data accurately.

For each attributeAi, the probe costPC(ai; p) to check conditionai associated withAi for p objects

is defined to be equal to the number of objects probedp times the cost of an individual probeci (i.e.,

PC(ai; p) = p � ci). We assume the search costSC(ai) to be linear in the number of objects retrieved for

conditionai: SC(ai) = Sel(ai) �O � di, whereO is the number of objects in the data set anddi is the cost

of retrieving one object. In our default setting, bothci anddi are chosen randomly from the[1; 10] range.

The filter conditions that we use in our experiments have exactly one atomic condition for each of the

available attributes; the grade associated with each of these atomic conditions is chosen randomly from

the [0; 1] range. The ranking expressions also involve all attributes, and ask fork = 10 objects in the

default setting of the experiments.

Our default setting for the different experiment parameters is summarized in Table 2. We now re-

port on experimental results for the default setting and when varying the different parameters. For our
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Parameter ci di k O n Selectivity Granularity Data Set
Default Value [1; 10] [1; 10] 10 10,000 6 0.01 Uniform

Table 2: Default setting of some experiment parameters.

experiments we measure the cost of processing a queryq, Cost(q), as:

Cost(q) =
nX

i=1

di �Retrieved(Ai) +
nX

i=1

ci � Probed(Ai)

whereRetrieved(Ai) is the overall number of objects retrieved viaGradeSearchover attributeAi (in-

cluding restarts and counting multiply retrieved objects) andProbed(Ai) is the number of objects probed

for attributeAi (including restarts and assuming we never probe an object on the same condition twice,

but rather keep this information to save probes).

5.1 Filter Conditions

In this section we report experimental results on query processing strategies for filter conditions. Through-

out this section, we use a conjunctive filter conditiona1 ^ : : : ^ an, whereai is an atomic filter condition

involving attributeAi. For our experiments, we ran 1,000 queries and averaged their results. We compare

the following strategies:

� Filter: StrategyFilter is the search-minimal algorithm of Section 3.

� Filter-PostOptimization: StrategyFilter-PostOptimizationis the algorithm that results from apply-

ing the post-optimization step of Section 3.4 overFilter.

� Sep: StrategySepis determined by first choosing the best atomic conditions on which to search,

considering the search cost and the selectivity of the conditions, but not the probe costs. Then,Sep

probes the remaining conditions in an optimal order.Filter differs fromSepin that the probing costs

are taken into account when choosing the conditions on which to search.

� Exh: StrategyExhexhaustively considers at query-planning time all possible non-empty subsets of

the atomic conditions to retrieve the objects, and then probes the remaining conditions optimally

according to the cost and selectivity statistics. This strategy does not restrict the search space to

search-minimal executions as doFilter andSep.
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Figure 1 shows the performance of the four techniques for conjunctive queries for the default param-

eter setting, on data sets generated using different grade distributions. The correlated data sets consist

of three different sets in which we divided the attributes into two groups so that an object’s grades for

attributes within the same group are correlated. The groups are defined as follows: (1, 5): one group

has one attribute and the other five attributes; (2, 4): one group has two attributes and the other four

attributes; and (3, 3): both groups have three attributes. For all data sets,Filter performs better thanSep,

showing that considering probing costs when evaluating search-minimal executions results in lower query

costs.Filter-PostOptimizationgives results close to theExhtechnique, in which all combinations of plans

are considered. Interestingly,Filter-PostOptimizationthen allows to have close-to-optimal results without

considering all execution plans, which can be expensive. Results for theGaussiandistribution are slightly

better than for theUniform distribution, since fewer objects tend to satisfy the selection conditions. For

the correlated data sets –over which the independence assumption underlying the construction of the al-

gorithms does not hold– all techniques have better performance when the attributes are evenly split into

two groups: this configuration results in fewer probes being performed, as objects can be discarded more

easily.
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Figure 1: Comparison of the different techniques for data sets generated using different grade distribu-
tions.

Effect of the Number of Attributes: We studied the effect of the number of attributes in the filter

condition. As the number of attributes increases, the selectivity of the conjunctive query, which then

consists of more conditions, decreases. This results in turn in fewer objects being considered and in lower
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query-execution costs. We do not show these plots because of space limitations.
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Effect of the Cost Ratio: Our algorithms of Section 3.3 rely on cost estimations to select a query

plan. Additionally, the post-optimization step ofFilter-PostOptimizationcompares the relative cost of

searching and probing for attributes that do not belong in the search-minimal condition set to make further

optimization choices. We now study the effect on the query processing cost of the relative values ofci,

the cost of probing one object, anddi, the cost of retrieving one object usingGradeSearch(Figure 2). The

probing costci is chosen from[0; 1], while the range of values ofdi varies from[0:1; 1] to [10; 100]. As

expected, whendi increases, the overall cost of a query increases as well since retrieving objects becomes

more expensive. When thedi=ci ratio is high, the cost of retrieving objects dominates: all techniques

tend to select a plan that minimizes the number of objects retrieved usingGradeSearch. Hence probes are

favored because they are relatively inexpensive. In contrast, when thedi=ci ratio is low, retrieving objects

via theGradeSearchinterface is less expensive than using probes.ExhandFilter-PostOptimization, both

of which consider plans with more search attributes than strictly necessary, are then cheaper thanFilter

andSep, which only consider search-minimal executions.

Effect of the Condition Grades: Figure 3 studies the effect of the selectivity of a query on its cost.

For these experiments, all atomic conditions in the query have the same associated grade, and we vary

this grade from 0 to 1. When the grade is low, many objects satisfy the filter condition and have to be

processed, resulting in high cost. In contrast, when the grade condition is high, the selectivity of the query

is low and so is query processing cost.
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A clear conclusion from the experiments above is thatFilter is consistently more efficient thanSep:

this conclusion highlights the benefits of considering the probe costs in addition to the search costs during

query optimization. Another conclusion is thatFilter-PostOptimizationis significantly more efficient than

Filter: in fact, its simple post-optimization step makesFilter-PostOptimizationalmost indistinguishable

from the exhaustive-searchExh algorithm in our experiments. We have performed experiments over

disjunctive filter conditions as well, which we do not report for space limitations: processing such queries

always involves searching onall atomic conditions viaGradeSearch, with no probes. Therefore, the

techniques in Section 3.3 are all equivalent for disjunctive queries.

5.2 Ranking Expressions

In this section we report experiments on query-processing strategies for ranking expressions. In Sec-

tion 4.3 we presentedRank, an algorithm to map the execution of a ranking expression into the execution

of a filter condition. We now compareRankexperimentally with Fagin’s algorithm (Section 4.2), to which

we will refer asFA. For the filter processing part of theRankalgorithm (Step 4 of the algorithm, in Sec-

tion 3.3), we use algorithmFilter-PostOptimization. Our experiments use two ranking expressions over

the six attributes defined above:

� RMin: Min(a1; a2; a3; a4; a5; a6)

� RMax: Max(a1; a2; a3; a4; a5; a6)

The goal of this section is to demonstrate that our heuristic technique for mapping ranking expressions

to a filter condition compares favorably experimentally to Fagin’s algorithm which carries optimality

guarantees. Recall that the key strength of our approach is the unifying framework for answering queries

involving both filter conditions and ranking expressions.

Figure 4 presents results forRankandFA for the default settings over bothUniform andGaussian

data sets. We present results forRank for two different values of the “granularity” of the selectivity

estimates: 0.01 and 0.001. Figure 4(a) shows thatRankoutperformsFA for theRMin query. Using detailed

analysis, we traced the reasons for our efficiency. First,Rankuses statistics on selectivity estimates (via

Filter-PostOptimization) to decide on which conditions to search and on which to probe. This results in

retrieving fewer objects thanFA in these experiments, although the average smallest grades seen by both

RankandFA are close (the average gradeG used byRank (0.01), including restarts, is 0.67235 while the

average lowest grade seen byFA for each attribute is 0.685709 (for theUniform data set). Second,Rank
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Figure 4: Comparison of the techniques forRMin andRMax over data sets generated using different grade
distributions.

tends to use fewer probes thanFA: unlike FA, Rankdoes not compute the complete grade of each object

retrieved, but rather stops probing an object as soon as the object has failed to satisfy one condition in the

filter. This early termination results in significant savings in probe costs. These two key aspects of our

processing explain our performance reported in Figure 4(a). Thegranularity of the selectivity estimates

slightly affectsRank’s query cost: a too fine granularity (see results for granularity 0.01) results in more

restarts and thus higher query costs; we discuss this issue in more details below. Interestingly,Rank’s

performance onRMax functions (Figure 4(b)), which involve searching on all attributes but do not require

any probing, is very sensitive to the granularity of the selectivity estimates. Specifically, if the granularity

of the selectivity estimate is too coarse, the grade thatRankuses to map the ranking expression into a

filter condition might result in a condition that matches more thank objects. Our experiments confirm

thatRank (0.01)retrieves more objects thanFA forRMax: the average lowest grade seen byFA using sorted

access (0.999003 for theUniformdata set) is slightly higher than the gradeG used byRank(0.99 for the

Uniform data set). Note that the queries in the default setting ask for just top 10 objects, and that 0.99 is

the highest grade thatRank (0.01)could pick for the default selectivity-estimate granularity of 0.01 used

in these experiments. The gradeG associated toRank (0.001)is 0.999, and the performance ofRankfor

this finer-granularity case is almost identical to that ofFA. Figure 5 shows the corresponding experimental

results for theCorrelateddata sets.
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Figure 5: Comparison of the techniques forRMin andRMax over theCorrelateddata sets.
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Figure 6: Effect of the number of objects requestedk for RMin andRMax on the query costs ofRankand
FA.
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Effect of the Number of Objects Requestedk: Figure 6 studies the effect of the number of objects

requestedk on the query costs ofFA andRank. Figure 6(a) shows that the cost of both techniques forRMin

increases slightly withk since more objects are processed to compute the query result. Figure 6(b) shows

thatFA’s performance forRMax is linear in the number of objects requestedk, whileRank’s performance is

constant for the values ofk that we tried: the highest gradeG thatRankcan use, given the default setting

of the selectivity-estimate granularity, generally results in more objects being retrieved than needed, hence

this “flat” behavior. Note thatRank’s cost will increase in steps each timeG has to be decreased fork

objects to be retrieved.
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Figure 7: Effect of the “granularity” of the selectivity estimates forRMin andRMax on the query costs of
Rank.

Effect of the “Granularity” of the Selectivity Estimates: Figure 7 studies the effect on the query costs

of Rankof the “granularity” with which our techniques make selectivity estimates. Figure 7(a) shows that

the performance ofRankfor RMin suffers if the granularity is too fine or too coarse: if the granularity is

too fine,Rankis prone to restarts since a slight error in selectivity estimation might decrease the number

of objects that satisfy the filter condition belowk. (As usual, the costs reported in Figure 7 include the

costs of “restarts” forRank, as discussed above.) If the granularity is too coarse,Rankwill process more

objects to identify the top-k objects, since more objects are expected to satisfy the filter condition.FA

does not use statistics on data, and is therefore unaffected by variations of the granularity of the selectivity

estimates. For the setting of this experiment,FA’s cost is higher than 290,000.Rank’s performance is still

much better thanFA’s, for all granularities of the selectivity estimates that we tried. Figure 7(b) shows
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that the performance ofRankfor RMax improves when the granularity of the selectivity estimates becomes

finer, as discussed above.
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Figure 8: Effect on the query cost and restarts ofRankof the divergence of data sets and their correspond-
ing selectivity estimates, forRMin (Gaussiandata set).
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Figure 9: Effect on the query cost and restarts ofRankof the divergence of data sets and their correspond-
ing selectivity estimates, forRMin (Uniformdata set).

Effect of the Selectivity-Estimate Error: Rankrelies on selectivity estimates to map ranking expres-

sions into filter conditions. We have already reported on the effect of the “granularity” of such estimates

on the quality of the mapping. Now, we study the effect of inaccurate estimates onRank. For this ex-

periment, we use two configurations. In the first configuration, the actual data set is generated using a
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Gaussiandistribution with only one bell [39]. The selectivity estimates thatRankuses are then created

using(1� noise) �O objects from the actual data set andnoise � O objects from another data set gener-

ated using aUniform distribution. Thus, when thenoise is equal to 0, the selectivity estimates are exact,

while whennoise is equal to1, the selectivity estimates are highly inaccurate and based on a completely

different data set generated using a different grade distribution. Results for this first configuration are

shown in Figure 8. In the second configuration, the actual data set is generated using aUniform dis-

tribution, and the selectivity estimates are created using(1 � noise) � O objects from the actual data

set andnoise � O objects from another data set generated using aGaussiandistribution (Figure 9). For

the first configuration, selectivity estimates tend to overestimate the number of objects retrieved for a

given grade. Figure 8(a) shows that the query cost is affected by the noise, and increases as expected as

thenoise value increases (and the data set and its associated selectivity estimates become increasingly

further apart). However,Rank’s query cost is lower thanFA’s, even for high values of data-setnoise. Fig-

ure 8(b) shows that the number of queries in need of restarts increases asnoiseincreases, and so does the

number of restarts per query. The increase in the number of restarts results from the selectivity estimates

overestimating the actual number of objects retrieved for a given grade. However, the vast majority of

the queries do not need to be restarted more than once, because of the grade adjustment by our “restarts”

strategy, which is based on query feedback: even whennoise = 1 , only 14% of the queries require to

be restarted more than once. For the second configuration, selectivity estimates tend to underestimate the

number of objects retrieved for a given grade, resulting in smallerG grades. As seen in Figure 9(a), the

query cost is moderately affected by the noise, since more objects than needed are being retrieved asG

is lower. Figure 9(b) shows that underestimating the number of object retrieved results in fewer restarts,

since more objects than estimated are actually retrieved. In summary, these results, together with those

for varying selectivity-estimate granularities, suggest thatRankworks well even with less-than-ideal se-

lectivity estimates, especially in conjunction with our “restarts” strategy (Steps 5-11 of AlgorithmRank),

which adjusts the search grade based on the query-result feedback from the first filter-condition execu-

tion. Figure 10 shows the corresponding experimental results for aCorrelated(1,5) data set. For this

set, there is one group of 5 correlated attributes, and the6th attribute is negatively correlated with respect

to the five-attribute group. The selectivity estimates are created using(1 � noise) � O objects from the

actual data set andnoise �O objects from another data set generated using aGaussiandistribution. Since

some attributes are negatively correlated, even when statistical information is correct, all queries need at

least one restart. We also ran similar experiments forRMax that we do not report here for lack of space,
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and observed that in that caseRankis not significantly affected by the divergence of the data set and the

selectivity estimates, probably because the values ofk that we tried are smaller than the expected number

of objects usually retrieved using the filter condition.
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Figure 10: Effect on the query cost and restarts ofRankof the divergence of data sets and their corre-
sponding selectivity estimates, forRMin ((1,5)Correlateddata set).

6 Related Work

Our query model captures the aspects of filtering based on graded search and ranking. The concept of a

graded match has been used extensively. For example, the query model in [32] allows specifying a grade

of match as well as ranking. However, the processing of queries in [32] is based on searches (i.e., no

probes are considered).

Many database systems have been built and prototyped with varying degrees of support for processing

user-defined functions [5]. The QBIC system [29] from IBM Almaden allows users to query image

repositories using a variety of attributes of the images, like color, texture, and shapes. The answer to

a query is a rank of the images that best match the query values for the attributes. Another example is

Cypress, a picture retrieval system built using Postgres [35] that allows a filter condition to be specified,

and returns a set of objects as the answer to the filter condition. Thus, the Cypress model does not support

ranking. Each object in Cypress has an image, a set of features (e.g., color histogram), an associated text

and other structured information. The querying interface supports user-defined functions and predicates

including a set of predefined graded matches (e.g., a predicate “mostly yellow”).
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The problem of optimizing user-defined filter conditions such as those in Cypress has been addressed

in the literature. Work in [24, 27, 23, 11] focuses on conjunctive selection conditions. Techniques to

optimize arbitrary boolean selection conditions have been studied in [26, 25, 31]. Our work draws upon

the known results in this area. (See Section 3.)

The problem of determining an optimal set of conditions to search arises naturally when optimizing

single-table queries with multiple indexes [33, 28] where the problem translates into the task of identifying

the appropriate set of indexes to union and to intersect5. By imposing the search minimality criterion, we

have eliminated the need to consider index intersection and we always choose a single condition among

conjuncts on which to search. This imposes implicitly the assumption that search cost is significantly

higher compared to probe cost. On the other hand, we do account for non-zero probe costs, unlike [28],

and are able to prove that our optimization algorithm produces an optimal search-minimal plan with low

computational overhead if atomic conditions are independent. This optimization problem can also be cast

as optimization of relational queries that involve joins as well as unions. As above, such a formulation

fails to capture characteristics that are particular of selection queries, as exploited in our algorithms.

The information retrieval community has extensively studied the problem of ranking documents ac-

cording to their expected relevance for a given query. Given a query with termst1; : : : ; tn, a retrieval

system typically retrieves the inverted lists associated with each of the termsti, and ranks the documents

that appear in these lists [41]. If users are not interested in the entire document ranks, but only in the top

document matches, some techniques avoid accessing all of then lists associated with the terms [36].

In the context of the Garlic project at IBM Almaden [6], Fagin’s work [14, 15, 16] focuses on how

to evaluate queries that ask for a few top matches for a ranking expression. (See Section 4.2.) In his

queries, the notions of true and false are replaced by graded matches, and boolean operators are rein-

terpreted to give the semantics of composition functions that take two grades of match and produce a

composite grade (e.g.,Min, Max). Thus, our ranking expressions are a special case of Fagin’s queries.

Under broad assumptions on the cost model, Fagin demonstrates the optimality of his algorithm for a class

of composition functions. Also, Fagin and Wimmers [17] discuss how to modify the scoring function to

incorporate user preferences so that, say, an attribute might be twice as important to a user than the other

attributes mentioned in the query. Finally, Wimmers et al. [40] describe their experience in implementing

Fagin’s original algorithm on Garlic. Fagin’s algorithm was markedly more efficient in “joining” multiple

multimedia sources compared to traditional join techniques. However, the paper also points to intrin-

5The problem of sequencing the order of accesses to subfiles of transposed files is also related in a similar way [2].
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sic difficulties arising from heterogeneity of sources that makes establishing object identity difficult and

describes the steps that were needed in Garlic to overcome these issues.

The work by Ortega et al. on the MARS system [30] developed a system for supporting ranked retrieval

over image databases. One of their key contributions is an adaptation of Fagin’s algorithm that has the

flavor of a “merge-join” algorithm. Top-k query processing over traditional relational data has received

recent attention [7, 8, 10, 13].

In this paper, we have investigated only one aspect of querying, namely that of selecting objects via

a filter condition and using the ranking expression to order them. However, querying over multimedia

repositories has several other dimensions that we have not addressed. For example, capturing the interre-

lations present in a multimedia document or in a composite multimedia object requires richer semantics

and retrieval models [32, 4, 12]. Furthermore, modeling uncertainty and vagueness in data and queries is

a semantic issue that is beyond the scope of this paper.

7 Summary

In this paper, we addressed the problem ofcost-basedoptimization of queries over multimedia reposito-

ries. Over multimedia repositories, specifying conditions on the degree of match between values (e.g.,

color histograms) is an important aspect of the problem. In many of these repositories, the only way to

evaluate conditions is through an index. Furthermore, we can use indexes to either evaluate a search con-

dition or to probe a condition. We analyzed the problem of cost-based optimization of filter conditions in

this framework. We have implemented a prototype retrieval system based on the ideas that we introduce

in this paper. We created a sample multimedia repository consisting of objects with images and textual

captions. We got the captions and images from the Digital Library project at the University of California

at Berkeley, more specifically, from the Cypress project there. (See Section 6.)

We defined a space of search-minimal executions, and presented an efficient algorithm to determine

the optimal choice of a search-minimal condition set for filter conditions with independent atomic con-

ditions. Our experimental results indicate that the cost of the strategies can be significantly lowered by

considering search and probe costs, compared to the cost of strategies adopted by optimizing for only

the search or the probe costs separately. Although search-minimal executions minimize the number of

conditions to search on, our experiments indicate that through a post-optimization step the quality of our

plans is almost as good as those obtained over an exhaustive search of the plan space. Furthermore, our al-
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gorithm provides a search-minimal condition set even if the filter condition is not independent. However,

optimality in such a scenario requires an exhaustive approach, as indicated by our NP-hardness result.

Another aspect of querying this type of repositories is that often the user is interested in just a few best

matches for a ranking expression. A key contribution of our paper has been to show that such a ranking

expression can be mapped into and executed as a filter condition with a final sorting step over just the top

objects. Our thorough experimental evaluation indicates that this approach is highly efficient even when

the selectivity estimates on which it relies are inaccurate, for a variety of data distributions and query

scenarios.
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