View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

Technical Report CUCS-017-02
Columbia University, August 2002

Optimizing Top4< Selection Queries over Multimedia

Repositories

Surajit Chaudhuri Luis Gravano Ameélie Marian
Microsoft Research  Columbia University = Columbia University

surajitc@microsoft.com gravano@cs.columbia.edu amelie@cs.columbia.edu

Abstract

Repositories of multimedia objects having multiple types of attributes (e.g., image, text) are be-
coming increasingly common. A query on these attributes will typically request not just a set of ob-
jects, as in the traditional relational query modeétgring), but also agrade of matctassociated with
each object, which indicates how well the object matches the selection condditking). Further-
more, unlike in the relational model, users may just wantithep-ranked objects for their selection
queries, for a relatively smakl. In addition to the differences in the query model, another peculiarity
of multimedia repositories is that they may allow access to the attributes of each object only through
indexes. In this paper, we investigate how to optimize the processing @f sefection queries over
multimedia repositories. The access characteristics of the repositories and the above query model lead
to novel issues in query optimization. In particular, the choice of the indexes used to search the repos-
itory strongly influences the cost of processing the filtering condition. We define an execution space
that issearch-minimali.e., the set of indexes searched is minimal. Although the general problem
of picking an optimal plan in the search-minimal execution space is NP-hard, we present an efficient
algorithm that solves the problem optimally when the predicates in the query are independent. We
also show that the problem of optimizing tépselection queries can be viewed, in many cases, as that
of evaluating more traditional selection conditions. Thus, both problems can be viewed together as an

extended filtering problem to which techniques of query processing and optimization may be adapted.

*Work done in part while the authors were at Hewlett-Packard Laboratories.
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1 Introduction

The problem of content management of multimedia repositories is becoming increasingly important with
the development of multimedia applications and the web [21]. For example, digitization of photo and art
collections is becoming popular, multimedia mail and groupware applications are getting widely available,
and satellite images are being used for weather predictions. To access such large repositories efficiently,
we need to store information on attributes of the multimedia objects. Such attributes include the date the
multimedia object was authored, a free-text description of the object, and features like color histograms.
These attributes provide the ability to recall one or more objects from the repository. There are at least
three major ways in which accesses to a multimedia repository differ from that to a structured database
(e.g., arelational database). First, rarely does a user expexaatmatch with the feature of a multimedia
object (e.g., color histogram). Rather, an object does not either satisfy or fail a condition, but has instead
an associategradeof match [14, 15, 16]. Thus, an atomic filter condition will not be an equality between
two values (e.g., between a given colgrand the colooid.colorof an object), but instead an inequality
involving the grade of match between the two values and some target gradé&fade(color,c,)(oid)
> 0.7). Next, every condition on an attribute of a multimedia object may only be evaluated through calls
to a system or index that handles that particular attribute. This is in contrast to a traditional database
where, after accessing a tuple, all selection predicates can be evaluated on the tuple. Finally, the process
of querying and browsing over a multimedia repository is likely to be interactive, and users will tend to
ask for only a few best matches according to a ranking criterion.

The above observations lead us to investigate a query modefiliethconditionsas well aganking
expressionsand to study the cost-based optimization of such queriesgeneral, a query will specify
both a filter conditionf” and a ranking expressidis The query answer is a rank of the objects that satisfy
F, based on their grade of match for the ranking expresRion

Optimizing a filter condition in this querying model presents new challenges. An atomic condition can
be processed in two ways: bysaarch where we retrieve all the objects that match the given condition
(access by value), and bypaobe where instead of using the condition as an access method, we only test
it for each (given) object id (access by object id). For example, consider a filter condition consisting of
a conjunction of two atomic conditions. If we search on the first condition and probe on the second, the

latter benefits from the reduction in the number of objects that need probing, due to the selectivity of the

IThe queries identify a candidate set (or list) of objects for displaying. How to actually display these objects is an important
problem that we do not address in this paper.



first condition.

The costs of these two kinds of accesses, search and probe, in multimedia repositories can vary for
a single data and attribute type as well as across types. How to order a sequence of probes without
considering the search costs, as well as how to determine a set of search conditions when the probing
cost is zero (or a constant) has been studied before. When the filter condition is a conjunction of atomic
conditions, the problem becomes closely related to that of ordering joins. However, to the best of our
knowledge, no work has studied the optimization problem when both searches and probes have non-zero
costs and the filter condition is an arbitrary boolean expression.

To optimize the processing of a filter condition, we define a spaseafch-minimal executionand
show an optimal strategy in that space for the case when the conditions present in the filter condition are
independentAlthough the search-minimal execution space is a restricted space, our experiments indicate
that if we introduce a simple post-optimization step for conjunctive conditions, we obtain plans that are
nearly always as efficient as the plans obtained when plans are not restricted to be search minimal. Our
experiments also show that considering both the search and probe costs during query optimization impacts
the choice of an execution plan significantly. Also, we prove that if the conditions in the filter condition
are not independent, the problem of determining an optimal search-minimal execution is NP-hard.

Our paper also contributes to the problem of optimizing the evaluation of queries that contain ranking
expression. Previous significant work in this area is due to Fagin [14, 15, 16], who shows his approach
to be asymptotically optimal under broad assumptions. A key contribution of our paper is to show that
ranking expressions can be processed “almost” like filter conditions efficiently. Our experimental results
indicate that such processing of ranking expressions as filter conditions is often quite efficient. Unlike
Fagin’s work, our optimization and evaluation technique is heuristic (as in relational query optimization).
However, from a practical systems perspective, our technique is of significance since for the first time it
provides an ability to treat queries that contain both filter and ranking expressions in a uniform framework
for query optimization and evaluation with few extensions to core query processing techniques.

The rest of the paper is organized as follows. Section 2 describes the query model that we use.
Sections 3 and 4 present the results on evaluating filter conditions and ranking expressions, respectively.
Section 5 discusses our experimental results. Section 6 is devoted to related work. We conclude with a

summary and a few interesting questions for future work in Section 7.



2 Query Model

In this section we introduce a query modektdectmultimedia objects from a repository. (See [32] for a

similar model.) Such a query model needs to satisfy the following requirements:

1. Consider that a match between the value of an attribute of a multimedia object and a given constant

is notexact, i.e., must account for the grade of match.
2. Allow users to specify thresholds on the grade of match of the acceptable objects.
3. Enable users to ask for only a few top-matching objects.

Given an objecb, an attributeattr, and a constantalue the notion of agrade of match Grade(attr,
value)(o)betweerv and the givervaluefor attributeattr addresses the first requirement. Such a grade is
a real number in thf, 1] range and designates the degree of equality (match) between andvalue.

We address the second requirement by introducing the notiorilkéracondition The atomicfilter
conditions are of the fornGGrade(attr, value)(0)> grade An objecto satisfies this condition if the
grade of match between its valoeattr for attributeattr and constanvalueis at leasgrade Additional
filter conditions are generated from the atomic conditions by using\tffand”) andVv (“or”) boolean
connectives. Filter conditions evaluate to either true or féfsactmatches such asattr = valuecan be
represented by the filter conditi@drade(attr,value)(o)> 1. However, in this paper, we will not discuss
how exact matches can be treated especially.

Following [14, 15, 16], we address the third requirement for the query model through the notion of
aranking expressionThe ranking expression computes@amposite gradéor an object from individual
grades of match and the composition functidhis andMax. (Fagin's expressions are more general in
that he allows other composition functions.) Every object has a grade between 0 and 1 for a given ranking
expression. Users can then use a ranking expression in their queries, and/aghjects with the top
grades for the given ranking expression. In this paper, we assume that ties are broken arbitrarily. An
alternative semantics, which we do not pursue in this paper, is that if there are ties, all objects with the
same grade are returned, even if that exceeds the required number of bbjects

We use the following SQL-like syntax to describe the queries in our model:

SELECT oid
FROM Repository



WHERE Filter _condition
ORDER [k] by Ranking _expression

The above query asks fdr objects in the object repository with the highest grade for the ranking
expression, among those objects that satisfy the filter condition. Intuitively, the filter condition eliminates

unacceptable matches, while the ranking expression orders the acceptable objects.

Example 2.1: Consider a multimedia repository of information on criminals. A record on every person
on file consists of a textual description (profile), a scanned fingerprint (fingerprint), and a recording of a
voice sample (voiceample). Given a fingerprint F and a voice sample V, the following example asks for
records whose fingerprint matches F well. Alternatively, a record is also acceptable if its profile matches
the string ‘on parole’ with grade 0.9 or higher, and its voice sample matches V with grade 0.5 or higher.
The ranking expression ranks the acceptable records by the maximum of their grade of match for the
voice sample V and for the fingerprint F. The answer contains the top 10 such acceptable records. (For

simplicity, we omitted the parameter oid in the atomic conditions below.)

SELECT oid

FROM repository

WHERE (Grade(voice_sample, V) >= .5 AND Grade(profile, ‘on parole’) >= .9)
OR (Grade(fingerprint, F) >= .9)

ORDER [10] BY Max(Grade(fingerprint, F), Grade(voice_sample, V))

2.1 Expressivity of the Query Model

The filter conditionF’ in a query() selects the set of objects in the repository that satisfy the condition,
whereas the ranking expressifircomputes a grade for each object. We use these grades for ordering the
objects that satisfy the filter condition.

Given a filter conditionF” and a ranking expressid, an interesting expressivity question is whether
we actually need both" andR. In other words, we would like to know whether we can “embed” the filter
conditionF' in a new ranking expressiaR such that the top objects accordingite are the top objects
for R that satisfyF. (Note that a filter condition does not impose an order on the objects, therefore we

cannot expres®& andF' using a single filter conditiof’,. However, see Section 4.)



ObjeCt €1 €9 Min(€1, 62) MaX(el, 62)
01 0.1|0.6 0.1 0.6
09 0204 0.2 0.4
03 0.5|0.3 0.3 0.5

Table 1: The three objects in the database, and their grades for each of the four possible definitjons of

More formally, givenF' and R, a ranking expressio® that replaced” and R should verify the
following two conditions for any databagé and for any giverk, assuming that at leagtobjects satisfy

F in databaséb. (If £’ objects satisfy' in db, andk’ < k, then us&’ instead oft below.)

1. An objecto € db is among the to@ objects according t&r only if o satisfiest'.

2. If objectso, o' € db satisfyF' andR(o) < R(0'), thenRp(0) < Rp(0').

The following example establishes the need for both a filter condition and a ranking expression in our
model. It shows that it is not possible to find such a ranking expregsidior an arbitrary filter condition

F and an arbitrary ranking expressi@n

Example 2.2 Lete; = Gradg Ay, v1) ande, = Gradg As, v3), whereA; and A, are different attributes,
andwv; andwv, are constants. Consider the filter conditiéh= e; > 0.2, and the ranking expression

R = ey. The query associated with and R ranks the objects that have grade 0.2 or higher éor
according to their grade foe,. Suppose that there is a ranking expression that satisfies the two
conditions above. ThemRy is necessarily equivalent to (i.e., always produces the same grades as) one
of the following expressiong’, e;, Min(ey, e5), or Max(es, e5). Consider the database of three objects
described in Table 1, and that we are interested in the top objeet () for R that satisfied’. The actual
answer to the query should be objegt which has the highest grade fé (0.4) among the two objects

(02 ando3) that pass the filter conditiof’. We will show that any of the four possibilities iBf. produces

a wrong answer for the query:

e CaseRy = ey, Oor R = Min(eq, e2): The top object folR is o3, which is a wrong answer.

e CaseRy = ey, Or R = MaxX(ey, e2): The top object for - is o1, which is a wrong answer.



2.2 Storage Level Interfaces

A repository has a set of multimedia objects. We assume that each object has an id and a set of attribute
values, which we can only access through indexes. Given a value for an attribute, an index supports
access to the ids of the objects that match that value closely enough, as we will discuss below. Indexes
also support access to the attribute values of an object given its oid.

The following are several storage-level access interfaces that we assume multimedia repositories sup-
port. (See for example [29].) Key to these interfaces is that the objects match attribute values with a grade

of match, as we discussed above.

e GradeSearch(attribute, value, mgrade) Given a value for an attribute, and a minimum grade
requirement, returns the set of objects that match the attribute value with at least the specified

grade, together with the grades for the objects.

e TopSearch(attribute, value, countpiven a value for an attribute, and the count of the number of
objects desired, returns a listoduntobjects that match the attribute value with the highest grades

in the repository, together with the grades for the objects.

e Probe(attribute, value{oid}): Given a set of object ids and a value for an attribute, returns the

grade of each of the specified objects for the attribute value.

Not all repositories have to support all of these interfaces at the physical level. For example, a reposi-
tory may implement #robecall atopGradeSearclby requesting all objects that match a given attribute
value with at least some specified grade, and then decreasing this grade until the grade for the object
requested in th@robecall is obtained. A similar strategy could be implemented &topSearch Next,

we briefly describe how text and image attributes may support the above interfaces.

Text Attributes:

Consider a repository of objects with a textual attribfité=or this attribute, the repository might have an
index that handles queries using trector-spacenodel of document retrieval [36, 1]. In such a model,

the value of an object for attributE is regarded as a traditional document. Then, given a query value
for attributeT (i.e., a sequence of words), this index assigns a grade to every object in the repository,
according to howsimilar its value for7" and the query value are. To compute these similarities, vector-

space retrieval systems typically represent both documents and queries as weight vectors, where each
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weight corresponds to a term in the vocabulary. Given a query, a vector-space retrieval system returns a
list of the matching documents sorted by their grade for the query. The grade —or similarity— of a document
and a query is usually computed by taking the inner product of their weight vectors. Vector-space retrieval
systems usually provide tl@radeSearclinterface, thelopSearchnterface, or both.

Some text-retrieval systems allow access to the document weight vectors by document id. If this is
the case, th€robeinterface is readily provided by accessing the weight vectors of the objects requested,
and computing the similarity of these vectors and the query vector. If this direct access is not provided,

Probecan be simulated b§radeSearclor TopSearchas discussed above.

Image Attributes:

Other popular attributes are features of images. If the objects of a repository contain an image, an attribute
of the objects could be the color histogram of this image. Then, a filter condition on such an attribute can
ask for objects whose image histogram matches a given color histogram closely, for example. The QBIC
system supports this type of queries [29]. One of the most popular ways of handling such attributes and
gueries is by usingr trees [22] and its variants [3, 38] to index the feature vectors associated with the
attributes. The grade between two feature vectors is computed based on the semantics of the attributes,
and sophisticated algorithms have been developed in the context of the QBIC project, for instance [18].
Given one feature-vector attribute, a valuéor the attribute, and a grad&radeSearcltan be im-
plemented over a® tree by determining a box around the given valuehat contains all vectors that
matchv with the given grade or higher, for a given grade-computation algorithm. We then process the
corresponding range search. [34] has presented an algorithm to find nearest neigh®dresemn This

algorithm can be used for implementimgpSearch

3 Filter Conditions

In this section we will consider processing and cost-based optimization of queries that have only a filter

condition, i.e., they are of the form:

SELECT oid
FROM Repository
WHERE Filter _condition



We will assume that the filter conditions anelependentSimilar restrictions have been traditionally

adopted since the System-R optimization effort [37].
Definition 3.1: We say that a filter conditioifi is independenif:
1. Every atomic filter condition occurs at most oncegin

2. Everyn atomic filter conditionsuy, . . ., a,,* satisfy the followingp(a; A ... A a,) = 1T, p(a;),

wherep(a) is the probability that the filter conditioa is true.

Independence rules out filter conditions with repeated attributes, and also filter conditions with, for exam-
ple, two atomic conditiong; anda, such that;, is true (or false) wheneves is true.

We assume that our repository requires that we use an index to evaluate every atomic filter condition.
One way to process such queries is to retrieve object ids usinG @t SearcHor each atomic condition
in the filter condition, and then merge these sets of object ids through a sequence of unions and intersec-
tions. Alternatively, we can retrieve a set of object ids ugargdeSearclior someconditions, and check
the remaining conditions on these objects throBgbbeoperations.

The key optimization problem is to determine the set of filter conditions that are to be evaluated using
GradeSearchThe rest of the conditions will be evaluated by usirgbe In order to efficiently execute
the latter step, we will exploit the known techniques in optimizing the processing of expensive filter
conditions [26, 23, 24, 27, 11].

In this section, we first define a spacesefirch-minimaéxecutions, which access as few attributes as
possible usingsradeSearchand sketch the cost model and the optimization criteria. Next, we describe an
optimization algorithm and explain the conditions under which it is optimal. Finally, we show how we can
further improve the execution plan produced by our algorithm through a simple “post-optimization” step
to lower the cost of the original plan, and conclude with a result that indicates that the general problem of
determining an optimal search-minimal execution is NP-hard.

The results in this section are complemented by the experiments in Section 5, which show that con-
sidering both the search and probe costs leads to significantly better execution strategies, and that post-
optimized search-minimal executions behave almost as well as the best (not necessarily search-minimal)

executions.

*We useqa; as a shorthand for an atomic condition specifying an attribute, value, and gradeésradge(attr,val)(0)>
grade



3.1 Execution Space

As an introduction, we begin by discussing the possible space of execution for simple filter conditions, i.e.,
conditions that consist of a disjunction (or a conjunction) of atomic conditions. We will then generalize
our description for arbitrary filter conditions with disjunctions and conjunctions.

To process an atomic conditidgarade(attr, value)(o)> grade we use theGradeSearch(attr, value,
grade)access method described in the previous section.

Consider now the case where the filter condition is a disjunction of atomic filter conditions.Vva,,.
All objects that satisfy at least one of the satisfy the entire filter condition. Evaluation of an atomic
conditiona; requires the use of tieradeSearclkaccess method associated withSince we assume that
the atomic conditions are independent, use GradeSearchs needed for each atomic condition not to
mMiss any object that satisfies the entire condition.

Consider now the case where the filter condition is a conjunction of atomic filter conditions . A
a,. There are several execution alternatives. In particular, we can retrieve all the objects that may satisfy
the filter condition by usingsradeSearcton any of the atomic conditions, ..., a,. Subsequently, we
can test each retrieved object to verify that it satisfies all of the remaining conditions. The cost of using
one atomic condition foGradeSearchnstead of another may lead to significant differences in the cost.

Thus, we can process a conjunction of atomic filter conditions by executing the following steps:

1. Search:Retrieve objects based on one atomic condition (uSiregleSearch

2. Probe: Test that the retrieved objects satisfy the other conditions (Uiole.

An important optimization step is to carry out Step (2) efficiently by ordering the atomic-condition probes
(Section 3.3).

We call the above class of execution alternatives for a conjunctive geargh-minimasince only a
minimal set of conditions (in this case, only one condition) is use&GfadeSearchThe search-minimal
strategies represent a subset of the possible executions. In particular for a conjunctive filter condition,
instead of searching on a single subcondition and probing on the others, it is possible to search on any
subset of the atomic conditions and to take the intersection of the sets of object-ids retrieved. However,
the space of all such executions is significantly larger. In particular, there are exponentially many subsets
of conjuncts to search on, but only a linear number of minimal conjunct sets for searching.

Intuitively, a search-minimal execution evaluates a minimal set of atomic conditions@Gsadg Search

and evaluates the rest of the conditions udfngbe A simple conjunctive filter condition needs to use
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GradeSearclior only one atomic condition. However, an arbitrary filter condition involvirigandV’s
might need to search more than one atomic condition, like the disjunction above.

We are motivated by several factors to focus on search-minimal executions. First, as discussed in
the context of conjunctive queries, search-minimal executions avoid an explosion in the search space.
Next, as we will discuss in Section 3.4 as well as demonstrate experimentally in Section 5, simple post-
optimizations allow us to derive from the optimal search-minimal execution a cheaper execution that is
not necessarily search-minimal.

By searching on a condition usii@gradeSearchwe obtain a set of objects. However, we may need to
do additional probes to determine the subset of objects that satisfy the entire filter condition. Thus, given
an atomic conditior; and a filter conditionf, theresidueof f for a;, R(a;, f), iS @ boolean condition
that the objects retrieved usiangshould satisfy to satisfy the entire conditionThe following definition

captures how we construct residues for independent filter conditions.

Definition 3.2 Let f be an independent filter condition, represented as a tree in which the internal nodes
correspond to the boolean connectives (hence there araddes” and “v nodes”) and the leaf nodes
correspond to the atomic conditions jin Leta be an atomic condition of. Consider the path from the

leaf node for (the only occurrence af)o the root of the tree fof. For everyA node: in this path, letw;

be the condition consisting of the conjunction of all the subtrees that are children of the aodehat

do not contairu. Then theesidueof f for a, R(a, f), is A; «;. If there are no such nodes, th&fta, f) =

true.

Example 3.3: Consider the filter condition:

f=as N ((a1 A az) Vas)

Consider the residue of the atomic conditionusing the definition above. Thus, = a; anda, = ay.
Hence,R(as, f) = a1 Aay. As another exampl& (a4, f) = (a1 Aas) V az. Then, any object that satisfies

a4 and also satisfieR(ay, f) satisfies the entire conditiof

Proposition 3.4: Let f be an independent filter condition, amdbe an atomic condition of. Then

aAR(a, f)= f.

Proof: By induction on the structure of the filter conditigh If f = a, thenR(a, f) = true. Thus the

proposition follows trivially.
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Now, consider the case= fi A ... A f,. Assume that appears iry; (and nowhere else, becauge
is independent). From the definition of residé&g, f) = R(a, f1) A fa A ... A fn. From the inductive
hypothesisqg A R(a, f1) = fi. ThenaAR(a, f) = aAR(a, fi) NfaA.. . Afp= iNfaN.o A fn=f.

Next, consider the casg = f, V...V f,. Assume that appears inf;. From the definition of
residue,R(a, f) = R(a, f1). From the inductive hypothesis,A R(a, f1) = fi. Then,a A R(a, f) =
aANR(a,fi)= fivV...Vf.=Ff.1

Given a filter conditionf, we would like to characterize the smallest sets of atomic conditions such
that by searching the conditions in any of these sets we retrieve all of the objects thatf5gtlsfysome

extra ones that are pruned out by probing).

Definition 3.5 A completeset of atomic conditions: for a filter conditionf is a set of atomic conditions
in f such that any object that satisfigsalso satisfies at least one of the atomic conditionsnin A
complete setn for f is asearch-minimal condition sér f if there is no proper subset af that is also

complete forf.

Example 3.6: Consider Example 3.3. Each fd,}, {a2, a3}, and{ay, a3} is a search-minimal condition

set. If we decide to search dn,, a3}, the following three steps yield exactly all of the objects that satisfy
f:

1. Search o, and probe the retrieved objects with resididéu,, f) = a; A as. Keep the objects that

satisfyR(as, F).

2. Search oruz and probe the retrieved objects with residRéus, f) = a4. Keep the objects that

satisfyR(as, F).
3. Return the objects kept.

Proposition 3.7:Letm be a complete set of atomic conditions for an independent filter conditidhen,

f=\V(aAR(,f))

agEm

In particular, the above holds i is a search-minimal condition set fgr

Proof:

12



e Voem(a A R(a, f)) = f: Follows directly from Proposition 3.4 and from the fact that every condi-

tion has at least one atomic condition.
e f = Vueml(a A R(a, f)): By induction on the structure of. If f = a, then the results follows
directly.

Now consider the casg = f; A ... A f,. Becausen is complete forf, there must exist; C m
such thatm; is a complete set of atomic conditions fé, for somel < i < n. Sincem; is

complete forf;, and using the inductive hypothesis, it follows tiiats> V¢, (a A R(a, f;)). Then,
f=AN 0 Afo=VNaem(@AR(@, f)NFLN . fia ANfiri Ao oA o) = Vaem(a A R(a, f)).

Finally, consider the casg = f, V...V f,. Becausen is complete forf, there existsn; C m
such thatn; is a complete set of atomic conditions ffyf for all i = 1,...,n. From the inductive
hypothesisf; = Vuepm, (aAR(a, f;)). Then,fiV. ..V f, = Veem(aAR(a, f)), becauser(a, f;) =
R(a, f),foralli=1,...,n.1

Now we are ready to define the space of search-minimal executions.

Definition 3.8: A search-minimal executioof an independent filter conditiofi searches the repository

using a search-minimal condition setfor f, and executes the following steps:
e For each conditioru € m:

— Search oru to obtain a set of objects,.

— Probe every object irb, with the residual conditionR?(a, f) to obtain a filtered sef5! of

objects that satisfy.

¢ Return the unioty,,,, S°.

We now present algorithms to pick a plan from the space of search-minimal executions. We then show
how to further optimize these plans to lower their cost (Section 3.4). The strategies that result from these

post-optimizations are not search-minimal executions.

3.2 Assumptions and Cost Model

Our optimization algorithm is cost-based and makes statistical assumptions about the query conditions as

well as about the availability of certain statistical estimates. We describe these assumptions in this section.
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Statistical Parameters:

We associate the following statistics with each atomic conditioWe assume that we may extract these

statistics from the underlying object repository and its indexes.
e Selectivity Factor Séh): Fraction of objects in the repository that satisfy condition
e Search CostC'(a): Cost of retrieving the ids of the objects that satisfy conditiaisingGradeSearch
e Probe CostPC'(a, p): Cost of checking conditioa for p objects, using th€robeaccess method.

The probe cosPC/(a, p) depends om, the number of probes that need to be performed.idflarge
enough, it might be cheaper to implement th@robes by doing a single search@rat costSC'(a). This
observation will be the key of the post-optimization step of Section 3.4.

We now sketch how to estimate these parameters over multimedia repositories for text and image
attributes. Consider first a textual attribute that is handled by a vector-space retrieval system. Typically
such a system has inverted lists associated with each term in the vocabulary [36, 1]. For each term we
can extract the number of documedntthat contain the term, and the added weightf the term in the
documents that contain it. Thus, we can use the methodology in [20] to estimate the selectivity of an
atomic filter condition, as well as the cost of processing the inverted lists that the condition requires.

Consider now an attribute over an image that is handled witR &ree. We can then use the method-
ology in [19], which uses the concept of the fractal dimension of a data set to estimate the selectivity of

atomic conditions, and the expected cost of processing such conditions usiRdrée

Assumptions on Conditions:

As we mentioned before, we will restrict our discussion to optimizing independent filter conditions. We
can compute the selectivities of complex independent filter conditions using the following two rules as in

traditional optimization [37]:
e Seley A...Ne,) =TI, Sele;)

e SeleyV...Ve,) =1-11",(1 — Sele;))

14



3.3 Optimization Algorithm

In this section, we present the results on optimization of filter conditions. First, we define our optimization

metric over the search-minimal execution space. Next, we sketch how we can use the past work in
optimizing boolean expressions for the task of determining a strategy for probing. Subsequently, we
present our algorithm, which is optimal for independent filter conditions, and discuss how we can adapt it
for non-independent filter conditions. We conclude with an NP-hardness result that shows that if the filter

condition is not independent, then the complexity of determining an optimal execution is NP-hard.

Cost of Search Minimal Executions:

To pick the least expensive search-minimal execution, we need to define the cost of such executions. As
we can see from the definition of the search-minimal executions, the cost of one such execution depends
on (a) the choice of the search conditions, (b) the probing costs of the remaining conditions, and (c) the
cost of taking the union of the answer sets. Value (c) dominates only when the selectivity of the filter
condition is low. Therefore, to simplify the optimization problem, we focus only on the search and probe
costs.

Given a search-minimal condition setfor a filter conditionf and an algorithmo for probing con-
ditions, we now defin€’, (f, m), the cost of searching the conditionsrinplus the cost of probing the

other conditions using algorithm, as follows:

Cu(f,m) = > (SC(a) + PCu(R(a, f),|0l))

acm

where|O,| is the number of objects that satisfy conditioand PC', (R(a, f),|O,]) is the cost of probing
conditionR(a, f) for |O,| objects using algorithmy. This cost depends on the probing algorithmas
we discuss next. Note that if there a@eobjects in the repository),| = Sela) - O.

Optimizing Evaluation of Residues:

Given a residueR(a, f), the task of determining an optimal evaluation f@fa, f) maps to the well
studied problem of optimizing the execution of selection conditions containing expensive predicates [26].
(See also [24, 27, 23, 11].)

If R(a, f) is a conjunction of atomic conditionsg A ... A a,, there is an efficient algorithre that

finds the optimum probing strategy. Specifically, it can be shown [24, 27] that the order in which the
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atomic conditions for each object should be probed is given byathkof each conditior;, defined as

% if we assume thaPC'(a;, p) = ¢; - p for some constant and wherep is the number of objects to

probe. Then, we can calculate the c&st(R(a, f), p) as follows, assuming for simplicity that . . . a,,

represents the increasing rank ordering of the conjuncts:

n

PC(R(CI,, f):p) = Zsz

=1

whereS; = Sela,) - ...-Sela;—1) - p - ¢;. (Note thatSela,) - ... - Sela;—1) - p is the number of objects

that satisfy conditions,, ..., a;,_; out of the originalp objects; we only need to probe these objects for
conditiona;, at a cost of;; for each object.) This result is well known and was observed in the database
context by [24, 27]. We can take a similar approach to order the evaluation of a disjunction of atomic

conditions.

Example 3.9: Consider the filter conditiom; A as A a3, whereSel(a;) = .01, Sel(ay) = .02, and
Sel(az) = .05. Lete; = ¢ = 1, andeg = .5. The increasing rank sequence is thgne, co. Then, the

probing cost for 1000 objects is as follows:
(.54.05-14.05-.01-1)-1000 = 550.5

In caseR(a, f) is an arbitrary boolean condition, the problem of evaluating it optimally is known to be
intractable. However, several good heuristics are available [26]. Therefore, we assume that we exploit one
of these available techniques to optimize the evaluation of residues. As we mentioned above, depending
on the strategyw used to evaluat&(a, f), we can parameterize our cost function. Thus, we denote the
cost corresponding to evaluation strategyy C,,. However, for the rest of the discussion, we assume

that such a choice ab is implicit and therefore omit references:to

Optimality:

Given that we can compute the cost metrigf, m) for any independent filter conditiofiand condition
setm, our goal is to pick an optimal search-minimal condition set. L&tf) be the set of all search-

minimal condition sets foyf.

Definition 3.10: A search-minimal condition set for an independent filter conditiofi is optimal if

C(fv m) = rninm’EM(f) C(f7 m,)
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We now describe how we determine the optimal search-minimal condition set for an independent
filter condition. The algorithm is implicit in the following inductive definition. Intuitively, the algorithm

traverses the condition tree in a bottom-up fashion to create the optimal set of search-minimal conditions.

Definition 3.11: Let f be a filter condition and’ be a subcondition of. Theinductivesearch-minimal

condition set forf’ with respect tof, SM;(f'), is defined inductively as follows:
1. Casef' = a: SMy(f') = {a}, wherea is an atomic condition

2. Casef’' = fiN...A for SMy(f") = SM/(fi), where
C(f, SM¢(f;)) = min{C(f, SMs(f1)), ..., C(f,SMs(f,))} (Break ties arbitrarily.)

3. Casef’' = fiV...V fur SMs(f") =SMi(fi)U...USMs(fn)

Theorem 3.12: Let f be an independent filter condition. Thé/,(f) is an optimal search-minimal

condition set forf.
Before we can prove Theorem 3.12, we need the following auxiliary result.

Proposition 3.13: Let f; and f, be two independent filter conditions with no atomic conditions in com-

mon. Then:

1. M(fi A fo) = M(f1) UM(f2)

2. M(f1V fa) = M(f1) © M(f2), wherem € M(f,) © M(fs) if and only if3m, € M(f,), my €
M(fg) such thatn = myp U mo

Proof:

We will first show thatM (f; A fo) = M(f1) U M(f,) (part 1 of the proposition):

o M(fi N fa) CM(f1)UM(fs).

Considern € M(fi A f2). Then, eitheBm, complete forf; such thatn, C m, or 3m, complete
for f, such thatn, C m. (Otherwise,m would not be complete fof; A f,.) Assume thaBim;
complete forf,; such thatn, C m. Any object that satisfieg, A f> also satisfie§;, and at least
one condition ofn;, becausen, is complete forf;. Then,m; is also complete forf; A f,. But

my € m, andm € M(f; A fo). Thereforeqn = my € M(f1).
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o M(f1)UM(f2) CM(fiNA fa).

Considerm € M (f;) U M(f,). Furthermore, suppose that € M (f;). Itis easy to see that is
complete forf; A f,. To see thain is also search-minimal fof; A f,, considern’ C m that is
also complete forf; A f,. Becausen is search-minimal forf, it must be the case that’ is not
complete forf,;. Then, there is an objeetthat satisfiesf; and none of the conditions in’. But
then we can build a new obje¢tthat also satisfieg,, and still does not satisfy any of the conditions
in m', becausef; and f, do not share any conditions, and C m € M(f;). However,o' would

contradict the completenessqf for f; A f,. Thereforeym is also search-minimal fof; A fs.

Now, we will show thatM (f; V fo) = M(f1) © M(fs) (part 2 of the proposition).

o M(fiV fa) CM(fi)®M(fs):

Considern € M(f,Vf2). Letm; (resp.,ms) be the restriction of: to conditions inf; (resp., infs).

It is easy to see that, € M(f;) andms € M(fy). Thereforem = m; Umy € M(f1) © M(f2).

o M(fi1)®© M(f2) € M(f1V f): Straightforwards

Proof (Theorem 3.12):From Proposition 3.13 it is clear th&t\/ (') is a search-minimal condition

set for f’. We will use induction on the structure gf to show thatv subconditionf’ of f, Vm €

M(f'), C(f, SMy(f') < C(f,m).
e Casef’ = a: Straightforward.

e Casef’ = fi A... A fu: Letm = SM¢(f'). Suppose thaiim’ € M(f') such thatC(f, m') <
C(f,m). From Proposition 3.13n’ € M (f;), for somel < i < n. From the inductive hypothesis,
C(f,m') > C(f,m;), wherem; = SM(f;). And from construction ofSM,(f'), C(f,m) <
C(f, m;). ThereforeC'(f,m’) > C(f, m), contradicting our choice of.'.

e Casef' = fi V...V f,: Letm = SM(f'). Suppose thaim’ € M(f’) such that”(f,m’) <
C(f,m). From Proposition 3.13p' = U,—y__,m}, wherem! € M(f;). From the inductive
hypothesisC(f, m;) > C(f, m;), wherem; = SM(f;), i = 1,...,n. Therefore, becausg

is independent and using the definition®#/;, C(f,m) = Y5, C(f,m;) < X, C(f,m}) =

C(f, m'), contradicting our choice of/'. i
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Our strategy requires that we compute the cost of each atomic condition at most once, since the cost
and search-minimal set are computed “bottom-up.”

The problem of determining an optimal evaluation strategy for a filter condition as discussed in this
paper is related to the problem of choosing access paths for traditional selection queries in the presence of
indexes for a query processor that supports index union and intersection [33, 28]. In this paper, we restrict
ourselves to search-minimal executions but do allow for probe costs. Please see the related work section
for additional details.

The proof of optimality ofSM;(f) depends on the fact that the given filter conditipris inde-
pendent? Nonetheless, with the following simple modification, we can still provide a search-minimal
condition set in case the given condition is not independent. However, this set is is no longer guaranteed

to be optimal:

1. DeriveSM;(f) assumingf is an independent condition and treating each occurrence of a condition

as a new atomic condition.
2. ldentify a subsetn C SM;(f) that is search minimal fof.

Observe that the first step ensures completeness whereas the second step ensures thasthersetal
and can be determined efficiently. However, as the following example shows, such a heuristic does not

always result in an optimal search-minimal condition set.

Example 3.14Assume that the filter condition(igAb)V (aAc). The first step of the algorithm treats every
instance of: as a different condition. So, the query is viewed by Step (13a8 b) V (as A ¢). Assume

that the algorithm determineSAM,(f) = {b,c}. Step (2) of the algorithm does not chan®&/;( f),
although{a} could be a significantly better search-minimal condition set. Therefore, the algorithm may
fail to identify the best search-minimal condition set if the subconditions are not independent, as in this

example.

The above result is not surprising given that the general optimality problem, where no assumptions
are made about independence, is intractable even for the very simple cost model where search cost is 1

and probe cost is 0, as the following theorem shows.

3 ess expensive executions might be possible if independence does not hold and extra information is available during query
planning. As a simple example, consider a filter conditigrv as, wherea, is true every time that, is true. In this case,
there would be no need to searchagyto find all objects that match the whole condition.
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Theorem 3.15:The problem of determining an optimal search-minimal condition set for a filter condition

is NP-hard.

Proof: We prove the result by a reduction from the vertex-cover problem. To map an instance of the
vertex-cover problentz = (V, E) to our problem we generate a filter conditidhsuch thatG has a
vertex cover of sizé or less if and only if there is a processing strategyAdhat retrieves objects using
searches over or fewer atomic conditions. We associate a unit cost for every search, and zero cost for
the probes to complete the proof.

Given the (undirected) graph = (V, E), we generate the following filter condition:

F= '\ (viAv)
(’Ui,llj)EE
where they;’s are atomic conditions. We defifeC'(f,p) = 0 for all f, p, andSC(v;) = 1 for all the
v;’S. Therefore, the cost of any search-minimal conditionses the number of atomic conditions in.
Now, G has a vertex cover of sizeor less if and only if there is a search-minimal condition setfor

with k& conditions or less:

e =: Assume( has a vertex cover’ of sizek or less. Then, there is a set of atomic conditidiis

of sizek or less such that for each subconditigm v; of F, eitherv; € V' orv; € V',

e «<: Assume that there is a search-minimal conditiorvedor F' with k& or fewer conditions. Sup-
pose that there is a subexpressipn v; such that;, v; ¢ m. Then suppose that there is an object
o that satisfies only atomic conditionsandv;, and none of the others. ThemsatisfiesF, from the
construction off’, but it does not satisfy any of the conditionsin contradicting the completeness
of m. Therefore, either; or v; are inm. Consequentlyy: defines a vertex cover far with £ or

fewer elementd

3.4 Post-optimization: Beyond Picking a Search-Minimal Set

While choosing an optimal search-minimal condition set is a key step in selecting an efficient execution
plan, there are several other opportunities for optimization.
First, we note that a search-minimal execution for a filter condificaways handles the residue

of a search condition by probing the conditiorfz(a, f). However, when the number of objects to be
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probed is high, the cost of probing(a, /) may exceed the cost of searching on the atomic condition
usingGradeSearchThus, in case of a conjunctive query, it may be more efficient to use more than one
condition for searching. In other words, it could be convenient to allow the conditions that are used for
searching to no longer form a search-minimal condition set. However, our optimization algorithm does
not consider such a plan.

To address this lack of flexibility, we introduce a post-optimization step that locally replaces probes

on one or more conditions by the corresponding searches, as the following example illustrates.

Example 3.16:Assume that the optimal search-minimal executiorfox a; A a3 searches on condition
a1, and probes on conditions, andas. Let the number of objects probed &oybe 1000, and the probe
cost be 1 unit for every probe. Thus, the total cost of probing.as 1000 units. If the search cost an
is 800, then we can modify the execution plan a posteriori to search on conditiansla,, and to probe

just onas.

In Section 5 we report results on an experimental evaluation of this simple post-optimization step.

In addition to turning certain probes into searches, our algorithm presents other less critical opportuni-
ties for post-optimization. For example, when processing several atomic conditions we could also improve
how we “merge” the objects retrieved using each of these conditions: (1) An object that is retrieved by
searches on bothy andas,, can be probed using either the residt(e,, f) or the residud?(a,, f). Such
a choice can be cost-based and influences the order in which we merge results from multiple searches.
(2) The merging order is also influenced by the cost of detecting and eliminating duplicate objects, and
by the size of the answer sets resulting from searches. Evaluating alternatives for this “merging” and

determining their effect on the execution costs remains as future work.

4  Filter Conditions and Ranking Expressions

In this section, we consider queries each of which consists not only of a filter condition, but also of a rank-
ing expression. The answer to such queries consists of the top objects for the ranking expression that also
satisfy the filter condition. We first look at queries consisting only of ranking expressions (Section 4.1).
Section 4.2 describes an algorithm for processing this type of queries that has been presented in references
[14, 15, 16]. Finally, Section 4.3 presents our main result regarding this class of queries. We show that we

can map a given ranking expression into a filter condition, and process the ranking expression “almost”
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as if it were a filter condition. This mapping is central to processing queries with ranking expressions
applying the techniques of Section 3 for processing filter conditions. The experimental results of Sec-
tion 5 show that, in some cases, the number of objects retrieved and probed when processing a ranking
expression as a filter condition can be considerably smaller than when processing the ranking expression

using the algorithm in [14, 15, 16].

4.1 Ranking Expressions

A query consisting of only a ranking expression has the form:

SELECT oid
FROM Repository
ORDER [] by Ranking _expression

The result of this query is a list df objects in the repository with the highest grade for the given
ranking expression. The ranking expressions are built from atomic expressions that are combined using

theMin andMax operators that we defined in Section 2.

Example 4.1: Consider the ranking expressien =Max(Grade(fingerprint, F), Grade(profile, P)). Ex-
pressiore; favors objects with either fingerprints matching the given valugosely, or with text profiles
matching the given profil2 closely. Alternatively, consider the ranking expressioa-Min(Grade(fingerprint,
F), Grade(profile, P)). Expressiaf favors objects with good matches for both their fingerprints and pro-

files.

4.2 Fagin’'s Strategy

Fagin presented a novel approach to processing a query consisting of a ranking expression in refer-
ences [14, 15, 16]. In this section we briefly describe his approach. In Section 5, we experimentally
compare this algorithm against our approach for processing ranking expressions using a modified version
of our techniques of Section 3.

Consider a ranking expressidh= Min(a,...,a,), where thes;’s are independent atomic expres-
sions. Suppose that we are interested objects with the highest grades f&r Fagin’s algorithm uses

theTopSearclaccess method to retrieve these objects from the repository. It does so by retrieving the top
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objects from each of the subexpressions = 1, ..., n, until there are at leagt objects in the intersec-
tion of then streams of objects that he retrieves. (There is one stream per subexpresBiprFaigin
proved that the set of objects retrieved contains the necekdaryobjects. Therefore, he can compute
the final grade fork of each of the objects retrieved, doing the necessary probes, and outputtijeets
with the highest grades. Fagin has proved the important result that the above algorithm to ketrfieve
the best objects for an expressi@inthat is aMin of independent atomic expressions is asymptotically
optimal with arbitrarily high probability.

Now, consider a ranking expressiéh = Max(a4, ..., a,), where thes;'s are independent atomic
expressions. Suppose that we are interested abjects with the highest grades f&:. In this case,
another algorithm by Fagin requests exaétlgbjects from each of the subexpressians = 1,...,n,

with no need to probe any objects. It follows that therekatep objects fork among thesé - n objects.

4.3 Processing Ranking Expressions as Filter Conditions

As discussed in Section 2, a query may have both a filter condition as well as a ranking expression. A
naive query-execution strategy might stage the processing of these two components of the query, leading
to two alternatives: (a) evaluate the filter condition first using the techniques in Section 3.3, and then rank
the results by probing on the necessary attributes; (b) use techniques for effici@rquepy processing

to identify the topk’ objects for the ranking expression (for sokie> k), and then filter out any objects

that do not satisfy the filter condition by probing on the necessary attributes. Note that the second strat-
egy requires deriving a value &f from the givenk by somehow taking into account the selectivity of

the filter condition. Both of these alternatives ignore the possible synergy in optimizing the execution of
gueries by considering filter conditions and ranking expressonsltaneouslyOur goal in this section

is to precisely identify if we could view filtering and ranking in a uniform framework. This brings up the
challenge of “mapping” ranking expressions into a filter condition without significant loss of efficiency as
compared to using techniques that are optimized for ranking expressions. However, since such mapping
takes place as part of query optimization, we must depend on estimation techniques to derive a suitable fil-
ter condition. We do so by techniques similar to those adopted for cost estimation in traditional relational
databases. Thus, our “mapped” ranking expressions are optimized not in an absolute sense but leveraging
approximate statistics that are available. This is in sharp contrast to the techniques by Fagin [14, 15, 16]
that we outlined above, which provide theoretical performance guarantees. However, our mapping tech-

nique has the benefit of enabling a smooth integration with the broader class of queries involving filter

23



conditions. Moreover, as our experiments will suggest, our technique compares favorably to Fagin’s.

Although in this section we show how fmocessa ranking expression as a filter condition, the se-
mantics of both the filter condition and the ranking expression remain distinct. (See Section 2.) We still
need to specify a ranking expression to get a sorted set of objects. Filter conditions have unordered sets
as their answers. In the strategy that we describe below, after processing a ranking expression as a filter
condition, we will have to compute the grade of the retrieved objects for the ranking expression, and sort
them before returning them as the answer to the query.

Given a ranking expressiail and the numbek of objects desired, we give an algorithm to assign a
grade to each atomic expressiorfinand a filter conditio” with the same “structure” aB that retrieves

the top objects according 1@.

Example 4.2: Consider a ranking expression:

e = Min(Gradg A, v;), Gradg As, v5))

where 4; is an attribute, andy; a constant value. We want two objects with the top grades.fdtow,
suppose that we can somehow find a grédsuch that there are at least two objects with grade
or higher for expressior. Therefore, if we retrieve all of the objects with gra@eor higher for e,
we can simply order them according to their grades, and return the top two as the result to the query.
Furthermore, such a gradé should be as high as possible, to retrieve as few objects as possible.

In other words, we can procesdy processing the following associatiter condition f, followed

by a sorting step of the answer set far

f = (GradgA,,v,)(0) > G) A (Gradg Ay, v)(0) > G)

By processing’ using the strategies in Section 3, we obtain all of the objects with gtadehigher
for A; andwv;, and for A, andwv,. Therefore, we obtain all of the objects with gradeor higher for the
ranking expression. If there are enough objects in this set (i.e., if there are at least two objects), then we
know we have retrieved the top objects that we need to answer the query with ranking expression

Now, consider a ranking expression:

e’ = Max(Gradeg Ay, v1), Gradg As, vs))
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where A; andv; are as before; = 1, 2. We want two objects with the top grades #rIf we somehow
find a gradeG’ such that there are at least two objects with gradeor higher for expression’, we can

process’ by processing the following filter conditigfi:

"= (Gradg Ay, v1)(0) > G") v (Gradeg Ay, v9)(0) > G')

By processing’ we retrieve all of the objects having grad# or higher for the ranking expression
e¢’, with no need to probe any objects. If there are at least two such objects, then we can anlsyer

returning two objects with the top grades fdifrom among the set of objects that we retrieved.

As we have seen in the example above, we can process a ranking expeeasiarfilter condition
f followed by a sorting step. The key point in the mapping of the problem from a ranking problem to
a (modified) filtering problem lies in finding the gradéto use inf, as in the example. Ideally, grade
G should be thé:' largest grade of any object in the database: the resulting filter conditibat uses
such a value of would then retrieve exactly the top objects for the query. Unfortunately, such grade is
unknown at query-optimization time, so we need to rely on estimates to approximate it.

To determine the grad@ for the filter conditionf for e, we find the largest (or a close-to-largest)
gradeG such that the selectivity of is at leastt, whereO is the number of objects in the repository.
If the selectivity estimates used to determifieare accurate (see Section 3.2) and the independence
assumption holds far, thenf is likely to retrieve the desired top-objects, based on cost and cardinality
estimates derived as in relational-model optimization as described above. However, in a realistic setting
the selectivity estimates might not be completely accurate, which might resfiltetrieving fewer or
more thank objects. In case the number of objects retrieved is lessithae say that query needs to
berestartedusing a lower value fo€7, and the process repeats until we retrieve at leadtjects.

We now present the algorithRank which takes as input the number of objects desirea ranking
expressior, the desired number of objedtsand the number of objects in the datab&seand produces
the top#4 objects fore using selectivity statisticsRankrelies on two auxiliary functiongrilterGrade
which finds a suitable grad@ for the filter condition used to compute the query restlandFilterMap,

which simply maps a ranking expression to a filter condition that is equivalent “in structure,” for a given

4In [9] we presented a different strategy for identifying graéteour experimental evaluation of this alternative strategy
revealed that it is comparable to or less efficient than the version that we present here. Furthermore, the older strategy suffers
in performance when the distribution of grades varies significantly across attributes. Therefore we do not discuss the strategy
from [9] any further in this paper due to space limitations.
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grade. These two auxiliary functions are defined below.

Algorithm RanKranking expression; objects desired; objects in database)

/I Returns topk objects fore among the) objects in database.

1. reqK = k [/INumber of objects requested; might be adjusted later if restarts needed.
. G=FilterGrade(0, 1, e, regK, O) I/ Identify search grade.
. f=FilterMap(e, G // Build filter condition equivalent te “in structure” using gradé;.

. Use algorithm in Section 3 to find set of objedtsthat satisfy filter conditiorf

If |M| > 0: // Some objects retrieved.

reqK = [reqK - ’"leﬁwﬂ /I Increase number of objects requested, to get lower search grade.

2
3
4
5. If |[M| < k: Il Not enough objects retrieved; needéstartquery.
6
7
8 newG =FilterGrade(0, 1, e, reqK, O)

9 Else:newG = G? I/ No objects retrieved; object grades “squeezedirt7) range.

10. G =min{newG, G — €} I/ Decreasé&; by at least a small constant> 0, for termination.
11. Gotostep 3.

12. Else: Returrt objects fromM with highest grade fo¢ // Enough objects retrieved; done.

Steps 5-11 handle the case where the original filter condjtiovith associated gradé€é did not
manage to identifyc or more objects. In this case, the query needs to be restarted, as explained above.
This undesirable scenario is due to inaccurate selectivity estimations. We distinguish two caseg: (1) If
matchedt’ objects with0 < &' < k (steps 6-8), then a new, lower gra@as computed by inflating the
number of objects requested proportionally to gﬂeatio. (2) If f matched no objects (step 9), then all
objects in the database have grades irj@h€') range. The original grad@ was computed assuming that
grades were distributed in the, 1] range, so we shrink grade to the[0, G) range by multiplying it by
G, the new upper bound on the object grades.

The auxiliary functiongilterMap andFilterGradeare defined next. Given a grade FilterMap maps
a ranking expressioninto a filter conditionf with e’s same basic structure such tifamatches exactly
those objects that have a gradebr higher fore. FilterGradeimplements binary search to find a grade
that yields the desired selectivity for a filter condition. (Reference [13] followed a similar approach to

evaluate top: queries over relational databases.)

Function FilterMap(ranking expression; search gradeér)

/I Mapse into a filter conditionf with the same structure, such that
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/[ any objects that satisfy have a grade no lower thanfor e.

1. If e = Gradg A;,v;): f = Gradg A4;,v;)(0) > G Il e is an atomic expression.

2. Else: /le is not an atomic expression.

3. Ife=Min(ey,...,e,): f = (FilterMap(e1,G) A ... A FilterMap(e,, G))

4.  Else:f = (FilterMap(e1,G) V ...V FilterMap(e,, G)) Il e = Max(eq, ..., e,)
5. Returnf

Function FilterGradeg(grade-range bounds h; ranking expression; objects desired;
objects in databas@)

I/ Binary-searches for high gradein [¢, k] range withSel(FilterMap(e, G)) > %.

1. If selectivity-estimate granularity too coarse to distinguish betwesrdh:

2. Return? //Return/ rather tharh to help avoid restarts.

3. Else:

4. G=*4t

5. If Sel(FilterMap(e, G)) < £:h =G
6. ElseX=G

7. ReturnFilterGrade(?, h, e, k, O)

The Rankalgorithm maps an arbitrary ranking expression into a filter condition. Note that when a
guery contains a filter conditioR’ and a ranking expressiaR, the query asks fok top objects by the
ranking expressio® that satisfyF'. UsingRank we can translate the problem of optimizing such a query
into the problem of optimizing the filter conditiani A £, whereF" is the filter condition associated with
Randk’' = ﬁ(F) We can then apply the query-processing methodology of Section 3 over this composite
filter condition. In practice, it is likely that some attribute might appear bothi and in R in the original
query, as in Example 2.1. In such a case, the filter conditior¥” will not be independent, and hence the
guarantees of Section 3.3 will not hold. However, the experimental evaluation that we report next shows
that the filter-condition processing techniques of Section 3.3 perform well even when the independence

assumption does not hold and the data set exhibits attribute correlation.
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5 Experimental Results

In this section we report an experimental evaluation of the techniques presented in Section 3 and 4, over
synthetic data. In the “default” setting of our experiments, the number of oldjeicieach generated data

setis 10,000, and objects have 6 attributgesl < i < 6. We vary these and other parameters throughout

our experiments.

Individual attribute scores for each object are generated in three different ways:

¢ Uniform data set: We assume that attributes are independent of each other; scores are uniformly

distributed within each attribute (default setting).

e Correlateddata set: We assume that attributes are divided in two groups so that the scores of
objects for attributes within the same group are correlated; scores are uniformly distributed within
each attribute. We use this data set to study the performance of our algorithms when independence

assumptions do not hold.

e Gaussiandata set: We assume that attributes are independent of each other; scores are generated

via five overlapping multidimensional Gaussian bells [39].

We build exact selectivity estimates over the generated data with information at a grade granularity of
0.01. We also report experiments over selectivity estimates that do not represent the data accurately.

For each attributel;, the probe cosPC/(a;, p) to check conditior; associated withd; for p objects
is defined to be equal to the number of objects probéithes the cost of an individual prohg (i.e.,
PC(ai,p) = p- ¢;). We assume the search c68t/(a;) to be linear in the number of objects retrieved for
conditiona;: SC(a;) = Sela;) - O - d;, whereO is the number of objects in the data set @ni the cost
of retrieving one object. In our default setting, bettandd; are chosen randomly from tlg 10] range.

The filter conditions that we use in our experiments have exactly one atomic condition for each of the
available attributes; the grade associated with each of these atomic conditions is chosen randomly from
the [0, 1] range. The ranking expressions also involve all attributes, and agk forl0 objects in the
default setting of the experiments.

Our default setting for the different experiment parameters is summarized in Table 2. We now re-

port on experimental results for the default setting and when varying the different parameters. For our
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Parameter ci d; k 0] n | Selectivity Granularity Data Set
Default Value | [1,10] | [1,10] | 10| 10,000| 6 0.01 Uniform

Table 2: Default setting of some experiment parameters.

experiments we measure the cost of processing a qu€gst(q) as:

Cost(q) = _d; - Retrieved(A;) + > _ ¢; - Probed(A;)

i=1 =1

where Retrieved(4;) is the overall number of objects retrieved i@adeSearclover attributeA; (in-
cluding restarts and counting multiply retrieved objects) Bndbed(A;) is the number of objects probed
for attribute A; (including restarts and assuming we never probe an object on the same condition twice,

but rather keep this information to save probes).

5.1 Filter Conditions

In this section we report experimental results on query processing strategies for filter conditions. Through-
out this section, we use a conjunctive filter conditigm . .. A a,,, whereqa; is an atomic filter condition
involving attributeA;. For our experiments, we ran 1,000 queries and averaged their results. We compare

the following strategies:

¢ Filter: StrategyFilter is the search-minimal algorithm of Section 3.

o Filter-PostOptimization StrategyFilter-PostOptimizations the algorithm that results from apply-

ing the post-optimization step of Section 3.4 okéter.

e Sep StrategySepis determined by first choosing the best atomic conditions on which to search,
considering the search cost and the selectivity of the conditions, but not the probe costSéphen,
probes the remaining conditions in an optimal ordidter differs fromSepin that the probing costs

are taken into account when choosing the conditions on which to search.

e Exh StrategyExhexhaustively considers at query-planning time all possible non-empty subsets of
the atomic conditions to retrieve the objects, and then probes the remaining conditions optimally
according to the cost and selectivity statistics. This strategy does not restrict the search space to

search-minimal executions as Hilter andSep
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Figure 1 shows the performance of the four techniques for conjunctive queries for the default param-
eter setting, on data sets generated using different grade distributions. The correlated data sets consist
of three different sets in which we divided the attributes into two groups so that an object’s grades for
attributes within the same group are correlated. The groups are defined as follows: (1, 5): one group
has one attribute and the other five attributes; (2, 4): one group has two attributes and the other four
attributes; and (3, 3): both groups have three attributes. For all datd#ieisperforms better thaBep
showing that considering probing costs when evaluating search-minimal executions results in lower query
costs.Filter-PostOptimizatiomgives results close to thexhtechnique, in which all combinations of plans
are considered. Interestinghilter-PostOptimizatiorthen allows to have close-to-optimal results without
considering all execution plans, which can be expensive. Results fGathgsiardistribution are slightly
better than for thé&Jniform distribution, since fewer objects tend to satisfy the selection conditions. For
the correlated data sets —over which the independence assumption underlying the construction of the al-
gorithms does not hold- all techniques have better performance when the attributes are evenly split into
two groups: this configuration results in fewer probes being performed, as objects can be discarded more

easily.

25000 - 25000 1 —

20000 +— 20000 +—

15000 +— mSep 15000 1—| mSep

DO Filter
O Filter-PostOptimization
10000 +— mExh 10000 +— mExh

oOFilter
OFilter-PostOptimization

Cost(q)
Cost(q)

5000 +— 5000 +—

Uniform Gaussian (1,5) 2.4) (3.3)

(a) Comparison of the different techniques for the (b) Comparison of the different techniques for the
Uniform andGaussiardata sets. Correlateddata sets.

Figure 1: Comparison of the different techniques for data sets generated using different grade distribu-
tions.

Effect of the Number of Attributes: We studied the effect of the number of attributes in the filter
condition. As the number of attributes increases, the selectivity of the conjunctive query, which then

consists of more conditions, decreases. This results in turn in fewer objects being considered and in lower
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guery-execution costs. We do not show these plots because of space limitations.
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Figure 2: Effect of the cost ratid;/c; on the Figure 3: Effect of the condition grades on the
cost of processing filter conditions. cost of processing filter conditions.

Effect of the Cost Ratio: Our algorithms of Section 3.3 rely on cost estimations to select a query
plan. Additionally, the post-optimization step Bilter-PostOptimizatiorcompares the relative cost of
searching and probing for attributes that do not belong in the search-minimal condition set to make further
optimization choices. We now study the effect on the query processing cost of the relative valyes of
the cost of probing one object, ard the cost of retrieving one object usiigadeSearcliFigure 2). The
probing cost; is chosen fromo, 1], while the range of values af; varies from[0.1, 1] to [10, 100]. As
expected, when; increases, the overall cost of a query increases as well since retrieving objects becomes
more expensive. When th&/¢; ratio is high, the cost of retrieving objects dominates: all techniques
tend to select a plan that minimizes the number of objects retrieved GsatgSearchHence probes are
favored because they are relatively inexpensive. In contrast, wheky/theatio is low, retrieving objects

via theGradeSearclnterface is less expensive than using proltegrandFilter-PostOptimizationboth

of which consider plans with more search attributes than strictly necessary, are then cheapétethan

andSep which only consider search-minimal executions.

Effect of the Condition Grades: Figure 3 studies the effect of the selectivity of a query on its cost.

For these experiments, all atomic conditions in the query have the same associated grade, and we vary
this grade from 0 to 1. When the grade is low, many objects satisfy the filter condition and have to be
processed, resulting in high cost. In contrast, when the grade condition is high, the selectivity of the query

is low and so is query processing cost.
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A clear conclusion from the experiments above is fhlér is consistently more efficient the®ep
this conclusion highlights the benefits of considering the probe costs in addition to the search costs during
query optimization. Another conclusion is tHalter-PostOptimizatiorns significantly more efficient than
Filter: in fact, its simple post-optimization step makéier-PostOptimizatioralmost indistinguishable
from the exhaustive-seardbxh algorithm in our experiments. We have performed experiments over
disjunctive filter conditions as well, which we do not report for space limitations: processing such queries
always involves searching aall atomic conditions viaGradeSearchwith no probes. Therefore, the

techniques in Section 3.3 are all equivalent for disjunctive queries.

5.2 Ranking Expressions

In this section we report experiments on query-processing strategies for ranking expressions. In Sec-
tion 4.3 we presenteBank an algorithm to map the execution of a ranking expression into the execution

of a filter condition. We now compafankexperimentally with Fagin’s algorithm (Section 4.2), to which

we will refer asFA. For the filter processing part of tliankalgorithm (Step 4 of the algorithm, in Sec-

tion 3.3), we use algorithrfilter-PostOptimization Our experiments use two ranking expressions over

the six attributes defined above:
L RMin: Min(alaa‘2aa‘37a4aa’57a6)
L4 RMax: MaX(al, a2, as, a4, as, CLG)

The goal of this section is to demonstrate that our heuristic technique for mapping ranking expressions
to a filter condition compares favorably experimentally to Fagin's algorithm which carries optimality
guarantees. Recall that the key strength of our approach is the unifying framework for answering queries
involving both filter conditions and ranking expressions.

Figure 4 presents results f&ankandFA for the default settings over bothiniform and Gaussian
data sets. We present results ankfor two different values of the “granularity” of the selectivity
estimates: 0.01 and 0.001. Figure 4(a) showsRaatkoutperformd=A for the Ry, query. Using detailed
analysis, we traced the reasons for our efficiency. HRapkuses statistics on selectivity estimates (via
Filter-PostOptimizatiohto decide on which conditions to search and on which to probe. This results in
retrieving fewer objects thalPA in these experiments, although the average smallest grades seen by both
RankandFA are close (the average gradaised byRank (0.01)including restarts, is 0.67235 while the

average lowest grade seen B4 for each attribute is 0.685709 (for thiniform data set). Seconé&ank

32



350000 4000

300000 3500

3000 +—

250000 —

2500 +——

200000 —

mRank (0.01) s @ Rank (0.01)

oRank (0.001) % 2000 +— @ Rank (0.001)|
o

150000 I |oFA o oFA

1500 +——

Cost(q)

100000 —

1000 +—

50000 —

500 +——

0 T 1 0
Uniform Gaussian Uniform Gaussian

(a) Comparison oRankandFA for Ryin over the (b) Comparison oRankandFA for Ryax over the
Uniform andGaussiardata sets. Uniform andGaussiardata sets.

Figure 4: Comparison of the techniques oy, and Ryax Over data sets generated using different grade
distributions.

tends to use fewer probes thBA: unlike FA, Rankdoes not compute the complete grade of each object
retrieved, but rather stops probing an object as soon as the object has failed to satisfy one condition in the
filter. This early termination results in significant savings in probe costs. These two key aspects of our
processing explain our performance reported in Figure 4(a).gféweularity of the selectivity estimates
slightly affectsRanks query cost: a too fine granularity (see results for granularity 0.01) results in more
restarts and thus higher query costs; we discuss this issue in more details below. Interdstnkgy,
performance oy functions (Figure 4(b)), which involve searching on all attributes but do not require
any probing, is very sensitive to the granularity of the selectivity estimates. Specifically, if the granularity
of the selectivity estimate is too coarse, the grade Ratkuses to map the ranking expression into a
filter condition might result in a condition that matches more thasbjects. Our experiments confirm
thatRank (0.01)etrieves more objects th&A for Ry the average lowest grade seerHdyusing sorted
access (0.999003 for théniform data set) is slightly higher than the gra@aised byRank(0.99 for the
Uniform data set). Note that the queries in the default setting ask for just top 10 objects, and that 0.99 is
the highest grade th&ank (0.01xould pick for the default selectivity-estimate granularity of 0.01 used

in these experiments. The gra@eassociated t&Rank (0.001)s 0.999, and the performance R&nkfor

this finer-granularity case is almost identical to thafeAf Figure 5 shows the corresponding experimental

results for theCorrelateddata sets.
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Figure 5: Comparison of the techniques i, and Ry« over theCorrelateddata sets.
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Figure 6: Effect of the number of objects requestefdr Ry, and Ryax On the query costs dkankand
FA.
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Effect of the Number of Objects Requested:: Figure 6 studies the effect of the number of objects
requested on the query costs ¢A andRank Figure 6(a) shows that the cost of both techniquegig
increases slightly witik since more objects are processed to compute the query result. Figure 6(b) shows
thatFA's performance fol?ya is linear in the number of objects requesteavhile Ranks performance is
constant for the values @fthat we tried: the highest gradethatRankcan use, given the default setting

of the selectivity-estimate granularity, generally results in more objects being retrieved than needed, hence
this “flat” behavior. Note thaRanks cost will increase in steps each tirtehas to be decreased for

objects to be retrieved.

—0— Rank

o—Rank 35000

5000 5000 /
0 0

0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12

Statistics Granularity Statistics Granularity

(a) Effect of the “granularity” of the selectivity esti-  (b) Effect of the “granularity” of the selectivity esti-
mates forRpin on the query costs dRank mates forRyax On the query costs drank

Figure 7: Effect of the “granularity” of the selectivity estimates fQyi, and Ryax on the query costs of
Rank

Effect of the “Granularity” of the Selectivity Estimates: Figure 7 studies the effect on the query costs

of Rankof the “granularity” with which our techniques make selectivity estimates. Figure 7(a) shows that
the performance dRankfor Ry, suffers if the granularity is too fine or too coarse: if the granularity is
too fine,Rankis prone to restarts since a slight error in selectivity estimation might decrease the number
of objects that satisfy the filter condition beldw (As usual, the costs reported in Figure 7 include the
costs of “restarts” foRank as discussed above.) If the granularity is too codRsmkwill process more
objects to identify the top- objects, since more objects are expected to satisfy the filter condian.
does not use statistics on data, and is therefore unaffected by variations of the granularity of the selectivity
estimates. For the setting of this experimé&®ts cost is higher than 290,00Ranks performance is still

much better tharA’s, for all granularities of the selectivity estimates that we tried. Figure 7(b) shows
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that the performance &tankfor Ryax improves when the granularity of the selectivity estimates becomes

finer, as discussed above.
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Figure 8: Effect on the query cost and restartRahkof the divergence of data sets and their correspond-
ing selectivity estimates, faRyi, (Gaussiardata set).
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Figure 9: Effect on the query cost and restartRahkof the divergence of data sets and their correspond-
ing selectivity estimates, faRyi, (Uniformdata set).

Effect of the Selectivity-Estimate Error: Rankrelies on selectivity estimates to map ranking expres-
sions into filter conditions. We have already reported on the effect of the “granularity” of such estimates
on the quality of the mapping. Now, we study the effect of inaccurate estimatBsuak For this ex-

periment, we use two configurations. In the first configuration, the actual data set is generated using a
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Gaussiardistribution with only one bell [39]. The selectivity estimates tRainkuses are then created
using(1 — noise) - O objects from the actual data set améise - O objects from another data set gener-

ated using &Jniform distribution. Thus, when theoise is equal to 0, the selectivity estimates are exact,
while whennoise is equal tal, the selectivity estimates are highly inaccurate and based on a completely
different data set generated using a different grade distribution. Results for this first configuration are
shown in Figure 8. In the second configuration, the actual data set is generated Usirfgren dis-

tribution, and the selectivity estimates are created using noise) - O objects from the actual data

set andnoise - O objects from another data set generated usi@gassiandistribution (Figure 9). For

the first configuration, selectivity estimates tend to overestimate the number of objects retrieved for a
given grade. Figure 8(a) shows that the query cost is affected by the noise, and increases as expected a:
the noise value increases (and the data set and its associated selectivity estimates become increasingly
further apart). HoweveRanks query cost is lower thaRA's, even for high values of data-sabise Fig-

ure 8(b) shows that the number of queries in need of restarts increaseiseiacreases, and so does the
number of restarts per query. The increase in the number of restarts results from the selectivity estimates
overestimating the actual number of objects retrieved for a given grade. However, the vast majority of
the queries do not need to be restarted more than once, because of the grade adjustment by our “restarts
strategy, which is based on query feedback: even whese = 1, only 14% of the queries require to

be restarted more than once. For the second configuration, selectivity estimates tend to underestimate the
number of objects retrieved for a given grade, resulting in sméllgrades. As seen in Figure 9(a), the

guery cost is moderately affected by the noise, since more objects than needed are being retéieved as

is lower. Figure 9(b) shows that underestimating the number of object retrieved results in fewer restarts,
since more objects than estimated are actually retrieved. In summary, these results, together with those
for varying selectivity-estimate granularities, suggest Batkworks well even with less-than-ideal se-
lectivity estimates, especially in conjunction with our “restarts” strategy (Steps 5-11 of AlgdrR#ng,

which adjusts the search grade based on the query-result feedback from the first filter-condition execu-
tion. Figure 10 shows the corresponding experimental results @oreelated(1,5) data set. For this

set, there is one group of 5 correlated attributes, and‘thattribute is negatively correlated with respect

to the five-attribute group. The selectivity estimates are created (irgnoise) - O objects from the

actual data set angbise - O objects from another data set generated usiGgassiardistribution. Since

some attributes are negatively correlated, even when statistical information is correct, all queries need at

least one restart. We also ran similar experimentddgy, that we do not report here for lack of space,
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and observed that in that caRankis not significantly affected by the divergence of the data set and the
selectivity estimates, probably because the valuéstioat we tried are smaller than the expected number

of objects usually retrieved using the filter condition.
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Figure 10: Effect on the query cost and restart®kahkof the divergence of data sets and their corre-
sponding selectivity estimates, f@%i, ((1,5) Correlateddata set).

6 Related Work

Our query model captures the aspects of filtering based on graded search and ranking. The concept of a
graded match has been used extensively. For example, the query model in [32] allows specifying a grade

of match as well as ranking. However, the processing of queries in [32] is based on searches (i.e., no

probes are considered).

Many database systems have been built and prototyped with varying degrees of support for processing
user-defined functions [5]. The QBIC system [29] from IBM Almaden allows users to query image
repositories using a variety of attributes of the images, like color, texture, and shapes. The answer to
a query is a rank of the images that best match the query values for the attributes. Another example is
Cypress, a picture retrieval system built using Postgres [35] that allows a filter condition to be specified,
and returns a set of objects as the answer to the filter condition. Thus, the Cypress model does not support
ranking. Each object in Cypress has an image, a set of features (e.g., color histogram), an associated text
and other structured information. The querying interface supports user-defined functions and predicates

including a set of predefined graded matches (e.g., a predicate “mostly yellow”).
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The problem of optimizing user-defined filter conditions such as those in Cypress has been addressed
in the literature. Work in [24, 27, 23, 11] focuses on conjunctive selection conditions. Techniques to
optimize arbitrary boolean selection conditions have been studied in [26, 25, 31]. Our work draws upon
the known results in this area. (See Section 3.)

The problem of determining an optimal set of conditions to search arises naturally when optimizing
single-table queries with multiple indexes [33, 28] where the problem translates into the task of identifying
the appropriate set of indexes to union and to intefs@&gt imposing the search minimality criterion, we
have eliminated the need to consider index intersection and we always choose a single condition among
conjuncts on which to search. This imposes implicitly the assumption that search cost is significantly
higher compared to probe cost. On the other hand, we do account for non-zero probe costs, unlike [28],
and are able to prove that our optimization algorithm produces an optimal search-minimal plan with low
computational overhead if atomic conditions are independent. This optimization problem can also be cast
as optimization of relational queries that involve joins as well as unions. As above, such a formulation
fails to capture characteristics that are particular of selection queries, as exploited in our algorithms.

The information retrieval community has extensively studied the problem of ranking documents ac-
cording to their expected relevance for a given query. Given a query with tgtms, ¢,,, a retrieval
system typically retrieves the inverted lists associated with each of the tgram&l ranks the documents
that appear in these lists [41]. If users are not interested in the entire document ranks, but only in the top
document matches, some techniques avoid accessing all ofite associated with the terms [36].

In the context of the Garlic project at IBM Almaden [6], Fagin’s work [14, 15, 16] focuses on how
to evaluate queries that ask for a few top matches for a ranking expression. (See Section 4.2.) In his
gueries, the notions of true and false are replaced by graded matches, and boolean operators are rein-
terpreted to give the semantics of composition functions that take two grades of match and produce a
composite grade (e.gMin, Max). Thus, our ranking expressions are a special case of Fagin’s queries.
Under broad assumptions on the cost model, Fagin demonstrates the optimality of his algorithm for a class
of composition functions. Also, Fagin and Wimmers [17] discuss how to modify the scoring function to
incorporate user preferences so that, say, an attribute might be twice as important to a user than the other
attributes mentioned in the query. Finally, Wimmers et al. [40] describe their experience in implementing
Fagin’s original algorithm on Garlic. Fagin’s algorithm was markedly more efficient in “joining” multiple

multimedia sources compared to traditional join techniques. However, the paper also points to intrin-

5The problem of sequencing the order of accesses to subfiles of transposed files is also related in a similar way [2].
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sic difficulties arising from heterogeneity of sources that makes establishing object identity difficult and
describes the steps that were needed in Garlic to overcome these issues.

The work by Ortega et al. on the MARS system [30] developed a system for supporting ranked retrieval
over image databases. One of their key contributions is an adaptation of Fagin’s algorithm that has the
flavor of a “merge-join” algorithm. Top- query processing over traditional relational data has received
recent attention [7, 8, 10, 13].

In this paper, we have investigated only one aspect of querying, namely that of selecting objects via
a filter condition and using the ranking expression to order them. However, querying over multimedia
repositories has several other dimensions that we have not addressed. For example, capturing the interre-
lations present in a multimedia document or in a composite multimedia object requires richer semantics
and retrieval models [32, 4, 12]. Furthermore, modeling uncertainty and vagueness in data and queries is

a semantic issue that is beyond the scope of this paper.

7/ Summary

In this paper, we addressed the problencadt-baseaptimization of queries over multimedia reposito-

ries. Over multimedia repositories, specifying conditions on the degree of match between values (e.g.,
color histograms) is an important aspect of the problem. In many of these repositories, the only way to
evaluate conditions is through an index. Furthermore, we can use indexes to either evaluate a search con-
dition or to probe a condition. We analyzed the problem of cost-based optimization of filter conditions in
this framework. We have implemented a prototype retrieval system based on the ideas that we introduce
in this paper. We created a sample multimedia repository consisting of objects with images and textual
captions. We got the captions and images from the Digital Library project at the University of California

at Berkeley, more specifically, from the Cypress project there. (See Section 6.)

We defined a space of search-minimal executions, and presented an efficient algorithm to determine
the optimal choice of a search-minimal condition set for filter conditions with independent atomic con-
ditions. Our experimental results indicate that the cost of the strategies can be significantly lowered by
considering search and probe costs, compared to the cost of strategies adopted by optimizing for only
the search or the probe costs separately. Although search-minimal executions minimize the number of
conditions to search on, our experiments indicate that through a post-optimization step the quality of our

plans is almost as good as those obtained over an exhaustive search of the plan space. Furthermore, our al
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gorithm provides a search-minimal condition set even if the filter condition is not independent. However,
optimality in such a scenario requires an exhaustive approach, as indicated by our NP-hardness result.
Another aspect of querying this type of repositories is that often the user is interested in just a few best
matches for a ranking expression. A key contribution of our paper has been to show that such a ranking
expression can be mapped into and executed as a filter condition with a final sorting step over just the top
objects. Our thorough experimental evaluation indicates that this approach is highly efficient even when
the selectivity estimates on which it relies are inaccurate, for a variety of data distributions and query

scenarios.
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