
Parsing Preserving Techniques in Grammar Induction

Smaranda Muresan
Department of Computer Science

Columbia University
New York, NY, 10027

smara@cs.columbia.edu

Abstract

In this paper we present the theoretical foundation of the search space for learning a class of constraint-
based grammars, which preserve the parsing of representative examples. We prove that under several
assumptions the search space is a complete grammar lattice, and the lattice top element is a grammar
that can always be learned from a set of representative examples and a sublanguage used to reduce the
grammar semantics. This complete grammar lattice guarantees convergence of solutions of any learning
algorithm that obeys the given assumptions.

1 Introduction

Research in grammar induction has been relevant both to practical Natural Language Processing applica-
tions and studies of human language acquisition. Learning syntactic structures using both supervised and
unsupervised methods has been particularly successful [Col99, KM04]. In recent years, however, there has
been a growing need to acquire semantics as well, in order to achieve a deeper understanding of text. For
practical reasons, the learning would need a small amount of annotated data, since large semantically anno-
tated treebanks are not readily available, and are hard to build for a variety of domains. At the same time,
theories of language acquisition stipulate that access to meaning is needed during language acquisition and
the learner needs at least utterances paired with semantic representations to simulate the grounding of the
learning process [Pin89, CN03].

Building upon these considerations, we have proposed in our previous work one approach to induc-
ing grammars that capture both syntax and semantics [MMK04, MMK05]. We have introduced a type of
constraint-based grammars, Lexicalized Well-Founded Grammars (LWFGs), which associate a syntactic-
semantic representation to each string. The input to the learner is a small set of representative examples,
which consist of strings paired with their syntactic-semantic representations. An ontology is used as back-
ground knowledge to provide access to meaning during learning and parsing, at the grammar rule level. We
proved that these grammars can always be learned. For hypothesis (grammar rule) generation, our relational
learning method uses a robust parser in the background knowledge [MMK05, pg. 23]. The key element for
hypothesis generation is a technique that preserves the parsing of the current representative example for all
the candidate hypotheses from which the final best rule is chosen.

In this paper, this parsing preserving technique is used for the theoretical foundation of the grammar
induction search space. We explore how the search space can be organized so that all the LWFG induction
algorithms converge to the same grammar. We consider additional assumptions for LWFGs, which allow
us to define the search space as a complete grammar lattice. For this, we introduce the operational and
denotational semantics of these grammars, as well as the set of representative examples. Finally, we define
a class of derived grammars, which preserve the parsing of the representative examples, and prove that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

these grammars form a semantic-based complete lattice. This lattice is the search space for all the relational
learning algorithms used for inducing LWFGs. We prove that for a type of LWFG conform to a sublanguage,
the top element of the grammar lattice can always be learned from the representative examples and the
sublanguage used for reducing the grammar semantics. The uniqueness of the complete lattice top element
allows the development of several efficient algorithms for grammar induction, which use the search space
in a sound way, and thus can always learn the same grammar.

In Section 2, we briefly present the Lexicalized Well-Founded Grammars introduced by [MMK04,
MMK05]. In Section 3, we define the operational and denotational semantics of these grammars [MMK05].
The key concepts and properties needed to define a class of LWFGs that form a complete lattice are given
in Section 4. We define the representative example set, the grammar semantics reduced to a sublanguage,
and the class of derived grammars that preserve the parsing of the representative examples. In Section 5, we
prove that these grammars form a semantic-based complete lattice. The grammar induction problem defined
on the complete grammar lattice search space is given in Section 6, along with the proof that the lattice top
element can always be learned. Conclusions are outlined in Section 7.

2 Lexicalized Well-Founded Grammars

Lexicalized Well-Founded Grammars were introduced in our previous work [MMK04, MMK05] as a type
of constraint-based grammars that: 1) associate each string with a syntactic-semantic representation called
semantic molecule; 2) have two types of constraints at the rule level: one for semantic composition and one
for ontology-based semantic interpretation; and 3) introduce a partial ordering among nonterminals, which
allows the ordering of grammar rules, and thus facilitate the bottom-up induction of these grammars. In this
section we present only the necessary concepts needed in this paper.

Definition 1. A syntagma, σ = (w,w′), is a pair of a natural language string (w) and its semantic molecule
(w′), and represents any unit that can be derived from a grammar.

Definition 2. A Lexicalized Well-Founded Grammar (LWFG)is a 6-tuple,G = 〈Σ,Σ′,NG, RG, PG, S〉,
where:

1. Σ is a finite set of terminal symbols.

2. Σ′ is a finite set of elementary semantic molecules corresponding to the set of terminal symbols. That
is w′ ∈ Σ′ iff w ∈ Σ, whereσ = (w,w′).

3. NG is a finite set of nonterminal symbols.

4. RG is a partial ordering relation,�, among the nonterminals.

5. PG is a set of constraint rules. A constraint rule is a triple(A, (B1, . . . , Bn),Φ), written A(σ) →
B1(σ1), . . . , Bn(σn) : Φ(σ̄), whereσ̄ = (σ, σ1, ..., σn) s.t. σ = (w,w′), σi = (wi, wi

′), 1 ≤ i ≤
n,w = w1 · · ·wn, w′ = w′1 ◦ · · · ◦ w′n, and◦ is the composition operator. Sometimes, for brevity,
we denote a rule byA → β : Φ, whereA ∈ NG, β ∈ N+

G . For the rules whose left hand side are
preterminals,A(σ)→, we use the notationA→ σ.

6. S ∈ NG is the start nonterminal symbol, and∀A ∈ NG, S � A.

7. All syntagmasσ = (w,w′) , derived from a nonterminalA have the same category of their semantic
moleculesw′ 1.

There are three types of rules: ordered non-recursive, ordered recursive, and non-ordered rules. A
grammar ruleA → B1, . . . , Bn : Φ ∈ PG, is anordered rule, if ∀Bi, we haveA � Bi. The LWFG rules
have several properties: each nonterminal symbol is a left-hand side in at least one ordered non-recursive

1This property is used for determining the lhs nonterminal of the learned rule [MMK04, MMK05]

rule; the empty string cannot be derived from any nonterminal symbol; the rule nonterminals are augmented
with syntagmas,σ; the rules are enriched with constraints,Φ(σ̄).

Definition 3. Given a LWFG,G, the ground syntagma derivation, ’
∗G⇒’, is defined as: A→σ

A
∗G⇒σ

(if σ =

(w,w′), w ∈ Σ, w′ ∈ Σ′, i.e., A is a preterminal), andBi
∗G⇒σi, i=1,...,n, A(σ)→B1(σ1),...,Bn(σn) : Φ(σ̄)

A
∗G⇒σ

.

The ground syntagma derivation,A
∗G⇒ σ, is equivalent to Definite Clause Grammar provability [PW80].

The languageof a grammarG is the set of all syntagmas generated from the start symbolS, i.e.,L(G) =
{σ|σ = (w,w′), w ∈ Σ+, S

∗G⇒ σ}. The set of all syntagmasgenerated bya grammarG is Lσ(G) =
{σ|σ = (w,w′), w ∈ Σ+,∃A ∈ NG, A

∗G⇒ σ}. For a grammarG, let E be a sublanguage, such that
E ⊆ L(G), and letEσ ⊆ Lσ(G) be the set of subsyntagmas corresponding to the sublanguageE. We have
thatL(G) ⊆ Lσ(G) andE ⊆ Eσ

2. Extending the notation, the set of syntagmas generated bya nonterminal

A of the grammarG is Lσ(A) = {σ|σ = (w,w′), w ∈ Σ+, A ∈ NG, A
∗G⇒ σ}, and the set of syntagmas

generated bya rule A → β : Φ of the grammarG is Lσ(A → β : Φ) = {σ|σ = (w,w′), w ∈ Σ+, (A →
β : Φ) ∗G⇒ σ}3.

3 Semantics of LWFGs

Operational Semantics. Following the insight of “parsing as deduction” [SSP95], a deductive system for
parsing Context-Free Grammars can serve as a method for defining their operational semantics. It has been
shown that the operational semantics of a CFG corresponds to the language of the grammar [Win99]. Anal-
ogously, the operational semantics of a LWFG,G, is the set of all syntagmas generated by the grammar,
Lσ(G).
Denotational Semantics. As discussed in literature [PS84, Win99], the denotational semantics of a gram-
mar is defined through a fixpoint of a transformational operator associated with the grammar.

Definition 4. Let I ⊆ Lσ(G) be a subset of syntagmas generated by the grammarG. We define the
immediate syntagma derivation operatorTG : 2Lσ(G) → 2Lσ(G), s.t.: TG(I) = {σ ∈ Lσ(G)| if (A(σ) →
B1(σ1), . . . , Bn(σn) : Φ(σ̄)) ∈ PG ∧ Bi

∗G⇒ σi ∧ σi ∈ I thenA
∗G⇒ σ}. If we denoteTG ↑ 0 = ∅ and

TG ↑ (i + 1) = TG(TG ↑ i), then we have that fori = 1, TG ↑ 1 = TG(∅) = {σ ∈ Lσ(G)|A ∈ NG, A →
σ}. This corresponds to the syntagmas derived from preterminals, i.e.,σ = (w,w′), wherew ∈ Σ, w′ ∈ Σ′.
An assumption for learning LWFGs is that the rules corresponding to grammar preterminals,A → σ, are
given, i.e.,TG(∅) is given.

The denotational semantics of a grammarG is the least fixpoint of the immediate syntagma deriva-
tion operator. As in the case of definite logic programs, the denotational semantics is equivalent with the
operational one, i.e.,Lσ(G) = lfp(TG) = TG ↑ ω, whereω is the minimum limit ordinal [Tar55, vEK76].

Definition 5. Based onTG, we can define theground derivation length (gdl)for syntagmas,gdl(σ), and the
minimum ground derivation lengthfor grammar rules,mgdl(A→ β : Φ):

(1)
gdl(σ) = min

σ∈TG↑i
(i)

mgdl(A→ β : Φ) = min
σ∈Lσ(A→β : Φ)

(gdl(σ))

2In the remainder of this paper, we will use the termsublanguageEσ to refer to the set of subsyntagmas corresponding to the
sublanguageE.

3(A→ β : Φ)
∗G⇒ σ denotes the ground derivationA

∗G⇒ σ obtained using the ruleA→ β : Φ in the last derivation step.

4 Representative Examples Parsing Preserving Grammars

This section introduces the key concepts and properties needed to define a class of LWFGs that form a
complete lattice.

Definition 6. A LWFG, G, is unambiguousw.r.t. a sublanguageEσ ⊆ Lσ(G) if ∀σ ∈ Eσ there is one and

only one ruleA→ β : Φ ∗G⇒ σ 4.

Definition 7. A set of syntagmasER ⊆ Eσ ⊆ Lσ(G) is calledrepresentative example setof a LWFG,
G, unambiguous w.r.t a sublanguageEσ, iff for each rule(A → β : Φ) ∈ PG there is a unique syntagma
σ ∈ ER s.t. gdl(σ) = mgdl(A→ β : Φ).

From this definition it is straightforward that|ER| = |PG|. ER contains the most simple syntagmas
ground derived from the grammarG, and covers all the grammar rules [MMK05, pg. 15].

In order to define the search space of grammar induction as grammar lattice, we definethe rule derivation
stepandthe rule generalization stepof unambiguous LWFGs, such that they areER parsing preservingand
are the inverse of each other.

Definition 8. Therule derivation step:

(2) A(σA)→αB(σ∗B)γ : ΦA B(σB)→β : ΦB

A(σA)→αβγ : Φ′A

is ER parsing preserving, if rA
∗G⇒ σA ∧ r′A

∗G′⇒ σA ∧ σA ∈ ER, whererA = A(σA)→ αB(σ∗B)γ : ΦA, rB =

B(σB)→ β : ΦB, andr′A = A(σA)→ αβγ : Φ′
A. We writerA

rB` r′A.
Therule generalization step5:

(3) A(σA)→αβγ : Φ′A B(σB)→β : ΦB

A(σA)→αB(σ∗B)γ : ΦA

is ER parsing preserving, if r′A
∗G′⇒ σA ∧ rA

∗G⇒ σA ∧ σA ∈ ER. We writer′A
rBa rA.

The property ofER parsing preserving means that both the initial and the modified rules ground derive
the same syntagma,σA ∈ ER. SinceσA is a representative example, it has the minimum ground derivation
length (gdl(σA) = mgdl(rA)) and thus, we have thatrB is an ordered non-recursive rule (see Section 2).
Moreover, both constraintsΦ′A/ΦA are computed after each derivation/generalization step, based on the

syntagmas that augment the grammar nonterminals during(r′A
∗G′⇒ σA)/(rA

∗G⇒ σA) ground derivation.
Thus, the derivation/generalization steps are the inverse of each other6. From both the derivation and the
generalization step we have that:Lσ(rA) ⊇ Lσ(r′A).

Definition 9. A grammarG′ is one-step derivedfrom a grammarG, G
r1` G′, if ∃r, r1 ∈ PG∧∃r′, r1 ∈ PG′ ,

s.t. r
r1` r′, and∀q 6= r, q ∈ PG iff q ∈ PG′ . A grammarG′ is derivedfrom a grammarG, G

∗
` G′, if it is

obtained fromG in n-derivation steps:G
r1` · · ·

rn` G′, wheren is finite. We extend the notation so that we

haveG
∗
` G.

4Unambiguity is relative to syntagmas and not to language strings, which can be ambiguous. In the case of chains of unary
branching rules, the ground derived equivalent syntagmas of the same string must have different categories (Definition 2, p7) and
[MMK05, pg. 19].

5The goal of the rule derivation/generalization step is to obtain a new target grammarG′/G from G/G′ by modifying a rule of
G/G′. They are not to be taken as the derivation/reduction concepts in parsing.

6This property would not hold if in the derivation process the constraint composition were used (Φ′A = ΦB ◦ ΦA) [MMK05,
pg. 10].

G

root

side
bottom

side
top

boundary

σ

r ∈ P>
r
∗>⇒ σ

A

A

G

σσ
σi σiσ1σ1 σnσn

r ∈ P>

B1

B1

Bi

Bi

Bn

Bn

r
∗>⇒ σ

rA ∈ PG

rA
∗G⇒ σ

G

GG’

G’

σB′
1

σB′
2σB1

σB2

B2
B′

1

B′
2

σ

r ∈ P>

B1

r
∗>⇒ σ

(a) (b) (c)

Figure 1: (a) Grammar boundary; (b) Subtree correspondence (c) Subsyntagma relations

Definition 10. A grammarG is one-step generalizedfrom a grammarG′, G′ r1a G, if ∃r, r1 ∈ PG∧∃r′, r1 ∈
PG′ , s.t. r′

r1a r, and∀q 6= r, q ∈ PG iff q ∈ PG′ . A grammarG is generalizedfrom grammarG′, G′ ∗a G,

if it is obtained fromG′ in n-generalization steps:G′ r1a · · ·
rna G, wheren is finite. We extend the notation

so that we haveG
∗
a G.

Definition 11. Given a LWFGG and a sublanguageEσ ⊆ Lσ(G), we call S(G) = Lσ(G) ∩ Eσ the
semantics of the grammar G reduced to the sublanguageEσ. Given a grammar ruler ∈ PG, we call
S(r) = Lσ(r) ∩ Eσ the semantics of the grammar ruler reduced to the sublanguageEσ.

Definition 12. A LWFG G is callednormalizedw.r.t. a sublanguageEσ ⊆ Lσ(G), if all grammar rules
cannot be further generalized by the rule generalization step (3), such thatS(r′A) ⊂ S(rA).

Definition 13. Let> be a LWFG, normalized and unambiguous w.r.t. a sublanguageEσ ⊆ Lσ(>), and let

ER ⊆ Eσ be its set of representative examples. LetL = {G|>
∗
` G} be the set of grammars derivable from

>. We call> thetop elementof L, and⊥ thebottom elementof L, if ∀G ∈ L,>
∗
` G∧G

∗
` ⊥. The bottom

element,⊥, is the grammar derived from>, such that the right hand side of all grammar rules contains only
preterminals. We haveS(>) = Eσ andS(⊥) ⊇ ER (see Figure 4(b)).

Lemma 1. For G,G′ ∈ L, G
∗
` G′ iff G′ ∗a G. Moreover,Lσ(G) ⊇ Lσ(G′).

Proof. The proof is straightforward.

Lemma 2. ∀G ∈ L and∀σ ∈ ER, ∃r ∈ PG, s.t.r
∗⇒ σ.

Proof. The property holds for> and>
∗
` G is ER parsing preserving.

Definition 14. If G,G′ ∈ L, we say thatG subsumesG′, i.e.,G < G′, iff G
∗
` G′.

Theorem 1. For G,G′ ∈ L, if G < G′ thenS(G) ⊇ S(G′).
Proof. From Lemma 1, and Definitions 11, 14.

Definition 15. We call boundaryof a grammarG ∈ L relative to the parse treer
∗>⇒ σ 7, the right hand

side of the corresponding rulerA ∈ PG, rA
∗G⇒ σ: bd(G) = {B|rA ∈ PG, B ∈ rhs(rA)} 8(see Figure

7All grammarsG,>
∗
` G, areER parsing preserving and all boundaries ofG are in the parse trees of the ground derivations of

> grammar rules.
8The notation ofbd(G), ts(G), bs(G) ignores the rule relative to which these concepts are defined, and in the remainder of this

paper we implicitly understand that the relations hold for all grammar rules.

σ

r ∈ P>
r
∗>⇒ σ

G1

G1

G2

G2

G1 gG2

G1 fG2

σ

r ∈ P>
r
∗>⇒ σ

G1

Gi

Gn

gG∈AG

fG∈AG

(a) (b)

Figure 2: Thelub andglb operators

1(a)). We denote byfN (r ∗>⇒ σ) the set of nonterminals which belong to the parse tree ofr
∗>⇒ σ, where

fN : P> × ER → N>, r ∈ P>, σ ∈ ER. We call top-side, ts(G), and respectivelybottom-side, bs(G), of

grammarG relative to the parse treer
∗>⇒ σ, the sets of the nonterminals delimited byG boundary,bd(G)

(see Figure 1(a)):
ts(G) = {B ∈ fN (r ∗>⇒ σ)|∃Bi ∈ bd(G) ∧B � Bi} ∪ {root}
bs(G) = {B ∈ fN (r ∗>⇒ σ)|∃Bi ∈ bd(G) ∧B � Bi}9

We have thatts(G) ∩ bs(G) = bd(G), ts(G) ∪ bs(G) = fN (r ∗>⇒ σ) and for the top element ofL:
ts(>) = bd(>) ∪ {root}.
Lemma 3. ∀G ∈ L,∀rA ∈ PG, rA

∗G⇒ σ, and∀Bi ∈ rhs(rA), the parse treeBi
∗G⇒ σi has a corresponding

subtree in the parse treer
∗>⇒ σ, rooted at the same nonterminalBi ∈ bd(G), such thatBi

∗>⇒ σi.

Proof. The property holds due to the unambiguity of the> grammar and theER parsing preserving property
of the rule derivation step. Moreover, the rule derivation step preserves grammar unambiguity. IfrA ∈ PG is

A→ B1, . . . , Bn, we have thatσ = σ1 · · · σn in both parse treesrA
∗G⇒ σ andr

∗>⇒ σ (see Figure 1(b)).

Lemma 4. ∀G,G′ ∈ L, ∀rA ∈ PG and ∀r′A ∈ PG′ , with rA
∗G⇒ σ and r′A

∗G′⇒ σ, σ ∈ ER, if B ∈
rhs(rA), B′ ∈ rhs(r′A) andB

∗G⇒ σB,B′ ∗G′⇒ σ′B, thenσB ⊆ σ′B ∨ σB ⊇ σ′B ∨ σB ∩ σ′B = ∅.

Proof. > is a normalized and unambiguous LWFG, andr ∈ P> has a unique parse treer
∗>⇒ σ. Since

bothG andG′ are grammars derived from>, the parse treesB
∗G⇒ σB andB′ ∗G′⇒ σ′B have corresponding

subtrees inr
∗>⇒ σ, which have the same root due to grammar unambiguity:B

∗>⇒ σB andB′ ∗>⇒ σ′B ,
respectively (Lemma 3). Since no two subtrees of a tree overlap in an unambiguous grammar, the lemma
property holds (Figure 1(c)).

5 Complete Grammar Lattice

We consider the systemL = 〈L,<〉 formed by the setL of the grammars derivable from>, together with
the binary subsumption relation< that establishes a partial order inL. In order for this system to form a
lattice, we must define two operators: theleast upper bound(lub), g and thegreatest lower bound(glb), f,
such that for any two elementsG1, G2 ∈ L, the elementsG1 g G2, G1 f G2 ∈ L exist [Tar55]. Thelub
element ofG1, G2 is the minimum element that has the boundary above the boundaries ofG1 andG2. The

9� is the partial ordering relation among the LWFG nonterminals (see Definition 2, p4)

next

next

next

3

1

4

2

next

nextnext

next

σx1

σx1

σx1

σx1

σx1 σx1σx1

σx2

σx2

σx2 σx2 σx2

σx2 σx2
σx2

4

31

2

(a) (b)

Figure 3: (a) Cases of subsyntagma relations; (b) Transition diagram

glb element ofG1, G2 is the maximum element that has the boundary below the boundaries ofG1 andG2.
Thus,lub andglb are defined such that for all grammar rules we have:

(4)
ts(G1 g G2) = ts(G1) ∩ ts(G2)
bs(G1 f G2) = bs(G1) ∩ bs(G2)

as can be seen in Figure 2(a). In order to have a complete lattice, the property must hold∀A ⊆ L:

(5)

ts(gG∈AG) =
⋂

G∈A

ts(G)

bs(fG∈AG) =
⋂

G∈A

bs(G)

as can be seen in Figure 2(b). These two operators are defined by Algorithms 1, and 2, which generate the
rules corresponding to the grammarsG1 gG2, andG1 fG2 based on the corresponding rules inG1 andG2

and the operatorsg andf.
For this, the Procedure Op(G1, G2, i) is built based on Lemma 4. The input consists of the grammar

rules PG1(i) and PG2(i), which ground derive the same syntagmaσ = ER(i). The indexi shows the
bijective mapping between the grammar rules,PG and the representative examples,ER. The output consists
of the corresponding rulesPG1gG2(i), andPG1fG2(i) which ground derive the same representative example
σ = ER(i) (see also Figure 4(a)).

Algorithm 1 : LeastUpper Bound(G1, G2)

for i← 1 to |ER| do
PG1gG2(i)← PG1(i) g PG2(i) /*g(G1, G2, i) */

returnPG1gG2

Algorithm 2 : GreatestLower Bound(G1, G2)

for i← 1 to |ER| do
PG1fG2(i)← PG1(i) f PG2(i) /*f(G1, G2, i) */

returnPG1fG2

The right hand sidesrx1, rx2 of the input grammar rules are traversed from left to right and the corre-
sponding right hand sidesrg, rf of the output grammar rules are computed. For each right nonterminal
x1, x2 of the input rules, the syntagmasσx1 , σx2, which derive from them, are computed. The nonterminal
whose ground derived syntagma includes the other’s syntagma, is appended torg, while the other nonter-
minal is appended torf (see case 1, and 3 in ProcedureOp). For the equality case (case 2), the nonterminal

is appended to both rulesrg andrf. Based on Lemma 4, we have four cases in ProcedureOp, illustrated
in Figure 3(a), where the syntagmas in two consecutive steps are shown. The 4th case necessarily follows
after case 1 and 3, where the nonterminalx2 is appended torf. We noticed that in case 3,rx1 andrx2 are
swapped. The transition diagram among the 4 cases is shown in Figure 3(b). A full cycle of ProcedureOp
is exemplified in Figure 4(a), where the ground derived subsyntagmas are also shown.

At the end of the ProcedureOp both Φg and Φf are computed, based on the corresponding rules
previously computed.10 This is in accordance with the principle that the rule derivation/generalization
steps are the inverse of each other, sincelub is a generalization, whileglb is a derivation.

Procedure Op(G1, G2, i)

/* PG1(i) g PG2(i) or PG1(i) f PG2(i) */
l ← lhs(PG1(i)) /* = lhs(PG2(i)) */
σ ← ER(i)
rx1 ← rhs(PG1(i))) rx2 ← rhs(PG2 (i)))
rg ← rf ← ∅
x1 ← next(rx1) x2 ← next(rx2)
while x1 6= ∅ ∨ x2 6= ∅ do

x1
∗G1⇒ σx1 ⊆ σ

x2
∗G2⇒ σx2 ⊆ σ

if σx1 ⊆ σx2 ∨ σx1 ⊇ σx2 then
if σx1 ⊃ σx2 then1

rg ← rg@ x1(σx1) rf ← rf@ x2(σx2) /*@ is the concatenation operator */

if σx1 = σx2 then2

/*x1 = x2
11 */

rg ← rg@ x1(σx1) rf ← rf@ x2(σx2)
if σx1 ⊂ σx2 then3

rg ← rg@ x2(σx2) rf ← rf@ x1(σx1) rx1 ←→ rx2

x1 ← next(rx1)
x2 ← next(rx2)

else4
rf ← rf@ x2(σx2) x2 ← next(rx2)

Φg ← GenerateConstraints(l→ rg)
Φf ← GenerateConstraints(l→ rf)
if Op = g then returnl → rg : Φg elsereturnl → rf : Φf
function next(r)

x← first(r)
r ← rest(r)
returnx

Lemma 5. The systemL = 〈L,<〉 together with thelub andglb operators computed by Algorithms 1 and
2, guarantees that for any two grammarsG1, G2 ∈ L the following property holds:G1 g G2 < G1, G2 <
G1 f G2 (G1 g G2

∗
` G1, G2

∗
` G1 f G2).

Proof. From ProcedureOp (Figure 3 and Figure 4(a)), it results that the boundariesbd(G1 g G2) and
bd(G1fG2) are computed with respect to (4) such that the theorem property is guaranteed for each grammar
rule (see Figure 2(a)).

10The constraints can be computed based on the syntagmas which augment the grammar nonterminals (Definition 2, p5),
[MMK05, pg. 10].

11We need to include the statementif x2 � x1 then x1 ←→ x2 iff chains of unary branching rules are considered.

B2
1 B2

2 B2
3

B2
5

B1
1

B1
2 = B2

4
B1

3 B1
4

A

σg1 σg2 σg3

σ1
1 σ1

2 σ1
3 σ1

4

σ2
1 σ2

2 σ2
3 σ2

4 σ2
5

σf1 σf2 σf3 σf4 σf5 σf6
σ = ER(i)

PG1gG2(i) A→ B1
1 , B1

2 , B2
5 : Φg

PG1(i) A→ B1
1 , B1

2 , B1
3 , B1

4 : Φ1

PG2(i) A→ B2
1 , B2

2 , B2
3 , B2

4 , B2
5 : Φ2

PG1fG2(i) A→ B2
1 , B2

2 , B2
3 , B2

4 , B1
3 , B1

4 : Φf

S(G1)

S(G2)

S(G1 gG2)

S(G1 fG2)

S(⊥)

S(>) = Eσ

ER

(a) (b)

Figure 4: (a) Example of computinglub andglb; (b) Grammar semantics reduced to the sublanguageEσ

Theorem 2. The systemL = 〈L,<〉 together with thelub andglb operators computed by Algorithms 1 and
2, forms a complete lattice.

Proof. Besides the property given in Lemma 5,lub andglb operators are computed w.r.t. (5) (see Figure
2(b)), such that we havets(gG∈LG) =

⋂
G∈L ts(G) = ts(>), bs(fG∈LG) =

⋂
G∈L bs(G) = bs(⊥),

which gives the uniqueness of> and⊥ elements.
Similar to the subsumption relation,<, thelub, g andglb, f operators are semantic-based.

Theorem 3. In the complete latticeL = 〈L,<〉, ∀G1, G2 ∈ L we have:

(6)
S(G1 g G2) ⊇ S(G1) ∪ S(G2).
S(G1 f G2) ⊆ S(G1) ∩ S(G2)

Proof. The proof is straightforward from Theorem 1 and Lemma 5.
Thus, the complete grammar lattice is semantic-based (see Figure 4(b)). It is straightforward to prove

that the complete grammar latticeL = 〈L,<〉 has all the known properties (i.e., idempotency, commuta-
tivity, associativity, absorption,> and⊥ laws, distributivity). In proving these properties, it is crucial that
ProcedureOpalways computes the constraintsΦg andΦf at the end, and thus they are independent of the
order in which the operators are applied.

6 Grammar Induction

According to the assumption from Section 3, the rules corresponding to the grammar preterminals (POS) are
given (i.e.,TG(∅)). Thus, for a given representative example set,ER, we can construct the grammar⊥ using
a robust, active chart parser [Kay73] (P⊥ = Bottom(ER)) (Definition 2, p7, and [MMK05, pg. 14, 23]). In
order to build the> element, we need to apply the grammar generalization procedure starting from the⊥
element. This requires knowledge of the sublanguageEσ, because the partial order of the grammar lattice
is semantic-based (S(G) = Lσ(G) ∩ Eσ).

The grammar generalization is determinate if the rule generalization step is determinate.

Definition 16. A grammar ruler′A ∈ PG is determinate generalizableby the rule generalization step (3) if

∃β ∈ rhs(r′A) and∃! rB =B → β : ΦB (i.e., one and only one rulerB), s.t. r′A
rBa rA with S(r′A) ⊂ S(rA).

We use the notationr′A
1⊂
a rA for the determinate generalization step with semantic increase.

Definition 17. A LWFG G is conformw.r.t. a sublanguageEσ ⊆ Lσ(G) iff G is normalized and un-
ambiguous w.r.t.Eσ and the rule derivation step (2) is determinate (∃!rB) and guarantees the decrease in

rule semanitcs (S(rA) ⊃ S(r′A)) for all grammars derived fromG. We use the notationrA

1⊃
` r′A for the

determinate derivation step with semantic decrease (rulerB is unique and thus not specified).

As a consequence, the only rule generalization steps (3) allowed in the grammar induction process, are
those which guarantee the same semantic relationS(r′A) ⊂ S(rA) 12, which assures that all the generalized

grammars belong to the grammar lattice. We use the notationr′A
rB⊂a rA for the generalization step with

semantic increase (it can be nondeterminate, and thusrB must be specified).

Definition 18. In a LWFG> conform w.r.t. a sublanguageEσ, we call chain, a set of ordered rules
chain> = {Bk → Bk−1 : Φk>, . . . , B2 → B1 : Φ2>, B1 → β : Φ1>}, such thatBk � · · · � B2 � B1. All
the chain rules, but the last, are unary branching rules. The last rule is the minimal chain rule.

The rules of a chain must ground derive equivalent representative syntagmasσBk
≡ · · · ≡ σB1 (see

Figure 5(a)), i.e., syntagmas that have the same string and the same semantic representation, but different
categories (see Definition 2, p7 and [MMK05, pg. 19]).

For the⊥ grammar of a lattice that has> as its top element, the aforementioned chain becomes
chain⊥ = {Bk → β⊥ : Φk⊥, . . . , B2 → β⊥ : Φ2⊥, B1 → β⊥ : Φ1⊥}, whereβ⊥ contains only preter-
minals and the rule order is unknown. By the parsing preserving property of the rule derivation step, the
same equivalent representative syntagmas can be ground derived from thechain⊥ rules (see Figure 5(b)).

We denote bychain = {rk, . . . , r2, r1}, one or more chains in any lattice grammar, where the rule
order is unknown. The minimal chain rules,rm = min(chain), can always be determined ifrm ∈ chain

s.t. ∀r ∈ chain − {rm} ∧ rm

r
a rmg we have thatS(rm) = S(rmg). By the consequence of the conform

property, the generalization steprm

r=
a rmg is not allowed, since it does not produce any increase in rule

semantics. That is, a minimal chain rule cannot be generalized by any other chain rule, with an increase in
its semantics.

Givenchain⊥ and the aforementioned property of the minimal chain rules, we can recoverchain> by
Procedurechains recovery .

Lemma 6. Given a LWFG> conform w.r.t. a sublanguageEσ, for any grammarG derived from>, all rules
are determinate generalizable if all chains of the grammar> (i.e., all chain>) are known (e.g., recovered
by Procedurechains recovery).

Proof. The only case of rule generalization step nondeterminism, with semantic increase, is introduced by
the derivation of the unary branching rules of orderedchain>, which yields the unorderedchain⊥, where

Bi → β⊥
Bj→β⊥⊂
a Bi → Bj, holds for allBj ≺ Bi. Thus, keeping (or recovering) the orderedchain> in

any grammarG derived from>, all the other grammar rules are determinate generalizable.
Algorithm 4 builds the lattice> element,> ← Top(ER, Eσ). In step 1, the Procedurechains recovery

detects allchain = chain⊥, which contain rules with identical right-hand side. In step 2, allchain⊥ rules
are transformed inchain> form, by generalizing them through the minimal chain rule (see also Figure 5(c)).

The generalization stepr
rm⊂a rg guarantees the semantic increaseS(rg) ⊃ S(r) for all the rulesr which

12This property allows the grammar induction based only on positive examples.

are generalized throughrm, thus being the inverse of the rule derivation step in the grammar lattice. The
rulesr are either chain rules, or rules having the same left hand side as the chain rules. The returned setP⊥
contains allchain> unary branching rules of the> grammar. Therefore, in Algorithm 4 the setP> initially
contains determinate generalizable rules, and the ”while loop” can determinately generalize all the grammar
rules. An example showing the full trace of Procedurechains recovery is given in Appendix A.

Algorithm 4 : Top(ER, Eσ)
P⊥ ← Bottom(ER)
P> ← chains recovery (P⊥, ER, Eσ) /*P> is determinate generalizable */

while ∃r ∈ P> s.t. r
1⊂
a rg do

r ← rg

returnP>

Procedure chains recovery(P⊥, ER, Eσ)

while ER 6= ∅ do
σ ← first(ER)1

chain← {r ∈ P⊥|r ∗⊥⇒ σr ∧ σr ≡ σ} /* chain = chain⊥ */
lhs chain← {lhs(r)|r ∈ chain}
ER ← ER − {σr ∈ ER|r ∈ chain ∧ r

∗⊥⇒ σr}
while |chain| > 1 do2

/* chain recovery */
rm ← min(chain) /* rm cannot be generalized with semantic increase */
chain← chain− {rm}
lhs chain← lhs chain− {lhs(rm)}
foreachr ∈ P⊥ ∧ lhs(r) ∈ lhs chain s.t. r

rm⊂a rg do
r ← rg

returnP⊥ /* The returnedP⊥ contains allchain> */

Theorem 4. If ER is the set of representative examples associated with a LWFGG conform w.r.t. a sublan-
guageEσ ⊇ ER, then the procedure Top(ER, Eσ) computes the lattice> element such that> = G.

Proof. SinceG is normalized (Definition 12), none of its rule can be generalized with increase in semantics.
Starting with the⊥ element, after applying Procedurechains recovery , all rules that can be general-
ized, with increase in semantics, through the rule generalization step (3), are determinate generalizable
(Lemma 6, Definition 16, 17) . Since the rule generalization step and the rule derivation step are the inverse
of each other, the process of grammar generalization from⊥ to > is the inverse of the derivation process
from G to⊥, which is finite. This means that regardless of the grammar sequence⊥, G1, . . . , Gn,>, there
is a derivation process that yields the inverse sequenceG,Gn, . . . , G1,⊥. SinceS(G) = Eσ andS(Gi) are
increasing (becauseG is conform toEσ), the generalization process ends at the semantic limitS(>) = Eσ,
and thus> = G.

If the hypothesis of Theorem 4 holds, then any grammar induction algorithm that uses the complete
lattice search space can converge to the lattice top element, using different search strategies.

7 Conclusions

In this paper we have presented the theoretical foundation of the search space for the grammar induction
problem. We defined a set of grammars derived from a normalized LWFG,G, which preserve the parsing of

BkBk

Bk−1

B2

B1B1

ri ∈ P>, i = 1..k ri ∈ P⊥, i = 1..k

rk
∗>⇒ σBk

rk−1
∗>⇒ σBk−1

r2
∗>⇒ σB2

r1
∗>⇒ σB1

rk
∗⊥⇒ σBk

r1
∗⊥⇒ σB1

σBk ≡ · · · ≡ σB1 σB1

σBk Bk → β⊥ Bk → B1 . . . Bk → Bk−1

Bk−1 → β⊥ Bk−1 → B1 . . .
...

...
B2 → β⊥ B2 → B1

B1 → β⊥

(a) (b) (c)

Figure 5: (a,b) Parsing trees for chain rules (inchain> andchain⊥, respectively); (c) The iterations of step
2 in Procedurechains recovery (chain> contains the diagonal rules)

the representative examples set,ER and whose semantics is reduced to a sublanguageEσ. We proved that
this set of grammars forms a semantic-based complete lattice, which has as its top element the grammarG.
The set of representative examplesER and the sublanguageEσ are key elements in defining the complete
grammar lattice. We proved that givenER andEσ, the lattice top element can always be learned, as a LWFG
conform w.r.t.Eσ.

The search space formed by the complete grammar lattice can guarantee the convergence of all the
grammar learning algorithm solutions, if they obey the conform grammar properties defined in this paper.
This result is important for developing efficient relational learning algorithms for LWFG induction.

References

[CN03] Peter Culicover and Andrzej Nowak.Dynamical Grammar: Minimalism, Acquisition, and Change. Ox-
ford University Press, 2003.

[Col99] Michael Collins.Head-Driven Statistical Models for Natural Language Parsing. PhD thesis, University
of Pennsylvania, 1999.

[Kay73] Martin Kay. The MIND System. In Randall Rustin, editor,Natural Language Processing, pages 155–188.
Algorithmics Press, New York, 1973.

[KM04] Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic structure: Models of depen-
dency and constituency. InProceedings of the ACL’04, 2004.

[MMK04] Smaranda Muresan, Tudor Muresan, and Judith Klavans. Inducing constraint-based grammars from a
small semantic treebank. InProceedings of AAAI Spring Symposium on Language Learning: An Interdis-
ciplinary Perspective, Stanford University, 2004.

[MMK05] Smaranda Muresan, Tudor Muresan, and Judith Klavans. Lexicalized Well-Founded Grammars: Learn-
ability and merging. Technical Report CUCS-027-05, Columbia University, New York, NY, 2005.

[Pin89] Steven Pinker.Learnability and Cognition: The Acquisition of Argument Structure. MIT Press, 1989.

[PS84] Fernando C. Pereira and Stuart M. Shieber. The semantics of grammar formalisms seen as computer
languages. InProceeding of the ACL’84, pages 123–129, 1984.

[PW80] Fernando C. Pereira and D.H.D Warren. Definite Clause Grammars for language analysis.Artificial
Intelligence, 13:231–278, 1980.

[SSP95] Stuart Shieber, Yves Schabes, and Fernando Pereira. Principles and implementation of deductive parsing.
Journal of Logic Programming, 24(1-2):3–36, 1995.

[Tar55] A. Tarski. Lattice-theoretic fixpoint theorem and its applications.Pacific Journal of Mathematics, 5:285–
309, 1955.

[vEK76] M. van Emden and R. Kowalski. The semantics of predicate logic as a programming language.Journal of
the ACM, 4:733–742, 1976.

[Win99] S. Wintner. Compositional semantics for linguistic formalisms. InProceedings of the ACL’99, 1999.

A Example

Table 1 shows the trace of Procedurechains recovery for auxiliary verb constructions. It can be
noticed that at the end, all the rules are determinate generalizable. For simplicity, only the strings corre-
sponding toER are shown (i.e., their semantic molecules are not given; examples ofER with semantic
molecules are presented in [MMK05, pg. 38]). The constraintsΦ, which are not shown, are computed at
each steps for the generalized rules. The sublanguageEσ used for the generalization process is not given.
As a note, thePro nonterminal will be furthered generalized toSbj. Figure 6 shows examples of parse trees
corresponding to the ground derivation in the grammar returned by Procedurechains recovery .

ER P⊥ Generalized Rules at:
Iteration 1 Iteration 2 Iteration 3 Itereration 4

he is * AV0→ Pro, Aux

is he AV 0→ Aux,Pro

he is * AV 1→ Pro, Aux * AV1→ AV0

he is not AV 1→ Pro, Aux,Aux AV 1→ AV 0, Aux

he is * AV 2→ Pro, Aux * AV 2→ AV 0 * AV2→ AV1

he can be AV 2→ Pro, Aux,Aux AV 2→ AV 0, Aux AV 2→ AV 1, Aux

he is * AV 3→ Pro, Aux * AV 3→ AV 0 * AV 3→ AV 1 * AV3→ AV2

he has been AV 3→ Pro, Aux,Aux AV 3→ AV 0, Aux AV 3→ AV 1, Aux AV 3→ AV 2, Aux

he is * AV 4→ Pro, Aux * AV 4→ AV 0 * AV 4→ AV 1 * AV 4→ AV 2 * AV 4→ AV 3

he is being AV 4→ Pro, Aux,Aux AV 4→ AV 0, Aux AV 4→ AV 1, Aux AV 4→ AV 2, Aux AV 4→ AV 3, Aux

Table 1: A trace of Procedurechains recovery for auxiliary verb constructions with 4 iterations. Chain
rules are marked with *, and the minimal chain rules are in bold.

AV4

AV3

AV2

AV1

AuxAV0

can he

ProAux

not

AV1 Aux

have

AV2 Aux

been

AV3 Aux

AV4

being

AV0

Pro Aux

he is

(a) (b)

Figure 6: (a) Chain rule deriving a syntagma fromER; (b) Non-chain rule deriving a syntagma fromEσ

