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Abstract

Inductive learning and classification techniques
have been applied in many problems in diverse
areas. In this paper we describe an AI-based
approach that combines inductive learning algo-
rithms and meta-learning methods as a means
to compute accurate classification models for de-
tecting electronic fraud. Inductive learning algo-
rithms are used to compute detectors of anoma-
lous or errant behavior over inherently distributed
data sets and meta-learning methods integrate
their collective knowledge into higher level classi-
fication models or meta-classifiers. By supporting
the exchange of models or classifier agents among
data sites, our approach facilitates the coopera-
tion between financial organizations and provides
unified and cross-institution protection mecha-
nisms against fraudulent transactions. Through
experiments performed on actual credit card
transaction data supplied by two different finan-
cial institutions, we evaluate this approach and we
demonstrate its utility.

Introduction
Agent-based learning systems have attracted consider-
able attention recently. One such system, JAM (Java
Agents for Meta-learning) (Stolfo et al. 1997), pro-
vides the means of dispatching and executing learn-
ing agents at remote database sites, with each learning
agent being a Java encapsulated machine learning pro-
gram. One of JAM ’s key features is meta-learning, a
general technique that combines multiple classification
models, each of which may have been computed over
distributed sites.

In this paper, we describe the application of JAM
in fraud and intrusion detection in network-based in-
formation systems by detailing a comprehensive set of
experiments in the real-world application of credit card
fraud. Several key new teachniques are reported that
address the issues of pruning combined meta-classifiers
in order to improve efficiency while maintaining accu-
racy. Furthermore, experiments are reported on com-
bining classifiers computed over distributed databases
with different schemas. We begin with a brief overview
of the fraud detection application to highlight the ad-
vantages of JAM in distributed learning.

Fraud detection A secured and trusted inter-
banking network for electronic commerce requires high
speed verification and authentication mechanisms that
allow legitimate users easy access to conduct their busi-
ness, while thwarting fraudulent transaction attempts
by others. Fraudulent electronic transactions are a sig-
nificant problem, one that grows in importance as the
number of access points increase and more services are
provided.

The traditional way to defend financial information
system has been to protect the routers and network in-
frastructure. Furthermore, to intercept intrusions and
fraudulent transactions that inevitably leak through, fi-
nancial institutions have developed custom fraud detec-
tion systems targeted to their own asset bases. Recently
however, banks have come to realize that a unified,
global approach that involves the periodic sharing of
information regarding fraudulent practices is required.
In this paper, we describe an AI-based approach that
supports the cooperation among different institutions
and consists of pattern-directed inference systems that
use models of anomalous or errant transaction behav-
iors to forewarn of fraudulent practices.1 This approach
requires the analysis of large and inherently distributed
databases of information about transaction behaviors to
produce models of “probably fraudulent” transactions.

The key difficulties in this approach are: financial
companies don’t share their data for a number of (com-
petitive and legal) reasons; the databases that com-
panies maintain on transaction behavior are huge and
growing rapidly; real-time analysis is highly desirable to
update models when new events are detected and easy
distribution of models in a networked environment is
essential to maintain up to date detection capability.

To address these difficulties and thereby protect
against electronic fraud our approach has two key com-
ponent technologies: local fraud detection agents that
learn how to detect fraud within a single information
system, and an integrated meta-learning mechanism
that combines the collective knowledge acquired by the

1An alternative approach to modeling transactions would
be to model user behavior. An application of this method,
but in cellular phone fraud detection has been examined
in (Fawcett & Provost 1997).
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individual local agents. The fraud detection agents con-
sist of classification models computed by machine learn-
ing programs at one or more sites, while meta-learning
provides the means to combining a number of separately
learned classifiers. Thus, meta-learning allows financial
institutions to share their models of fraudulent trans-
actions without disclosing their proprietary data. This
way their competitive and legal restrictions can be met,
but they can still share information. Furthermore, by
supporting the training of classifiers over distributed
databases, meta-learning can substantially reduce the
total learning time (parallel learning of classifiers over
(smaller) subsets of data). The final meta-classifiers
(the combined ensemble of fraud detectors) can be used
as sentries forewarning of possible fraud by inspecting
and classifying each incoming transaction.

This paper presents a comprehensive set of experi-
ments evaluating the applicability of our approach in
the security of financial information systems. As a test
set we use a data set of credit card transactions supplied
by two different financial institutions. The task is to
compute classification models that accurately discern
fraudulent credit card transactions. Our experiments
are structured as follows. First we apply several ma-
chine learning algorithms on different subsets of data
from both banks to establish the potential of inductive
learning methods in fraud detection. Then, we overview
meta-learning and evaluate its utility by combining the
fraud detectors of each bank. In the last part of the
paper, we describe the exchange of classifiers between
the two banks and provide empirical results for assess-
ing the validity and merit of this approach. By way of
summary, we find that pattern-directed inference sys-
tems coupled with meta-learning methods constitute a
protective shield against fraud with the potential to ex-
ceed the performance of existing fraud detection tech-
niques.

Computing fraud detectors
Machine Learning In this study we employ five dif-
ferent inductive learning programs, Bayes, C4.5, ID3,
CART and Ripper. Bayes, implements a naive Bayesian
learning algorithm described in (Minksy & Papert
1969), ID3 (Quinlan 1986), its successor C4.5 (Quinlan
1993), and CART (Breiman et al. 1984) are decision
tree based algorithms, and Ripper (Cohen 1995) is a
rule induction algorithm.

Data sets We obtained two large databases from
Chase and First Union banks, each with 500,000 records
of credit card transaction data spanning one year
(Oct.95-Sept.96). Chase bank data consisted, on aver-
age, of 42,000 sampled credit card transactions records
per month with a 20% fraud and 80% legitimate dis-
tribution, whereas First Union data were sampled in a
non-uniform (many records from some months, very few
from others, very skewed fraud distributions for some
months) manner with a total of 15% versus 85% dis-
tribution. The schemas of the databases was devel-
oped over years of experience and continuous analy-

sis by bank personnel to capture important informa-
tion for fraud detection. The records have a fixed
length of 137 bytes each and about 30 numeric and
categorical attributes including the binary class label
(fraud/legitimate transaction). Under the terms of the
non-disclosure agreement, we can not reveal the details
of the schema beyond the following general description:

• A (jumbled) account number (no real identifiers)

• Scores produced by a COTS authorization/detection
system

• Date/Time of transaction

• Past payment information of the transactor

• Amount of transaction

• Geographic information: where the transaction was
initiated, the location of the merchant and transactor

• Codes for validity and manner of entry of the trans-
action

• An industry standard code for the type of merchant

• A code for other recent “non-monetary” transaction
types by transactor

• The age of the account and the card

• Other card/account information

• Confidential/Proprietary Fields (other potential in-
dicators)

• Fraud Label (0/1)

Learning tasks Our task is to compute effective clas-
sifiers that correctly discern fraudulent from legitimate
transactions. Contrary to most studies on comparing
different classification models and systems, however, ef-
fectiveness does not mean overall accuracy (or minimal
error rate). Other measures of interest include True
Positive (TP) and False Positive (FP) rates for (binary)
classification problems, ROC analysis and problem spe-
cific cost models. A detailed study against the use of ac-
curacy estimation for comparing induction algorithms
can be found in (Provost, Fawcett, & Kohavi 1998). In
the credit card fraud domain, overall predictive accu-
racy is inappropriate as the single measure of predictive
performance. If 1% of the transactions are fraudulent,
then a model that always predicts “legitimate” will be
99% accurate. Hence, TP rate is more important. Of
the 1% fraudulent transactions, we wish to compute
models that predict 100% of these, yet produce no false
alarms (i.e. predict no legitimate transactions to be
fraudulent). Hence, maximizing the TP − FP spread
may be the right measure of a successful model. Yet,
one may find a model with TP rate of 90%, i.e. it
correctly predicts 90% of the fraudulent transactions,
but here it may correctly predict the lowest cost trans-
actions, being entirely wrong about the top 10% most
expensive frauds. Therefore, a cost model criteria may
be the best judge of success, i.e a classifier whose TP
rate is 10% may be the best cost performer.
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Figure 1: Fraud Predictors: Accuracy (left), TP-FP spread (middle) and Savings (right) on Chase credit card data.
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Figure 2: Fraud Predictors: Accuracy (left), TP-FP spread (middle) and Savings (right) on First Union credit card data.

To evaluate and compare our fraud predictors, we
adopted three metrics: the overall accuracy, the TP −
FP spread2 and a cost model fit to this problem.

Credit card companies have a fixed overhead that
serves as a threshold value for challenging the legiti-
macy of a credit card transaction. If the transaction
amount amt, is below this threshold, they choose to au-
thorize the transaction automatically. Each transaction
predicted as fraudulent requires an “overhead” referral
fee for authorization personnel to decide the final dis-
position. This “overhead” cost is typically a “fixed fee”
that we call Y . Therefore, even if we could accurately
predict and identify all fraudulent transactions, those
whose amt is less than Y would produce $(Y − amt)
in losses anyway. To calculate the savings each fraud
detector contributes due to stopping fraudulent trans-
actions, we use the following cost model for each trans-
action:

2In comparing the classifiers, one can replace the TP −
FP spread, which defines a certain family of curves in the
ROC plot, with a different metric or even with a complete
analysis (Provost & Fawcett 1997; 1998) in the ROC space.

• If prediction is “legitimate” or (amt ≤ Y ), authorize
the transaction (savings = 0);

• Otherwise investigate the transaction:

– If transaction is “fraudulent”, savings = amt−Y ;
– otherwise savings = −Y ;

Performance of classifiers To generate our classifi-
cation models we distributed each data set across six
different data sites (each site storing two months of
data) and we applied the 5 learning algorithms on each
month of data, therefore creating 60 classifiers (10 clas-
sifiers per data site). This “month-dependent” data
partitioning scheme was used only on the Chase bank
data set. The very skewed nature of the First Union
data forced us to equi-partition the entire data set ran-
domly into 12 subsets and assign 2 subsets in each data
site. Next, we had each data site import all “remote”
classifier agentss (50 in total) to test them against its
“local” data. In essense, each classifier agents was eva-
luted on 5 different (and unseen) subsets.

Figures 1 and 2, present the averaged results for the
Chase and First Union credit card data respectively.



The left plots show the accuracy, the center plots de-
pict the TP−FP spread and the right plots display the
savings of each fraud detector. The x-axis corresponds
to the month of data used to train the classifier agents,
starting in October 1995 and ending in September 1996
(the one year span is repeated for the five learning algo-
rithms). Each vertical bar represents a specific classifier
agent, e.g. the first bar of the left plot of Figure 1 rep-
resents the accuracy (83.5%) of the Bayesian classifier
agent that was trained on the October 1995 data. The
maximum achievable savings for the perfect classifier,
with respect to our cost model, is $1,470K for the Chase
and $1,085K for the First Union data sets. According
to the figures, some learning algorithms are more suit-
able for one problem for one evaluation metric (e.g naive
Bayes on Chase data is more effective in savings) than
for another metric (e.g. accuracy of naive Bayes clas-
sifier on Chase data) or another problem (e.g. naive
Bayes on First Union data), even though the two sets
are very similar in nature. The figures also reveal that
the classifier agents computed over the Chase data ex-
hibit a larger variance in their performance, compared
to those computed over the First Union data.

The diversity among the classifiers is attributed, first,
to the use of disparate learning algorithms (each with
different search space, evaluation criteria, model rep-
resentation and bias), and second, on the degree the
training sets are different. Although the first factor is
the same for both Chase and First Union datasets, this
is not the case with the second. First Union classifiers
are trained over subsets of data of equal size and class
distribution while the Chase classifiers were trained on
subsets of data divided according to the date of the
credit card transaction. The latter led to variations in
the size of the training sets and the class distributions,
thus explaining the increased variance within the set of
Chase classifiers.

Overall, it appears that all learning algorithms per-
formed better on the First Union data set than on the
Chase data set. On the other hand, note that there
are fewer fraudulent transactions in the First Union
data and this causes a higher baseline accuracy. In
all cases, classifiers are successful in detecting fraudu-
lent transcactions. Moreover, by combining these sepa-
rately learned classifiers, it is possible to generate meta-
classifiers (higher level classification models) with im-
proved fraud detection capabilities.

Combining fraud detectors

Meta-learning The basic idea of meta-
learning (Chan & Stolfo 1993), a technique similar
to stacking (Wolpert 1992), is to execute a number
of machine learning processes on a number of data
subsets in parallel, and then to combine their computed
classifiers through an additional phase of learning.
Initially, each machine learning task, also called a base
learner, computes a base classifier, i.e. a model of its
underlying data subset or training set. Next, a separate
machine learning task, called a meta-learner, integrates

these independently computed base classifiers into
a higher level classifier, called a meta classifier, by
learning over a meta-level training set. This meta-level
training set is composed from the predictions of the in-
dividual base classifiers when tested against a separate
subset of the training data, also called a validation set.
From these predictions, the meta-learner discovers the
characteristics and performance of the base classifiers
and computes a meta-classifier which is a model of the
“global” data set. To classify an unlabeled instance,
the base classifiers present their own predictions to the
meta-classifier which then makes the final classification.

Performance of meta-classifiers To combine the
50 “imported” fraud detectors (base classifiers) into a
single meta-classifier, each data site used the same 5
learning algorithms as meta-learners and employed half
of its local data (one month) as the validation set and
the other half (second month) as the test set. The 10
“local” base classifiers were not used in meta-learning
to ensure that no classifiers predict on data seen pre-
viously. The setting of this experiment, corresponds
to a 6-fold cross validation with each fold executed in
parallel.

The performance results of these meta-classifiers av-
eraged over the 6 sites are reported in Table 1. A
comparison to Figures 1 and 2 indicates that in almost
all instances, meta-classifiers outperform all base clas-
sifiers, and in some cases by a significant margin. The
most notable exception is found in the “savings” col-
umn of Chase bank where most meta-classifiers exhibit
reduced effectiveness compared to that of the best base
classifier. Even there, however, all learning algorithms
produce better results as meta-learners than as base-
learners (e.g. the ID3 meta-classifier is superior to the
best ID3 base classifier).

This shortcoming can be attributed to the fact that
the learning task is ill-defined. Training classifiers to
distinguish fraudulent transactions is not a direct ap-
proach to maximizing savings (or the TP−FP spread).
Traditional learning algorithms are unaware of the
adopted cost model and the actual value (in dollars)
of the fraud/legitimate label; instead they are designed
to reduce misclassification error. Hence, the most ac-
curate classifiers are not necessarily the most cost effec-
tive. This can be demonstrated in Figure 1 (right plot).
Although the Bayesian base classifiers are less accurate
than the Ripper and C4.5 base classifiers, they are by
far the best under the cost model. Similarly, the meta-
classifiers are trained to maximize the overall accuracy
not by examining the savings in dollars but by rely-
ing on the predictions of the base-classifiers. In fact,
the right plot of Figure 1 reveals that with only a few
exceptions, Chase base classifiers are inclined towards
catching “cheap” fraudulent transactions and for this
they exhibit low savings scores. Naturally, the meta-
classifiers are trained to trust the wrong base-classifiers
for the wrong reasons, i.e. they trust the base clas-
sifiers that are most accurate instead of the classifiers



Table 1: Performance of the meta-classifiers
Chase First Union

Algorithm Accuracy TP-FP Savings Accuracy TP-FP Savings

Bayes 88.65% 0.621 $ 818K 96.21% 0.831 $ 944K
C4.5 89.30% 0.567 $ 588K 96.25% 0.791 $ 878K
CART 88.67% 0.552 $ 594K 96.24% 0.798 $ 871K
ID3 87.19% 0.532 $ 561K 95.72% 0.790 $ 858K
Ripper 89.66% 0.585 $ 640K 96.53% 0.817 $ 899K

that accrue highest savings.
One way to deal with this situation is to use cost-

sensitive algorithms, i.e. algorithms that employ cost
models to guide the learning strategy (Turney 1995).
On the other hand, this approach has the disadvan-
tage of requiring significant change to generic algo-
rithms. An alternative, but (probably) less effective
technique is to alter the class distribution in the train-
ing set (Breiman et al. 1984; Chan & Stolfo 1998) or
to tune the learning problem according to the adopted
cost model. In the credit card fraud domain, for ex-
ample, we can transform the binary classification prob-
lem into a multi-class problem by multiplexing the bi-
nary class and with continuous amt attribute (properly
quantized into several “bins”). A third option, comple-
mentary to the other two, is to have the meta-classifier
pruned (Prodromidis & Stolfo 1998a), i.e. discard the
base classifiers that do not exhibit the desired property.

To improve the performance of our meta-classifiers,
we followed the latter approach. Although it addresses
the cost-model problem at a late stage, after base classi-
fiers are generated, is has the advantage of fitting better
to the requirements of this problem (financial institu-
tions import pre-computed classification models, and
hence treat them as black boxes) and also reduces the
size of the meta-classifier, thus allowing for faster pre-
dictions and better use of system resources.

Pruning the meta-classifiers Determining the op-
timal set of classifiers for meta-learning is a combi-
natorial problem. With 50 base classifiers per data
site, there are 250 combinations of base classifiers that
can be selected. To search the space of the poten-
tially most promising meta-classifiers, the pruning al-
gorithms (Prodromidis & Stolfo 1998a) employ evalua-
tion functions that are based on the evaluation metric
adopted (e.g. accuracy, cost model) and heuristic meth-
ods that are based on the performance and properties of
the available set of base classifiers (e.g. diversity, high
accuracy for a specific class).

Figures 3 and 4 display the accuracy (left plots), the
TP-FP spread (center plots) and savings (right plots) of
the partially grown meta-classifiers for the Chase and
First Union data sets respectively. The x-axis repre-
sents that number of base classifiers included in the
meta-classifiers. The curves show the Ripper meta-
classifier to be the most accurate and the Bayesian
meta-classifiers to achieve the best performance with
respect to the TP-FP spread and the cost model for

both sets. At the opposite end, ID3 is found to be the
overall worst performer.

The figures indicate that, with only few exceptions,
meta-learners tend to overfit their meta-learning train-
ing set (composed from the validation set) as the num-
ber of base-classifiers grows. Hence, in addition to com-
puting most efficient meta-classifiers, pruning can lead
to further improvements in the meta-classifiers’ fraud
detection capabilities. Moreover, by selecting the base
classifiers, pruning helps address the cost-model prob-
lem as well. The performance of a meta-classifier is
directly related to the properties and characteristics of
the constituent base classifiers. Recall (from the right
plot of Figure 1) that very few base classifiers from
Chase have the ability to catch “expensive” fraudulent
transactions. While the meta-classifiers consist of base
classifiers with good cost model performance the meta-
classifier exhibits substantially improved performance
as well (see right plot of Figure 3). This trend is not
apparent for the First Union data set since the majority
of the First Union base classifiers happened to catch the
“expensive” fraudulent transactions anyway (right plot
of Figure 2). The same, but to a lesser degree, holds
for the TP − FP spread.

Table 2 presents a summary result of the best pruned
meta-classifiers and their size (number of constituent
base classifiers). Entries in bold indicate a statistically
significant performance improvement comparing to that
of the unpruned meta-classifiers. 3 As expected, how-
ever, there is no single best meta-classifier; depending
on the evaluation criteria and the learning task, differ-
ent meta-classifiers of different sizes perform better.

Combining fraud detectors across banks

The final stage of our experiments involves the exchange
of base classifiers between the two banks. In addi-
tion to their 10 local and 50 “internal” classifier agents
(those imported from their peer data sites), the data
sites also import the 60 external classifier agents (those
computed at the other bank). Each Chase data site is
populated with 60 (10+50) Chase fraud detectors and
60 First Union fraud detectors and vice versa for First
Union. The same 5 learning algorithms are used as
meta-learners and each site employs half of its local data
to meta-learn its classifier agents and the other half to
evaluate the overall performance of the meta-classifier.

3The error rates of the two meta-classifiers are different
with 99% confidence according to the paired t test.
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Figure 3: Chase: Accuracy (left), TP-FP spread (middle) and savings (right) of meta-classifiers as a function of the number
of base classifiers combined.
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Figure 4: First Union: Accuracy (left), TP-FP spread (middle) and savings (right) of meta-classifiers as a function of the
number of base classifiers combined.

To ensure fairness, the 10 local classifier agents are not
used in meta-learning.

Bridging the Databases To meta-learn over this set
of classifier agents, however, we had to overcome addi-
tional obstacles. The two databases, had differences in
their schema definition, hence the produced incompati-
ble classifiers:
1. Chase and First Union defined an attribute with dif-

ferent semantics (i.e. one bank recorded the number
of times an event occurs within a specific time period
while the second bank recorded the number of times
the same event occurs within a different time period).

2. Chase includes two (continuous) attributes not
present in the First Union data.
To address these problems we followed the ap-

proaches described in (Maitan, Ras, & Zemankov 1989;
Ras 1998; Prodromidis & Stolfo 1998b). For the first in-
compatibility, we had the values of the First Union data
set mapped via a linear approximation to the seman-
tics of the Chase data. For the second incompatibility,

we deployed special bridging agents that were trained to
compute the missing values of First Union data set. The
training involved the construction of regression mod-
els (Sta 1996) of the missing attributes over the Chase
data set using only the attributes that were common to
both banks. When predicting, the First Union classi-
fier agents simply disregarded the real values provided
at the Chase data sites, while the Chase classifier agents
relied on both the common attributes and the predic-
tions of the bridging agents to deliver a prediction at
the First Union data sites.

Table 3 displays the accuracy, TP-FP spread and
savings of each Chase and First Union meta-classifier.
These results demonstrate that both Chase and First
Union fraud detectors can be exchanged and applied to
their respective data sets. The most apparent outcome
of these experiments is the superior performance of the
First Union meta-classifiers and the lack of improve-
ment on the performance of the Chase meta-classifiers
(Again, entries in bold indicate a further improvement
in performance). This phenomenon can be easily ex-



Table 2: Performance of the best pruned meta-classifiers
Chase First Union

Algorithm Type Accuracy size TP-FP size Savings size Accuracy size TP-FP size Savings size

Bayes 89.33% 16 0.632 32 $ 903K 5 96.57% 13 0.848 12 $ 950K 29

C4.5 89.58% 14 0.572 27 $ 793K 5 96.51% 16 0.799 25 $ 880K 42

CART 89.49% 9 0.571 18 $ 798K 5 96.48% 12 0.801 29 $ 884K 37

ID3 89.40% 8 0.568 1 $ 792K 5 96.45% 8 0.795 30 $ 872K 40

Ripper 89.70% 46 0.595 47 $ 858K 3 96.59% 30 0.821 36 $ 902K 44

Table 3: Performance of meta classifiers combining fraud predictors from both banks
Chase First Union

Algorithm Type Accuracy TP-FP Savings Accuracy TP-FP Savings

Bayes 88.03% 0.621 $ 800K 96.32% 0.844 $ 963K
C4.5 88.93% 0.558 $ 576K 97.97% 0.881 $ 912K
CART 88.46% 0.556 $ 590K 97.99% 0.881 $ 909K
ID3 84.80% 0.513 $ 547K 97.46% 0.877 $ 887K
Ripper 89.70% 0.585 $ 632K 98.05% 0.897 $ 927K

plained from the fact that the attributes missing from
the First Union data set were significant in modeling
the Chase data set. Hence, the First Union classifiers
are not as effective as the Chase classifiers on the Chase
data, and the Chase classifiers cannot perform at full
strength at the First Union sites without the bridging
agents. (The latter was verified by a separate exper-
iment, similar to the above, with the exception that
no bridging agents were used, i.e. Chase classifiers pro-
duced predictions without using any information on the
missing values — results not shown here).

Pruning the meta-classifiers To reduce the num-
ber of base classifiers integrated in each meta-classifier
and improve the overall performance, we applied the
pruning algorithms on these meta-classifiers as well.
Table 4 presents the summary results of the best pruned
meta-classifiers and their size. The measurements es-
tablish the contribution of pruning. In all cases pruning
succeeded in computing meta-classifiers with similar or
better fraud detection capabilities, while reducing their
size and thus improving their efficiency.

Existing fraud detection techniques Our experi-
ments demonstrate that fraud-detectors computed over
models contributed by different financial institutions
are capable of identifying a substantial portion of the
fraudulent transactions. To compare with existing
fraud detection techniques, we measured the perfor-
mance of Chase’s own COTS4 authorization/detection
system (First Union’s COTS authorization/detection
system was not made available to us). Such systems
are trained to inspect and evaluate incoming transac-
tions and produce scores in the [0-1000] range. Bank
personnel determine a threshold value based on the tar-
get evaluation metric, and all transactions scored above
this threshold are considered suspicious. In Figure 5,
we plot the accuracy, the TP-FP spread and savings

4Commercial off the shelf fraud detection system.

of the COTS system as a function of its output. No-
tice, that the same results holds for Chase’s system as
well: there is no single best threshold; depending on
the evaluation metric targeted different thresholds are
better — 700 for accuracy (85.7%), 100 for the TP-FP
spread (0.523) and 250 for savings ($682K). In contrast,
the best results obtained by Chase meta-classifiers at-
tained 89.73% in accuracy, 0.633 in the TP-FP spread,
and $903K in savings.

Conclusion

This paper describes a general method to protect finan-
cial information systems against fraudulent practices.
The main advantages of this approach are: its flexibil-
ity to allow financial institutions to share their models
of fraudulent transactions without disclosing their pro-
prietary data and its its ability to scale as the number
and size of data bases grow.

We applied this approach on actual credit card trans-
action data sets provided by two separate financial in-
stitutions. Our experiments involved the training of
multiple fraud detectors (classifier agents) and meta-
detectors within each data set, and the meta-learning
of meta-detectors across the two data sets. Through
an extensive empirical evaluation we showed that, for
the given data sets, meta-detectors exhibit far superior
fraud detection capabilities comparing to single model
approaches and traditional authorization/detection sys-
tems. We believe meta-learning systems deployed as in-
telligent agents will be an important contributing tech-
nology to deploy intrusion detection facilities in global-
scale, integrated information systems.
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