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Abstract 

In this note, I explore why the the common approximation of the reflection integral is not written with a 

delta omega-in ( iω∆ ) to replace the differential omega-in ( idω ).  After that, I go on to discover what 

really happens when the sum over all directions is reduced to a sum over a small number of directions.  In 

the final section, I make recommendations for correctly approximating the reflection sum, and briefly 

suggest a possible framework for multiple importance sampling on both lighting and brdf. 

 

1. Introduction 

The reflection equation gives the outgoing radiance at a point, ( )I x , as an integration of the incoming 

radiance over all the directions of the upper hemisphere of a point: 

 

 ( ) ( )( )
2

( ) ,x i r o i iI x R F x d
π

ω ω ω ω
Ω

= ∫   1 

The radiance of the upper hemisphere is different, depending on the normal of the surface at x .  

Similarly, the outgoing (view) direction is dependant on the normal at x . 

 

We can rewrite this integral so that the directions are in world-coordinates, making the brdf, a 6-D 

function, and rF  at a particular view-direction and surface location is a 2D cross-section of it: 

 

 ( ) ( )
4

( , , ) , ,o i r o i iI x n R F n d
π

ω ω ω ω ω
Ω

= ∫   2 

 

where we have folded the cosine falloff into rF  and ignored visibility1.  Most rendering approaches will 

next turn this integral into the following sum: 

 

 ( )( )( , , ) , ,o i r o i
i

I x n RF R nω ω ω= ∑   3 

Here, { }iR  is a set of point lights that are chosen as a replacement for the incoming radiance of the upper 

hemisphere.  Keep in mind that while this seems like environment map approximations, we have not 

made any assumptions about the continuity of lighting within the scene.  So this is fully general for any 

complex lighting.  Where did idω  go?  When an integral is converted into a sum, the differential quantity 

                                                           
1 If you really want to include visibility in this treatment, you may assume that rF  is also a function of x , 

and that it includes the visibility of the scene. 
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should be replaced with a delta of a finite width, such that the sum of the deltas is equal to the integral 

of the differential: 

 

 |i i i i
i

d dω ω ω ω
Ω

⇒ ∆ ∆ =∑ ∫  4 

 

Clearly, some assumption has been made to eliminate the need for such a iω∆ .  In the next section, we 

will show what this assumption is, and that it is not always valid. 

 

2. Looking for iω∆  

We start by expanding the integral into its two dimensions: 

 

 ( ) ( )
2

0 0
( , , ) , , , , sino i i r o i i i i iI x n R F n d d

π π
ω θ φ ω θ φ φ θ θ= ∫ ∫   5 

 

now we partition each dimension into equal slices, and convert the above integral into a proper sum: 

 

 ( ) ( )( , , ) , , , , sino i j r o i j j i i
i j

I x n R F nω θ φ ω θ φ φ θ θ= ∆ ∆∑∑   6 

Just to be explicit about this conversion, we recall that it is only valid if both ( , )i iR θ φ  and rF  are 

approximately piecewise constant over the domains i jθ φ∆ ×∆ .  (A point light is one example where this 

assumption only holds as i and j  approach infinity.) 

 

 We now rewrite the above double-summation as a single summation by replacing the two indices i and j  

with a single index, ,i jk  and the two deltas with a single width, 
,i jkω∆ , where 

,
sin

i jk j i iω φ θ θ∆ = ∆ ∆ .  For a 

cleaner presentation, we will no longer use the sub-indices when referring to k .  Other 2D domains may 

be chosen besides the standard theta-phi partitioning.  In those cases, each partition, kω , would be 

accompanied by the appropriate weight, kω∆ , indicating the solid-angle it subtends.  If an equal-area 

partitioning is chosen2, all of the weights would be 4| |k
π . 

 

 ( ) ( )( , , ) , ,o k r o k k
k

I x n R F nω ω ω ω ω= ∆∑   7 

At this point, we have to be careful about the units of each element in the summation, so we write them 

out explicitly: 

 

 ( ) ( )[ ] [ ]
2 2

1( , , ) , ,W W
sro k r o k km sr m sr

k

I x n R F n srω ω ω ω ω   = ∆   ∑   8 

When we compare this to the common two-element dot-product, it becomes clear that the lighting term 

must be an irradiance, not radiance.  We will come back to this shortly. 

 

                                                           
2 equal-area partitions of the sphere are impossible, but many approximations exist 
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The above sum can be rewritten as the following matrix triple-product (where a dot has been inserted to 

improve readability, but should be taken as the standard matrix multiplication): 

 

 ( ) T
k rR diag Fω⋅ ∆ ⋅  , 9 

 

where vectors are row-vectors, and ( )diag v  is the square, diagonal matrix defined as: 

 

 ( ) ,

,

, 0

s

s t

if s t v
diag v

otherwise

=   =     
  10 

 

In pictorial form, this look like: 

 

0 0

0 0

0 0

k rR Fω

   
   
     ∆         
   
      

  11 

 

Recall that the common two-element dot-product uses irradiance, instead of radiance.  This can be 

achieved by multiplying the weights into the lighting term to yield: 

 

 ( )( ) ,
T T

k r r k r k
k

R diag F R F R Fω ∆ ∆⋅ ∆ ⋅ ≡ = ∑   12 

Result of omitting the weights: So in order to omit the weights without loss of accuracy, one of two 

conditions must hold: 

1. All of the weights are equal, as a result of equal-area partitioning of the sphere. 

2. The lookup for the lighting term is not into the original incoming radiance, but rather into a 

constructed irradiance map that has pre-integrated the area of each partition, to weight it 

accordingly.  

 

All we have done so far is rewritten the original integration as a sum.  At this point |k  | is still equal to | i 

| times | j  |, and the computation required to evaluate the above sum is quite substantial.  In many cases, 

condition 2 holds, but not for the original k  partitions. 

 

3. Approximating the sum with fewer terms 

Now we can finally attempt to reduce the size of this dot-product by selecting a set of  ‘lights’, { }Lδ , so 

that we only have to evaluate rF  at a small number of points.  In order to do this, we introduce a non-

square selection matrix3 that reduces the |k  | -element dot-product to an |  | -element dot-product, where 

we assume that k .  Let’s take a look at how the selection matrix fits into our equations: 

                                                           
3 These are similar to incidence matrices, except that here we use them to describe the relationship 

between two sets of possibly equal dimensionality. 
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 ( )( )*1 * T TT T T T
r k r r r rR F R I F R SS F R S F S R F∆ ∆ ∆ ∆ ∆= ⇔ = ≡   13 

 

The bar over R∆ and rF  indicate a reduced version of size |  |.  Since S  is not a square matrix, we 

approximate it’s inverse with an appropriate pseudo-inverse.   

 

 

3.1 Delta functions for point lights 

For the case of a ray-tracer that simply takes point-samples of the a chosen set of directions, we can 

define the entries of the selection matrix as follows: 

 

 
4

,k kS S L d
π

δ
δ

σ
ω σ

∈Ω
= = ∫   14 

 

Let us state explicitly here that kω  represents a box function over the solid angle subtended by the ith 

partition of θ cross the j th partition of φ.  The value within the box is 1, and 0 elsewhere.   Lδ  is a Dirac 

delta function, so that { }Lδ  is a set of point samples.  This makes the selection matrix 1 when kω  contains 

Lδ , and 0 otherwise. 

 

It turns out that for the types of matrices that arise from point-light approximations, the pseudo-inverse 

of Sδ is its transpose.  (Later, we will examine selection matrices for which this is not the case.)  

Pictorially, this look like: 

 *1

0 0 0

0 0 0 00 0

0 0 0 0 0

0 0 0 0 0 0

0 0

r r r
SF FR R S R Fδ δ

∆ ∆ ∆=

    
    
       
       
                                    
               
        

 15 

Rewritten as a summatin over , this becomes: 

 ,( , , )o r rI x n R F R Fω ∆ ∆= = ∑   16 

A simple ray-trace into the scene would ignore the weights that were rolled into R∆, and just use the 

unweighted values of the radiance from the direction of R .  If no appropriate pre-integrated irradiance 

map is used, ignoring the weights assumes that the hemisphere of incoming radiance was partitioned into 

regions of equal solid-angles, so that each light is off by a constant factor.  This constant is usually 

compensated for by multiplying the final result by an arbitrary constant so that the result ‘looks’ right.  

For area light-sources that are approximated by a set of equally-spaced point lights, the constant factor 

can be calculated as the reciprocal of the number of samples.  The error of such an approximation grows 

as the partitions of the lights occupy increasingly different solid angles of the surface’s upper hemisphere. 
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Figure 1: Area light source partitioned into equal areas, but not equal solid angles 

 

Let’s take note of some properties of Sδ, the selection matrix produced by choosing delta functions for the 

Lδ ’s: 

1. It only contains 1’s and 0’s. 

2. It is very sparse. 

3. Every row contains at most a single 1. Some rows are all 0’s. 

4. Every column contains exactly a single 1.  (Every column sums to 1.) 

5. ( )( ) [ ]T
kS S Iδ δ ≠ , the identity matrix of size k k×  

 

In 15 above, we show that Sδ does not have all of it’s non-zero elements near the diagonal.  This can be 

fixed by choosing the indices, k  and  in a different order.  However, we will soon see that it is not 

always possible to make the selection matrix pseudo-diagonal, so we don’t bother to do that here. 

 

By looking at the result of multiplying Sδ with it’s transpose (also the pseudo-inverse), we see that the 

approximation to the identity alluded to in Property 5 is an identity matrix with some of the 1’s zeroed 

out.  This means that the delta Lδ ’s do not preserve energy, simply ignoring parts of the incoming 

radiance, and the corresponding parts of the brdf.  Note that even though some of the lights may have 

had low-energy, and ignoring them seems valid, in general, there is no guarantee that the brdf isn’t very 

large to compensate. 

 

Result of using Dirac delta functions:  The error is directly related to the zeros on the diagonal in the 

approximation to the identity matrix that results from multiplying Sδ with it’s transpose.  More zeros 

indicates that more energy is lost. 

 

3.2 Box functions for point light sources 

A more sophisticated method adds up the contributions of several kω , and evaluates the brdf for each 

aggregate only once.  This leads to the following definition for the selection matrix: 

 

 
4

1
, k

box
box k l kS S L d

π
ω σ

ω σ∆ ∈Ω
= = ∫   17 

 

equal solid angle

equal areas of
light source 
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boxL  is a binary box function.  While many methods use a set of non-overlapping, domain-filling box 

functions to approximate lighting for the selection matrix, they still use a delta function where the 

pseudo-inverse should be used.  This leads to a delta-style masking of the brdf. 

 

Here is the common, but flawed formulation: 

 

 ( ) T
box rI x R S S Fδ

∆=   18 

 

Usually, the boxL ’s are pure aggregates of the kω ’s.  While it is possible to imagine random overlaps 

between these two box functions, in practice, any given kω  falls entirely within a boxL .  For example, the 

kω ’s may represent pixels in a cubemap, and the boxL ’s are contiguous groups of these pixels. 

 

A schematic of boxS  is shown below: 
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  19 

Some properties of boxS  are: 

1. It only contains 1’s and 0’s 

2. It is very sparse 

3. Every row contains exactly a single 1.  No row is all 0’s. 

4. Columns contain one or more 1’s. 

5. The transpose of boxS  is not its pseudo-inverse 

 

When we multiply boxS  by the transpose of Sδ, the result is an identity matrix for which some of the 1’s 

have been moved off the diagonal by permuting the row: 

 sample T
boxS Sδ : 

1 0 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 
 
 
  

  20 

The error introduced by this matrix’s lack of being a true identity is that some directions of the brdf are 

not accounted for.  This error will be small when the brdf is approximately piecewise-constant over the 

regions defined by { boxL }. 

 

4. Recommendations for future approximations 

 

Based on the result in the previous section, we would like to recommend that any time a selection matrix 

is chosen to reduce the number of light directions, it’s pseudo-inverse be used as a selection on the brdf.  
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Specifically, for boxS , the pseudo-inverse ends up being a low-pass filter on the brdf in regions that are 

aggregated.  This weakens the requirement that the brdf be piecewise-constant, allowing the brdf to only 

be piecewise-linear within an aggregated region. 

 

At the beginning of these derivations, we converted all directions to a global frame-of-reference.  This is 

because the lighting is often approximated once for the whole scene, and shared among all the surface 

points to be shaded.  An alternative would be to use a local frame-of-reference and a global view-

direction.  I that case, there is a global brdf that is shared among all the surfaces, and the same 

approximations can be made by aggregating directions based on the brdf, instead of the lighting.  This is, 

in fact, the basis for a work we are currently producing. 

 

Instead of creating the selection matrix for either the lighting, xor the brdf, and then using it’s pseudo-

inverse, one may wish to look at the product that approximates the identity matrix.  Choices on 

deviations from the true identity matrix can be made based on both the brdf and lighting simultaneously. 

 

5. Conclusions 

In section 2, we learned that the omission of a delta term in the sum that approximates the reflection 

equation can lead to error.  Specifically, the partitioning of the sphere of incoming radiance is left 

ambiguous without it.  When the partitions are made explicit, as in cube-map pixels, the weights must be 

carefully calculated to account for variation in the solid-angle subtended by different partitions (cube-

map) pixels.  When this is done, a silent conversion from radiance to irradiance is made, which may 

become important, and should be made explicit. 

 

In section 3, we learned that when delta functions approximate the incoming radiance, they ignore parts 

of the sphere.  This can lead to error if the product of that radiance and the corresponding portion of the 

brdf is not negligible.  We then discovered that even a proper box function on the lighting will place 

harsh restrictions on the brdf.  A proper treatment of the conversion from all directions, to a smaller basis 

can lead to a more principled use of a smoothing filter on the brdf. 
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