
DotSlash: Providing Dynamic Scalability to Web Applications
with On-demand Distributed Query Result Caching∗

Weibin Zhao, Henning Schulzrinne
Department of Computer Science

Columbia University
New York, NY 10027

{zwb,hgs}@cs.columbia.edu

Abstract
Scalability poses a significant challenge for today’s web
applications, mainly due to the large population of po-
tential users. To effectively address the problem of short-
term dramatic load spikes caused by web hotspots, we
developed a self-configuring and scalable rescue sys-
tem called DotSlash. The primary goal of our sys-
tem is to provide dynamic scalability to web applica-
tions by enabling a web site to obtain resources dynami-
cally, and use them autonomically without any adminis-
trative intervention. To address the database server bot-
tleneck, DotSlash allows a web site to set up on-demand
distributed query result caching, which greatly reduces
the database workload for read mostly databases, and
thus increases the request rate supported at a DotSlash-
enabled web site. The novelty of our work is that our
query result caching is on demand, and operated based
on load conditions. The caching remains inactive as long
as the load is normal, but is activated once the load is
heavy. This approach offers good data consistency dur-
ing normal load situations, and good scalability with
relaxed data consistency for heavy load periods. We
have built a prototype system for the widely used LAMP
configuration, and evaluated our system using the RUB-
BoS bulletin board benchmark. Experiments show that a
DotSlash-enhanced web site can improve the maximum
request rate supported by a factor of 5 using 8 rescue
servers for the RUBBoS submission mix, and by a factor
of 10 using 15 rescue servers for the RUBBoS read-only
mix.

1 Introduction
Scalability poses a significant challenge for today’s web
applications, mainly due to the large population of po-
tential users. The phenomenon of web hotspots, also
known as flash crowds or the Slashdot effect [1], is a
well identified example. Traditionally, a web site has a
fixed set of resources, leaving it unable to handle a large
load increase without significant overprovisioning. It is

∗This work was supported in part by the National Science Founda-
tion (ANI-0117738).

unacceptable to sacrifice availability by losing valuable
users in the critical period – “15 minutes of fame”, but it
is uneconomical to invest on more powerful infrastruc-
ture which is idle most of time.

To effectively address the problem of short-term dra-
matic load spikes caused by web hotspots, we developed
a self-configuring and scalable rescue system called Dot-
Slash [24, 25], which allows a web site to set up a dis-
tributed web server system in wide area networks on the
fly. The primary goal of DotSlash is to provide dynamic
scalability to web applications, i.e., to enable a web site
to obtain resources dynamically, and use them autonom-
ically without any administrative intervention in han-
dling load spikes. There are four aspects of dynamic
scalability for web applications, namely access network
bandwidth, web server, application server, and database
server. Our previous work on DotSlash [24, 25] can dis-
tribute static content and application programs dynami-
cally from the origin server to rescue servers. As a re-
sult, the bottlenecks at the access network, web server,
and application server can be effectively removed.

In this paper, we address the database server bottle-
neck within the DotSlash framework. Database scalabil-
ity is an important issue for web applications. First, the
database can be the most constrained resource in certain
web applications such as on-line bookstores [4]. Sec-
ondly, after other bottlenecks have been removed, the
database server will become a bottleneck at some point
if the load continues to increase. There has been a large
body of research work on database replication, partition,
caching, and clustering for improving database scala-
bility [16, 19, 3, 6, 10, 8]. However, existing systems
often involve manual configurations, making them dif-
ficult to be deployed dynamically to new servers. To
provide dynamic scalability, we need to reduce admin-
istrative intervention as much as possible. This paper
presents a technique that allows a web site to set up
on-demand distributed query result caching on the fly,
which can greatly reduce the workload at the back-end
database server, and thus increase the request rate sup-
ported at a DotSlash-enabled web site. The novelty of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


our work is that our query result caching is on demand,
and operated based on load conditions. The caching re-
mains inactive as long as the load is normal, but is acti-
vated once the load is heavy so as to improve database
scalability. This approach offers good data consistency
during normal load situations, and good scalability with
relaxed data consistency for heavy load periods. On-
demand caching also helps to keep our system simple.
Since we don’t need to replicate a lot of DBMS func-
tions, the overhead of our caching is very low. Other
important features of our query result caching include:

• Distributed: Our query result cache is fully dis-
tributed, and thus can scale well. Normally, each
web server has its own query result cache. How-
ever, different web servers may share a cache so as
to increase cache hit ratio, and further reduce the
load at the back-end database.

• Self-configuring: The distributed cache is self-
configuring, and fully controlled by the origin
server. There are two major control parameters,
namely expiration time for cached objects, and
whether or not to perform cache invalidation. In
general, a short expiration time in the order of 1
minute is used to bound the staleness of cached ob-
jects. A simple invalidation may be performed for
cached objects based on local updates, and in the
granularity of table column. Our cache invalidation
scheme is designed to be simple, low overhead, and
applicable to all applications.

• Transparent: Our caching system is transparent
to web users and web applications. No change
is needed at client-side web browsers and at
server-side application programs. Furthermore, our
caching system handles the HTTP Cache-Control
header. If there is no-cache or max-age=0 in the
HTTP header of a client request, the query result
cache will be bypassed.

The remainder of this paper is organized as follows.
We first discuss related work in Section 2, and then de-
scribe our system design in details in Section 3. We give
extensive performance evaluation for our prototype sys-
tem in Section 4, and conclude in Section 5.

2 Related Work
Various systems have been developed to improve the
scalability of web servers and application servers dy-
namically, such as Akamai [2], ACDN [17], and our
previous work on DotSlash [24, 25]. However, dy-
namic scalability for databases is largely an open issue.
Recently, Olston et al. [14] proposed a scalability ser-
vice using multicast-based consistency management, but
their service is not transparent since clients need to con-
nect to proxy servers in order to use their service, and the

fixed number of proxy servers may become a scalabil-
ity bottleneck as the number of clients and home servers
increases. Amza et al. [5] evaluated transparent scal-
ing techniques for dynamic content web sites. Their re-
sults show that query result caching can significantly in-
crease performance for read-mostly databases, whereas
content-aware scheduling is effective for write-intensive
databases.

Replication is a widely used mechanism to provide
better scalability for databases. The Ganymed [16] sys-
tem separates update and read-only transactions, and
routes updates to a main database server and queries to
read-only database copies. GlobeDB [19] uses partially
replicated databases based on data partition to reduce
update traffic. These systems can deliver better perfor-
mance for a pre-configured number of database replicas,
but they do not address deploying replicas dynamically
to new servers.

Database caching [20, 3, 6, 10] is very effective in
reducing the workload at the back-end database. How-
ever, existing systems need administrative intervention
for cache deployment and setup, and the caching func-
tionality is active in all cases. In contrast, our query re-
sult caching is activated only during heavy load periods,
and can be deployed dynamically to new servers.

Database clustering [8, 15, 13] is a mechanism to pool
database servers together so as to provide high avail-
ability and performance. While Oracle Real Application
Clusters [15] uses a shared cache architecture, MySQL
Cluster [13] is built on a shared-nothing architecture.
Clustered JDBC [8] implements the Redundant Array
of Inexpensive Databases concept, and provides a sin-
gle virtual database to the application through the JDBC
interface. Generally speaking, database clustering is a
solution at the database server tier for availability, re-
liability, and performance. In contrast, DotSlash is a
solution at the web/application server tier for dynamic
scalability. Thus, our system is orthogonal to database
clustering, and can be used together with database clus-
tering at dynamic content web sites.

3 System Design
This section describes our system design. We first out-
line our major design goals, chosen scalability mecha-
nism, the application model, and our system architec-
ture. We then give details about our cache-enhanced data
driver, flexible query result caching engine, on-demand
and self-configuring cache control, and unique data con-
sistency approach.

3.1 Design Goals
Our design goals are dynamic scalability, self-
configuration, and transparency. First, we aim to pro-
vide a mechanism that can be deployed to new servers



Server

Database
Server

Application
Server
Web

Client
Driver

Data

Figure 1: DotSlash Application Model

on demand so as to improve database scalability dynam-
ically for web applications. Since deploying a scalability
mechanism dynamically incurs an overhead at the ori-
gin server, we need to reduce this overhead as much as
possible. Secondly, our system is designed to be self-
configuring, handling dramatic load spikes autonomi-
cally without any administrative intervention. Finally,
our system aims to be transparent to both web users and
web applications. Without the need to change existing
applications and user browsers, our system is easy to de-
ploy.

3.2 Scalability Mechanisms
A spectrum of mechanisms can be used to improve
database scalability. In general, caching and replication
are good for read mostly databases, whereas partitioning
may be useful when updates are frequent. For the pur-
pose of handling web hotspots, we focus on read mostly
databases, which are common for web applications such
as news sites and web forums. Compared to replication,
caching is easier to deploy dynamically, and incurs lower
overhead at the origin server because data in caching is
distributed from the origin server to caches on-demand,
avoiding unnecessary data transfers. Thus, we narrow
down our option to database caching.

In terms of database caching, we have two main de-
sign choices, namely table level caching and query result
caching. Although table level caching [3, 6, 10] is more
efficient in that it can answer arbitrary queries on cached
tables, query result caching [20] is much simpler and
can save expensive computations on cache hits. Thus,
we chose to use query result caching in DotSlash.

3.3 Application Model
We consider the standard three-tier web architecture,
shown in Figure 1. Application programs running at the
application server access application data stored in the
database server through a data driver, which is normally
a system component of the application server. The data
driver provides a standard API for web applications to
store and retrieve data in the back-end database.

3.4 System Architecture
To provide application and user transparency, we add
the query result caching functionality to the data driver
shown in Figure 1. In our prototype system, we use the

Client

Origin Server

Rescue Server

Database

ServerServer

Web/Application

Data Driver

Query Result Cache

Database

ServerServer

Web/Application

Data Driver

Query Result Cache

Figure 2: DotSlash System Architecture

widely used LAMP configuration (i.e., Linux, Apache,
MySQL, and PHP), where the PHP module resides in
the Apache web server. Thus, for our prototype system,
we provide query result caching at the PHP data driver
for MySQL databases.

The architecture of our system is illustrated in Fig-
ure 2. When the load is heavy, the origin server uses
service discovery to discover spare capacity in a mutual-
aid community, and sets up a number of rescue servers
on the fly. Then, the origin server redirects a portion
of client requests to its rescue servers using DNS round
robin and HTTP redirect. A rescue server works as a
reverse caching proxy for the origin server. In addition
to caching static content from the origin server, a rescue
server replicates PHP scripts dynamically from the ori-
gin server, and accesses the database at the origin server.
To reduce the database workload at the origin server,
query result caching is enabled at the origin server and
all its rescue servers.

3.5 Data Driver
We modify the original PHP data driver for MySQL
databases to provide query result caching. Since the
data driver intercepts all database queries, it is straight
forward to add additional processing functions without
changing the application API and database interface.

Our caching-enhanced data driver handles each
database query as follows. For a read-only query (i.e.,
the SQL select statement), the data driver first checks
whether the query result is cached in the query result
cache. If it is a cache hit, the data driver gets the result
from the cache, and returns it to the application immedi-
ately. In case it is a cache miss, the data driver submits
the query to the corresponding database, which can be its
local database or the database at the origin server. Then,
the data driver gets the query result from the database,
saves it to the query result cache, and returns it to the
application. For a write query (i.e., the SQL insert, up-



date, or delete statement), the data driver forwards the
query directly to the database.

3.6 Query Result Cache
We keep the query result cache as a separate component
from the data driver. The advantage for doing this is
that we can experiment and use different engines as our
caching storage.

The interface between the data driver and query result
cache has two simple functions: check in and check out.
The check in function takes three parameters as input,
namely query string, query result, and caching TTL. Es-
sentially, a cached object is a key-value pair, using the
query string as the key, and the query result as the value.
The caching TTL is a control data, indicating the dura-
tion that a cached object to be kept as valid. The check in
function serializes the original query result structure into
a byte stream, and saves it at the underlying caching stor-
age engine. In contrast, the check out function takes
only one parameter as input, namely query string, and
retrieves the query result from the underlying caching
storage engine. For a cache hit, it de-serializes the query
result byte stream into the original query result structure,
and returns a pointer to the result structure. In case of a
cache miss, it returns a NULL pointer.

We consider both disk and memory as our caching
storage engine. For the disk storage engine, we use the
GDBM library. In the check in function, we first use
the ELF hash algorithm to map the query string into a
file name, and then store the query string, the serial-
ized query result byte stream, the check in timestamp,
and the caching TTL into the file. Note that different
query strings may be mapped into the same file name.
Since the probability for this type of hash conflicts is
very small, less than 1% in all of our test cases, we
adopt a simple strategy for handling the conflicts: just
letting the new query and its result overwrite the old one.
This strategy keeps our system simple without losing
much performance. In the check out function, we use
the same ELF hash algorithm to map the query string
into a file name. If the file exists, we check whether the
stored query string matches the input query string, and
the cached result is not expired (i.e., check out times-
tamp − check in timestamp < caching TTL). If so, it is
a cache hit; otherwise, it is a cache miss. We will ad-
dress cache invalidation later separately in Section 3.8.
Although the disk storage engine is simple and easy to
use, its performance is not satisfactory since the disk be-
comes a bottleneck when the load is heavy. Thus, we
turn our attention to the memory storage engine.

We use memcached [12] as our memory storage en-
gine, which is a generic high-performance distributed
memory object caching system. Memcached uses a
client-server model. At the server side, a daemon main-

tains cached objects in dynamically allocated memory.
Each cached object is a key-value pair with an expira-
tion time. At the client side, applications use the mem-
cached API to access the cache. In our prototype sys-
tem, we use an open source C library libmemcache [11]
to access the cache. A query string cannot be used di-
rectly as the cache key in memcached because a valid
memcached cache key cannot have any space characters.
Thus, similar to the disk storage engine, we use the ELF
hash algorithm to map a query string into a key for the
cache object. Then, we store both the query string and
the serialized query result byte stream as the value of the
cache object. As the memcached server already handles
the expiration time for cached objects, in the check out
function we only need to make sure that the stored query
string matches the input query string for a cache hit.

In addition to high performance, memcached is very
flexible. A memcached server can be co-located with
the web/application server, or be on a separate machine.
Also, a memcached server can be shared among an ori-
gin server and its rescue servers, or among a subset of
rescue servers. Using a shared cache can help to reduce
the workload at the origin database server. However, a
shared cache may become a potential performance bot-
tleneck, and accessing a remote cache from the applica-
tion server incurs longer delays.

3.7 Cache Control
Our caching system has three control parameters,
namely cache server, caching TTL, and cache invalida-
tion. These parameters can be configured in the Apache
web server configuration file httpd.conf, but the default
setup should work well in most cases. The default value
for cache server is NULL, meaning that our query re-
sult caching is off by default. To enable query result
caching, a cache server must be specified in the form of
host name:port number. Caching TTL is largely an ap-
plication dependent parameter. We use a default value
of 60 seconds for caching TTL in our prototype system
based on our experimental results in Section 4.3. By de-
fault, the cache invalidation functionality is off in our
system since there are trade-offs between scalability and
data consistency, and we give more weight to scalability
during heavy load periods so as to handle the workload
well.

On-demand caching is the most unique feature of our
system since our query result caching is activated only
when the load is heavy. In our system, we use two
configurable parameters, lower threshold ρl and upper
threshold ρu, to define three load regions: lightly loaded
region [0, ρl), desired load region [ρl, ρu], and heav-
ily loaded region (ρu, 100%]. We measure both net-
work and CPU utilization to indicate the load level. A
DotSlash-enabled web site uses rescue services to han-



dle load spikes [24]. As a result, a web server has three
DotSlash states: SOS state if it gets rescue services from
others, rescue state if it provides rescue services to oth-
ers, and normal state otherwise. We illustrate the oper-
ations of our on-demand caching in Figure 3, and give
details next. Based on a web server’s DotSlash states
and load regions, our query result caching is activated if
one of the following cases happens.

• When a web server is in the SOS state. In this case,
the web server is an origin server with a number of
rescue servers.

• When a web server is in the rescue state. In this
case, the web server works as a rescue server for
an origin server. For this case, the query result
caching is used only for queries applied to the
remote database at the origin server, but not for
queries applied to the local database. In other
words, the query result caching is used only for the
rescue purpose at a rescue server.

• When a web server is in the normal state but its load
level has exceeded the upper threshold. In this case,
the web server is heavily loaded, but it has not set
up any rescue servers yet.

Similarly, based on a web server’s DotSlash states and
load regions, our query result caching is de-activated if
one of the following cases happens.

• When an origin server switches from the SOS state
to the normal state

• When a rescue server switches from the rescue state
to the normal state

• When a web server’s load level falls below the
lower threshold and it is in the normal state

Self configuration is another important feature of our
caching system. When an origin server sets up its rescue
servers, it passes the query result caching control param-
eters to its rescue servers, which include caching TTL
and whether to perform cache invalidation. By doing so,
a rescue server can manage cached objects based on the
instructions from the origin server. In other words, an
origin server can set up a distributed query result caching
system on the fly using one set of control parameters.

Distributed caching is a natural feature of our system.
In the default setup, each web/application server has its
own, co-located query result cache, which provides the
following advantages. First, we do not need any addi-
tional resources to run cache servers. Secondly, it is eas-
ier for administration since we can start or shutdown the
cache server and web/application server at same time in
one machine. Third, it is more efficient in terms of re-
source utilization because our query result caching is on
demand, and the cache server is idle most of time. Fi-
nally, a naturally distributed caching system can avoid
becoming a bottleneck since an origin server can bring

SOS State

Rescue State

State
Normal

Lower Threshold

Upper Threshold
Heavy Load

Light Load

Desired Load

Cache Off

Cache Off

Cache On

Cache On

Cache Off

Cache On

Figure 3: DotSlash on-demand caching, where caching
is activated (cache on) and de-activated (cache off) based
on the web server’s DotSlash states (normal, SOS, and
rescue) and load regions (desired load, heavy load, and
light load)

in more query result caches as it obtains more rescue
servers.

3.8 Data Consistency
Data consistency is an important issue for any caching
systems. For our query result caching, we have four
mechanisms for providing a better consistency with a
low overhead. We use caching TTL to bound the stal-
eness of cached objects, use a simple cache invalidation
mechanism to discard stale results, do not cache any
empty query result sets when cache invalidation is off
so as to enable primary key based selections to observe
the effect of new insertions immediately, and allow web
users to use the HTTP Cache-Control header to bypass
our query result caching.

Caching TTL is the most basic and simplest mecha-
nism. In general, using a smaller caching TTL can im-
prove the consistency between the cache and the back-
end database. Also, it can reduce the space requirement
for caching storage. However, using a caching TTL that
is too small than necessary will reduce the caching ben-
efit. Based on our experimental results in Section 4.3,
we use a default value of 60 seconds for caching TTL in
our prototype system.

Our cache invalidation is designed to be simple, low
overhead, and applicable to all applications. The basic
invalidation scheme is as follows. Each web/application
server maintains a list of the latest write timestamps
(LWT) for all database tables and table columns that it
has submitted write queries for. In general, an insert or
delete statement will cause the LWT for a database table
to be updated, and an update statement will cause the



LWTs for one or multiple table columns to be updated.
When a cached result is checked out, we compare its
check in timestamp with all LWTs of its related tables
and table columns. If its check in timestamp is smaller
in any of the above comparisons, the result is regarded
as stale, and is discarded. It is easy to see that our cache
invalidation is generic and application independent. Al-
though application specific invalidation schemes such as
template-based invalidation [9] may deliver better per-
formance, they are difficult to be applied to our rescue
system since a rescue server needs to be able to rescue
any applications.

Note that our cache invalidation is based on local
write queries only, which may sound limited at the first
look. We choose to do so for the following reasons.
First, it helps to keep our system simple. In our res-
cue system, rescue servers do not know each other, and
the set of rescue servers for an origin server is chang-
ing from time to time. Thus, to reliably distribute all
write queries to all caches, we have to forward all write
queries to the origin server, and rely on the origin server
to distribute the write queries to all its rescue servers.
This will incur an overhead at the origin server which is
already heavily loaded. Secondly, local update based in-
validation is useful for some applications since it enables
a web user to observe the effect of its write queries im-
mediately even when our caching is on. Third, the data
inconsistency caused by the local update based invali-
dation does not exist when the load is normal since our
query result caching is on demand, and it is activated
only when the load is heavy. Finally, an origin server
may need to give up cache invalidation at all in order to
handle extremely heavy load.

In case that our query result caching is on but cache in-
validation is off, we do not cache any empty query result
sets so as to enable primary key based selections to ob-
serve the effect of new insertions immediately. This fea-
ture is useful for certain applications such as on-line user
registrations. The often used database query sequence
for a on-line user registration is as follow: (1) using a
select to check whether the key, user ID, to be inserted
has already existed in the database, (2) using an insert
to insert the registration information into the database,
and (3) using a select to retrieve the information based
on the same key from the database to provide a confir-
mation for the registration. Clearly, for a successful user
registration, the select in step (1) returns an empty result
set, whereas the select in step (3) returns a result set with
just one row.

For a read-only database query, by default our data
driver first checks it against the query result cache, and
then submit the query to the back-end database only if
it is a cache miss. However, we provide a way for web
users to bypass our query result caching, and get query

results directly from the back-end database. This func-
tion is achieved by handling the HTTP Cache-Control
header at our data driver. We have a DotSlash module
for the Apache web server, which implements our res-
cue services. For each client request, our DotSlash mod-
ule passes the HTTP Cache-Control header to our data
driver. If there is no-cache or max-age=0 in the header,
then our data driver will submit a read query directly
to the database without checking the query result cache
first, but the query result obtained from the database will
be still stored in our query result cache.

4 Evaluation
This section provides the performance evaluation of
our prototype system using the RUBBoS bulletin board
benchmark [18]. After a brief description of the RUB-
BoS benchmark and our experimental setup, we discuss
how to choose a proper caching TTL, we then give ex-
perimental results for the RUBBoS read-only and sub-
mission mixes.

4.1 Benchmark Description
Our caching system targets read mostly databases, which
are common for web applications such as news sites,
blogs, and web forums. To evaluate our prototype sys-
tem, we use the RUBBoS benchmark, which is a bulletin
board benchmark modeled after an online news forum
like Slashdot [21], and has been used in a number of
systems [20, 14, 25].

RUBBoS supports discussion threads. Each thread
has a story at its root, and a number of comments for
that story, which may be nested. There are two types of
users in RUBBoS: regular users who browse and submit
stories and comments, and moderators who in addition
review stories and rate comments. The PHP version of
RUBBoS has 19 PHP scripts, and the size of script files
varies between 1 and 7 KB. The database has a size of
439 MB, and contains 500, 000 users and 2 years of sto-
ries and comments. There are 15 to 25 stories per day,
and 20 to 50 comments per story. The length of story
and comment bodies is between 1 and 8 KB.

We use RUBBoS clients written in Java to generate
workloads. Each RUBBoS client can emulate a few hun-
dred HTTP clients. An HTTP client issues a sequence of
requests using a think time that follows a negative expo-
nential distribution, with an average of 7 seconds [22]. If
the request rate to be generated is high, multiple RUB-
BoS clients are used, each running on a separate ma-
chine. We use 7 seconds [7] as the timeout value for
getting the response for a request. If more than 10% [7]
of issued requests time out, the web server is considered
overloaded.

RUBBoS has two major workload mixes, read-only
and submission. The read-only mix calls browse scripts,



story/comment view scripts, and search scripts with a
probability of 2/3, 1/6, and 1/6, respectively. The
submission mix calls update scripts with a probability
of 1/10. The update scripts have both read and write
database queries. As a result, 2% of the total database
queries in the submission mix are write queries. A spe-
cial property of the RUBBoS workload mixes is that for
the same request rate, its read-only mix triggers a higher
workload at the database than its submission mix. The
reason is that each pre-generated story in the database
has 20 to 50 comments. In contrast, a newly submitted
story has no comments at all, or only a few comments.
Each emulated RUBBoS client always starts with, and
often returns to the Stories Of The Day page, which has
the most recent 10 stories.

4.2 Experimental Setup
The goal of our query result caching is to relieve the
database server bottleneck, and thus to increase the max-
imum request rate supported by a web site. Since our fo-
cus is on scalability, and the bottleneck we addressed is
CPU, all our experiments described in this paper are car-
ried out in our local area network, which bears similarity
to the setting of a hosting company. We use a cluster of
Linux machines connected via 100 Mb/s fast Ethernet.
These machines have three different configurations. The
configuration for web/application servers has a 3 GHz
Intel Pentium 4 CPU, and 2 GB of memory, running Red
Hat Enterprise Linux AS v.3, with Linux kernel 2.4.21-
32.0.1.EL. The configuration for the database server has
a 2 GHz AMD Athlon XP CPU, and 1 GB of memory,
running Red Hat 9.0, with Linux kernel 2.4.20-20.9. The
configuration for client emulators has a 1 GHz Intel Pen-
tium III CPU, and 512 MB of memory, running Red Hat
9.0, with Linux kernel 2.4.20-20.9.

We run a varying number of web/application servers
in different experiments. All web/application servers
run Apache 2.0.49, configured with PHP 4.3.6, worker
multi-processing module, proxy modules, cache mod-
ules, and our DotSlash module [24]. The PHP mod-
ule includes our DotSlash extension for dynamic script
replication [25], and the cache-enhanced data driver for
MySQL database to support our query result caching.
The cache server is started and shutdown along with the
Apache web server. A co-located cache server has a
storage space limit of 200 MB, whereas a shared cache
server has a storage space limit of 1 GB.

The database server runs MySQL 4.0.18, which pro-
vides a number of different storage engines. Based
on our evaluation, the default MySQL storage engine
MyISAM delivers a better performance than the Inn-
oDB storage engine for our chosen benchmark RUB-
BoS. Thus, we use MyISAM tables in all our exper-
iments. To enhance the performance of MyISAM ta-

bles during heavy update periods, we configure MySQL
with delay key write=all to delay the writing of in-
dex data to disk [23]. To support a large number
of concurrent connections, we configure MySQL with
open files limit=65535, and max connections=8192.
MySQL has a warm-up stage to load the table index in-
formation into memory. To obtain consistent results in
the steady state of MySQL, we restart the MySQL server
after each run of our experiments, and warm up it before
each experiment using the read-only mix with 1400 em-
ulated clients. This workload causes the database server
CPU to be loaded around 70%. After each run of the
submission mix, the RUBBoS database is restored to
its original content so that all experiments start with the
same database content.

We run the dot-slash.net DNS domain for dynamic
DNS name registrations. Also, we run a DotSlash ser-
vice registry to allow registration and discovery of Dot-
Slash rescue services.

4.3 Caching TTL

Caching TTL for query results is application dependent
in that different applications may need to use different
caching TTLs based on their consistency requirements.
But in general the caching TTL should be small, and in
a range of a few seconds to a few minutes. One way to
find out the proper caching TTL in an acceptable range
is to look at the relationship between the caching TTL
and hit ratio of our query result caching.

For the RUBBoS application, we perform a set of ex-
periments using different caching TTLs, and examine
the effect on the hit ratio of our query result caching.
In the experiments, we use the read-only mix, and each
experiment runs for 10 minutes. In the beginning of
each run, the query result cache is empty. We experi-
ment with the following caching TTLs: 0, 1, 2, 4, 8, 15,
30, 60, 120, 240, and 480 seconds, where 0 means that
the caching TTL is infinity. We show our experimen-
tal results in Figure 4, where the result for TTL = 0 is
given at TTL = 960 seconds since the run length of our
experiments is 600 seconds, and any TTL bigger than
600 seconds is equivalent to infinity. We can observe
that the cache hit ratio increases when the caching TTL
increases. Even with a very small caching TTL, we can
still have a good hit ratio, meaning that the query re-
sult caching is very effective for the RUBBoS applica-
tion. For example, we have a hit ratio of 66.9% with a
caching TTL of only 1 second, and we achieve a hit ra-
tio of 89.4% when the caching TTL is 60 seconds. In all
our following experiments, we use 60 seconds as the de-
fault caching TTL since it is good enough to bound the
staleness of cached objects in RUBBoS, and it achieves
a good hit ratio close to 90%.



Table 1: Performance summary for the RUBBoS read-only mix: the maximum request rate supported, and the number
of rescue servers used and the origin web server cache hit ratio at the peak rate. Test cases: READ1 – no rescue, no
cache; READ2 – no rescue, with a co-located cache; READ3 – with rescue, no cache; READ4 – with rescue, with a
co-located cache; and READ5 – with rescue, with a shared cache.

Test Max rate supported Number rescue Cache Performance Performance
case (requests/second) servers used hit ratio compared with READ1 compared with READ3

READ1 117 no rescue no cache 100%
READ2 125 no rescue 91% 107%
READ3 249 4 no cache 213% 100%
READ4 1151 15 87% 984% 462%
READ5 828 13 93% 708% 333%

100 101 102 103
60

65

70

75

80

85

90

95

100

caching TTL (seconds)

ca
ch

e 
hi

t r
at

io
 (%

)

Figure 4: The relationship between the caching TTL and
hit ratio of our query result caching in a set of 10-minute
read-only experiments

4.4 Results for Read-Only Mix
Query result caching aims at read mostly databases, and
delivers the best performance for read-only accesses.
Thus, we first test our caching system with the RUBBoS
read-only mix. Depending on whether rescue servers
are available, whether the query result caching is en-
abled, and whether each web/application server has a co-
located cache or uses a shared cache server running on a
separate machine, we have the following five test cases:

• READ1 – no rescue, no cache
• READ2 – no rescue, with a co-located cache
• READ3 – with rescue, no cache
• READ4 – with rescue, with a co-located cache
• READ5 – with rescue, with a shared cache

Table 1 summaries the performance of our prototype
system for the RUBBoS read-only mix. Without using
our rescue and caching services, a web server can only
support a request rate of 117 requests/second. The re-

quest rate supported increases to 249 requests/second by
using our rescue services only with 4 rescue servers, and
increases to 1151 requests/second by using our rescue
and caching services together with 15 rescue servers.
Compared with READ1, the improvement achieved is
213% in READ3 and 984% in READ4. Compared with
READ3, the improvement achieved is 462% in READ4.

Figure 5 shows the experimental results for test case
READ1 and READ2, where rescue servers are not avail-
able. We give the CPU utilization for the web server
and database server in Figure 5(a), and present the re-
quest rate supported in Figure 5(b). We observe that
the web server CPU is the bottleneck. When the load
is light with 300 clients, the caching is not activated.
Thus, we have the same CPU utilization for READ1 and
READ2. When the load is heavy with 840 clients, the
caching is turned on, and we can observe a big differ-
ence in CPU utilization. The database server CPU uti-
lization is 41% in READ1, but is only 6% in READ2,
meaning that the caching is very effective in reducing
the database workload. At the same time, the web server
CPU utilization decreases from 91% to 86% by using
the caching, indicating that getting query results from
the cache incurs less cost than accessing the database di-
rectly. The maximum request rate supported is 117 and
125 requests/second in READ1 and READ2, respec-
tively. The cache hit ratio is 91% in READ2. In sum-
mary, even without using rescue servers, the query result
caching is useful in heavily loaded situations. However,
the caching itself cannot remove the web server bottle-
neck.

Figure 6 shows the experimental results for test case
READ3, READ4, and READ5, where a varying num-
ber of rescue servers are used. By using a sufficient
number of rescue servers, the origin web server is no
longer a bottleneck. We give the CPU utilization for the
origin database server and the shared cache server used
in READ5 in Figure 6(a), present the request rate sup-



200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

number of clients

C
P

U
 u

til
iz

at
io

n 
(%

)

READ1 web server
READ2 web server
READ1 database server
READ2 database server

(a) The CPU utilization for the web server and database server

200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100

110

120

130

number of clients

re
qu

es
ts

 p
er

 s
ec

on
d

READ1
READ2

(b) The request rate supported

Figure 5: Experimental results for the RUBBoS read-
only mix when rescue servers are not available. Test
cases: READ1 – no rescue, no cache; and READ2 –
no rescue, with a co-located cache.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100

number of clients

C
P

U
 u

til
iz

at
io

n 
(%

)

READ3 database server
READ4 database server
READ5 database server
READ5 shared cache server

(a) The CPU utilization for the origin database server and the
shared cache server used in READ5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

number of clients

re
qu

es
ts

 p
er

 s
ec

on
d

READ3
READ4
READ5

(b) The request rate supported

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

number of clients

re
sp

on
se

 ti
m

e 
(s

ec
on

ds
)

READ3
READ4
READ5

(c) The average response time

Figure 6: Experimental results for the RUBBoS read-
only mix when rescue servers are available. Test cases:
READ3 – with rescue, no cache; READ4 – with rescue,
with a co-located cache; and READ5 – with rescue, with
a shared cache.



ported in Figure 6(b), and display the average response
time in Figure 6(c).

In test case READ3, the origin database server
gets loaded quickly without using the query result
caching. The maximum request rate supported is 249
requests/second, obtained with 1800 clients, and 4 res-
cue servers. Under this load, the origin database server
CPU utilization is 97%.

In test case READ4, each web/application server uses
a co-located query result cache, which greatly reduces
the database workload. For 1800 clients, the origin web
server uses 4 rescue servers, and the measured request
rate is 252 requests/second. Under this load, the ori-
gin database server CPU utilization is only 16%, which
is a huge reduction compared to the 97% CPU utiliza-
tion in READ3. The maximum request rate supported
is 1151 requests/second, obtained with 8295 clients, and
15 rescue servers. Under this load, the origin database
server CPU utilization is 83%, and the origin web server
cache hit ratio is 87%. For an experiment of this scale
with 8295 clients, we use 38 machines: 21 for emulating
clients, 15 as rescue servers, 1 as the origin web server,
and 1 as the origin database server.

In test case READ5, all web/application servers use
a shared query result cache server running on a sepa-
rate machine, which further reduces the database work-
load. For example, for a load of 5400 clients, the origin
database server CPU utilization is only 34%, compared
to the 52% CPU utilization in READ4. However, the
shared cache server itself becomes a bottleneck as the
load increases because it gets loaded quickly than the
origin database server does. The maximum request rate
supported is 828 requests/second, obtained with 7200
clients, and 13 rescue servers. Under this load, the CPU
utilization for the origin database server and the shared
cache server is 45% and 85%, respectively, and the cache
hit ratio at the shared cache server is 93%. From Fig-
ure 6(c), we observe that the average response time in
READ5 is much longer than that in READ4. The rea-
son is that using a shared cache incurs longer delays for
handling client requests due to remote cache accesses.
In general, a shared cache should be used with cautions
since it is a single point of failure, it is a potential perfor-
mance bottleneck, and it incurs longer delays. Note that
it is possible to divide rescue servers into groups, and
each rescue server group uses a separate shared cache,
which has the potential to keep the shared cache in each
group from overloaded, and reduce the database work-
load as much as possible. However, this method has
administration overheads in forming groups and deter-
mining the right size of each group. As our goal is to
build an autonomic system, we will not explore further
along that direction in this paper.

4.5 Results for Submission Mix
Query result caching is used only by read queries; all
write queries are submitted to the origin database server
directly. In this section, we test our caching system
with the RUBBoS submission mix, which has about 2%
write queries. For simplicity, we use co-located query
result caches in all our experiments for the submission
mix. Depending on whether rescue servers are available,
whether the query result caching is enabled, and whether
cache invalidation is used, we have the following six test
cases:

• SUB1 – no rescue, no cache
• SUB2 – no rescue, with cache, no invalidation
• SUB3 – no rescue, with cache, with invalidation
• SUB4 – with rescue, no cache
• SUB5 – with rescue, with cache, no invalidation
• SUB6 – with rescue, with cache, with invalidation

Table 2 summarizes the performance of our prototype
system for the RUBBoS submission mix. Without us-
ing our rescue and caching services, a web server can
only support a request rate of 180 requests/second. The
request rate supported increases to 580 requests/second
by using our rescue services only with 4 rescue servers,
increases to 871 requests/second by using our rescue
and caching without invalidation services together with
8 rescue servers, and increases to 701 requests/second by
using our rescue and caching with invalidation services
together with 6 rescue servers. Compared with SUB1,
the improvement achieved is 322% in SUB4, 484% in
SUB5, and 389% in SUB6. Compared with SUB4, the
improvement achieved is 150% and 121% in SUB5 and
SUB6, respectively.

Figure 7 shows the experimental results for test case
SUB1, SUB2, and SUB3, where rescue servers are not
available. We give the CPU utilization for the web server
and database server in Figure 7(a), and present the re-
quest rate supported in Figure 7(b). We observe that the
web server CPU is the bottleneck. When the load is light
with 400 clients, the caching is not activated. Thus, we
have the same CPU utilization for SUB1, SUB2, and
SUB3. When the load is heavy with 1200 clients, the
caching is turned on. However, the performance is not
improved by only using the caching because it reduces
the database workload but increases the workload at the
web server due to a low cache hit ratio, and the web
server is the bottleneck. The maximum request rate sup-
ported is 180, 174, and 168 requests/second in SUB1,
SUB2, and SUB3, respectively. Note that the number of
clients supported is 1300 in SUB1, 1240 in SUB2, and
1200 in SUB3. The cache hit ratio is 76% in SUB2 and
39% in SUB3, which are much lower compared to the
close to 90% cache hit ratio in the RUBBoS read-only
mix.



Table 2: Performance summary for the RUBBoS submission mix: the maximum request rate supported, and the
number of rescue servers used and the origin web server cache hit ratio at the peak rate. Test cases: SUB1 – no
rescue, no cache; SUB2 – no rescue, with cache, no invalidation; SUB3 – no rescue, with cache, with invalidation;
SUB4 – with rescue, no cache; SUB5 – with rescue, with cache, no invalidation; and SUB6 – with rescue, with cache,
with invalidation.

Test Max rate supported Number rescue Cache Performance Performance
case (requests/second) servers used hit ratio compared with SUB1 compared with SUB4

SUB1 180 no rescue no cache 100%
SUB2 174 no rescue 76% 97%
SUB3 168 no rescue 39% 93%
SUB4 580 4 no cache 322% 100%
SUB5 871 8 70% 484% 150%
SUB6 701 6 39% 389% 121%

300 400 500 600 700 800 900 1000 1100 1200 1300 1400
0

10

20

30

40

50

60

70

80

90

100

number of clients

C
P

U
 u

til
iz

at
io

n 
(%

)

SUB3 web server
SUB2 web server
SUB1 web server
SUB1 database server
SUB3 database server
SUB2 database server

(a) The CPU utilization for the web server and database server

300 400 500 600 700 800 900 1000 1100 1200 1300 1400

60

80

100

120

140

160

180

number of clients

re
qu

es
ts

 p
er

 s
ec

on
d

SUB1
SUB2
SUB3

(b) The request rate supported

Figure 7: Experimental results for the RUBBoS submis-
sion mix when rescue servers are not available. Test
cases: SUB1 – no rescue, no cache; SUB2 – no rescue,
with cache, no invalidation; and SUB3 – no rescue, with
cache, with invalidation.

Figure 8 shows the experimental results for test case
SUB4, SUB5, and SUB6, where a varying number of
rescue servers are used. By using a sufficient number
of rescue servers, the origin web server is no longer a
bottleneck. We give the origin database server CPU uti-
lization in Figure 8(a), present the request rate supported
in Figure 8(b), and display the rate of locks waited at the
origin database server in Figure 8(c).

Based on Figure 8(a) and 8(b), we observe that the
origin database server CPU utilization at the peak rate is
only 58%, 65%, and 70% in SUB5, SUB6, and SUB4,
respectively, which are much lower compared to the
more than 80% CPU utilization in the RUBBoS read-
only mix. This leads us to locate other bottlenecks in the
system besides the database CPU utilization. In fact, for
the RUBBoS submission mix, the rate of database locks
waited becomes a performance bottleneck well before
the database CPU gets overloaded. MySQL uses table
locking in its default storage engine MyISAM to con-
trol concurrent read/write accesses to the same database
table. Table locking allows many threads to read from
a table at the same time; but a thread must get an ex-
clusive write lock to write to a table. During an up-
date to a database table, all other threads that need to
access this particular table must wait until the update
is done. In MySQL, the number of table access con-
tentions caused by table locking is indicated by a sta-
tus variable called table locks waited. As the number
of clients increases, both the read access rate and the
write access rate go up in the RUBBoS submission mix.
As a result, the rate of locks waited increases. At cer-
tain point, the number of table access contentions in-
creases abruptly, which causes the database performance
degraded seriously. Using the query result caching re-
duces the read access rate to the origin database, which
in turn reduces the table access contentions as well as
the database workload.



3000 3500 4000 4500 5000 5500 6000 6500 7000
0

10

20

30

40

50

60

70

80

90

100

number of clients

or
ig

in
 d

at
ab

as
e 

C
P

U
 u

til
iz

at
io

n 
(%

) SUB4
SUB6
SUB5

(a) The origin database server CPU utilization

3000 3500 4000 4500 5000 5500 6000 6500 7000
400

450

500

550

600

650

700

750

800

850

900

number of clients

re
qu

es
ts

 p
er

 s
ec

on
d

SUB4
SUB6
SUB5

(b) The request rate supported

3000 3500 4000 4500 5000 5500 6000 6500 7000
0

5

10

15

20

25

30

35

40

45

50

number of clients

lo
ck

s 
w

ai
te

d 
pe

r s
ec

on
d

SUB4
SUB6
SUB5

(c) The rate of locks waited at the origin database server

Figure 8: Experimental results for the RUBBoS submis-
sion mix when rescue servers are available. Test cases:
SUB4 – with rescue, no cache; SUB5 – with rescue, with
cache, no invalidation; and SUB6 – with rescue, with
cache, with invalidation.

In test case SUB4, the query result caching is not
used. As the load increases, the read access rate to the
origin database increases quickly along with the write
access rate. The maximum request rate supported is 580
requests/second, obtained with 4103 clients, and 4 res-
cue servers. Under this load, the origin database server
has a 70% CPU utilization, and an average of 4 locks
waited per second.

In test case SUB5, each web/application server uses a
co-located query result cache without invalidation. The
caching greatly reduces the read access rate to the origin
database. The maximum request rate supported is 871
requests/second, obtained with 6400 clients, and 8 res-
cue servers. Under this load, the origin database server
has a 58% CPU utilization, and an average of 22 locks
waited per second. The cache hit ratio is 70%.

In test cast SUB6, each web/application server uses
a co-located query result cache with invalidation. Al-
though using invalidation lowers the cache hit ratio, the
caching still reduces the read access rate to the origin
database by a large percentage. The maximum request
rate supported is 701 requests/second, obtained with
5096 clients, and 6 rescue servers. Under this load, the
origin database server has a 65% CPU utilization, and
an average of 6 locks waited per second. The cache hit
ratio is 39%.

5 Conclusions
In this paper, we have described the DotSlash query re-
sult caching, which is a self-configuring, transparent,
and on demand distributed caching system. Through our
preliminary experimental results, we have demonstrated
that our caching system is very effective for read-mostly
databases. By using DotSlash rescue and caching ser-
vices together, a web site can improve the maximum re-
quest rate supported by a factor of 5 to 10.

References
[1] Stephen Adler. The slashdot effect: An analysis of three

Internet publications.
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html.

[2] Akamai homepage. http://www.akamai.com/.

[3] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
DBProxy: A dynamic data cache for web applications. In
International Conference on Data Engineering (ICDE),
Bangalore, India, March 2003.

[4] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety,
R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel.
Specification and implementation of dynamic web site
benchmarks. In International Workshop on Web Content
Caching and Distribution (WCW), Boulder, Colorado,
August 2002.

[5] C. Amza, A. L. Cox, and W. Zwaenepoel. A comparative
evaluation of transparent scaling techniques for dynamic



content servers. In International Conference on Data En-
gineering (ICDE), Tokyo, Japan, April 2005.

[6] C. Bornhovd, M. Altinel, C. Mohan, H. Pirahesh, and
B. Reinwald. Adaptive database caching with DB-
Cache. IEEE Data Engineering Bulletin, 27(2):11–18,
June 2004.

[7] V. Cardellini, M. Colajanni, and P.S. Yu. Geographic load
balancing for scalable distributed web systems. In Inter-
national Symposium on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems (MAS-
COTS), San Francisco, California, August 2000.

[8] E. Cecchet. C-JDBC: a middleware framework for
database clustering. IEEE Data Engineering Bulletin,
27(2):16–26, June 2004.

[9] C. Y. Choi and Q. Luo. Template-based runtime invalida-
tion for database-generated web contents. In Asia Pacific
Web Conference (APWeb), Hangzhou, China, April 2004.

[10] P. Larson, J. Goldstein, H. Guo, and J. Zhou. MTCache:
Mid-tier database caching for SQL server. IEEE Data
Engineering Bulletin, 27(2):35–40, June 2004.

[11] Libmemcache homepage.
http://people.freebsd.org/˜seanc/libmemcache/.

[12] Memcached homepage.
http://www.danga.com/memcached/.

[13] MySQL cluster.
http://www.mysql.com/products/database/cluster/.

[14] C. Olston, A. Manjhi, C. Garrod, A Ailamaki, B. M.
Maggs, and T. C. Mowry. A scalability service for dy-
namic web application. In The Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA, January
2005.

[15] Oracle real application clusters (RAC).
http://www.oracle.com/technology/products/database/
clustering/index.html.

[16] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web application. In
ACM/IFIP/USENIX International Middleware Confer-
ence, Toronto, Canada, October 2004.

[17] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing
on the edge: A platform for replicating Internet applica-
tions. In International Workshop on Web Caching and
Content Distribution (WCW), Hawthorne, NY, Septem-
ber 2003.

[18] RUBBoS: Rice university bulletin board system.
http://www.cs.rice.edu/CS/Systems/DynaServer/RUBBoS/.

[19] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van
Steen. GlobeDB: Autonomic data replication for web ap-
plications. In International World Wide Web Conference,
Chiba, Japan, May 2005.

[20] S. Sivasubramanian, G. Pierre, M. van Steen, and
G. Alonso. GlobeCBC: Content-blind result caching for
dynamic web applications. Submitted for publication,
Vrije Universiteit, June 2005.

[21] Slashdot homepage. http://slashdot.org/.
[22] Transaction processing performance council.

http://www.tpc.org/tpcw/.

[23] J. D. Zawodny and D. J. Balling. High Performance
MySQL: Optimization, Backups, Replication, and Load
Balancing. O’Reilly, 2004.

[24] W. Zhao and H. Schulzrinne. DotSlash: A self-
configuring and scalable rescue system for handling
web hotspots effectively. In International Workshop on
Web Caching and Content Distribution (WCW), Beijing,
China, October 2004.

[25] W. Zhao and H. Schulzrinne. DotSlash: Handling web
hotspots at dynamic content web sites. In IEEE Global
Internet Symposium, Miami, Florida, March 2005.


