View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

Parsing Preserving Techniques in Grammar Induction

Smaranda Muresan
Department of Computer Science

Columbia University

New York, NY, 10027

smara@cs.columbia.edu

Abstract

In this paper we present the theoretical foundation of the search space for learning a class of constraint-
based grammars, which preserve the parsing of representative examples. We prove that under several
assumptions the search space is a complete grammar lattice, and the lattice top element is a grammar
that can always be learned from a set of representative examples and a sublanguage used to reduce the
grammar semantics. This complete grammar lattice guarantees convergence of solutions of any learning
algorithm that obeys the given assumptions.

1 Introduction

Research in grammar induction has been relevant both to practical Natural Language Processing applica-
tions and studies of human language acquisition. Learning syntactic structures using both supervised and
unsupervised methods has been particularly successful [Col99, KMO04]. In recent years, however, there has
been a growing need to acquire semantics as well, in order to achieve a deeper understanding of text. For
practical reasons, the learning would need a small amount of annotated data, since large semantically anno-
tated treebanks are not readily available, and are hard to build for a variety of domains. At the same time,
theories of language acquisition stipulate that access to meaning is needed during language acquisition and
the learner needs at least utterances paired with semantic representations to simulate the grounding of the
learning process [Pin89, CNO03].

Building upon these considerations, we have proposed in our previous work one approach to induc-
ing grammars that capture both syntax and semantics [MMK04, MMKO05]. We have introduced a type of
constraint-based grammars, Lexicalized Well-Founded Grammars (LWFGs), which associate a syntactic-
semantic representation to each string. The input to the learner is a small set of representative examples,
which consist of strings paired with their syntactic-semantic representations. An ontology is used as back-
ground knowledge to provide access to meaning during learning and parsing, at the grammar rule level. We
proved that these grammars can always be learned. For hypothesis (grammar rule) generation, our relational
learning method uses a robust parser in the background knowledge [MMKO5, pg. 23]. The key element for
hypothesis generation is a technique that preserves the parsing of the current representative example for all
the candidate hypotheses from which the final best rule is chosen.

In this paper, this parsing preserving technique is used for the theoretical foundation of the grammar
induction search space. We explore how the search space can be organized so that all the LWFG induction
algorithms converge to the same grammar. We consider additional assumptions for LWFGs, which allow
us to define the search space as a complete grammar lattice. For this, we introduce the operational and
denotational semantics of these grammars, as well as the set of representative examples. Finally, we define
a class of derived grammars, which preserve the parsing of the representative examples, and prove that

https://core.ac.uk/display/161437166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

these grammars form a semantic-based complete lattice. This lattice is the search space for all the relational
learning algorithms used for inducing LWFGs. We prove that for a type of LWFG conform to a sublanguage,
the top element of the grammar lattice can always be learned from the representative examples and the
sublanguage used for reducing the grammar semantics. The unigqueness of the complete lattice top element
allows the development of several efficient algorithms for grammar induction, which use the search space
in a sound way, and thus can always learn the same grammar.

In Section 2, we briefly present the Lexicalized Well-Founded Grammars introduced by [MMKO04,
MMKO5]. In Section 3, we define the operational and denotational semantics of these grammars [MMKO05].
The key concepts and properties needed to define a class of LWFGs that form a complete lattice are given
in Section 4. We define the representative example set, the grammar semantics reduced to a sublanguage,
and the class of derived grammars that preserve the parsing of the representative examples. In Section 5, we
prove that these grammars form a semantic-based complete lattice. The grammar induction problem defined
on the complete grammar lattice search space is given in Section 6, along with the proof that the lattice top
element can always be learned. Conclusions are outlined in Section 7.

2 Lexicalized Well-Founded Grammars

Lexicalized Well-Founded Grammars were introduced in our previous work [MMKO04, MMKO5] as a type

of constraint-based grammars that: 1) associate each string with a syntactic-semantic representation called
semantic molecuje2) have two types of constraints at the rule level: one for semantic composition and one
for ontology-based semantic interpretation; and 3) introduce a partial ordering among nonterminals, which
allows the ordering of grammar rules, and thus facilitate the bottom-up induction of these grammars. In this
section we present only the necessary concepts needed in this paper.

Definition 1. A syntagmaoc = (w,w’), is a pair of a natural language string)(and its semantic molecule
(w’), and represents any unit that can be derived from a grammar.

Definition 2. A Lexicalized Well-Founded Grammar (LWF&)a 6-tuple,G = (X,%', Ng, R, Pg, S),
where:

1. ¥ is afinite set of terminal symbols.

2. Y is afinite set of elementary semantic molecules corresponding to the set of terminal symbols. That
isw’ € ¥iff w e X, whereo = (w, w’).

3. Ng¢ is afinite set of nonterminal symbols.

4. R is a partial ordering relatiory;, among the nonterminals.
5. P is a set of constraint rules. A constraint rule is a triplg (B, ..., B,), ®), written A(c) —
Bi(01),...,Bn(on): ®(7), whereg = (0,01,....,0,) S.t. 0 = (w,w'),0; = (wi,w;’),1 <i <

n,w = wy - wp,w = wjo---owl, ando is the composition operator. Sometimes, for brevity,
we denote a rule by d — 3: &, whered € Ng, (0 € Ng. For the rules whose left hand side are
preterminals A(o) —, we use the notatiod — o.

6. S € N¢ is the start nonterminal symbol, akdl € Ng, S = A.

7. All syntagmasr = (w,w’) , derived from a nonterminad have the same category of their semantic
moleculesw’ *.

There are three types of rules: ordered non-recursive, ordered recursive, and non-ordered rules. A
grammar ruleA — By,...,B,: ® € Pg, is anordered rule if VB;, we haveA = B;. The LWFG rules
have several properties: each nonterminal symbol is a left-hand side in at least one ordered non-recursive

This property is used for determining the Ihs nonterminal of the learned rule [MMK04, MMKO5]

rule; the empty string cannot be derived from any nonterminal symbol; the rule nonterminals are augmented
with syntagmasg; the rules are enriched with constrainigz).

Definition 3. Given a LWFG,G, the ground syntagma derivatioriﬁ’, is defined as: ;‘*:g” (if o =
o, i=1,..n, A(0)—Bi(01),...Bn(on): ®(5) .

(w,w"),w e X,w €3, i.e. Ais apreterminal), ané: Ve
=0

The ground syntagma derivatioﬂ,g o, is equivalent to Definite Clause Grammar provability [PW80].
Thelanguageof a grammarG is the set of all syntagmas generated from the start syfiboé., L(G) =
{o|lo = (w,v'),w € ¥+, 8 < o}. Theset of all syntagmagenerated by grammarG is L,(G) =
{olo = (w,w'),w € ¥*,3JA € Ng, A sy o}. For a grammag, let E be a sublanguage, such that
E C L(G), and letE, C L,(G) be the set of subsyntagmas corresponding to the sublanduage have
thatL(G) C L,(G) andE C E,2. Extending the notation, the set of syntagmas generatechbyterminal
A of the grammagG is L,(A) = {o|oc = (w,w'),w € T, A € Ng, A < o}, and the set of syntagmas
generated by rule A — 3: ® of the gramma(i is L,(A — §: @) = {o|oc = (w,w'),w € LT, (A —

B:) g a3,

3 Semantics of LWFGs

Operational Semantics Following the insight of “parsing as deduction” [SSP95], a deductive system for
parsing Context-Free Grammars can serve as a method for defining their operational semantics. It has been
shown that the operational semantics of a CFG corresponds to the language of the grammar [Win99]. Anal-
ogously, the operational semantics of a LWHK&,is the set of all syntagmas generated by the grammar,

L, (G).

Denotational Semantics As discussed in literature [PS84, Win99], the denotational semantics of a gram-
mar is defined through a fixpoint of a transformational operator associated with the grammar.

Definition 4. Let I C L,(G) be a subset of syntagmas generated by the granifnawWe define the
immediate syntagma derivation operaffi: 257 (%) — 2L0(G) st.: Tg(I) = {0 € L,(G)| if (A(o) —

Bi(o1),...,Bp(on): ®(0)) € Po N B; ¢ o; N o; € IthenA S o}. If we denoteT; 1 0 = () and
Ta 1 (i+1) =Tg(Te 1 i), then we have that far=1,7¢ 1 1 = T(0) = {0 € L,(G)|A € Ng, A —

o'}. This corresponds to the syntagmas derived from preterminalsy e (w, w’), wherew € 3, w' € ¥'.

An assumption for learning LWFGs is that the rules corresponding to grammar pretermdinalsy, are
given, i.e..T(0) is given.

The denotational semantics of a gramngais the least fixpoint of the immediate syntagma deriva-
tion operator. As in the case of definite logic programs, the denotational semantics is equivalent with the
operational one, i.eL,(G) = lfp(T¢) = T T w, Wherew is the minimum limit ordinal [Tar55, VEK76].

Definition 5. Based ori;, we can define thground derivation length (gdfpr syntagmasgdi(c), and the
minimum ground derivation lengflor grammar rulesyngdl(A — (: ®@):

di(o) — min (i
gdi(o) i Ti(%)

A P = i
mgdl(A — (3: @) aeLﬁlﬁg:@(le(g))

(1)

2In the remainder of this paper, we will use the tesnblanguageF, to refer to the set of subsyntagmas corresponding to the
sublanguagé®.

34— p: ®) ¢ & denotes the ground derivatioh =¥ & obtained using the ruld — 3: @ in the last derivation step.

4 Representative Examples Parsing Preserving Grammars

This section introduces the key concepts and properties needed to define a class of LWFGs that form a
complete lattice.

Definition 6. A LWFG, G, is unambiguousv.r.t. a sublanguag&, C L,(G) if Vo € E, there is one and
only one ruled — 3: & 5 4,

Definition 7. A set of syntagma¥iy C E, C L,(G) is calledrepresentative example set a LWFG,
G, unambiguous w.r.t a sublanguadk, iff for each rule(A — 3: ®) € P there is a unique syntagma
o € Egs.t.gdl(c) =mgdl(A— §:).

From this definition it is straightforward th&Er| = |Ps|. Er contains the most simple syntagmas
ground derived from the gramméf, and covers all the grammar rules [MMKO5, pg. 15].

In order to define the search space of grammar induction as grammar lattice, wettefire derivation
stepandthe rule generalization stepf unambiguous LWFGs, such that they &g parsing preservingnd
are the inverse of each other.

Definition 8. Therule derivation step

A(oa)—aB(og)y: ®a B(op)—p: ®p
(2) /]13(0'14)—>a,8'y: @',

is Er parsing preservingif r 4 s oA NT o ocaNog € Eg,wherery = A(oa) — aB(og)y: ®a, rp =

B
B(op) — f: ®p, andr)y = A(oa) — afy: ®,. We writery F r/y.
Therule generalization step:

A(oca)—afy: @ B(op)—3: o
(3) A(O’A)HAQB(UE,)"{Z Dy

. . . Q! G . B
is Eg parsing preservingif 'y = o4 Ara = o4 Aoa € Er. We writer’y 4 ra.

The property oft’y parsing preserving means that both the initial and the modified rules ground derive
the same syntagma, € Er. Sinceo 4 is a representative example, it has the minimum ground derivation
length @di(ca) = mgdi(ra)) and thus, we have thag; is an ordered non-recursive rule (see Section 2).
Moreover, both constraint®’, /® 4 are computed after each derivation/generalization step, based on the

. . xG' *G . .
syntagmas that augment the grammar nonterminals dgring=- o04)/(ra = o4) ground derivation.
Thus, the derivation/generalization steps are the inverse of each®otResm both the derivation and the
generalization step we have thdit; (r4) 2 L, (1).

Def|n|t|on 9. AgrammarG’ is one-step derivetfom a grammars, G k G, if Ir,r € PG/\Hr r € Pgr,
s.t.r F r',andVq # r,q € P iff g € PG/ A grammarG’ is derivedfrom a grammars, G F G, ifitis
obtained fromG in n-derivation stepsG F F G’, wheren is finite. We extend the notation so that we
haveG ﬁ G.

“Unambiguity is relative to syntagmas and not to language strings, which can be ambiguous. In the case of chains of unary
branching rules, the ground derived equivalent syntagmas of the same string must have different categories (Definition 2, p7) and
[MMKOS5, pg. 19].

The goal of the rule derivation/generalization step is to obtain a new target gra@if@rfrom G /G’ by modifying a rule of
G/G'. They are not to be taken as the derivation/reduction concepts in parsing.

®This property would not hold if in the derivation process the constraint composition weredsed (@5 o ®4) [MMKO5,
pg. 10].

r =0
A
ra € PG
B, B G rA :> (o
1 Bz n
o1 o; Onl o1 g On
o a ; g g

@) (b) (©

Figure 1: (a) Grammar boundary; (b) Subtree correspondence (c) Subsyntagma relations

Definition 10 A grammarG is one-step generalizefdom a grammat’, G’ —| G,if Ir,ry € Po AT/, r1 €
Por,s.t.r!] r,andVq # r,q € Pg iff ¢ € Pgr. A grammarG is generalizedrom grammar’, G’ 4 G,

if it is obtained fromG’ in n-generalization steps’}” g G, wheren is finite. We extend the notation
so that we havér 1 G.

Definition 11. Given a LWFGG and a sublanguag€, C L,(G), we callS(G) = L,(G) N E, the

semantics of the grammar G reduced to the sublangugge Given a grammar rule € Pg, we call
S(r) = L,(r) N E, the semantics of the grammar ruleeduced to the sublanguade,.

Definition 12. A LWFG G is callednormalizedw.r.t. a sublanguagé&, C L,(G), if all grammar rules
cannot be further generalized by the rule generalization step (3), suc(thatC S(ra).

Definition 13. Let T be a LWFG, normalized and unambiguous w.r.t. a sublangégg€ L, (T), and let
Er C E, be its set of representative examples. Let {G|T - G} be the set of grammars derivable from

T. We call T thetop elemenof £, and_L thebottom elementf £, if VG € L, T - GAG F L. The bottom
element,L, is the grammar derived from, such that the right hand side of all grammar rules contains only
preterminals. We ha®(T) = E, andS(L) 2 Er (see Figure 4(b)).

Lemmal. For G,G' € L, G+ G iff G 4 G. Moreover,L,(G) 2 L,(G").

Proof. The proof is straightforward. O
Lemma 2. VG € £ andVo € Eg, Ir € Pg, st.r = o.

Proof. The property holds foir andT + G is Er parsing preserving. O
Definition 14. If G, G’ € L, we say thati subsumes?, i.e.,G = G, iff G u G

Theorem 1. For G, G’ € L, if G = G’ thenS(G) 2 S(G').
Proof. From Lemma 1, and Definitions 11, 14.

Definition 15. We call boundaryof a grammarG € L relative to the parse tree = o 7. the right hand
side of the corresponding ruley, € Pg,r4 < o bd(G) = {B|ra € Pg,B € rhs(ra)} 8(see Figure

"All grammarsG, T + G, areEg parsing preserving and all boundariesbare in the parse trees of the ground derivations of
T grammar rules.

8The notation obd(G), ts(G), bs(G) ignores the rule relative to which these concepts are defined, and in the remainder of this
paper we implicitly understand that the relations hold for all grammar rules.

Figure 2: Thdub andglb operators

1(a)). We denote by (r = o) the set of nonterminals which belong to the parse tree Bf o, where
fn: Pr x ER — Nt,r € Pr,o € Er. We calltop-side ts(G), and respectivelypottom-sidebs(G), of

grammarG relative to the parse tree™d o, the sets of the nonterminals delimited Gyboundary,bd(G)

(See Figure 1(a)) tS(G) — {B c fN(r *:I O’)|E|Bi € bd(G) ANB = Bz} U {TOOt}

bs(G) = {B € fn(r 2 0)|3B; € bd(G) A B < B;}°
We have thats(G) N bs(G) = bd(G), ts(G) U bs(G) = fn(r = o) and for the top element of:
ts(T) =bd(T) U {root}.
Lemma3.VG € L,Vry € Pg,ra Sy o,andVB; € rhs(ra), the parse tred3; sy o, has a corresponding
subtree in the parse tree™L o, rooted at the same nonterming} € bd(G), such thatB; Lo,

Proof. The property holds due to the unambiguity of thgrammar and th& i parsing preserving property
of the rule derivation step. Moreover, the rule derivation step preserves grammar unambiguity. Hy is

A — Bi,...,B,, we have that = oy - - - 7,, in both parse trees, Y oandr 2o (see Figure 1(b)). O

Lemma 4. VG,G' € L, Vry € Pg andVr'y € Po, withrs 2% o andr’, ¢ 0,0 € Ep, if B €
rhs(ra), B € rhs(r’y) and B ¢ op,B’' « o, thenog C oy Vop Doy VopNay =0.

Proof. T is a normalized and unambiguous LWFG, ané& Pt has a unique parse treeX &. Since
both G andG’ are grammars derived from, the parse tree8 S op and B/ s o'’; have corresponding

subtrees in- = o, which have the same root due to grammar unambiguﬁyg op and B’ i o',
respectively (Lemma 3). Since no two subtrees of a tree overlap in an unambiguous grammar, the lemma
property holds (Figure 1(c)). O

5 Complete Grammar Lattice

We consider the syste® = (£, =) formed by the set of the grammars derivable from, together with
the binary subsumption relatioa that establishes a partial orderh In order for this system to form a
lattice, we must define two operators: tbast upper boun@ub), Y and thegreatest lower bounyib), A,
such that for any two elements;, G, € L, the element&r; Y G, G1 A Gy € L exist [Tar55]. Theub
element ofGG1, G5 is the minimum element that has the boundary above the boundariesarfdGs. The

%~ is the partial ordering relation among the LWFG nonterminals (see Definition 2, p4)

Oz, | next o, Oz, NEXtOg, (2

f
@ g next 0.
}ik ****** ‘?727\ fffff &2_¢ next oz,

Oxg o

| next 0y, zy

‘
® 04, nextos, ©
Pt

5 N -
,,,,,,,,, . _ Ozp eXtOs, 0!

(a) (b)

Figure 3: (a) Cases of subsyntagma relations; (b) Transition diagram

glb element ofG{, G4 is the maximum element that has the boundary below the boundarigs afid G-.
Thus,lub andglb are defined such that for all grammar rules we have:

tS(Gl Y GQ) = tS(Gl) N tS(GQ)

(4) bs(G1 A Ga) = bs(G1) Nbs(Gy)

as can be seen in Figure 2(a). In order to have a complete lattice, the property mustihold:

ts(YaeaG) = [ts(G)
GeA
(5)
bs(haeaG) =) bs(@)
GeA

as can be seen in Figure 2(b). These two operators are defined by Algorithms 1, and 2, which generate the
rules corresponding to the gramméfs Y G2, andG; A G5 based on the corresponding rulesdnandGs
and the operators and .

For this, the Procedure O@(, G2, 1) is built based on Lemma 4. The input consists of the grammar
rules Pg, (i) and Pg, (i), which ground derive the same syntagma= FEr(i). The indexi shows the
bijective mapping between the grammar rulBg,and the representative examplés;. The output consists
of the corresponding rule’;, v, (i), andPg, 1 ¢, (i) which ground derive the same representative example
o = Eg(i) (see also Figure 4(a)).

Algorithm 1: LeastUpperBound(G1, G2)

for i — 1to|Eg| do
|_ PGlYG2(i)<_PG1(i)YPG2(i) /*Y(G17G27i) *
returnPg, v,

Algorithm 2 : Greatestower Bound(G1, G2)

for i — 1to|FEg| do
|_ PGlJ\G‘z(i)(_PGl(Z.))‘PGQ(i) /*A(GMGQJ') */
returnPg, , c,

The right hand sides,,,, r,, of the input grammar rules are traversed from left to right and the corre-
sponding right hand sides,, r, of the output grammar rules are computed. For each right nonterminal
x1,x2 Of the input rules, the syntagmas, , 0,, which derive from them, are computed. The nonterminal
whose ground derived syntagma includes the other’s syntagma, is appendedmuuile the other nonter-
minal is appended to, (see case 1, and 3 in Proced@p). For the equality case (case 2), the nonterminal

is appended to both rules, andr, . Based on Lemma 4, we have four cases in Proce@yyeéllustrated
in Figure 3(a), where the syntagmas in two consecutive steps are shown. The 4th case necessarily follows
after case 1 and 3, where the nonterminals appended to, . We noticed that in case 3,, andr,, are
swapped. The transition diagram among the 4 cases is shown in Figure 3(b). A full cycle of Pr@@pdure
is exemplified in Figure 4(a), where the ground derived subsyntagmas are also shown.

At the end of the Procedur®p both &, and &, are computed, based on the corresponding rules
previously computed.’® This is in accordance with the principle that the rule derivation/generalization
steps are the inverse of each other, sihdeis a generalization, whilglb is a derivation.

Procedure Op(G1, G, 1)

I* Pg,(i) Y Pg,(i) or Pg, (i) A Pg, (i) */
| — hs(Pa, (i) I* = lhs(Pa, (i) o
o «— Egr(7)

Tgy < ThS(PGI (Z))) Tgy < rhS(PGz (Z)))
Iy <~ T < @

x1 — next(ry,) 2 — next(ry,)

while x; 75(2)\/.132 7é(2)d0

*G
T = 04 Co

*G
Ty = 04, C o

if 04, C 0g, Vg 2 0oy, then

1 if 04, D 04, then
|_ ry «— ry@ J)l(le) i — 1 Qo (Um) [*@is the concatenation operator K
2 if 0, = 04, then
L /*xl = x4 11 K
Ty — 1@ xl(o—ml) Ty i@ 1'2(0'952)

3 if 0, C 04, then

| rv —ryQa(0g,) A —riQai(0y,) To —— Ty
x1 — next(ry,)
xo — next(ry,)

4 else
| ro — 1 Qay(oy,) x2 — next(ry,)

d «— GenerateConstraints(—)
d, «— GenerateConstraints(—)
if Op = Y thenreturni — rv: ®+ elsereturnl — r, : &,
function next(r)
x — first(r)
r « rest(r)
returnx

Lemma 5. The systent = (L, =) together with théub and glb operators computed by Algorithms 1 and
2, guarantees that for any two grammars, Go € L the following property hold€7, ¥ G2 = G1,Gs =

leGQ(GlYGQFGl,GQFGl)\GQ)

Proof. From Procedurép (Figure 3 and Figure 4(a)), it results that the boundabigs+; ¥ G3) and
bd(G1 A G4) are computed with respect to (4) such that the theorem property is guaranteed for each grammar
rule (see Figure 2(a)). O

%The constraints can be computed based on the syntagmas which augment the grammar nonterminals (Definition 2, p5),
[MMKO5, pg. 10].
We need to include the statemeiftzo > @1 then x1 «—— - iff chains of unary branching rules are considered.

AR N e
S L 09 103 ! . 1 1 2
: 1 : 2: =3 : Peyva, (i) A— Bi,B3,B5: ®y
| S A TR
—1 ~—02.. 0304 Pg, (i) A — B{,B;,B3,Bi: &
Lol o3 o3l okl 302§P . A 2 P2 P2 P2 p2.
; ! i B ; i ! 02(1) — Bi, B3, B3, Bi, B5: ®
P A A A A A
: ‘ ‘ ; : ‘ : 2 p2 P2 P2 pl pl.
: o 0-2; = T 05 Uﬁ: PGI)\GQ(Z) AHBl7B27B37B47B37B4- (b)\

&: Er(i)!

() (b)

Figure 4: (a) Example of computirigb andglb; (b) Grammar semantics reduced to the sublanguage

Theorem 2. The systenf = (L, =) together with théub and glb operators computed by Algorithms 1 and
2, forms a complete lattice.

Proof. Besides the property given in Lemmal%p and glb operators are computed w.r.t. (5) (see Figure

2(b)), such that we haves(YgerG) = (\gers ts(G) = ts(T), bs(hgerG) = Naer bs(G) = bs(L),

which gives the uniqueness ofand_L elements. O
Similar to the subsumption relatiok,, thelub, Y andglb, A operators are semantic-based.

Theorem 3. In the complete lattic&€ = (L, =), VG1, G2 € £ we have:

(©) S(Gl Y Gg) D) S(Gl) U S(Gg)
S(G1 A Ga) CS(G1) NS(G2)
Proof. The proof is straightforward from Theorem 1 and Lemma 5. O

Thus, the complete grammar lattice is semantic-based (see Figure 4(b)). It is straightforward to prove
that the complete grammar lattick = (£, =) has all the known properties (i.e., idempotency, commuta-
tivity, associativity, absorption] and L laws, distributivity). In proving these properties, it is crucial that
Proceduredp always computes the constrairdts and® , at the end, and thus they are independent of the
order in which the operators are applied.

6 Grammar Induction

According to the assumption from Section 3, the rules corresponding to the grammar preterminals (POS) are
given (i.e..T¢(0)). Thus, for a given representative example &g¢, we can construct the grammarusing
a robust, active chart parser [Kay731(= Bottom(Er)) (Definition 2, p7, and [MMKO5, pg. 14, 23]). In
order to build theT element, we need to apply the grammar generalization procedure starting fram the
element. This requires knowledge of the sublanguBgebecause the partial order of the grammar lattice
is semantic-base®(G) = L,(G) N E,).

The grammar generalization is determinate if the rule generalization step is determinate.

Definition 16. A grammar ruler’; € P is determinate generalizabley the rule generalization step (3) if
TB
36 € rhs(r’y) and3! rg =B — 3: ¢ (i.e., one and only one rulez), s.t.r’, < r4 with S(r’y) C S(ra).
1C
We use the notation!, < r 4 for the determinate generalization step with semantic increase.

Definition 17. A LWFG G is conformw.r.t. a sublanguagé, C L,(G) iff G is normalized and un-
ambiguous w.r.t.E, and the rule derivation step (2) is determinaié-) and guarantees the decrease in

1D
rule semanitcs§(r4) O S(r’y)) for all grammars derived fronr. We use the notationy + 1/, for the
determinate derivation step with semantic decrease fllis unique and thus not specified).

As a conseqguence, the only rule generalization steps (3) allowed in the grammar induction process, are
those which guarantee the same semantic rel&of) C S(r) 2, which assures that all the generalized

rgC
grammars belong to the grammar lattice. We use the notatjond r4 for the generalization step with
semantic increase (it can be nondeterminate, andrthusust be specified).

Definition 18. In a LWFG T conform w.r.t. a sublanguagg,, we call chain a set of ordered rules
chainT = {Bk — Br_1: ®p7,...,By — B1: $o71,B1 — 3: (I)lT}1 suchthatB & --- = By = Bj. All
the chain rules, but the last, are unary branching rules. The last rule is the minimal chain rule.

The rules of a chain must ground derive equivalent representative syntagias --- = op, (see
Figure 5(a)), i.e., syntagmas that have the same string and the same semantic representation, but different
categories (see Definition 2, p7 and [MMKO05, pg. 19]).

For the L grammar of a lattice that ha$ as its top element, the aforementioned chain becomes
chain, = {By — 0(1: ®Px1,...,Bs — [1: P9y, By — [1: 1}, where, contains only preter-
minals and the rule order is unknown. By the parsing preserving property of the rule derivation step, the
same equivalent representative syntagmas can be ground derived frohathe rules (see Figure 5(b)).

We denote bychain = {r,...,re,71}, One or more chains in any lattice grammar, where the rule
order is unknown. The minimal chain rules, = min(chain), can always be determinedif, € chain

S.t. Vr € chain — {rm} A rm 4 Tmg We have tha(r,,) = S(r,4). By the consequence of the conform

property, the generalization step, r% Tmg IS NOt allowed, since it does not produce any increase in rule
semantics. That is, a minimal chain rule cannot be generalized by any other chain rule, with an increase in
its semantics.

Givenchain and the aforementioned property of the minimal chain rules, we can recowgt by
Procedurehains _recovery

Lemma 6. Given a LWFGT conform w.r.t. a sublanguagg,, for any grammai_ derived fromT, all rules
are determinate generalizable if all chains of the grammafi.e., all chain) are known (e.g., recovered
by Procedurechains _recovery).

Proof. The only case of rule generalization step hondeterminism, with semantic increase, is introduced by
the derivation of the unary branching rules of ordetédin+, which yields the unorderechain | , where

B;,—(3,C
B, — 3, g B; — Bj, holds for allB; < B;. Thus, keeping (or recovering) the ordekgdiinT in
any grammaxs derived fromT, all the other grammar rules are determinate generalizable. O

Algorithm 4 builds the latticg element,T <« Top(ER, E,). In step 1, the Proceduokains _recovery
detects althain = chain, , which contain rules with identical right-hand side. In step 2¢kdlin | rules

are transformed inhainT form, by generalizing them through the minimal chain rule (see also Figure 5(c)).
Tm C
The generalization step 4 r, guarantees the semantic incre&ée,) > S(r) for all the rulesr which

12This property allows the grammar induction based only on positive examples.

are generalized through,,, thus being the inverse of the rule derivation step in the grammar lattice. The
rulesr are either chain rules, or rules having the same left hand side as the chain rules. The retuPped set
contains alkhainT unary branching rules of th€ grammar. Therefore, in Algorithm 4 the st initially

contains determinate generalizable rules, and the "while loop” can determinately generalize all the grammar
rules. An example showing the full trace of Procedcinains _recovery is given in Appendix A.

Algorithm 4: Top(Er, E,)
P, « Bottom(ER)

Pr «—chains _recovery (P,,ER,E,) I*Pris determinate generalizable */
1C
while 3r € Pr s.t.7 - rgydo
L 77y
return Pt

Procedure chains _recovery(P, Eg,FE;)

while Er # 0 do
1 o «— first(ER)

chain — {r € P, |r ES or No. =0} I* chain = chain */
lhs_chain — {lhs(r)|r € chain}

Er «— Eg — {0, € Eg|r € chain Ar =S or}

2 while |chain| > 1 do

[* chain recovery */

Tm < min(chain) * r, cannot be generalized with semantic increase */
chain «— chain — {r,}

lhs_chain — lhs_chain — {lhs(ry)}

Tm C
foreachr € P, Alhs(r) € lhs_chain s.t.7 - rgdo
L 7Ty

re_turnPL /* The returnedP; contains alkhain */

Theorem 4. If E is the set of representative examples associated with a L&WEGnhform w.r.t. a sublan-
guageF, O Eg, then the procedure Top, F,) computes the latticé element such that = G.

Proof. SinceG is normalized (Definition 12), none of its rule can be generalized with increase in semantics.
Starting with thel element, after applying Procedurbains _recovery , all rules that can be general-
ized, with increase in semantics, through the rule generalization step (3), are determinate generalizable
(Lemma 6, Definition 16, 17) . Since the rule generalization step and the rule derivation step are the inverse
of each other, the process of grammar generalization ftota T is the inverse of the derivation process
from G to L, which is finite. This means that regardless of the grammar sequer@e, ..., G,, T, there
is a derivation process that yields the inverse sequéhce,, ..., G, L. SinceS(G) = E, andS(G;) are
increasing (becaus@ is conform toFE,), the generalization process ends at the semantic§iffiiy = F,,
and thusT = G. O

If the hypothesis of Theorem 4 holds, then any grammar induction algorithm that uses the complete
lattice search space can converge to the lattice top element, using different search strategies.

7 Conclusions

In this paper we have presented the theoretical foundation of the search space for the grammar induction
problem. We defined a set of grammars derived from a normalized LMIE-®hich preserve the parsing of

By ri € Pryi=1..k B rie P,i=1.k

*T * L
Tk = OBy Tk = OBy

BNl
1Tk—1 = OB,

0By, By, Hﬁl Bk*)B1 ... Bx— Bk 1
By.1—081L Br_1—B1 ...

* T : :
T2 = OB, . By — 31 B2 — B:
r1g031 17"*:%(7 B: — 61
1 By
o, =" "=0B, 0B,
(a) (b) (c)

Figure 5: (a,b) Parsing trees for chain rulesdiin+ andchain | , respectively); (c) The iterations of step
2 in Procedurehains _recovery (chainT contains the diagonal rules)

the representative examples s and whose semantics is reduced to a sublangiiggaNe proved that
this set of grammars forms a semantic-based complete lattice, which has as its top element the Gtammar
The set of representative examplgg and the sublanguage, are key elements in defining the complete
grammar lattice. We proved that givél;, andE,;, the lattice top element can always be learned, as a LWFG
conform w.r.t.E,.

The search space formed by the complete grammar lattice can guarantee the convergence of all the
grammar learning algorithm solutions, if they obey the conform grammar properties defined in this paper.
This result is important for developing efficient relational learning algorithms for LWFG induction.

References
[CNO3] Peter Culicover and Andrzej NowakKynamical Grammar: Minimalism, Acquisition, and Changex-
ford University Press, 2003.

[Col99] Michael Collins. Head-Driven Statistical Models for Natural Language ParsifRhD thesis, University
of Pennsylvania, 1999.

[Kay73] Martin Kay. The MIND System. In Randall Rustin, editbiatural Language Processingages 155-188.
Algorithmics Press, New York, 1973.

[KM04] Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic structure: Models of depen-
dency and constituency. Proceedings of the ACL’Q£2004.

[MMKO04] Smaranda Muresan, Tudor Muresan, and Judith Klavans. Inducing constraint-based grammars from a
small semantic treebank. Proceedings of AAAI Spring Symposium on Language Learning: An Interdis-
ciplinary PerspectiveStanford University, 2004.

[MMKO5] Smaranda Muresan, Tudor Muresan, and Judith Klavans. Lexicalized Well-Founded Grammars: Learn-
ability and merging. Technical Report CUCS-027-05, Columbia University, New York, NY, 2005.

[Pin89] Steven PinkelLearnability and Cognition: The Acquisition of Argument StructWBT Press, 1989.

[PS84] Fernando C. Pereira and Stuart M. Shieber. The semantics of grammar formalisms seen as computer
languages. IfProceeding of the ACL'84ages 123-129, 1984.

[PW80] Fernando C. Pereira and D.H.D Warren. Definite Clause Grammars for language anaftifisal
Intelligence 13:231-278, 1980.

[SSP95] Stuart Shieber, Yves Schabes, and Fernando Pereira. Principles and implementation of deductive parsing.
Journal of Logic Programming24(1-2):3-36, 1995.

[Tar55]

309, 1955.
[VEK76]

the ACM 4:733-742, 1976.
[wWin99]

A Example

Table 1 shows the trace of Procedurleains

_recovery

for auxiliary verb constructions.

A. Tarski. Lattice-theoretic fixpoint theorem and its applicatid®exific Journal of Mathematic$:285—

M. van Emden and R. Kowalski. The semantics of predicate logic as a programming landmagel of

S. Wintner. Compositional semantics for linguistic formalismsPfaceedings of the ACL'99999.

It can be

noticed that at the end, all the rules are determinate generalizable. For simplicity, only the strings corre-
sponding toE'r are shown (i.e., their semantic molecules are not given; examplés; afith semantic
molecules are presented in [MMKO5, pg. 38]). The constraintsvhich are not shown, are computed at
each steps for the generalized rules. The sublangiggesed for the generalization process is not given.
As a note, the”ro nonterminal will be furthered generalized$6;. Figure 6 shows examples of parse trees
corresponding to the ground derivation in the grammar returned by Proceuthires _recovery

Er Py Generalized Rules at:
Iteration 1 Iteration 2 Iteration 3 Itereration 4
he is * AVO — Pro, Aux
is he AV0 — Aux, Pro
he is * AV1 — Pro, Aux * AV1 — AVO0
he is not AV1 — Pro, Auz, Aux | AV1 — AVO0, Auz
he is * AV2 — Pro, Aux * AV2 — AVO * AV2 — AV1
hecanbe | AV2 — Pro, Aux, Aux | AV2 — AV0, Aux | AV2 — AV1, Auzx
heis * AV3 — Pro, Aux * AV3 — AVO0 * AV3 — AV1 * AV3 — AV2
he has beenl AV3 — Pro, Auz, Aux | AV3 — AVO0, Aux | AV3 — AV1, Aux | AV3 — AV2, Aux
he is * AV4 — Pro, Aux * AV4 — AVO * AV4 — AV1 * AV4 — AV2 * AV4 — AV3
heisbeing | AV4 — Pro, Auzx, Aux | AV4 — AVO0, Aux | AV4 — AV1, Aux | AV4 — AV2, Aux | AV4 — AV3, Auzx

Table 1: A trace of Procedudhains

_recovery

rules are marked with *, and the minimal chain rules are in bold.

AV4 AV4
‘ /\
AV3 AV3 Aux
|
AV2 AV2 Aux
| Wi R
AV1 ux
AVO AVO Aux
/ \ . / \
Pro Aux ux Pro
r‘le |L ian rle not
(@) (b)

have been being

for auxiliary verb constructions with 4 iterations. Chain

Figure 6: (a) Chain rule deriving a syntagma frég; (b) Non-chain rule deriving a syntagma frafi)

