
A Lower Bound for the Sturm-Liouville
Eigenvalue Problem on a Quantum Computer

Arvid J. Bessen∗

Department of Computer Science, Columbia University

December 14, 2005

Abstract

We study the complexity of approximating the smallest eigenvalue
of a univariate Sturm-Liouville problem on a quantum computer. This
general problem includes the special case of solving a one-dimensional
Schrödinger equation with a given potential for the ground state en-
ergy.

The Sturm-Liouville problem depends on a function q, which, in
the case of the Schrödinger equation, can be identified with the po-
tential function V . Recently Papageorgiou and Woźniakowski proved
that quantum computers achieve an exponential reduction in the num-
ber of queries over the number needed in the classical worst-case and
randomized settings for smooth functions q. Their method uses the
(discretized) unitary propagator and arbitrary powers of it as a query
(“power queries”). They showed that the Sturm-Liouville equation can
be solved with O(log(1/ε)) power queries, while the number of queries
in the worst-case and randomized settings on a classical computer is
polynomial in 1/ε. This proves that a quantum computer with power
queries achieves an exponential reduction in the number of queries
compared to a classical computer.

In this paper we show that the number of queries in Papageorgiou’s
and Woźniakowski’s algorithm is asymptotically optimal. In particu-
lar we prove a matching lower bound of Ω(log(1/ε)) power queries,
therefore showing that Θ(log(1/ε)) power queries are sufficient and

∗bessen@cs.columbia.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

necessary. Our proof is based on a frequency analysis technique, which
examines the probability distribution of the final state of a quantum
algorithm and the dependence of its Fourier transform on the input.

1 Introduction
This paper deals with the solution of the Sturm-Liouville problem on a quan-
tum computer. Quantum computers have shown great promise in solving
problems as diverse as the discrete problems of searching and factoring [4, 15]
and the continuous problems including integration, path integration, and ap-
proximation [13, 5, 16, 6, 7]. The main motivation for quantum computing is
its potential to solve these important problems efficiently. Shor’s algorithm
achieves an exponential speedup over any known classical algorithm for fac-
toring, but until the classical complexity of factoring is proven, the exponen-
tial speedup remains a conjecture. The quantum algorithms for integration
provide provable exponential speedups over classical worst-case algorithms,
but only polynomial speedups over classical randomized algorithms.

Recently Papageorgiou and Woźniakowski introduced a quantum algo-
rithm for the Sturm-Liouville problem [14] which uses the quantum phase
estimation algorithm. They showed that quantum algorithms with power
queries1 achieve a provable exponential reduction in the number of power
queries over the number of queries needed in the classical worst-case or ran-
domized setting. Naturally query complexity results neglect the cost of ac-
tually implementing the queries. At the end of this paper we will discuss
this problem for power queries, but it is currently not clear under which
conditions power queries are sufficiently inexpensive to implement for the
Sturm-Liouville problem.

In this paper we will prove lower bounds on the number of power queries
for quantum algorithms that solve the Sturm-Liouville problem. This can
be used to show the optimality of the algorithm proposed in [14]. To prove
lower bounds for algorithms with power queries the previously known quan-
tum lower bound techniques, such as the “polynomial method” of Beals et. al
[1, 11] do not suffice. Our lower bound method builds on the “trigonometric
polynomial method” [2], which is an extension of the above-mentioned poly-
nomial method and was modified to be used with power queries in [3] to prove

1We will define power queries rigorously in Definition 1. Informally they are just an
arbitrary (integer) power of a specific unitary matrix.

2

lower bounds for the phase estimation algorithm. Our method uses frequency
analysis instead of a maximum degree argument, which is not applicable in
the case of arbitrary powers.

2 The Sturm-Liouville eigenvalue problem
Papageorgiou and Woźniakowski study in [14] a simplified version of the
univariate Sturm-Liouville problem. Consider the eigenvalue problem for the
differential equation

−u′′(x) + q(x)u(x) = λu(x)

u(0) = u(1) = 0
(1)

for a given nonnegative function q belonging to the class Q defined as

Q =
{
q : [0, 1] → [0, 1] : q ∈ C2([0, 1]) and max

i=0,1,2
max
x∈[0,1]

|q(i)(x)| ≤ 1
}
. (2)

We are looking for the smallest eigenvalue λ such that there exists a non-
zero function uλ that satisfies (1). What is the minimal number of queries of
q that permits the determination of the smallest eigenvalue λ in this equation
with error ε and probability 3/4 on a classical or quantum computer?

The one-dimensional time-independent Schrödinger equation

− ~2

2m

d2

dx2
Ψ(x) + V (x)Ψ(x) = EΨ(x) (3)

of a particle in a box, see [10], is an instance of (1). We are given a potential
V and are looking for the eigenfunctions Ψ of this equation and their corre-
sponding energies E. In particular, we are interested in the ground-state and
its energy, i.e., for a given potential V , we want to determine the eigenfunc-
tion Ψ0 and its energy E0, such that all other eigenfunctions Ψn have higher
energies En ≥ E0. Since quantum systems obey equation (3), it seems plau-
sible that quantum computers could potentially solve the eigenvalue problem
faster than a classical computer.

In the next section we define a quantum algorithm with power queries.
We especially have to tackle the question concerning the form of the input
(i.e., the function q in the Sturm-Liouville problem) enters the quantum
algorithm.

3

3 Quantum algorithms for the Sturm-Liouville
problem

Let us denote the differential operator associated with the Sturm-Liouville
problem for a certain q ∈ Q as Lq : C2([0, 1]) → C0([0, 1]), defined by

Lqu(x) = − d2

dx2
u(x) + q(x)u(x).

We discretize Lq by approximating the second derivative at the points 1
n+1

,
2

n+1
, . . ., n

n+1
and obtain an n× n matrix Mq:

Mq = (n+1)2


2 −1
−1 2 −1

.
−1 2 −1

−1 2

+


q(1

n+1)
q(2

n+1)
. . .

q(n−1
n+1)

q(n
n+1)

 . (4)

The eigenvalues of Lq and Mq are closely related. Let us denote the smallest
eigenvalue of Lq by λ(q) and let us write λ1(Mq) for the smallest eigenvalue
of Mq. Then (see e.g. [9])

λ(q)− λ1(Mq) = O(n−2). (5)

The input q ∈ Q enters the quantum computer in the form of a unitary
black-box transformation called a quantum query. For the Sturm-Liouville
problem we define this query to be the unitary operator exp(i

2
Mq). One

can show that the smallest eigenvalue λ(q) of the Sturm-Liouville equation
satisfies π2 ≤ λ(q) ≤ π2 + 1. To avoid ambiguity we use proper scaling, i.e.,
instead of exp(iMq) we use exp(i

2
Mq), which defines a unique phase ϕ ∈ [0, 1)

by 2πiϕ = i
2
λ(q).

We now define an associated quantum power query for exp(i
2
Mq).

Definition 1. Let Lq be the differential operator for a Sturm-Liouville prob-
lem and Mq its discretization at n points as in (4) for q ∈ Q. We define the
power query W p

l (exp(i
2
Mq)) as

W p
l (exp(i

2
Mq)) |x1〉 . . . |xc〉 |ψ〉 =

{
|x1〉 . . . |xc〉 exp(i

2
pMq) |ψ〉 for xl = 1

|x1〉 . . . |xc〉 |ψ〉 otherwise

for all x1, . . . , xc ∈ {0, 1} and arbitrary normalized vectors |ψ〉 ∈ Cn and
extend this definition to all quantum states by linearity.

4

Suppose that the |ψs〉, s = 1, . . . , n, are the eigenvectors of Mq and that
Mq |ψs〉 = λs |ψs〉. Then for |ψ〉 =

∑n
s=1 αs |ψs〉 and |x〉 = |x1〉 . . . |xc〉 with

xl = 1

W p
l (exp(i

2
Mq)) |x〉 |ψ〉 = |x〉 exp(i

2
pMq) |ψ〉 =

n∑
s=1

αs |x〉 e
i
2

pλs |ψs〉 .

Quantum algorithms are products of unitary transformations. Every
quantum algorithm that approximates λ(q) can be divided into stages that
use powers of exp(i

2
Mq) and therefore depend on q, and stages that are in-

dependent of q. Let us define a quantum algorithm with power queries.

Definition 2. For a Sturm-Liouville problem given by the input q ∈ Q with
the solution λ(q), we define a quantum algorithm

A = (
∣∣ψ(0)

〉
;U0, . . . , UT ; l1, p1, . . . , lT , pT ; λ̃)

with T power queries that solves this problem as follows. Let U0, U1, . . ., UT

be arbitrary but fixed unitary transformations and
∣∣ψ(0)

〉
a fixed initial state.

Let W pj

lj
(exp(i

2
Mq)) be a power query as in Definition 1. A measurement of

the state∣∣ψ(T)(exp(i
2
Mq))

〉
= UTW

pT

lT
(exp(i

2
Mq)) . . . U1W

p1

l1
(exp(i

2
Mq))U0

∣∣ψ(0)
〉

in the standard basis yields a state |k〉 with probability pk(q). For each k

compute an approximation λ̃(k) ∈ R to the eigenvalue of interest λ(q) on a
classical computer. For every q ∈ Q the probability that an ε-approximation
λ̃(k) of λ(q) is computed is given by∑

k:|λ(q)−eλ(k)|<ε

pk(q). (6)

For any algorithm A with T power queries we define

e(A, T) = inf
{
ε : ε chosen such that (6) is larger than 3

4
for all q ∈ Q

}
as the worst-case quantum error of A.

We measure in the standard basis for convenience only; a measurement in
any other basis is easily achieved by modifying the operator UT accordingly.

A model like this was introduced in [1] for discrete inputs q. It was ex-
tended to continuous functions by Heinrich in [5]. Our model is an extension
of this model to incorporate power queries.

5

4 Upper bounds
To estimate λ(q) on a quantum computer with power queries Papageorgiou
and Woźniakowski used the quantum phase estimation algorithm, see e.g.
[12]. This algorithm takes a unitary transformation Q with an eigenvector
|ξ〉 as input, i.e., Q |ξ〉 = e2πiϕ |ξ〉. Here ϕ ∈ [0, 1) is called the “phase” of the
eigenvalue corresponding to |ξ〉, and the phase estimation algorithm gives us
an approximation ϕ̃ to ϕ. This algorithm has the final state∣∣ψ(T)(Q)

〉
= (F−1

2T ⊗ I)W 2T−1

1 (Q)W 2T−2

2 (Q) . . .W 20

T (Q)(H⊗T ⊗ I) |0〉 |ξ〉 ,

and is depicted in Figure 1. Suppose Q is a r qubit transformation. A

|0〉 H •

F−1
2T

|k1〉

|0〉 H • |k2〉
... F−1

2T
...

|0〉 H • |kT−1〉

|0〉 H • |kT 〉

|ξ〉 / Q20
Q21

Q2T−2
Q2T−1 / |ξ〉

Figure 1: The quantum phase estimation algorithm. F−1
2T is the inverse

quantum Fourier transform on T qubits.

measurement of
∣∣ψ(T)(Q)

〉
returns a state

|k〉 = |k1〉 . . . |kT 〉 |kT+1〉 . . . |kT+r〉 .

The algorithm then uses k to compute an approximation ϕ̃(k) = k12
−1 +

k22
−2 + . . .+ kT 2−T to ϕ classically.
One can show, see e.g. [12], that with probability greater than 3

4
the al-

gorithm approximates ϕ up to precision ε with O(log((1/ε))) power queries.
Papageorgiou and Woźniakowski use this algorithm to approximate the small-
est eigenvalue λ(q) of the Sturm-Liouville operator Lq and use the operator
Q = exp(i

2
Mq) as a query. Since the phases of exp(i

2
Mq) and exp(i

2
Lq) are

related through equation (5), we have to discretize at n = O(ε−1/2) points.

6

The quantum phase estimation algorithm requires the knowledge of the
eigenvector for which the phase is estimated. For the Sturm-Liouville prob-
lem we need the eigenvector |z1(Mq)〉 of Mq corresponding to the small-
est eigenvalue λ1(Mq). We can compute |z1(Mq)〉 through the method of
Jaksch and Papageorgiou [8], which computes a superposition of eigenvec-
tors |zj(Mq)〉 of Mq, with a sufficiently large |z1(Mq)〉 component. For details
see [8, 14].

5 Lower Bounds
Our goal is to prove that the algorithm described in the previous section
is optimal with respect to the number of power queries. We have to prove
that every quantum algorithm A with T power queries that returns a correct
answer with precision e(A, T) ≤ ε has to use T = Ω(log(1/ε)) power queries.

We will show that even for a much simplified version of the problem this
lower bound still holds. Consider as input only constant functions q(x) = q ∈
[0, 1]. Obviously q ∈ Q. It is easy to see that in this case the eigenfunctions
which fulfill the boundary condition in (1) are

us(x) = sin(sπx) (7)

for s ∈ N and that they have eigenvalues λs = s2π2 + q, which means that
the smallest eigenvalue λ(q) is λ(q) = π2 + q.

Similarly for the discretization Mq of Lq with constant q ∈ [0, 1] the
eigenvectors are

|us〉 =
√

2
n+1

n∑
x=1

sin
(

sπx
n+1

)
|x〉 (8)

with eigenvalues 4(n+ 1)2 sin2
(

sπ
2(n+1)

)
+ q.

We want to investigate how different power queries lead to different out-
puts and turn to the techniques in [3]. For the following theorem we abbre-
viate ~j = (j1, . . . , jn), ~ϕ = (ϕ1, . . . , ϕn), and use the following “dot product”
notation:

~j · ~ϕ = j1ϕ1 + . . .+ jnϕn.

Theorem 3. For a given orthonormal set of vectors {|ψs〉 : s = 1, 2, . . . , n}
consider all unitary matrices Q for which the |ψs〉 are eigenvectors. Denote
the eigenvalues corresponding to |ψs〉 by e2πiϕs, ϕs ∈ [0, 1), s = 1, 2, . . . , n.

7

Any quantum algorithm with power queries W p
l (Q), see Definition 2, that

uses c ∈ N control qubits, can be written as

∣∣ψ(T)(Q)
〉

= UTW
pT

lT
(Q)UT−1 . . . U1W

p1

l1
(Q)U0

∣∣ψ(0)
〉

=
n2c−1∑
k=0

S
(T)
k (~ϕ) |k〉 ,

(9)
where S(T)

k (~ϕ) are trigonometric polynomials of the following form:

S
(T)
k (~ϕ) =

∑
~j∈JT

α
(T)

k,~j
e2πi~j·~ϕ, (10)

with JT defined as J0 = {(0, . . . , 0)} and

JT+1 =
{
(j1, . . . , jn), (j1 + pT+1, . . . , jn), . . . ,

(j1, . . . , jn + pT+1) : (j1, . . . , jn) ∈ JT

}
, (11)

and the coefficients α(T)

k,~j
∈ C do not depend on ~ϕ and are normalized:∑

k

∑
~j∈JT

|α(T)

k,~j
|2 = 1. (12)

The proof of Theorem 3 can be found in the appendix. It is very similar to
a proof in [3], but additionally proves equation (12).

In the Sturm-Liouville problem we are interested in the smallest eigen-
value λ(q) of Lq. Suppose we choose the constant functions q(x) = q ∈ [0, 1)
as input. The eigenfunctions us of Lq and the eigenvectors |us〉 of Mq are
then independent of q, see (7), (8). Therefore we can apply Theorem 3 and
write the final state

∣∣ψ(T)(q)
〉

=
∣∣ψ(T)(exp(i

2
Mq))

〉
of any algorithm with T

power queries as∣∣ψ(T)(q)
〉

=
∑

k

S
(T)
k (~ϕ) |k〉 =

∑
k

∑
~j∈JT

α
(T)

k,~j
e2πi~j·~ϕ |k〉 ,

see equations (9) and (10), with ~ϕ depending on q. The eigenvalues of Mq

are 4(n+ 1)2 sin2
(

sπ
2(n+1)

)
+ q. This implies that the eigenvalues of exp(i

2
Mq)

are
e2πiϕs = e

i
2

(
4(n+1)2 sin2

(
sπ

2(n+1)

)
+q
)
.

8

Therefore we can split e2πi~j·~ϕ as follows:

e2πi~j·~ϕ =e
i
2

(
j1

(
4(n+1)2 sin2

(
π

2(n+1)

)
+q
)
+...+jn

(
4(n+1)2 sin2

(
nπ

2(n+1)

)
+q
))

=e
i
2

(
j14(n+1)2 sin2

(
π

2(n+1)

)
+...+jn4(n+1)2 sin2

(
nπ

2(n+1)

))
e

i
2
(j1+...+jn)q

=:ζ(j1,...,jn)e
i
2
(j1+...+jn)q,

which greatly simplifies
∣∣ψ(T)(q)

〉
as∣∣ψ(T)(q)

〉
=
∑

k

∑
(j1,...,jn)∈JT

α
(T)
k,(j1,...,jn)ζ(j1,...,jn)e

i
2
(j1+...+jn)q |k〉

=:
∑

k

∑
m∈MT

η
(T)
k,me

i
2

mq |k〉
(13)

with
MT = {j1 + . . .+ jn : (j1, . . . , jn) ∈ JT} (14)

and the coefficients η(T)
k,m defined by

η
(T)
k,m =

∑
(j1,...,jn)∈JT
j1+...+jn=m

α
(T)
k,(j1,...,jn)ζ(j1,...,jn).

These coefficients η(T)
k,m are bounded in the following way:∑

k

∑
m∈MT

|η(T)
k,m|

2 ≤
∑

k

∑
m∈MT

∑
(j1,...,jn)∈JT
j1+...+jn=m

|α(T)
k,(j1,...,jn)ζ(j1,...,jn)|2

=
∑

k

∑
~j∈JT

|α(T)

k,~j
|2 = 1,

(15)

where we used |ζ(j1,...,jn)| = 1 and equation (12).

Lemma 4. Let A be a T power query quantum algorithm for the Sturm-
Liouville problem with powers p1, . . . , pT and c ∈ N control bits as defined in
Definition 2. Let B be a partition of the set of all basis vectors, i.e.⋃
B∈B

B = {|k〉 : k = 0, 1, . . . , n2c − 1} and B ∩ C = ∅ for B,C ∈ B, B 6= C.

9

If the input q ∈ Q is a constant function q(x) = q ∈ [0, 1), the probability of
measuring a state |k〉 from B ∈ B is a trigonometric polynomial

pB(q) =
∑
l∈LT

β
(T)
B,l e

i
2

lq, (16)

with coefficients β(T)
B,l ∈ C that are bounded by∑

B∈B

|β(T)
B,l | ≤ 1

for all possible partitions B, and the set LT is given by L0 = {0} and

LT+1 =
⋃

l∈LT

{l, l + pT+1, l − pT+1} . (17)

Lemma 4 is proven in the appendix. Note that |LT | ≤ 3T . This bound is
sharp, since for the choice of pi = 3i−1 we have L0 = {0}, L1 = {−1, 0, 1},
L2 = {−4,−3,−2, . . . , 3, 4} and in general

LT =
{
−3T − 3T−1 − . . .− 1, . . . , 3T + 3T−1 + . . .+ 1

}
.

5.1 Fourier Analysis of Power Query Algorithms

With Theorem 3 and Lemma 4 we have the tools needed to provide a lower
bound for the Sturm-Liouville problem. We are now able to apply our fre-
quency analysis technique to this problem.

Theorem 5. Any quantum algorithm A with T power queries which esti-
mates the smallest eigenvalue λ(q) in the Sturm-Liouville eigenvalue problem
for all inputs q(x) = q ∈ [0, 1) with precision e(A, T) ≤ ε and probability
greater than 3/4 has to use T = Ω(log(1/ε)) power queries.

Notice that a lower bound on the “easy” subset of constant functions
q(x) = q implies that the same lower bound holds for any set of inputs that
includes the constant functions, hence it also holds for the class Q.

Proof. After T power queries we measure the final state and receive a state
|k〉 with probability pk(q). From the integer k we classically compute a

10

solution λ̃(k). A successful algorithm has to return an ε-approximation for
every q ∈ [0, 1) with probability∑

k:|λ(q)−eλ(k)|≤ε

pk(q) ≥
3

4
,

see Definition 2. Define

Aq,ε := {k : |λ(q)− λ̃(k)| ≤ ε}

as the set of states that are mapped to ε-correct answers for input q. Choose
N ∈ N such that 1

N
is slightly bigger than 2ε, i.e., 1

N+1
≤ 2ε < 1

N
and define

the points xr := (r + 1/2)/N for r = 0, 1, . . . , N − 1. For the inputs q = xr

we can visualize the quantum algorithm A as in Figure 2. Notice that the
sets Axr,ε are mutually disjoint for r = 0, . . . , N − 1, because xr and xr+1 are
chosen such that

|λ(xr)− λ(xr+1)| =
∣∣∣16 sin2

(
π
4

)
+

r+ 1
2

N
− 16 sin2

(
π
4

)
− r+1+ 1

2

N

∣∣∣ =
1

N
> 2ε.

Therefore there can be no state |k〉 that is mapped to an output λ̃(k), which
is an ε-approximation to λ(xr) and λ(xr+1) at the same time. Let

pr,ε(q) =
∑

k∈Axr,ε

pk(q) (18)

be the probability of measuring an ε-approximation to λ(xr). Since the sets
Axr,ε partition the set of all outputs, Lemma 4 allows us to write

pr,ε(q) = pAxr,ε(q) =
∑
l∈LT

β
(T)
r,ε,le

i
2

lq.

We apply the N -point inverse discrete Fourier Transform to pr,ε(q), which

11

0

0.2

0.4

0.6

0.8

1

|0> |1> |2> |3> |4>

0

0.2

0.4

0.6

0.8

1

|0> |1> |2> |3> |4>

Input q

x0 x1 x2 x3

Quantum algorithm

Output: approximation to !(q)

!(x0) !(x1) !(x2) !(x3)
+" +"+" +"-" -" -" -"

Ax1," Ax3,"

pk(x1) pk(x3)

!

˜ " (0)

!

˜ " (1)

!

˜ " (2)

!

˜ " (3)

!

˜ " (4)

!

˜ "

Figure 2: A quantum algorithm for the Sturm-Liouville problem with inputs
q = xr, r = 0, . . . , N −1, will result in a probability distribution pk(q) on the
states |k〉 that are measured. Each state |k〉 is mapped to an answer λ̃(k). We
write Axr,ε for the set of all states |k〉 that are mapped to ε-approximations
of λ(xr).

we evaluate at the points xn, and get the following value at k = 0, 1, . . . , N−1:

DFTN [pr,ε](k) =
N−1∑
n=0

pr,ε(xn)e−2πikn/N

=
N−1∑
n=0

∑
l∈LT

β
(T)
r,ε,le

i
2

l(n+1/2)/Ne−2πikn/N

=
∑
l∈LT

β
(T)
r,ε,le

i
2

l/(2N)
N−1∑
n=0

e2πi(l
4π
−k)n/N

=
∑
l∈LT

β
(T)
r,ε,le

i
2

l/(2N)

{
e2πi(l

4π−k)−1

e2πi(l
4π−k)/N−1

, l
4π
6≡ k (mod N)

N , l
4π
≡ k (mod N)

}
(19)

12

where l
4π

≡ k (mod N) indicates that there exists an integer z such that
l

4π
= k + zN . For every l define l/4π(N) ∈ [0, N) as

l/4π(N) := min {l/(4π)− zN : z = 0, 1, 2, ..., and l/(4π)− zN ≥ 0} .

Then exp(2πi l
4π
/N) = exp(2πil/4π(N)/N). To take the absolute value of

equation (19), we use
∣∣ei2θ − 1

∣∣ = 2 |sin(θ)| and get

|DFTN [pr,ε](k)| ≤
∑
l∈LT

∣∣∣β(T)
r,ε,l

∣∣∣{ |sin(π(l/4π(N)−k))|
|sin(π(l/4π(N)−k)/N)| , l/4π(N) 6= k

N , l/4π(N) = k

}
(20)

We can bound the Fourier transform (19) by separating the correct an-
swers, i.e., the ε-approximations to xr, from the rest: if the input q = xr

then the algorithm has to return an answer λ̃ that is ε-close to the correct
answer λ(xr) with probability greater or equal 3/4. This probability is given
by pr,ε(q), i.e., we demand that pr,ε(xr) ≥ 3/4. Then:∣∣∣N−1∑

n=0

pr,ε(xn)e−2πikn/N
∣∣∣ ≥∣∣∣pr,ε(xr)

∣∣∣− N−1∑
n=0
n6=r

∣∣∣pr,ε(xn)
∣∣∣

≥3

4
−

N−1∑
n=0
n6=r

pr,ε(xn),

(21)

Consider the second term in (21),
∑N−1

n=0
n6=r

pr,ε(xn). Recall that pr,ε(q) is the

probability that the algorithm measures a state |k〉 that is mapped to an
answer λ̃(k) that is an ε-approximation to λ(xr), i.e., |k〉 ∈ Axr,ε, see (18).
This probability pr,ε(q) depends on the actual input q. For input q = xn 6= xr

a state |k〉 ∈ Axr,ε will not yield an ε-correct answer: we chose the xn,
n = 0, . . . , N − 1, such that |λ(xn)− λ(xr)| > 2ε for n 6= r, and thus there
cannot be an ε close answer for both xr and xn. The sum

∑N−1
n=0
n6=r

pr,ε(xn) now

tells us how often the algorithm chooses a state from Ar,ε.
If we knew that none of the wrong answers is preferred by our algorithm,

say e.g.
∑N−1

n=0
n6=r

pr,ε(xn) < 1
2
, equation (21) would read

∣∣∣N−1∑
n=0

pr,ε(xn)e−
2πikn

N

∣∣∣ ≥ 3

4
−

N−1∑
n=0
n6=r

pr,ε(xn) >
1

4
. (22)

13

We will show that this property has to be true for some r = 0, . . . , N − 1,
indexing the set of states Axr,ε that represents numbers ε-close to xr. Let
R< be the set of all r for which

∑N−1
n=0
n6=r

pr,ε(xn) < 1
2

holds and R≥ the set for

which it does not. We estimate the number of elements of R< by splitting

N =
N−1∑
n=0

1 ≥
N−1∑
n=0

N−1∑
r=0

pr,ε(xn) =
N−1∑
r=0

pr,ε(xr) +
N−1∑
r=0

N−1∑
n=0
n6=r

pr,ε(xn)

into the following parts:

N ≥
N−1∑
r=0

pr,ε(xr) +
∑
r∈R<

N−1∑
n=0
n6=r

pr,ε(xn) +
∑
r∈R≥

N−1∑
n=0
n6=r

pr,ε(xn)

≥ N
3

4
+ |R<| · 0 +

∣∣R≥∣∣ 1
2

and therefore we can conclude that
∣∣R≥

∣∣ ≤ 1
2
N and thus |R<| ≥ 1

2
N . Now

|R<| > 0 implies that we can actually choose an element r ∈ R<. Fix such
an r and we can combine equations (20) and (22) to

1/4 <
∑
l∈LT

∣∣∣β(T)
r,ε,l

∣∣∣{ |sin(π(l/4π(N)−k))|
|sin(π(l/4π(N)−k)/N)| , l/4π(N) 6= k

N , l/4π(N) = k

}
. (23)

We will now fix the parameter k = 0, 1, . . . , N − 1 in inequality (23) in such
a way that the terms in the sum on the right-hand-side of the inequality
are as small as possible. This will imply that the sum must be over a large
number of elements, i.e., that |LT | is large. Since |LT | ≤ 3T this will help us
to ultimately prove that T = Ω(logN) if we could show that |LT | = Ω(N).
More specifically we will show that |LT |2 ≥ 1

10
N which proves T = Ω(logN).

We prove |LT |2 ≥ 1
10
N by contradiction. Assume |LT |2 < 1

10
N . This

assumption allows us to find a k such that the right-hand-side of inequal-
ity (23) is smaller than the left-hand-side, which will lead to our desired
contradiction.

If we project LT into the interval [0, N) through l 7→ l/4π(N) we will get
a set

{
l/4π(N) : l ∈ LT

}
. Order this set as 0 ≤ t1 ≤ t2 ≤ . . . ≤ t|LT | < N .

This defines “gaps” between these numbers, i.e., intervals G = (tj, tj+1) for
j = 1, . . . , |LT | if we define t|LT |+1 = t1 +N (we “wrap around”). Define the

14

width w(G) of such a gap G as the distance between its endpoints. Thus
w((tj, tj+1)) = tj+1 − tj.

Let Gm be the gap with the maximal width w(Gm) in the distribution.
Its width must be w(Gm) ≥ N/ |LT |, since

N =
∑

G

w(G) ≤
∑

G

max
G

w(G) = |LT |max
G

w(G).

Additionally w(Gm) > 10, since we assumed |LT |2 < 1
10
N and therefore

N
|LT |

> 10 |LT | ≥ 10. Thus there are at least ten integers k ∈ {0, 1, . . . , N − 1}
that fall into this largest gap Gm, i.e k ∈ Gm. One of these k has maximum
distance to both boundaries tj and tj+1 of Gm: it is the k that is closest to
the middle m =

tj+1+tj
2

of Gm = (tj, tj+1). This integer k fulfills |k −m| ≤ 1
2

and
min {k − tj, tj+1 − k} = min {m− tj + k −m,m− k + tj+1 −m}

≥ w(Gm)

2
− 1

2
≥ N

2 |LT |
− 1

2
.

Fix this k ∈ (tj, tj+1). Now |sin(x)| ≥ 2/π |x| for −π/2 ≤ x ≤ π/2 and
therefore

min
l∈LT

∣∣∣∣sin π(l/4π(N) − k)

N

∣∣∣∣ ≥min
l∈LT

2

N

∣∣l/4π(N) − k
∣∣ =

2

N
min {k − tj, tj+1 − k}

≥ 1

|LT |
− 1

N
.

Then we can use this to estimate (23):

1/4 <
∑
l∈LT

∣∣∣β(T)
r,ε,l

∣∣∣ ∣∣sin(π(l/4π(N) − k))
∣∣∣∣sin(π(l/4π(N) − k)/N)
∣∣ ≤ ∑

l∈LT

∣∣∣β(T)
r,ε,l

∣∣∣ 1

1/ |LT | − 1/N

We sum the last inequality over all r ∈ R< for which it is valid, and get:∑
r∈R<

1

4
≤ 1

1/ |LT | − 1/N

∑
r∈R<

∑
l∈LT

∣∣∣β(T)
r,ε,l

∣∣∣ (24)

Since the number of elements in R< is bounded by |R<| ≥ 1
2
N , the left-hand-

side of (24) is bounded by 1
8
N ≤ |R<| 1

4
. The right-hand-side of inequality

(24) can be bounded through Lemma 4:∑
r∈R<

∑
l∈LT

∣∣∣β(T)
r,ε,l

∣∣∣ ≤ |LT | .

15

If we put both sides together again and recall that we assumed |LT |2 < 1
10
N

we get

1

8
N ≤ |LT |

1/ |LT | − 1/N
=

|LT |2

1− |LT | /N
<

1
10
N

1− 1
10|LT |

≤
1
10
N

1− 1
10

=
1

9
N,

which is a contradiction.
Therefore |LT |2 ≥ 1

10
N must hold. This, together with |LT | ≤ 3T , leads

us to N ≤ 10 · 9T . Take the logarithm and we get T = Ω(logN). We chose
N such that 1

N+1
≤ 2ε < 1

N
which finally proves that the number of power

queries T for any algorithm A with error e(A, T) ≤ ε has to be of the order
T = Ω(log(1/ε)).

6 Discussion
In this paper we have proven lower bounds for the number of quantum power
queries for the Sturm-Liouville problem and settled an open problem in [14].

How does this number of T = Θ(log(1/ε)) power queries relate to the
cost of quantum algorithms? Here we understand “cost” as an abstraction
on the number of elementary quantum gates or the duration for which a
Hamiltonian has to be applied to a quantum system. Suppose the function
q is from a class Q′ ⊆ Q where each power query W p

l (exp(i
2
Mq)) can be

implemented with cost(W p
l (exp(i

2
Mq))) = cost(Q′, p).

If we implement W p
l (exp(i

2
Mq)) naively as

W p
l (exp(i

2
Mq)) =

(
W 1

l (exp(i
2
Mq))

)p
,

then cost(Q′, p) = p · cost(Q′) and the cost of the Sturm-Liouville algorithm
with T = Θ(log(1/ε)) power queries grows as

T−1∑
j=0

cost(Q′, 2j) =
T−1∑
j=0

2j · cost(Q′) = (2T − 1) · cost(Q′) = Θ(1/ε) · cost(Q′).

This is polynomial in 1/ε just like the Sturm-Liouville algorithm with bit
queries discussed in [14]. To take advantage of the proposed power query
algorithm it is therefore necessary to realize power queries W p

l (exp(i
2
Mq)) on

a quantum computer in such a way that cost(Q′, p) = o(p) · cost(Q′)

16

The implementation of power queries with cost that is not linear in the
power p of the query is still not settled and requires more work. It would
be of interest to identify subclasses Q′ ⊆ Q for which we are able to prove
cost(Q′, p) = o(p) · cost(Q′).

Another open question is whether it is possible to extend the methods
we used for upper and lower bounds for the Sturm-Liouville problem in one
dimension to the Sturm-Liouville problem in higher dimensions. Most im-
portant for this problem is probably the extension of the results in [8] on
good enough approximations of the eigenvector with the smallest eigenvalue
to higher dimensional Sturm-Liouville problems.

7 Acknowledgments
The author would like to thank M. Kwas, A. Papageorgiou, J. Traub and
H. Woźniakowski for inspiring discussions. Partial funding was provided
by Columbia University through a Presidential Fellowship. This research
was supported in part by the National Science Foundation and the Defense
Advanced Research Projects Agency.

A Proofs of Theorem 3 and Lemma 4
Proof of Theorem 3. We want to prove that for a unitary operation Q with
fixed eigenvectors |ψs〉 and varying eigenvalues e2πiϕs , s = 1, . . . , n, every
quantum algorithm with power queries W p

l (Q) as in Definition 2 can be
written as∣∣ψ(T)(Q)

〉
= UTW

pT

lT
(Q)UT−1 . . . U1W

p1

l1
(Q)U0

∣∣ψ(0)
〉

=
∑

k

S
(T)
k (~ϕ) |k〉 .

In this equation the trigonometric polynomials S(T)
k (~ϕ) =

∑
~j∈JT

α
(T)

k,~j
e2πi~j·~ϕ

are of powers JT , with JT recursively in Equation (11). We also claim that
the coefficients α(T)

k,~j
∈ C fulfill

∑
k

∑
~j∈JT

|α(T)

k,~j
|2 = 1.

The proof is by induction on the number of queries T . We will write
the state of the algorithm after T steps

∣∣ψ(T)(Q)
〉

in the basis (|k〉 |ψs〉)k,s,
which is split into a control part |k〉 and an eigenvector part |ψs〉. We will
not address the ancilla qubits in our proof, but they can easily be treated
(after possibly reordering the qubits) as control bits that are never used.

17

At the start of the algorithm we can write

U0

∣∣ψ(0)
〉

=
∑
k,s

α
(0)
k,s,(0,...,0) |k〉 |ψs〉 ,

which contains only powers e2πi~j·~ϕ from ~j ∈ J0 = {(0, . . . , 0)} and obviously∑
k,s

∑
~j∈J0

|α(0)

k,s,~j
|2 =

∑
k,s

|α(0)
k,s,(0,...,0)|

2 = 1.

Let us now assume
∣∣ψ(T)(Q)

〉
can be written as∣∣ψ(T)(Q)

〉
=
∑
k,s

∑
~j∈JT

α
(T)

k,s,~j
e2πi~j·~ϕ |k〉 |ψs〉 ,

with coefficients α(T)

k,s,~j
fulfilling condition (12). If we apply W

pT+1

lT+1
(Q) to∣∣ψ(T)(Q)

〉
we get (klT+1

is the control bit, i.e., the lT+1-th bit in the binary
representation of k):

W
pT+1

lT+1
(Q)
∣∣ψ(T)(Q)

〉
=

∑
k,s

klT+1
=0

∑
~j∈JT

α
(T)

k,s,~j
e2πi~j·~ϕ |k〉 |ψs〉

+
∑
k,s

klT+1
=1

∑
~j∈JT

α
(T)

k,s,~j
e2πi~j·~ϕ |k〉QpT+1 |ψs〉 .

We analyze the second term where the control bit is set and get the following
sum over JT+1 (here ~es is the s-th unit vector (0, . . . , 0, 1, 0, . . . , 0)):∑

~j∈JT

α
(T)

k,s,~j
e2πi~j·~ϕ |k〉QpT+1 |ψs〉 =

∑
~j∈JT

α
(T)

k,s,~j
e2πi~j·~ϕe2πipT+1ϕs |k〉 |ψs〉

=
∑

~j∈JT

α
(T)

k,s,~j
e2πi(~j+pT+1 ~es)·~ϕ |k〉 |ψs〉

=:
∑

~j∈JT+1

α̃
(T+1)

k,s,~j
e2πi~j·~ϕ |k〉 |ψs〉

where α̃(T+1)

k,s,~j
is defined as

α̃
(T+1)

k,s,~j
:=


α

(T)

k,s,~j−pT+1 ~es
for klT+1

= 1 and ~j − pT+1~es ∈ JT

α
(T)

k,s,~j
for klT+1

= 0 and ~j ∈ JT

0 otherwise

18

Thus we can write

W
pT+1

lT+1
(Q)
∣∣ψ(T)(Q)

〉
=
∑
k,s

∑
~j∈JT+1

α̃
(T+1)

k,s,~j
e2πi~j·~ϕ |k〉 |ψs〉

and our normalization condition (12) holds for α̃(T+1)

k,s,~j
,∑

k,s

∑
~j∈JT+1

|α̃(T+1)

k,s,~j
|2 =

∑
k,s

klT+1
=0

∑
~j∈JT

|α(T)

k,s,~j
|2 +

∑
k,s

klT+1
=1

∑
~j−pT+1 ~es∈JT

|α(T)

k,s,~j−pT+1 ~es
|2

=
∑
k,s

∑
~j∈JT

|α(T)

k,s,~j
|2 = 1.

The next step is to apply UT+1 to W pT+1

lT+1
(Q)
∣∣ψ(T)(Q)

〉
. Define the coeffi-

cients ul,t,k,s = 〈l, t|UT+1 |k, s〉. Then we can define α(T+1)

l,t,~j
such that

UT+1W
pT+1

lT+1
(Q)
∣∣ψ(T)(Q)

〉
=
∑
k,s

∑
~j∈JT+1

α̃
(T+1)

k,s,~j
e2πi~j·~ϕUT+1 |k〉 |ψs〉

=
∑
l,t

∑
~j∈JT+1

∑
k,s

α̃
(T+1)

k,s,~j
ul,t,k,se

2πi~j·~ϕ |l〉 |ψt〉

=:
∑
l,t

∑
~j∈JT+1

α
(T+1)

l,t,~j
e2πi~j·~ϕ |l〉 |ψt〉 .

It remains to check that∑
l,t

∑
~j∈JT+1

∣∣∣α(T+1)

l,t,~j

∣∣∣2 =
∑
l,t

∑
~j∈JT+1

[∑
k,s

(
α̃

(T+1)

k,s,~j

)∗(
ul,t,k,s

)∗][∑
k′,s′

α̃
(T+1)

k′,s′,~j
ul,t,k′,s′

]

=
∑

k,s,k′,s′

∑
~j∈JT+1

(
α̃

(T+1)

k,s,~j

)∗ [∑
l,t

(
ul,t,k,s

)∗
ul,t,k′,s′

]
α̃

(T+1)

k′,s′,~j

=
∑
k,s

∑
~j∈JT+1

∣∣∣α̃(T+1)

k,s,~j

∣∣∣2 = 1.

Proof of Lemma 4. Consider quantum queries exp(i
2
Mq) for constant func-

tions q(x) = q ∈ [0, 1) in the Sturm-Liouville problem. From equation (13)

19

we know that the final state of every T power query algorithm can be written
as ∣∣ψ(T)(q)

〉
=
∑

k

∑
m∈MT

η
(T)
k,me

i
2

mq |k〉 .

Let B be a partition of the set of all basis states |k〉. Thus the probability to
measure a state from the set B ∈ B is

pB(q) =
∑
k∈B

∣∣∣∣∣ ∑
m∈MT

η
(T)
k,me

i
2

mq

∣∣∣∣∣
2

=
∑
k∈B

[∑
m1∈MT

(
η

(T)
k,m1

)∗
e−

i
2

m1q

][∑
m2∈MT

η
(T)
k,m2

e
i
2

m2q

]

=
∑
k∈B

∑
m1,m2∈MT

(
η

(T)
k,m1

)∗
η

(T)
k,m2

e
i
2
(m2−m1)q

=:
∑
l∈LT

β
(T)
B,l e

i
2

lq,

where the set LT is

LT = {m1 −m2 : m1,m2 ∈MT} . (25)

and with coefficients β(T)
B,l defined by

β
(T)
B,l :=

∑
k∈B

∑
m1,m2∈MT
m2−m1=l

(
η

(T)
k,m1

)∗
η

(T)
k,m2

. (26)

For any partition B we can now bound the β(T)
B,l as follows

∑
B∈B

∣∣∣β(T)
B,l

∣∣∣ =
∑
B∈B

∣∣∣∣∑
k∈B

∑
m1,m2∈MT
m2−m1=l

(
η

(T)
k,m1

)∗
η

(T)
k,m2

∣∣∣∣
≤
∑

k

∑
m1,m2∈MT
m2−m1=l

∣∣∣η(T)
k,m1

η
(T)
k,m2

∣∣∣ ,
where

∑
k is the sum over all possible states |k〉. From (15) we now derive

20

by the Cauchy-Schwarz inequality∑
k

∑
m1,m2∈MT
m2−m1=l

∣∣∣η(T)
k,m1

η
(T)
k,m2

∣∣∣ =
∑

k

∑
m:m,m+l∈MT

∣∣∣η(T)
k,mη

(T)
k,m+l

∣∣∣
≤
∑

k

(∑
m∈MT

∣∣∣η(T)
k,m

∣∣∣2)1/2(∑
m+l∈MT

∣∣∣η(T)
k,m+l

∣∣∣2)1/2

≤
∑

k

∑
m∈MT

∣∣∣η(T)
k,m

∣∣∣2 ≤ 1.

It remains to show that the two definitions of LT in equations (17) and (25)
are identical. The proof is by induction. T = 0 is trivially true. We use the
definitions (11), (14) of JT and MT to see that

MT+1 =
{
j1 + . . .+ jn : ~j ∈ JT+1

}
=
{
j1 + . . .+ jn, j1 + . . .+ jn + pT+1 : ~j ∈ JT

}
= {m,m+ pT+1 : m ∈MT} .

With this we can derive

LT+1 = {m1 −m2 : m1,m2 ∈MT+1}
=
{
m1 −m2,m1 + pT+1 −m2,m1 −m2 − pT+1,

m1 + pT+1 −m2 − pT+1 : m1,m2 ∈MT

}
= {l, l + pT+1, l − pT+1 : l ∈ LT} ,

which completes the proof.

References
[1] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quan-

tum lower bounds by polynomials. In Proc. of the 39th IEEE Confer-
ence on Foundations of Computer Science, pages 352–361, 1998. quant-
ph/9802049.

[2] A. J. Bessen. The power of various real-values quantum queries. Journal
of Complexity, 20(4):699–712, 2004. quant-ph/0308140.

[3] A. J. Bessen. A lower bound for phase estimation on a quantum com-
puter. Physical Review A, 71(4):042313, 2005. quant-ph/0412008.

21

[4] L. K. Grover. A fast quantum mechanical algorithm for database search.
In Proc. of the 28th Annual ACM Symposium on Theory of Computing,
pages 212–219, 1996. quant-ph/9605043.

[5] S. Heinrich. Quantum summation with an application to integration.
Journal of Complexity, 18(1):1–50, 2002. quant-ph/0105116.

[6] S. Heinrich. Quantum approximation i. embeddings of finite dimensional
lp spaces. Journal of Complexity, 20(1):5–26, 2004. quant-ph/0305030.

[7] S. Heinrich. Quantum approximation ii. sobolev embeddings. Journal
of Complexity, 20(1):27–45, 2004. quant-ph/0305031.

[8] P. Jaksch and A. Papageorgiou. Eigenvector approximation leading
to exponential speedup of quantum eigenvalue calculation. Phys. Rev.
Lett., 91(257902), 2003. quant-ph/0308016.

[9] H. B. Keller. Numerical methods for two-point boundary-value problems.
Waltham, Mass., 1968.

[10] A. Messiah. Quantum Mechanics. Amsterdam, North-Holland Pub. Co.;
New York, Interscience Publishers, 1961-62.

[11] A. Nayak and F. Wu. The quantum query complexity of approximat-
ing the median and related statistics. In Proc. of the 31th Annual
ACM Symposium on Theory of Computing, pages 384–393, 1999. quant-
ph/9804066.

[12] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[13] E. Novak. Quantum complexity of integration. Journal of Complexity,
17:2–16, 2001. quant-ph/0008124.

[14] A. Papageorgiou and H. Woźniakowski. Classical and quantum com-
plexity of the sturm–liouville eigenvalue problem. Quantum Information
Processing, 4(2):87–127, 2005. quant-ph/0502054.

[15] P. W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proc. of the 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, 1994. quant-ph/9508027.

22

[16] J. F. Traub and H. Wozniakowski. Path integration on a quantum com-
puter. Quantum Information Processing, 1(5):365–388, 2002. quant-
ph/0109113.

23

	Introduction
	The Sturm-Liouville eigenvalue problem
	Quantum algorithms for the Sturm-Liouville problem
	Upper bounds
	Lower Bounds
	Fourier Analysis of Power Query Algorithms

	Discussion
	Acknowledgments
	Proofs of Theorem 3 and Lemma 4

