
CASPER: Compiler-Assisted Securing of Programs at Runtime

Gaurav S. Kc, Stephen A. Edwards, Gail E. Kaiser, Angelos Keromytis
Columbia University, Department of Computer Science

500 West 120th Street, New York, NY 10027�
gskc, sedwards, kaiser, angelos � @cs.columbia.edu

Abstract

Ensuring the security and integrity of computer systems de-
ployed on the Internet is growing harder. This is especially true
in the case of server systems based on open source projects like
Linux, Apache, Sendmail, etc. since it is easier for a hacker
to get access to the binary format of deployed applications if
the source code to the software is publicly accessible. Often,
having a binary copy of an application program is enough to
help locate security vulnerabilities in the program. In the case
of legacy systems where the source code is not available, ad-
vanced reverse-engineering and decompilation techniques can
be used to construct attacks.

This paper focuses on measures that reduce the effective-
ness of hackers at conducting large-scale, distributed attacks.
The first line of defense involves additional runtime checks
that are able to counteract the majority of hacking attacks. In-
troducing diversity in deployed systems to severely diminish
the probability of propagation to other systems helps to pre-
vent effective attacks like the DDOS attack against the DNS
root servers in October 21, 2002.

1 Introduction

Internet servers are increasingly at risk of being broken
into. Worms comprise the majority of attack methods against
such systems [5]. This is different from virus and Trojan
horse attacks that are commonly propagated via automatically-
executing code sent as email attachments. In the general case,
a successful attack on a server system is more dangerous than
a break-in on a personal computer simply because of the po-
tential for there being more confidential data. For instance,
breaking into an Amazon.com server might provide access to
credit card data for a large number of customers. Hackers have
a wide array of tools such as disassemblers, decompilers, and
network monitors that enable them to constantly probe soft-
ware applications to detect security vulnerabilities, e.g., by
reverse-engineering the binary images of compiled application
programs. It is much easier to construct attacks that can com-
promise these vulnerable applications if one has access to the
source code of the application.

These vulnerabilities are generally the result of program-
ming bugs, misconfiguration, library bugs, operating system
changes, and especially the absence of array bounds checking
on the size of input being stored in a buffer array for unsafe
languages such as C or C++. This is an unfortunate byprod-
uct of programming languages that produces fast system-

level code. This means that poorly-written code or non-robust
code leave a vulnerability that can be exploited with a well-
constructed input data string or sequence of events, yielding
administrative-level access to the attacker.

We are considering two key issues: preventing the compro-
mise of server software by detecting an attempt to circumvent
the normal control flow of program execution [1] and limiting
the applicability of a successful attack on other servers run-
ning the same software. Introducing randomized structure and
instruction ordering as part of software compilation is suffi-
cient to help achieve enough diversity in generated binaries so
that a single successful attack on a given instance cannot be
replicated elsewhere.

We describe the popular stack smashing attack in Section 2,
mention some already-proposed techniques for circumventing
it in Section 3, present a new technique in Section 4, propose
some additional ways to further modify executables in Sec-
tion 5, and conclude with a discussion of future work in Sec-
tion 6.

2 Attack techniques: Stack smashing

Although code pages are read-only by default on the Intel
x86 architecture, code placed in data memory can be executed
freely, making it difficult to determine if the processor is exe-
cuting foreign code injected by an attack.

The stack smashing technique, the most widely used form
of hacking, exploits the fact that the x86 does not distinguish
between read and execute accesses of data memory pages. This
technique involves overflowing a stack buffer, resulting in the
injection of arbitrary code in the buffer memory on the stack.
The processor is then made to execute this code, which often
ends up yielding root access to the hacker.

2.1 Aleph One’s Smashing the Stack for Fun and Profit

Aleph One [1] provides a detailed walkthrough of how to ex-
ploit a stack buffer vulnerability to both inject attack code and
to overwrite the return address of the function to point to the
starting address of this injected code. He suggests ways to in-
crease the chances of successfully hacking a system by ap-
proximating the return address of the injected code by padding
the beginning of the injected code with no-op instructions and
approximating the actual position of the return address rela-
tive to that of the vulnerable buffer by copying the address of
the injected code over a range of locations so that the return
address location is covered.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The hacker can have the injected code carry out various
tasks, e.g., steal confidential information, mutilate data stores,
deface websites, etc. Often, a hacker will leave a back door that
will enable him to return to the system at a future point, e.g.,
by inserting a root-uid entry in /etc/passwd. Usually, the
injected code is used to spawn a shell that gives the attacker
administrative access.

3 Related Work

3.1 Software diversity

Forrest et al. [6] discuss the advantages of bringing diversity
into computer systems, and likens the effects to that which
diversity helps cause in biological systems. They observed
how the lack of diversity among computer systems can fa-
cilitate large-scale replication of exploits due to the identi-
cal weakness being present in all instances of the system.
Some ideas are presented regarding using randomized compi-
lation to introduce sufficient diversity among software systems
to severely hamper large-scale spreading of exploits. Among
these, the ones most relevant to this paper involve transforma-
tions to memory layout.

3.2 Cyclone and Bounds Checking for C Arrays

In the Cyclone project, Jim et al. [9] propose a dialect of the
C programming language that has built-in support for a safer
pointer model, more static type checking, etc. This program-
ming language is designed to generate an executable as effi-
cient as that from C while reducing the likelihood of producing
unsafe programs. The fact that Cyclone uses a different mem-
ory model for its internal data structures renders it incompati-
ble with existing systems written in C or C++.

Jones and Kellys [10] patch to the GCC compiler adds
bounds-checking for pointers and arrays without changing the
memory model used for representing pointers. This helps to
prevent buffer overflow exploits, but at an unacceptable cost—
all indirect memory accesses are checked, greatly slowing pro-
gram execution.

3.3 StackGuard and MemGuard

Implemented as a compiler patch to GCC, Stackguard [4] in-
serts a canary word right before the return address in a func-
tion’s activation record on the stack. While trying to overwrite
the return address, a stack smashing attack would also over-
write the canary word. The value of the canary word is checked
just before the function returns, and the program prints an
error message and halts if it has changed. This circumvents
simple-minded stack-smashing techniques, although bypass
techniques have already been developed [3].

MemGuard [4] makes the location of the return address in
the function prologue read-only and restores it upon function
return, effectively disallowing any writes to the whole section
of memory containing the return address. It permits writes to
over locations in the same virtual memory page, but greatly
slows them because they must be handled by kernel code. The
large overhead so incurred makes this technique impractical.

3.4 Program shepherding

Kiriansky et al. [11] propose a policy-driven mechanism for
closely monitoring and dynamically controlling the flow of
program execution. They define different default and cus-
tomizable security policies for code based on the nature of
its origin, whether it was loaded from the local file system,
generated by the running program itself, or if it self-mutated.
Their system is integrated into an interpreter, which enables
the sandboxed checking of running applications and monitor-
ing of their control-flow. While the functionality of this ap-
proach is attractive, the fact that it is interpreted makes for
significant overhead.

3.5 Libsafe and libverify

The libsafe project [2] replaces potentially dangerous stan-
dard library functions with safer implementations that bounds-
check parameters. Through clever choices of algorithms, run-
ning libsafe can actually decrease program run times. This ap-
proach removes all weaknesses due to the absence of bounds
checking in standard library functions such as printf, etc.
The libsafe system is installed as a dynamically loaded library
that intercepts calls to potentially unsafe standard library func-
tions. The main disadvantage of libsafe is that it will fail to
protect against vulnerabilities in user-defined or non-standard
library code. Also, if an application is compiled with the stan-
dard library function statically linked in, the libsafe mecha-
nism will be completely ineffective.

The related libverify project [2] works by maintaining a
copy of all object code on the heap, and executing that instead
of having the processor fetch and execute code from the text
segment. This permits the libverify system to run checks at
load time, and also insert mechanisms for runtime checking
of the execution, primarily dealing with verifying a functions
return address before passing control to the function caller.

3.6 StackGhost

Frantzen and Shuey’s StackGhost [7] is implemented as a
kernel patch for OpenBSD for the Sun SPARC architecture,
which has many general-purpose registers. These registers are
used by the OpenBSD kernel for function invocations as reg-
ister windows. The return address for a function is stored in
a register instead of on the stack. As a result, applications
compiled for this architecture are more resilient against nor-
mal input string exploits. However, for deeply nested func-
tion calls, the kernel will have to perform a register window
switch, which involves saving some of the registers onto the
stack. StackGhost removes the possibility of malicious data
overwriting the stored register values by using techniques like
write-protecting or encrypting the saved state on the stack.

3.7 Stack Shield

Stack Shield [12] is another GCC extension with an activation
record-based approach. Their technique involves saving the re-
turn address to a write-protected memory area, which is imper-
vious to buffer overflows when the function is entered. Before
returning from the function, the system restores the proper re-

2

turn address value. This method is very good at ensuring that
the flow of control is never altered via a function-return. How-
ever, it cannot detect the presence of any data memory corrup-
tion, and hence is susceptible to attacks that do not rely solely
on the return address.

4 Our Approach

Open source software is very widely deployed on the Internet.
Since the same version of the software is running on millions
of computers, a single attack that can exploit a given vulner-
ability will be able to overcome all instances of the software
without requiring any extra work on the part of the hacker.
This is one of the reasons that hackers have been so effective
at breaking into software systems and conducting large-scale
DDOS attacks [8]. The more determined hacker can always
use reverse-engineering tools on the binary images of com-
piled application programs to hunt for vulnerabilities. Having
access to the source makes the job easier, since one can now
search for strings like printf or syslog, which often re-
veal possible weaknesses.

We plan to make each binary executable of a particular
server program change dynamically so that a successful at-
tack on one copy is not effective on any other, or even on the
same one a few hours later. This avoids the problematic mono-
culture of broadly-deployed applications based on identical bi-
naries, each containing the same vulnerabilities. By eliminat-
ing this wide-scale mono-culture, we can significantly mini-
mize the impact and success of large-scale security attacks.
There are numerous ways of modifying an application at both
the source and binary levels. In either case, the program must
continue to behave identically at a high level.

Ensuring that a successful attack cannot exploit a given vul-
nerability in multiple installations of the same version of an
application is helpful for reducing the number of collabora-
tive, distributed attacks. However, it is important to fortify
server applications from singular attacks as well. Many au-
thors [4, 7, 12] observe most successful attacks exploit au-
tomatic buffers that are allocated in a function’s activation
record. It is therefore possible to fend off the majority of secu-
rity attacks by securing the activation record during the execu-
tion of the function.

4.1 XOR: A Simple Masking Technique

We have implemented a simple patch to GCC, similar to Stack-
Guard’s approach to using the function activation record to
detect and handle a security breach. However, instead of in-
troducing a canary word entry in the activation record, we
obfuscate the return address at the top of the stack frame by
XORing it with a randomly-chosen 32-bit value. Just before
the function returns, we XOR the return address with the same
32-bit value to return it to its original value. If an attacker has
successfully overrun a buffer and modified the return value,
this final XOR will corrupt it, most likely sending the program
counter to an illegal address and causing a segmentation fault
that halts the program. Figure 1 illustrates the code this patch
inserts in a function’s prologue and epilogue.

For stack smashing attacks alone, both the XOR and Stack-

foo:
pushl %ebp
movl %esp,%ebp
subl $24,%esp

. . . body

movl %ebp,%esp
popl %ebp
ret

foo:
pushl %ebp
movl %esp,%ebp
subl $24,%esp
xorl $14351054,4(%ebp)

. . . body
xorl $14351054,4(%ebp)
movl %ebp,%esp
popl %ebp
ret

(a) (b)

Figure 1: (a) Original and (b) XOR-patched function entry and
exit code. The value XORed with the return address is cho-
sen randomly each time the program is compiled. If an attack
managed to change the return address at 4(%ebp), the second
xorl instruction would corrupt it, most likely causing the pro-
cessor to jump to an illegal location and terminate the program.

Guard methods are equally effective at ensuring the integrity
of the return address. Both methods guarantee (somewhat)
a valid return address before returning control to the calling
function. However, it is possible to construct an attack string
that can successfully ’tiptoe’ over the current canary word
and leave it untouched, e.g., by incorporating the 32-bit ca-
nary value in the attack string, thus completely circumvent-
ing StackGuard’s defense mechanism [3]. A major advantage
of using the XORed return address over the StackGuard tech-
nique is that it is harder to achieve the same since one would
need to read the 32-bit value used for the XOR—this value ex-
ists only in the code memory, as opposed to the canary word
which does exist in data memory.

A sophisticated attack on an XOR-fortified system would
need to analyze the binary layout of the running program and
extract enough information about the XOR value used to suc-
cessfully construct an attack on the system. The actual input
data sequence that is used to overrun the buffer needs to be
modified so that the function epilogue will end up XORing it to
make it point to the injected code. This task can be made harder
by using custom 32-bit values for each function, and possibly
each invocation of each function. This way, the attacker cannot
use static analyses to construct an input sequence.

Our approach is less favorable than the StackGuard tech-
nique with regards to guaranteed halting or the printing of an
informational message upon detection of an attack. However,
our technique is a much simpler, smaller way to detect stack
smashing attacks. Only two machine instructions are added to
each function body: one for the XOR at the function prologue,
and one at the epilogue. This results in a significantly faster
execution for function invocations. In fact, a program that in-
vokes a small function in a tight loop can easily end up running
significantly slower when compiled with the StackGuard patch
than with our approach, as we show in Section 4.2.

It might be argued that we could attempt to salvage the pro-
gram state or even let the application shut down cleanly. How-
ever, there are very limited guarantees that can be made about
the memory and internal data structures after a successful stack
smashing attack. In most cases, it is acceptable to have the pro-
gram crash, and perhaps generate a core file in the process of

3

#define LIMIT 500000000

static int i = 0;

void inc_global() { i++; }
void inc_ptr(int *i) { (*i)++; }
int inc_r_val(int i) { return i+1; }

int main(int argc, char *argv[]) {
switch (atoi(argv[1])) {
case 0:

while (i < LIMIT) i++;
break;

case 1:
while (i < LIMIT) inc_global();
break;

case 2:
while (i < LIMIT) inc_ptr(&i);
break;

case 3:
while (i < LIMIT) i = inc_r_val(i);
break;

}
return 0;

}

Figure 2: Program used in micro-benchmarks.

doing so. This core file can be used at a post-execution anal-
ysis phase to determine the exact location and nature of the
vulnerability and the attempted exploit. However, in certain
cases, it would be better to let the compromised program con-
tinue execution so that the attackers intentions can be moni-
tored. Obviously, the corrupted application should be allowed
to continue only after dynamically sandboxing the program.
If the application is halted, it can be recompiled immediately
with a different binary signature, and be restarted. This would
be useful when dealing with applications with high availability
requirements, e.g. web servers, database servers.

4.2 Experimental results

Experiments with the XOR technique produced very promis-
ing results. We were able to detect and thwart a simple stack
smashing attack with negligible effect on the execution time of
the generated code.

We ran some micro-benchmark tests identical to those of
StackGuard [4] involving different ways of incrementing an
integer a large number of times (Figure 2 shows the program
we used). Table 1 shows that our XOR-technique fared much
better against the unmodified installation of gcc-2.95 than
StackGuard did against unmodified gcc-2.7.2.3 (although
the two patches were applied to different revisions of gcc, we
believe this comparison is valid). The only significant slow-
down (a factor of � 2) in our approach was seen with the sec-
ond test where a zero-argument function is used to increment
a global variable. However, this is the worst-case scenario
caused by the minuscule-sized function body. The overhead
approaches zero as the complexity and size of the functions
increase.

We also ran some macro-benchmarks to compare the effects
of our XOR-technique on the execution of real-world appli-
cations. Table 2 shows the execution time for using both un-

code XOR StackGuard
i++ 0% 0%
void inc() 101% 125%
void int(int *) 13.1% 69%
int inc(int) 11.5% 80%

Table 1: Comparison of execution time overhead between the
XOR and StackGuard techniques, showing the execution time
overhead of XOR is noticibly lower. (StackGuard numbers
from Cowan et al. [4])

Program Execution time Exec. time with XOR
gcc 45m 2.0s 45m 3.5s
ctags 12.902s 15.555s

Table 2: Comparison of execution speeds. The XOR-protected
gcc executable took almost the same time; the XOR-protected
ctags executable (run on 227k lines of input) took 20% longer.

modified gcc-2.95 and our XOR-technique to compile our
patched version of gcc-2.95. It also shows the results run-
ning the ctags program on the source code for vim6.1 text
editor. These results show our XOR-based approach requires
little overhead.

4.3 Provisions for debugging

Being able to debug such “fortified” applications is equally im-
portant as securing them in the first place. Most of these tech-
niques that attempt to put off an attacker also make it harder for
a debugger like GDB to properly extract runtime information
about the execution of a program; for example StackGuards in-
troduction of the canary word changes the stack layout. When
using a pre-defined single XOR value, it is possible to hard-
code this value into gdb directly and have it compute the return
address for an activation record during the execution of a func-
tion. This 32-bit value is also needed to help reconstruct the
calling sequence by following the dynamic chain of function
invocations. However, using different 32-bit values for differ-
ent functions to achieve increased security means that it be-
comes increasingly harder to be able to use GDB with the pro-
duced executable.

Using individual XOR values for each file (or function) gen-
erated by the compiler makes it was necessary to enable a pro-
gram like gdb to access this information at runtime. We encap-
sulate this set of XOR values in a static function in the output
file, which gdb can dynamically use to interpret the perceived
return-address for a given function, yielding the true return ad-
dress for the function. A different approach involves perform-
ing transformations on the functions so that each encapsulates
its own XOR information. Obviously, all these transformations
have to appear transparent to gdb, while still keeping the XOR
information encapsulated, and safely hidden from the program
runtime.

5 Other Techniques

In this section, we describe a few additional defense mecha-
nisms against stack smashing techniques. Each of these may

4

not seem that powerful in isolation. However we believe that
by using different combinations of these individual technolo-
gies, we will be able to achieve a high degree of binary diver-
sity between different installations of the same software.

5.1 Automatic garbage collection of the stack frame

Stack smashing attacks make use of automatic buffers that are
allocated on the stack frame for the duration of the function.
This section of memory need not contain valid data after the
function returns. Hence, the compiler can easily insert a call to
memset at the end of the function epilogue. This will have the
effect of erasing the contents of all local variables or buffers
that could possibly contain malicious code.

5.2 Heap-based activation records

Nested function invocations result in the activation records for
the functions being adjacent to each other in the data stack.
This makes it possible for a buffer overflow in a deeply-nested
function to overwrite the return address, or carry out other
memory-corrupting operations for a different function, mak-
ing it harder to have detection and preventative security mech-
anisms. Allocating each activation record in dynamically allo-
cated heap memory instead of the stack should help avoid this
problem. The above-mentioned notion of automatic garbage
collection of a used stack frame ties in very well with having
activation records on the heap.

5.3 Randomizing memory layout to achieve diversity

The ideas presented in this subsection are very similar in na-
ture to the memory layout transformations proposed by Forrest
et al. [6]. Randomly-spaced activation records can be used to
counteract a stack smashing attempt by reducing the chance
that the modified return-address value will successfully point
to the injected code. Another major advantage of this approach
is that it makes it even harder for an exploit in one function
frame to overwrite data in a calling function’s stack frame fur-
ther up the dynamic chain.

5.4 Diversification within a single system

These security techniques can be repeatedly used to achieve
diversity within the same installation of server software. Car-
rying out recompilation of the applications fairly frequently
should help reduce the risk of being attacked. This is because
there is very little likelihood of an attacker being able to lo-
cate a weakness and successfully devise an attack scheme to
exploit that vulnerability before the next scheduled recompi-
lation. Service downtime can be avoided by using a failover
strategy to incrementally migrate from the old version of the
server binary to the new one every time one needs to switch
servers. However, there are disadvantages to this approach
since it requires additional time and processor resources for
the extra recompilations.

6 Future Work

Being able to secure a deployed system against the major-
ity of existing (and future) attacks might be sufficient for a
server system in the general case. However, in order to give

any near-total guarantees against possible break-ins, it is nec-
essary to consider other infrequent forms of security attacks
and their related exploits. We need to consider the patterns of
various other attack techniques like heap-smashing techniques
and function pointer overwriting. A language like C++ with an
accessible table of function pointers (virtual table) also opens
up compiled code to attacks that attempt to corrupt the pointer
tables. Strongly-typed languages that heavily depend on the
type-safety properties of the language are vulnerable to attacks
that can circumvent the type-checking mechanisms such as il-
legal access to private encapsulated data via type-spoofing. Al-
most all programming languages have some form of dynamic
memory management schemes (manual or automatic, with a
garbage collector). A hacker might be able to overwrite header
information like the meta-data used by malloc in the dynam-
ically allocated blocks to corrupt the data structures related to
the memory management subsystems. Our current techniques
will not be able to detect attacks like these since the return ad-
dress for the function will be left intact, with the damage being
done elsewhere.

All of the defense mechanisms discussed here involve some
speed and size overhead. It might be possible to have the com-
piler selectively insert precautionary measures when generat-
ing code for functions. Simpler functions that obviously can-
not be attacked may not need to be fortified. However, it is
possible that a vulnerability in one part of the program execu-
tion can be used to corrupt memory data in a different loca-
tion. For instance, a hacker could replace the return address of
a safe frame from an inner vulnerable frame without affecting
the inner frame itself. Randomly-spaced frames can be used to
so that the return address for any given adjacent or ancestor
frame will not be at a statically determinable location. A lo-
cal user could, however, bypass this by inspecting the binary
image of the program being executed.

The XOR approach is the main technique we have exper-
imented with to date, and the other techniques discussed in
Section 5 are only the first in a series of extensions being con-
sidered that would result in diversifying binaries and thwarting
various classes of attacks. There are open issues regarding the
security of the whole system: using our current technique to
compile application code while using original libraries would
still leave us with a vulnerable system. We plan to study
loader- and linker-based approaches that might address the se-
curing of non-open source libraries and legacy applications.
Another advantage of introducing late-binding of the security
mechanism is that the compiled units would not expose secu-
rity details. It is also important to examine how our current and
proposed techniques would interact with optimizations, with
different kinds of hardware architectures, such as PowerPC,
SPARC, MIPS, and embedded processors like ARM. Some of
the techniques that we will implement may not be portable
across all architectures, so machine-specific methods will also
be considered. Finally, we are interested in examining how var-
ious source-level and peephole optimization technologies can
be applied to improving security as opposed to just optimiza-
tion.

5

7 Conclusion

Computer system hacking is both an art form and a science as
much as virtually any other field of computer science. Identi-
fying vulnerabilities in a program application is a fairly dis-
ciplined field that requires high ability and lots of ingenuity.
No absolute guarantees can be made about whether a soft-
ware system will be completely hack-proof It is hoped that
this research will derive a technology that is a economically
and practically feasible solution to maintaining the security
and integrity of an application system. There are expected to
be a number of tradeoffs that one would need to consider such
as the effect of tighter security on program execution and the
likelihood of generating more false positives for attacks de-
tected. The ultimate goal is to provide a set of customizable
security mechanisms that a user can choose to best fit her
needs, thus helping make the system secure while still leaving
it usable. Widespread adoption of a given technique requires
a number of features: simplicity in incorporation, backwards-
compatibility with existing systems, imperceptible effect on
compilation and execution speed, and so on.

GCC is a stable, well-constructed, well-known and widely-
accepted compiler technology. Implementing our research
ideas on top of this open source compiler system has obvi-
ated the need to invest heavily in building a working, compre-
hensive compiler system from scratch. Use of such tools will
enable further research on our results.

Acknowledgements

We would like to thank Alfred Aho for his insightful comments on
the approach described in this paper, and Spiros Mancoridis and Vas-
silis Prevelakis from Drexel University for useful discussions on vul-
nerabilities and other security issues related to open source projects.
Kaiser’s Programming Systems Laboratory is funded in part by De-
fense Advanced Research Project Agency under DARPA Order K503
monitored by Air Force Research Laboratory F30602-00-2-0611, by
National Science Foundation grants CCR-02-03876, EIA-00-71954,
and CCR-99-70790, and by Microsoft Research. Keromytis is funded
in part by DARPA and the Air Force Research Laboratory, Air Force
Material Command, USAF, under agreement number F30602-01-2-
0537. Edwards is funded in part by the National Science Foundation
under grant CCR-0133348, under the New York State NYSTAR pro-
gram, and by Intel Corporation.

References

[1] Aleph One. Smashing the stack for fun and profit.
Phrack, 7(49), 1996.

[2] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time
defense against stack smashing attacks. In Proceedings
of the 2000 USENIX Annual Technical Conference, June
2000.

[3] Bulba and Kil3r. Bypassing StackGuard and Stack-
Shield. Phrack, 5(56), May 2000.

[4] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
Stackguard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In Proceedings of the 7th
USENIX Security Symposium, Jan. 1998.

[5] M. Eichin and J. Rochlis. With microscope and tweezers:
An analysis of the internet virus of november 1988. In
Proceedings of IEEE Computer Society Symposium on
Security and Privacy, 1989.

[6] S. Forrest, A. Somayaji, and D. Ackley. Building diverse
computer systems. In HotOS-VI, 1997.

[7] M. Frantzen and M. Shuey. StackGhost: Hardware fa-
cilitated stack protection. In Proceedings of the USENIX
Security Symposium, 2001.

[8] K. J. Houle, G. M. Weaver, N. Long, and R. Thomas.
Trends in denial of service attack technology. Technical
report, CERT, 2001.
http://www.cert.org/archive/pdf/DoS trends.pdf.

[9] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of C. In Pro-
ceedings of the USENIX Annual Technical Conference,
Monterey, California, June 2002.

[10] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in C programs.
In Third International Workshop on Automated Debug-
ging, 1997.

[11] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding. In Proceedings of
the 11th USENIX Security Symposium, Aug. 2002.

[12] Vendicator. Stack shield.
http://www.angelfire.com/sk/stackshield/.

6

