
PachyRand: SQL Randomization for the PostgreSQL JDBC Driver

Extended Abstract
Michael E. Locasto Angelos D. Keromytis

Department of Computer Science
Columbia University in the City of New York�

locasto, angelos � @cs.columbia.edu

Abstract

Many websites are driven by web applications that
deliver dynamic content stored in SQL databases.
Such systems take input directly from the client
via HTML forms. Without proper input validation,
these systems are vulnerable to SQL injection at-
tacks.

The predominant defense against such attacks is to
implement better input validation. This strategy is
unlikely to succeed on its own. A better approach is
to protect systems against SQL injection automati-
cally and not rely on manual supervision or testing
strategies (which are incomplete by nature). SQL
randomization is a technique that defeats SQL in-
jection attacks by transforming the language of SQL
statements in a web application such that an attacker
needs to guess the transformation in order to suc-
cessfully inject his code.

We present PachyRand, an extension to the Post-
greSQL JDBC driver that performs SQL random-
ization. Our system is easily portable to most other
JDBC drivers, has a small performance impact, and
makes SQL injection attacks infeasible.

1 Introduction

Websites that utilize database-driven content are
vulnerable to SQL injection [1] attacks. Web ac-
cess to a database is traditionally provided by a mid-
dleware component that translates client requests
to SQL queries and returns dynamically created

HTML based on the HTTP request parameters. This
component often takes input directly from HTML
forms. By taking advantage of weak or non-existent
input validation, malicious users can modify or re-
trieve private information or bypass access control
mechanisms.

Due to the widespread use of web application sys-
tems, SQL injection attacks represent a serious
threat to both organizations that have deployed web
applications as well as the users that trust these sys-
tems to store confidential data. The contribution of
this paper is the design and deployment of a sys-
tem to automatically counter such attacks. The sys-
tem’s name is taken from a combination of random-
ization and pachyderm, which is derived from the
obsolete order name (itself from the Greek “pakhu-
dermos”, meaning thick-skinned) for PostgreSQL’s
mascot, the elephant.

1.1 SQL Injection Attacks

Since many SQL queries follow predictable pat-
terns, and the input (HTML form elements that cor-
respond to HTTP parameters) is under the direct
control of an attacker, attackers can insert arbitrary
pieces of SQL code into these form fields. For ex-
ample, rather than supplying a username to an ele-
ment called “username,” the attacker can supply
a specially crafted piece of SQL code that, when
merged with the query template, causes the query to
exhibit radically different behavior than the query
designer intended.

Even if the attacker does not know the underlying
table structure of the database, injecting SQL or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


supplying bad input can cause the middleware to re-
turn error messages. Such messages are meant to
aid debugging efforts, but in this instance they help
an attacker gain knowledge about system internals.
This technique has been shown to be effective [2, 6].

The current defense against such attacks is to em-
ploy better coding practices that aim at producing
more effective input validation routines. Since this
strategy does not provide a quantifiable solution to
the problem, we employ a variation of instruction
set randomization called SQL randomization. SQL
randomization enables applications to automatically
defend against SQL injection attacks, even when in-
put is not properly validated.

1.2 Instruction Set Randomization

In order to understand how SQL randomization can
protect web applications, it is useful to understand
the concept it is based on: instruction set random-
ization (ISR). The basic premise of ISR is to create
unique execution environments for individual pro-
cesses. This environment is created by performing
some reversible transformation (e.g., XOR) on the
instruction stream; the transformation is driven by
an unique random key for each executable binary
object. The binary is then decoded during runtime
with the appropriate key. This technique forces an
attacker to guess the key to exploit a code-injection
vulnerability.

Since an attacker crafts an exploit to match some
expected execution environment (e.g. x86 machine
instructions) and the attacker cannot easily repro-
duce the transformation for his exploit code, the in-
jected exploit code will be invalid for the special-
ized execution environment. The mismatch between
the language of the exploit code and the language
of the execution environment causes the exploit to
fail. Without knowledge of the key, otherwise valid
(from the attacker’s point of view) machine instruc-
tions resolve to invalid opcodes or eventually crash
the program by accessing illegal memory addresses.
Previous approaches to ISR [3, 5] have proved suc-
cessful in defeating code injection attacks.

1.3 SQL Randomization

The ISR concept can be extended to SQL
[4]. The SQL code that a web application
executes is transformed from standard SQL to
a specialized version. For example, the key
“YOU CANT GUESS THE KEY0986532” might
be appended to every SQL keyword. The web ap-
plication knows that keywords have this particular
key string appended to them – the attacker does
not. The web application is able to de-randomize
the SQL statement by stripping the appropriate key.
Any SQL statements that the attacker injects into
the web application will have keywords that do not
match the expected key and will fail parsing. The
machinery that accomplishes this process in our sys-
tem is described in Section 2 and Section 3.

We believe that using PachyRand does not impose a
significant performance overhead. Response times
for requests are likely dominated by the network
latency between the web server and the client, the
processing time of the web application’s “business
logic,” and the processing time of the database it-
self. We plan to validate this performance hypoth-
esis by observing how long the driver takes to de-
randomize SQL statements of various lengths and
parsing complexity.

1.4 Open Source Security Research

PachyRand represents a good example of the ben-
efits of being able to implement an innovative re-
search idea on an open and widely-used platform.
Development methods that provide unfettered ac-
cess to the source code allows the research com-
munity to rapidly apply novel techniques and con-
cepts to real systems. This kind of unencumbered
contribution is especially important in implement-
ing security measures. SQL randomization is one
such security feature that will have a large impact
on the community involved in delivering and con-
suming web-accessible database content.



1.5 Paper Organization

The remainder of this paper abstract is dedicated to
explaining the design (Section 2) and partial imple-
mentation (Section 3) of PachyRand. Implementa-
tion continues, and the system is freely available
from our website1. We plan to submit the system
to the PostgreSQL JDBC driver team for considera-
tion. Hopefully, its adoption can encourage the im-
plementation of SQL randomization for other lan-
guages with database interface libraries.

2 PachyRand Design

Our system consists of two components: an offline
SQL randomization tool used to randomize the SQL
statements inserted into a Java application (for ex-
ample, a Java servlet) and an online module that is
part of the JDBC driver (as shown in Figure 1). This
second component is responsible for parsing SQL
statements and queries and de-randomizing them. If
de-randomization does not succeed, then the driver
throws an exception.

The operation of the system utilizing our modified
driver proceeds as detailed in Figure 1. The client�����

sends an HTTP request to the web server. The
web server recognizes that this request should be
handled by the application server and passes it off
to that logic

�����
. The application server then utilizes

the services of the JDBC driver to obtain data from
the database

�����
. The database answers the query�
	��

and the application server passes an HTTP re-
sponse back to the client

�����
via the web server.

In our system, the SQL statements in the appli-
cation server have been randomized, and are de-
randomized by the JDBC driver before being sent to
the database. Any SQL injected by the attacker as
part of

�����
will fail to de-randomize correctly, caus-

ing the driver to raise an exception; the injected SQL
never gets to the database.

1http://nsl.cs.columbia.edu/projects/
pachyrand/pachyrand.tar.gz

2.1 Benefits

Our approach has four benefits:

1. The system protects both validated and non-
validated SQL commands against SQL injec-
tion attacks.

2. A quantifiable security property, whereas
previous systems only provide ad hoc methods
of preventing or detecting SQL injection. The
difficulty of successfully injecting SQL is com-
parable to the brute force guessing of a crypto-
graphic key.

3. The anticipated performance impact is small.
This property is especially important, because
the system operates online and is invoked for
each request.

4. Provides the previous benefits without the
need for complex validation logic that may
have subtle bugs and miss corner cases. Such
code often clutters up the source, making it dif-
ficult to maintain and debug the application.

Web
Browser

Driver
JDBC

Web Server/ ServerApp

Database

1

5

2

3

4

Figure 1: General architecture for JDBC-based web
applications. The application server includes process-
ing logic that invokes the functionality of the JDBC
driver to pass SQL statements to the database.

2.2 System Limitations

Dealing with stored procedures is a difficult issue,
as these SQL statements are stored directly in and



invoked by the database itself. It is not possible to
de-randomize them without changing the SQL pars-
ing logic in the database.

Changing the randomization key is a potential issue.
This problem can be addressed by storing queries in
an external data source (e.g., an XML file) that the
application reads in during execution. This content
can easily be randomized during runtime under a
different key.

One interesting issue is that SQL randomization
is meant to work in an environment where the at-
tacker does not have direct control over the de-
randomization process. If an attacker controls this
component (in our case, the JDBC driver), they can
easily discover the randomization key.

Finally, note that PachyRand does not handle any er-
ror generated by a failure to de-randomize an SQL
statement; rather, its purpose is to detect an attack
and then notify the web application by generating an
SQLException. Instances of SQLException
occur normally during JDBC operations, and appli-
cations generally expect to handle them. Web ap-
plications should be wary about displaying the error
messages. Doing so may reveal the randomization
key.

3 Implementation

The implementation of PachyRand has proceeded in
two phases. The first phase was a proof-of-concept
system that utilized a simple but incomplete pars-
ing strategy for SQL statements. The prototype first
system is available for download2. We are working
on an improved version of the system that employs
code generated by Antlr3 2.7.4 to properly parse
SQL statements. The grammar that Antlr works
from was translated by hand from the PostgreSQL
7.4.5 grammar source (meant for flex/bison). The
only difference between the two implementations is
the parsing code.

Our implementation is quite compact. It contains

2http://nsl.cs.columbia.edu/projects/
pachyrand/pachyrand-poc.tar.gz

3http://www.antlr.org/

a utility to randomize SQL statement strings (from
either standard input or a file) and modifications to
the JDBC driver to configure the driver with the ran-
domization key and de-randomize the text of SQL
statements passed to it via its API. Finally, our sys-
tem includes a sample test application that uses the
modified driver and accepts SQL statements from an
interactive command prompt. This test utility can be
used to interactively attempt SQL injection and ob-
serve how the driver refuses to accept the modified
statements.

We constructed a Java class jd-
bcrand.JSQLRandomize to take SQL state-
ments as input and randomize them with a particular
key. This tool can also generate a random key using
the java.security.SecureRandom class.
It should be used by web application developers
to randomize their SQL queries before they are
inserted into the application’s code.

We modified the JDBC driver to accept a new con-
figuration parameter that contains the randomiza-
tion key. When the driver is asked to execute a
statement or query, the driver checks if this config-
uration parameter exists. If it does exist, the driver
parses the SQL statement and attempts to strip off
the key from each SQL keyword. If this process
fails, the driver raises an exception for the call-
ing code. Except for the configuration parameter,
the driver should be included in the CLASSPATH,
loaded, and invoked normally.

The software is compiled via a standard makefile.
Wrapper scripts written for a Unix shell environ-
ment are provided to run the randomizer and the
sample test application. A patch against the current
CVS head of the JDBC driver is provided, as well
as a binary version of the modified driver.

4 Related Work

The work most closely related to ours is Boyd et
al. [4], which presents the concept of SQL random-
ization for MySQL. PachyRand is an extension of
SQL randomization to another platform and slightly
more compact organization.



Although SQL injection attacks represent a critical
threat to web applications and databases, the work
to address this type of vulnerability has focused on
providing better input validation logic. There is
some work [7] being done to modify Intrusion De-
tection systems to detect SQL injection abuses, but
these efforts still have two shortcomings. First, they
rely on writing complex regular expressions to for-
mulate a rule that can match certain suspicious SQL
data. Such rules likely do not cover all possible
cases of injection strings. Second, the IDS merely
notes the possibility of an attack; it does nothing to
prevent one. Even if combined with a tool that re-
writes the data or denies the request, such systems
are susceptible to false positives.

Work that relates to the general instruction set ran-
domization technique is RISE [3], which applies a
randomization technique similar to our Instruction-
Set Randomization [5] for binary code only, and
uses an emulator attached to specific processes.

Because the methods of injection are quite similar,
cross-site scripting4 is closely related to SQL injec-
tion. Cross-site scripting is an example of an attack
that can be performed on web applications. An at-
tacker supplies HTML code as the input to a form
element, and the web server then renders that in-
put as part of a results page. For a non-malicious
request, displaying such data (e.g., a username) is
usually harmless. CSS attacks rely on the developer
not employing proper input validation by escaping
special HTML characters.

5 Conclusions

We have presented PachyRand, an extension to
the PostgreSQL JDBC driver that performs SQL
randomization. This system is broadly applicable
(web-based dynamic content systems are widely de-
ployed), addresses a critical security problem (SQL
injection attacks), implements an innovative idea
(SQL randomization), and is an improvement over
previous efforts. Our system is easy to use, portable
to other JDBC drivers, should have a small perfor-

4http://httpd.apache.org/info/
css-security/

mance impact, and makes SQL injection attacks in-
feasible.

References

[1] CERT Vulnerability Note VU#282403.
http://www.kb.cert.org/vuls/id/
282403, September 2002.

[2] C. Anley. Advanced SQL Injection
In SQL Server Applications. http:
//www.nextgenss.com/papers/
advanced_sql_injection.pdf, 2002.

[3] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S.
Palmer, D. Stefanovic, and D. D. Zovi. Ran-
domized Instruction Set Emulation to Disrupt
Binary Code Injection Attacks. In Proceedings
of the 10th ACM Conference on Computer and
Communications Security (CCS), pages 281–
289, October 2003.

[4] S. Boyd and A. Keromytis. SQLrand: Prevent-
ing SQL Injection Attacks. In Proceedings of
the 2nd Applied Cryptography and Network Se-
curity (ACNS) Conference, June 2004.

[5] G. S. Kc, A. D. Keromytis, and V. Preve-
lakis. Countering Code-Injection Attacks With
Instruction-Set Randomization. In Proceedings
of the ACM Computer and Communications Se-
curity (CCS) Conference, pages 272–280, Oc-
tober 2003.

[6] D. Litchfield. Web Application Dis-
assembly wth ODBC Error Messages.
http://www.nextgenss.com/
papers/webappdis.doc.

[7] K. Mookhey and N. Burghate. Detection
of SQL Injection and Cross-site Scripting At-
tacks. http://www.securityfocus.
com/printable/infocus/1768, March
2004.


