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Abstract

We view a dataset of points or samples
as having an underlying, yet unspecified,
tree structure and exploit this assumption
in learning problems. Such a tree struc-
ture assumption is equivalent to treating a
dataset as being tree dependent identically
distributed or tdid and preserves exchange-
ability. This extends traditional iid assump-
tions on data since each datum can be sam-
pled sequentially after being conditioned on a
parent. Instead of hypothesizing a single best
tree structure, we infer a richer Bayesian pos-
terior distribution over tree structures from
a given dataset. We compute this poste-
rior over (directed or undirected) trees via
the Laplacian of conditional distributions be-
tween pairs of input data points. This poste-
rior distribution is efficiently normalized by
the Laplacian’s determinant and also facili-
tates novel maximum likelihood estimators,
efficient expectations and other useful infer-
ence computations. In a classification set-
ting, tdid assumptions yield a criterion that
maximizes the determinant of a matrix of
conditional distributions between pairs of in-
put and output points. This leads to a novel
classification algorithm we call the Maximum
Determinant Machine. Unsupervised and su-
pervised experiments are shown.

1 Introduction

In many applied datasets, input data points or sam-
ples collectively exhibit additional structure which can
be exploited by a classification or learning machine.
For instance, data may lie on a low dimensional linear
subspace or nonlinear manifold. Another possibility
is that data may be clustered into several subcompo-

nents. Alternatively, data may have some graph struc-
ture that ties points through some adjacency matrix.
In this article, we consider the case where data points
obey not a single graph structure but rather a distri-

bution of structures, more specifically, a distribution
over trees.

Traditionally, imposing additional structure in data is
made via parametric assumptions and priors using, for
instance, a Bayesian approach which fully models the
generative distributions that produced the data. Typ-
ically, data is assumed to have been generated in an
independent identically distributed or iid manner (Box
& Tiao, 1992; Ghahramani & Beal, 1999). Alterna-
tively, in support vector machines and their variants,
we impose parametric assumptions on the relationship

between inputs and outputs or on the flexibility of
decision boundaries that separate data into different
classes (Scholkopf & Smola, 2001). Other viable ap-
proaches include assumptions that data is confined to
a linear subspace as in principal components analy-
sis (PCA) or to a nonlinear manifold as in kernel-PCA
and its variants (Scholkopf & Smola, 2001; Tenenbaum
et al., 2000). Similarly, assumptions on the presence
of clustering or clusters within the data are also use-
ful and exploitable via spectral clustering or mixture
modeling (Meila & Shi, 2001; Ghahramani & Beal,
1999). Finally, we can also adopt graph-theoretic as-
sumptions about the data by, for example, building a
graph or a Laplacian from the dataset and using diffu-
sion or other graph algorithms in the learning process
(Kondor & Lafferty, 2002; Belkin & Niyogi, 2001).

The graphical modeling literature brings an alterna-
tive way to impose additional structure to data by
making graph-structured independence assumptions
(Heckerman et al., 1995; Jordan, 2004). However,
these are primarily imposed on the relationship be-
tween dimensions or random variables that constitute
each datum and less frequently on the relationship be-
tween individual data points themselves. For instance,
a tree structure could be hypothesized between various

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


random variables in a multi-variate learning problem
and efficient algorithms for finding such a tree struc-
ture from mutual information computations are known
(Chow & Liu, 1968). A more expressive route is to ma-
nipulate distributions over tree graph structures which
are possible in a discriminative classification or gen-
erative Bayesian setting (Jaakkola et al., 1999; Meila
& Jaakkola, 2000). These involve distributions over
graph structures between random variables or dimen-
sions in the dataset. In this article, we instead manip-
ulate distributions over graph structures that inter-
connect data points or individual sample datums with
dependency links, not just links between the random
variables that constitute each datum1.

p(T)=exp(−27) p(T)=exp(−45)

Ta = arg maxT p(T ) Tb

p(T)=exp(−610) p(T)=exp(−5019)

Tc Td

Figure 1: Sample tree structures and their likelihoods
for a 2D binary classification dataset.

Thus, we will hypothesize a distribution over tree
structures that interconnect the samples in a dataset.
This is equivalent to making the assumption that the
data in our dataset was generated according to a
tree dependent identically distributed (tdid) sampling
scheme. Applied settings where tree structures are
known to exist between data points include biological
datasets where each datum is a gene and phylogenetic
trees are known to interconnect the genes through a
tree-like evolution structure. For any given dataset,
we assume the true tree structure is unknown. How-
ever, estimating a single best tree structure hypoth-

1However, an even richer setting would be to manip-
ulate graph structure distributions that interconnect both
random variables that constitute each data point as well
as interconnect the multiple samples in a dataset. For
instance, consider a database of patients connected by a
family tree where each patient record has a tree structure
between variables.

esis might be unreliable. It is more cautious to con-
sider a distribution over possible tree structures that
interconnect the samples. This is shown in Figure 1
where the most likely tree structure and several sam-
ple tree structures are drawn interconnecting a dataset
of points with the likelihood weight of each tree shown
above. This article will make tree structure distribu-
tion assumptions between samples and manipulate the
posterior over trees leading to efficient ways to regu-
larize and learn from data in both supervised and un-
supervised settings.

This paper is organized as follows. Section 2, intro-
duces the tdid sampling assumption where a distri-
bution is inferred over undirected tree structures that
connect data points. In Section 3, we generalize the
distributions to directed tree structures. Section 4 pro-
vides a novel variant of maximum likelihood for tdid

settings. In Section 5, the tdid assumption is exploited
in a supervised input-output or classification setting to
make label predictions. Section 6 provides theoretical
arguments for tree structure assumptions on data. We
conclude with experiments and discussion.

2 Tree dependent identically

distributed data

In most unsupervised learning problems, we are pro-
vided with a training dataset containing Xt input sam-
ples for t = 1 . . . T . It is traditional to assume, given a
model, these samples are independent and identically
distributed (iid). For instance, the likelihood given a
parametric model Θ is:

p(X1, . . . , XT |Θ) =

T
∏

t=1

p(Xt|Θ).

From this starting point, it is straightforward to per-
form inference. For example, we can find the maxi-
mum likelihood model Θ∗ and evaluating its likelihood
numerically. Bayesian analogs of these procedures in-
clude performing Bayesian inference over Θ and eval-
uating the Bayesian evidence of the dataset. However,
making an iid assumption might be too radical. A
more conservative yet necessary assumption we will
make in this paper are that our finite samples are only
exchangeable. This merely states that the likelihood
or probability p(X1, . . . , XT |Θ) for finite T is invari-
ant to reordering or permutations of the arguments
{X1, . . . , XT }.

Let us instead consider a situation where samples are
not iid but rather are generated according to an un-
known tree structure. More specifically, we assume a
dataset is composed of tree dependent identically dis-

tributed or tdid samples. Recall that a tree is a directed



graph G with a set of T vertices V and edges E such
that each node Vt has at most one parent node Vπ(t).
If we knew the tree structure T that governed our T

samples, the likelihood of the data under tdid assump-
tions factorizes as follows:

p(X1, . . . , XT |T , Θ) =

T
∏

t=1

p(Xt|Xπ(t), Θ). (1)

However, in general we do not know the tree structure
so we therefore treat it as a random variable. This
allows us to use Bayes’ rule to obtain a posterior dis-
tribution over tree structures as follows:

p(T |X1, . . . , XT ) =

∏T

t=1 p(Xt|Xπ(t))p(T )

p(X1, . . . , XT )
.

In the above we have omitted the Θ conditioning vari-
able for brevity. We will assume without loss of gener-
ality that the distribution of the root of the tree given
its null parent is uniform:

p(Xroot|{}) = constant

and the prior over tree structures is uniform2 as well:

p(T ) = constant.

We still need to select conditional distributions for Xt

given its parent point Xπ(t) to fully specify the pos-
terior. For now, any choice for p(Xt|Xπ(t)) is possi-
ble as long as the distribution is symmetric, in other
words, p(Xt|Xπ(t)) = p(Xπ(t)|Xt). In fact, since we
will ultimately require the posterior remain normal-
ized, it is technically possible to use any non-negative
kernel function k(Xt, Xπ(t)) and simply set the con-
ditional distribution p(Xt|Xπ(t)) ∝ k(Xt, Xπ(t)). For
example, we may assume that the points are in a Eu-
clidean space such that Xt ∈ R

d and the conditional
of Xt given its parent Xπ(t) is a Gaussian centered
at the parent with spherical covariance p(Xt|Xπ(t)) =
N (Xt|Xπ(t), σ

2I). This is equivalent to choosing an
RBF kernel for k.

Let us now compute the posterior as a product of edges
in the tree instead of a product over nodes given their
parents as follows:

p(T |X1, . . . , XT ) =
1

Z

T
∏

t=1

p(Xt|Xπ(t)) =
1

Z

∏

uv∈T

βuv.

Here we have written the distribution as a prod-
uct of the edges uv in the tree T where we defined
βuv = p(Xu|Xv) Note that βuv = βvu ≥ 0 and that

2Other priors or even mixtures of priors on tree struc-
ture are feasible yet the uniform prior avoids assuming an
ordering on X1, . . . , XT maintaining exchangeability.

we will assume βvv = 0 which is never iterated over
in the product above since there are no edges between
a node and itself. For the Gaussian case mentioned
earlier, we would therefore use βuv = N (Xu|Xv, σ

2I).
Writing the posterior in terms of βuv as a product of
edges effectively discards the directionality implied by
a parent-child relationship and this is why we previ-
ously required that the conditional distributions re-
main symmetric. Next, we note the scalar Z which
is the partition function that serves to normalize the
posterior distribution and is defined as:

Z =
∑

T

∏

uv∈T

βuv.

Computing this partition function by enumerating all
possible trees is intractable since, according to Cay-

ley’s formula, there are T T−2 possible trees connect-
ing T observation vertices. We adopt a key result
from (Jaakkola et al., 1999; Meila & Jaakkola, 2000),
namely Kirchoff’s classic Matrix Tree Theorem, which
provides an efficient way to compute the partition
function Z by simple linear algebra operations on the
T × T symmetric matrix β whose entries are all the
βuv values. Recall, these are merely the conditional
distributions between all pairs of points Xu and Xv.
We first define a function that maps matrices to ma-
trices Q̄(β) where Q̄ : <T×T → <T×T has entries that
are defined as follows:

Q̄uv(β) =

{

−βuv u 6= v u, v ∈ [1, T ]
∑T

w=1 βvw u = v u, v ∈ [1, T ]

This is similar to the graph Laplacian (the discrete
analog of the Laplace-Beltrami operator) obtained
from weights βuv between nodes. Also, we define an-
other function Q(β) that maps matrices to smaller ma-
trices where Q : <T×T → <(T−1)×(T−1). The output
matrix from the Q function is the same as the out-
put matrix of the Q̄ function except the last row and
column are omitted. Thus Q is merely a minor of Q̄.

Quv(β) =

{

−βuv u 6= v u, v ∈ [1, (T − 1)]
∑T

w=1 βvw u = v u, v ∈ [1, (T − 1)]

Using the Matrix Tree Theorem, the partition func-
tion that normalizes the posterior over trees is then
efficiently given by the determinant:

Z = |Q(β)|.

Remarkably, this only requires O(T 3) operations in-
stead of O(T T−2) operations. It is also interesting to
note that the determinant or the value of Z is the same
for any (T − 1) × (T − 1) minor of the matrix Q̄(β).

The quantity Z (also known as the determinant of the
graph Laplacian (Jakobson & Rivin, 2002)) and its



analog for directed trees are useful for various learning
problems which we will enumerate shortly. Further-
more, there exist many uses of the normalized pos-
terior distribution over trees given our tdid dataset
X1, . . . , XT . In fact, we also have implicitly described
a fully generative model from our joint distribution
p(X1, . . . , XT , T ). One useful procedure is to sample
from such a generative model for various applications
including MCMC sampling methods. For instance,
we sample a tree structure from the prior distribution
p(T ) and then sample points from the tree sequentially
starting with its root by sampling each datum from
a Gaussian centered on the parent. This generative
model contrasts the usual assumption that X1, . . . , XT

are independent and identically distributed samples.

Furthermore, if we have a normalized posterior dis-
tribution p(T | . . .) = 1

Z

∏

uv∈T
βuv, many interesting

computations over trees are efficient because they do
not need explicit enumeration of every possible tree
structure. For instance, we can find the maximum of
the posterior, argmaxT p(T | . . .) in polynomial time
using the Chow-Liu algorithm (Chow & Liu, 1968).
Furthermore, we may efficiently compute expectations
under the tree distribution of functions over the data
that are either additive or multiplicative over edges in
a given tree (Meila & Jaakkola, 2000).

3 Directed tdid assumptions

So far, we have discarded the parent-child relationship
by assuming symmetric conditional distributions and
only considered the tdid scenario for undirected trees.
This assumption is not necessary since it is also possi-
ble to consider a distribution over directed tree struc-
tures. This is facilitated by a directed variant of the
Matrix Tree Theorem, namely Tutte’s Directed Matrix

Tree Theorem (West, 1996). We represent a distri-
bution over trees with T nodes again using a T × T

matrix, β which satisfies the properties βvv = 0 and
βuv ≥ 0 but does not require symmetry. For a directed
tree T , our probability distribution is again:

p(T ) =
1

Z

∏

uv∈T

βuv (2)

where we are taking the products of edges along the
directed tree that connect node u as a parent of node
v, in other words u → v. In other words, βuv is the
number or weight of the edges connecting node u to v

in a digraph. This exactly coincides with the parent-
child factorization of directed Bayesian networks we
began with in earlier sections. However, we no longer
need to enforce symmetry of the conditional distribu-
tions p(Xt|Xπ(t)). Furthermore, if β happens to be
symmetric, we reproduce the results from the previ-
ous sections. Once again note the intractability of the

partition function Z due to the large number of di-
rected tree structures.

To apply the Directed Matrix Tree Theorem, we first
split the set of directed trees with T nodes which we de-
note with {T } into 2T different subsets. More specif-
ically, we split the space into in-trees rooted at node
i ∈ [1, T ] which we denote {T +

i } and out-trees rooted
at node i ∈ [i, T ] which we denote {T −

i }. An in-tree

is an orientation of a tree having a root of out-degree
0 and all other vertices having out-degree 1. An out-

tree or branching tree is an orientation of a tree having
a root of in-degree 0 and all other vertices having in-
degree 1. From β we compute the following two T ×T

matrices, the in-tree matrix Q̄+ and the out-tree ma-
trix Q̄− which only differ on their diagonals:

Q̄+
uv(β) =

{

−βuv u 6= v u, v ∈ [1, T ]
∑T

w=1 βvw u = v u, v ∈ [1, T ]

Q̄−
uv(β) =

{

−βuv u 6= v u, v ∈ [1, T ]
∑T

w=1 βwv u = v u, v ∈ [1, T ]

The Directed Matrix Tree Theorem states the following
key results3. The number (or weight) of in-trees rooted
at node i is Z+

i (β) and is given by the matrix cofactor
obtained by deleting the i’th row and i’th column of
the matrix Q̄+:

Z+
i (β) = |mii(Q̄

+(β))|

where mii(Q̄) is the sub-matrix obtained by deleting
the i’th row and i’th column of matrix Q̄. Similarly,
the weight of out-trees rooted at node i is

Z−
i (β) = |mii(Q̄

−(β))|.

We can now precisely define the distribution over trees
conditioned on the fact that the trees are in-tree struc-
tures rooted at node i as

p(T |+, i) =
1

Z+
i

∏

uv∈T

βuv.

The conditional over out-trees is similar. We can also
recover the marginal distribution over directed trees
by using these conditionals via

p(T ) =
∑

±,i

p(T |±, i)p(±, i).

Here, we have a marginal distribution p(±, i) which
has 2T entries and assigns a probability to selecting

3Technically, the Directed Matrix Tree Theorem (West,
1996) applies to a matrix of integer weights on trees yet
can be extended to continuous rational values by assuming
a matrix composed of rationals with a very large common
denominator that is factored out from the probability leav-
ing an integer matrix (Meila & Jaakkola, 2000).



a node i ∈ [1, T ] as the root for both the case of an
in-tree and for an out-tree. The natural setting for the
marginal distribution for each possible choice of root
and in/out-tree structure is

p(±, i) =
Z±

i
∑T

j=1 Z+
j + Z−

j

.

Therefore, we can now succinctly write out a normal-
ized distribution over directed trees by marginalizing
over the choices of root and direction (in-tree or out-
tree):

p(T ) =
∑

±,i

1
∑T

j=1 Z+
j + Z−

j

∏

uv∈T

βuv

=
2T

∑T

j=1 Z+
j + Z−

j

∏

uv∈T

βuv

Thus, the partition function Z for the original Equa-
tion 2 for the distribution over directed trees can be
recovered from the above equation as simply

Z =
1

2T

T
∑

i=1

|mii(Q̄
+(β))| + |mii(Q̄

−(β))|.

In the case when β is symmetric, all terms in the sum-
mation above are identical and the above partition
function is the same as the one in the undirected case.
Thus, we can see the case for directed trees is a nat-
ural generalization of the undirected tree case. This
is a well known result since the Directed Matrix Tree

Theorem reduces to the Matrix Tree Theorem when
the digraph is symmetric (West, 1996). However, nor-
malizing the distribution over directed trees for asym-
metric β is more computationally demanding since we
compute 2T determinants which requiresO(T 4) opera-
tions. Thus, considering a posterior over directed trees
allows us to work with asymmetric conditional distri-
butions between parent and child nodes. For instance,
we may choose a Gaussian relationship for the condi-
tional p(Xt|Xπ(t)) = N (Xt|0, Xπ(t)X

T
π(t) + σ2I) which

is zero-mean yet has noise varying with the magnitude
and direction of the parent.

4 Maximum tdid likelihood

We can now consider computing the likelihood un-
der tdid assumptions instead of iid assumptions and,
if we treat the tree structure as unknown and use
a uniform prior over trees, we obtain a likelihood
p(X1, . . . , XT |Θ) that is exchangeable yet not iid.
Here, we have reinserted the Θ parameter that mod-
ifies the conditional relationship p(Xt|Xπ(t), Θ) be-
tween pairs of data-points. Note that the tdid like-
lihood given a model Θ and a uniform prior over trees

is merely the partition function

p(X1, . . . , XT |Θ) =
∑

T

p(X1, . . . , XT |T , Θ)p(T )

=
∑

T

∏

uv∈T

βuv(Θ) = Z(Θ)

For both the directed and undirected cases, the de-
terminants that constitute the partition function are
invariant to reordering of {X1, . . . , XT } which clearly
indicates that this likelihood is still exchangeable. It
now becomes straightforward to compute a maximum
likelihood setting of a model Θ∗ by maximizing the tdid

likelihood instead of the iid likelihood. Another inter-
esting property is that the tdid likelihood is a convex
combination of Laplacian determinants which are log-
concave in the edge weights βuv as shown in (Jakobson
& Rivin, 2002). We also conjecture that if βuv(Θ) is
log-concave in its parameters Θ (i.e. it is in the expo-
nential family) then Z(Θ) might be log-concave and
have no local minima. This is due to Equation 1 in
{Θ, T } which might maintain log-concavity under in-
tegration over T via Prekopa’s theorem (West, 1996).
In either case, we may perform maximum likelihood
estimation, possibly via gradient ascent in Θ over the
determinants in Z(Θ) noting that ∂

∂A
|A| = |A|A−1.

For instance, for jointly Gaussian conditionals between
Xt and Xπ(t) via p(Xi|Xπ(t), Θ) = N (Xi|ΘXπ(t), I)
we would adjust Θ to maximize tdid likelihood. In
Figure 2 we show a toy experiment of 10 data points
arranged in a circle and compute the likelihood sur-
face after marginalizing over tree structures. The tdid

log-likelihood is listed for each setting of the Θ ma-
trix, including the maximum likelihood setting. The
tdid likelihood is highest at the smoothest version of
the density and captures the rotational relationship
between the points.
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]

Figure 2: Unsupervised maximum tdid likelihood esti-
mation and density surface. The left-most plot corre-
sponds to a zero-mean Gaussian with no dependence
on a parent. The middle one correponds to an RBF-
like dependence on the parent and the right-most plot
corresponds to a rotational dependence on a parent.



5 Classification under tdid

We next consider the tdid assumptions in supervised
learning problems. We focus on binary classification
yet the results extend to multi-class classification and
regression problems as well. In supervised scenarios,
we have outputs or labels in addition to input sam-
ples. Instead of generating a label that depends on
the input, we will also allow dependence of the label
on a parent input and a parent label. In other words,
for training samples Xt and corresponding labels yt for
t = 1 . . . T , we have the following likelihood under tdid

assumptions for a known tree T :

p(X1, y1, . . . , XT , yT |T ) =

T
∏

t=1

p(Xt, yt|Xπ(t), yπ(t)). (3)

Once again, we have conditional distributions
p(Xt, yt|Xπ(t), yπ(t)) which may or may not be sym-
metric. Furthermore, we again choose uniform priors
on the root and a uniform prior on tree structure to
compute the posterior:

p(T |X1, . . . , XT , y1, . . . , yT ) =
1

Z

∏

uv∈T

βuv

where we have defined βuv = p(Xu, yu|Xv, yv). The
partition function is again provided via the previous
formulas for directed or undirected trees.

We may make more restrictive factorizations assump-
tions on the tdid formulation above. For instance, yt

might depend only on Xt. Alternatively, yt might
be independent of Xπ(t) given both yπ(t) and Xt.
However, these factorizations require specifying a re-
lationship between inputs and outputs. A more
radical assumption is that yt is independent of in-
put X data given its parent yπ(t). In that case
the conditional p(Xt, yt|Xπ(t), yπ(t)) simplifies into
p(yt|yπ(t))p(Xt|Xπ(t)). In an iid classification set-
ting, this radical assumption makes learning impossi-
ble since output data is independent from input data.
However, in a tdid setting, inputs and outputs are only
conditionally independent given tree structure. When
tree structure is unknown, dependence between inputs
and outputs emerges without an explicit relationship
between input and output spaces (parametric or oth-
erwise). When we are wary of making explicit as-
sumptions about the relationship between the input
and output spaces (beyond a common tdid sampling
scheme that underlies both), this may actually be a
sound factorization.

Once again, tree structure is not available and must
be treated as a hidden random variable. Furthermore,
in a classification problem, one or more yt labels are
unobserved. One approach is to find the maximum

likelihood setting of the unobserved labels while inte-
grating over the nuisance parameter T since the tree
structure in a general tdid problem is unavailable. As-
sume we have observed the first t = 1 . . . U labels (for
some U integer less than T ) and the t = (U + 1) . . . T

labels are unobserved. Denote the set of unobserved
labels Y = {yU+1, . . . , yT }. We will use the conditional
posterior over unobserved labels, l(Y), which is equal
to the joint distribution marginalized over all possible
tree structures4:

l(Y) = p(yU+1, . . . , yT |X1, . . . , XT , y1, . . . , yU )

=
∑

T

p(yU+1, . . . , yT , T |X1, . . . , XT , y1, . . . , yU )

=
∑

T

p(X1, . . . , XT , y1, . . . , yT , T )

p(X1, . . . , XT , y1, . . . , yU )

∝
∑

T

p(X1, . . . , XT , y1, . . . , yT , T )

∝
∑

T

T
∏

t=1

p(Xt, yt|Xπ(t), yπ(t)) =
∑

T

∏

uv∈T

βY
uv

where, in the last line, we have applied the definition in
Equation 3. Here, we use the superscript on β to indi-
cate that these βuv values and β matrix are computed
for a specific proposal setting of the Y variables. Re-
markably, the value of the objective function is simply
proportional to the partition function Z that normal-
izes the tree distribution for proposed values of the
unlabeled outputs. Thus, we have the following gen-
eral (directed or undirected) formula:

l(Y) ∝
1

2T

T
∑

i=1

|mii(Q̄
+(βY))| + |mii(Q̄

−(βY))|

This l(Y) is an objective function that we maximize to
predict the unobserved labels, i.e. Ŷ = argmaxY l(Y).
Therefore, we merely compute the partition function
from the β matrix for every possible setting of the un-
labeled output variables Y. In the binary classification
case, this requires computing the partition function
2T−U times. Since the objective function is also a dis-
tribution over unlabeled outputs, it can be normalized
by the sum of all partition functions evaluations for all
settings of Y:

l(Y) =

∑T
i=1 |mii(Q̄

+(βY))| + |mii(Q̄
−(βY))|

∑

Y

∑T

i=1 |mii(Q̄+(βY))| + |mii(Q̄−(βY))|

The above framework suggests building a classification
machine by labeling test data such that the partition

4We can also introduce parameters Θ that adjust the
conditional relationship p(Xt, yt|Xπ(t), yπ(t), Θ) and inte-
grate over them with a prior p(Θ) as well as integrate over
tree structures. This would modify the βuv values.



function of determinants is maximized. We call this
classifier a Maximum Determinant Machine or Max

Det Machine for short. Note that if the number of
test points is large the 2T−U determinant evaluations
become expensive yet various improvements are possi-
ble. For prediction, we typically only need the optimal
setting Ŷ and not a full distribution over Y. In these
scenarios, convex and semidefinite programming meth-
ods to maximize determinants may be used (Boyd &
Vandenberghe, 2003). We may also approximate the
optimal setting of Y by only solving for small subsets
of variables within Y at a time. For instance, in the
two-class classification case, we simply compute parti-
tion functions for every single binary variable in Y at
a time to determine its class which requires 2(T − U)
evaluations of Z. Finally, we may also selectively use
Woodbury’s formula |A + V WT | = |A||I + WT A−1V |
to speed up various determinant computations.

6 VC dimension of tree classifiers

The above approaches use posteriors over tree struc-
tures to bias maximum likelihood estimation and clas-
sification predictions. An extreme setting of this pos-
terior could select a single tree or hierarchy (with all
probability mass on T ∗). We could then consider ways
to cut the tree into two parts such that, to the greatest
extent possible, members of one class fall in one part,
and members of the other class fall into the other. This
extreme approach imposes a strong inductive bias on
the learning algorithm and can be motivated using fre-
quentist and theoretical arguments. We next provide
evidence for this argument by bounding the VC di-
mension of a classifier based on cutting a tree.

Many generalization guarantees have been proved in
terms of the VC dimension (see (Vapnik & Chervo-
nenkis, 1971; Talagrand, 1994)) which is defined as
follows. Suppose X is a set, and F is a set of {−1, 1}-
valued functions defined on X . We say F shatters
x1, ..., xd if

{(f(x1), ..., f(xd)) : f ∈ F} = {−1, 1}d,

that is, if functions in F are able to assign an arbitrary
sequence of values to x1, ..., xd. The VC dimension of
F is the size of the largest set shattered by F .

Theorem 1 Suppose G = (V, E) is an undirected

graph, and that E is a spanning tree for V . For an

edge e ∈ E, say that a function f from V to {−1, 1}
is compatible with a cut at e, if cutting the graph at e

separates the graph into two components, and f is con-

stant on each component. In other words, f is compat-

ible with a cut at e if for all v1, v2 ∈ V , f(v1) = f(v2)
if and only if the path from v1 to v2 in G does not

contain e.

Let F be the set of all f : V → {−1, 1} that are com-

patible with a cut at some edge in E. Then the VC-

dimension of F is at most 3.

Proof: We will show that no four vertices can be shat-
tered by F .

Assume for contradiction that w1, ..., w4 can be shat-
tered. Consequently, there is an f ∈ F such that
f(w1) = f(w2) = 1 and f(w3) = f(w4) = −1.
Let e be the edge that was cut to define f . Since
w1, ..., w4 are shattered, there is also a g ∈ G such
that g(w1) = g(w3) = 1 and g(w2) = g(w4) = −1.
Obviously g is different from f , so g is defined by a
cut other than at e. Thus e must lie in one or the
other of the components of the graph, after it is cut
to define g. Suppose it is in the component on which
g always takes the value −1 (the other case can be ar-
gued similarly). Then the fact that g(w1) = g(w3) = 1
implies that the path from w1 to w3 does not contain
e. But the fact that w1 and w3 were assigned different
values by f implies that the path from w1 to w3 does
contain e, a contradiction.

The fact that this VC-dimension is bounded implies,
roughly, that if an algorithm is able to correctly iden-
tify the hierarchical structure, and if the view that the
class is aligned with the structure is correct, then accu-
racy will be good. The above bound also directly im-
plies a similar generalization guarantee for algorithms
that seek to cut the graph in few places. Note that if
the graph is cut in s places, then the region on which
the classifier takes that value 1 is a union of at most s

subtrees. Thus, general bounds on the VC-dimension
of composite classes formed by taking unions of mem-
bers of simpler classes (Blumer et al., 1989) imply that
the VC dimension of the class of such s-cut hypotheses
is O(s log s). This provides generalization guarantees
for algorithms that trade off between the number of
cuts and the fit to the data. Once again, if the hierar-
chy is learned accurately, and the inductive bias that
there is a good classifier with few cuts is justified, such
algorithms should be expected to perform well.

Unfortunately, in realistic settings, the estimation of
a single tree or hierarchy can be unstable. This moti-
vates considering multiple hierarchies in an algorithm
and voting over the results, to improve the stabil-
ity of the resulting classifier as in our aforementioned
Bayesian approach.

7 Experiments

To evaluate how tree structure can be used in classifi-
cation problems, we compared the Max Det Machine
against an SVM using an RBF kernel on a standard
UCI classification problem, the Pima Indians dataset.



For the Max Det Machine, we set the conditional dis-
tribution to be the product of the following:

p(Xt|Xπ(t)) = N (Xt|Xπ(t), σ
2I)

p(yt|yπ(t)) = αδ(yt = yπ(t)) + (1 − α)δ(yt 6= yπ(t)).

Figure 3 summarizes the results across many settings
of their classifier parameters. Here, we only use the
Max Det Machine to predict a single output at a time,
i.e. T = U + 1. Both methods perform well, achieving
an error rate of roughly 20% at good settings of the
σ, α and C parameters. Thus, the assumption of a
common tree structure on inputs and outputs seems
to approriately guide classification predictions.
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Figure 3: Error Rate on Pima Indians Diabetes UCI
Dataset. Various settings of the Max Det Machine’s
α parameter and the Support Vector Machine C regu-
larization are explored while varying the RBF kernel’s
σ. Training and test set sizes were 384 samples each.

8 Discussion

We have seen how making tdid assumptions or impos-
ing an unknown tree structure on data-points leads to
an interesting and efficient posterior distribution on di-
rected or undirected tree graphs. This posterior and its
normalizer facilitate various efficient maximizations,
expectations over structure, new variants of maximum
likelihood estimation and new approaches to classifi-
cation which are motivated by VC arguments. We
are exploring other applications of these tree poste-
rior distributions, including regression. Furthermore,
other graph assumptions beyond tree-based ones may
lead to efficient posterior distributions on the struc-
tures connecting data-points. We are exploring subsets
of trees (such as lobsters or caterpillars), star-graphs
as well other spectral restrictions on graphs via the
eigenvectors and eigenvalues of the Laplacian (West,
1996). One promising avenue is provided by the dis-
covery of yet another Matrix Tree Theorem by Chung
and Chaiken for counting rooted spanning forests using
determinant computations.
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