
Multi Facet Learning in Hilbert Spaces

Risi Kondor1, Gábor Csányi2, Sebastian E. Ahnert2, and Tony Jebara1

1 Computer Science Department, Columbia University
New York, NY10027, USA

{risi,jebara}@cs.columbia.edu
2 TCM group, Cavendish Laboratory, University of Cambridge

Madingley Road, Cambridge CB3 0HE, U.K.
gc121@cam.ac.uk, sea31@hermes.cam.ac.uk

Abstract. We extend the kernel based learning framework to learning
from linear functionals, such as partial derivatives. The learning problem
is formulated as a generalized regularized risk minimization problem,
possibly involving several different functionals. We show how to reduce
this to conventional kernel based learning methods and explore a specific
application in Computational Condensed Matter Physics.

1 Introduction

Conventional learning algorithms estimate a function f : X → Y from noisy
samples of its point values f(x1), f(x2), . . . , f(xm). In this paper we extend this
framework in two related ways:

1. Instead of learning from the point values of f itself, we consider learning
from linear functionals of f .

2. We discuss how data related to different classes of linear functionals, which
we call facets, can be integrated into a single estimate f̂ .

One class of linear functionals that we are particularly interested in are the
partial derivatives of f . The initial motivation for this work came from Com-
putational Condensed Matter Physics, where atomic energy functions are to be
estimated but only data relating to the force (which is the gradient of the energy)
is available.

Our work sits firmly in the domain of kernel based learning. We give no new
algorithms or error bounds. Instead, we derive a general procedure for reducing
multi facet learning problems to known kernel based algorithms, such as Support
Vector Machines, Gaussian Processes, or any one of several others.

Our approach is similar in spirit to [6], which considered regularized risk
minimization in linearly transformed spaces at a very general level. Another im-
portant connection is to [7], which considered fitting splines to point values and
derivatives of an unknown function. In this paper we make the correspondence
between learning f and learning functionals of f much more explicit. In partic-
ular, we show how the multi facet learning problem can be reduced to standard
kernel algorithms formulated entirely in F , the Hilbert space from which f is
chosen.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

2 Multi Facet Learning

Conventional kernel based learning algorithms, such as Support Vector Machines,
Gaussian Processes, etc. learn a function f̂ : X → Y from training examples
(x1, y1) , (x2, y2) , . . . , (xm, ym) by minimizing the regularized risk

Rreg[f ] =
1

m

m
∑

i=1

L(f(xi), yi) +
1

2
〈f, f〉 (1)

over a Hilbert space of functions F [1][4]. Equation (1) expresses the competing
objectives of fitting the data, as enforced by the loss function L, and restricting
ourselves to a relatively small set of well behaved functions, enforced by the
regularization term 1

2 〈f, f〉 3.
Which functions belong to F and what form the inner product takes are

defined implicitly by the kernel k : X ×X → R. For our purposes, essentially any
positive definite (symmetric) function on X can serve as k. The space F then
becomes the Reproducing Kernel Hilbert Space (RKHS) associated to k, which
is the smallest complete space of functions spanned by the so-called representers
kx = k(x, ·). The inner product on F is defined by requiring 〈kx, kx′〉 = k(x, x′)
4. A crucial feature of Reproducing Kernel Hilbert Spaces, which we will exploit
again and again, is the reproducing property 〈f, kx〉= f(x).

In the present paper we extend kernel based learning to the case where
y1, y2, . . . , ym are not noisy samples of f itself, but of a different function h.
This function h must be related to f by a (not necessarily surjective) linear
mapping

h = Wf W : F → H,

where H is again a Reproducing Kernel Hilbert Space. H may or may not be
the same as F .

Our starting point is again to minimize a regularized empirical risk

Rreg[f ] =
1

m

m
∑

i=1

L(h(xi), yi) +
1

2
〈f, f〉 ,

but now the loss term involves h, while the regularization term is still in terms
of f . Our aim is to recover algorithms analogous to the well known SVM’s,
Gaussian Processes, etc..

For generality, we allow different subsets of the training set to pertain to
different functions hi = Wif . We call each of these a different facet of the learning
problem. We also allow each facet to have its own loss function Li.

3 It is customary to include in (1) a tunable parameter λ weighting the regulariza-
tion term, but for the sake of keeping our equations as simple as possible, here we
amalgamate this in the inner product.

4 Loosely speaking, F is the space of functions of the form f(x) =
R

X
g(x′) k(x′, x) dx′

with inner product 〈f, f ′〉 =
R R

g(x)g′(x′) k(x, x′) dxdx′.



3

Definition 1. Multi facet learning. Let F be a RKHS over X and let (Hi)
M
i=1

be RKHS’s over their respective index sets X1,X2, . . . ,XM ; let W1, W2, . . . , WM

be linear mappings Wi : F → Hi and let L1, L2, . . . , LM be loss functions. The

multi facet learning problem consists of finding

f̂ = argmin
f∈F

[

1
P

M
i=1

mi

M
∑

i=1

mi
∑

j=1

Li ((Wif) (xi,j), yi,j) +
1

2
〈f, f〉

]

(2)

given a composite training set
({

(xi,j , yi,j)
}mi

j=1

)M

i=1
.

Example 1. It is well known that the RKHS F of the Gaussian RBF kernel
k(x, x′) = exp

(

−‖x−x′ ‖
2
/(2σ2)

)

on R
n consists of all infinitely differentiable

functions C∞(Rn). Letting H = F , we can define Wi = ∂i, the derivative map
with respect to coordinate i, mapping f to the function h = ∂f/∂[x]i. Here and
in the following we use square brackets to distinguish coordinate i from the i’th
example.

Example 2. For any kernel k on X with RKHS F , the direct product kernel

k ((x1, x2) , (x′
1, x

′
2)) = k (x1, x

′
1) · k (x2, x

′
2)

is a kernel on X×X with corresponding RKHS H=F×F . This allows us to set
W to be the mapping defined by

(Wf)(x1, x2) = h(x1, x2) = f(x1) − f(x2).

Before concluding this section we make a couple of general remarks regarding
Definition 1.

1. For fixed x ∈ Xi, the mapping φx
i : f 7→ (Wif)(x) is a linear functional

φx
i : F → R. Hence, a more precise name for our approach might be “learning

from linear functionals”.
2. A simple case requiring more than one facet occurs when some of our data

pertains to, for example, derivatives of f , while other data points are conven-
tional samples of f itself. We can easily accommodate the latter by setting
H1 =F and W1 =I (the identity map).

3. To simplify the notation, when concentrating on just a single facet, we will
sometimes drop the subscript i and just talk about the space H and mapping
W : F → H.

4. Equation (2) is the analog of (11) and (13) in [6].

3 Solving the Learning Problem

Kernel methods owe much of their popularity to the fact that they can be reduced
to efficiently solvable finite dimensional optimization problems. Here we first
review this in the case of the classical algorithms, and then derive an analogous
reduction for multi facet learning.



4

3.1 Conventional RKHS methods

The first step in the classical approach is to use the reproducing property of F
to rewrite (1) as

Rreg[f ] =
1

m

m
∑

i=1

L(〈f, kxi
〉 , yi) +

1

2
〈f, f〉 . (3)

Examining this expression, we can immediately see that its minimizer f̂ ∈ F
must lie in the span of kx1

, kx2
, . . . , kxm

, that is,

f̂ =

m
∑

i=1

αi kxi
(4)

for some coefficients α1, α2, . . . , αm. This is the celebrated Representer Theorem
[2][3].

Plugging (4) back in (3) and using 〈kx, kx′〉= k(x, x′) gives an m-dimensional
optimization problem

α̂ = arg min
α∈Rm

[

1

m

m
∑

i=1

L ([Qα]i , yi) +
1

2
αTQα

]

(5)

where [Q]i,j = k(xi, xj). Solving this is the core of the algorithm. The exact
form the optimization problem takes depends on what the loss function is. For
Support Vector Machines (5) turns out to be a quadratic programming problem,
while for Gaussian Processes it is just matrix inversion.

Once we have found α = (α1, α2, . . . , αm), recovering f̂(x) is simply a matter
of computing

f̂(x) =

m
∑

i=1

α̂i kxi
(x) =

m
∑

i=1

α̂i k(xi, x). (6)

The whole procedure hinges on being able to evaluate inner products of the
type 〈kxi

, kxj
〉, and 〈kxi

, kx〉 for general x∈X . Both of these are computed from
〈kx, kx′〉= k(x, x′).

3.2 Multi facet learning

We now follow an analogous procedure to solve the multi facet learning problem
of Definition 1. The first step is again to replace the evaluations (Wif) (xi,j) by
inner products 〈Wif, ki

xi,j
〉Hi

, giving

f̂ = arg min
f∈F

[

1
P

M
i=1

mi

M
∑

i=1

mi
∑

j=1

Li

(〈

Wif , ki
xi,j

〉

Hi
, yi,j

)

+
1

2
〈f, f〉

]

, (7)

where ki
x is the representer of x in Hi.



5

As in F , the representers ki
x are defined by the relations 〈ki

x, ki
x′〉Hi

=
ki(x, x′), where now ki is the kernel of Hi. In many cases of practical importance
the Hi are trivially related to F (for example, H1 = H2 = . . . = HM = F), in
which case we will drop the upper indices. In the present section, however, for
the sake of precision, we always indicate which Hilbert space the representers
belong to.

To go any further we need to define the concept of adjoints.

Definition 2. Let U : H1 → H2 be a linear map between the Hilbert spaces H1

and H2. The adjoint of U is a linear map U † : H2 → H1 satisfying

〈Uf, g〉H2
=

〈

f, U †g
〉

H1

∀f ∈H1 ∀g∈H2.

It is easy to show that U † always exists, is unique, and
(

U †
)†

= U . In the simple
case that H1 and H2 are finite dimensional Euclidean spaces endowed with the
usual inner product 〈u, v〉 = u · v, if U corresponds to multiplication by the
matrix A, U † will correspond to multiplication by AT .

Using adjoints we can rewrite (8) in a form analogous to (3),

f̂ = argmin
f∈F

[

1
P

M
i=1

mi

M
∑

i=1

mi
∑

j=1

Li

(〈

f , W †
i ki

xi,j

〉

, yi,j

)

+
1

2
〈f, f〉

]

, (8)

which suggests that the W †
i ki

xi,j
will play a role similar to the kxi

in conventional
RKHS based learning. Indeed, we have the following generalized representer
theorem.

Theorem 1. Generalized Representer Theorem. The regularized risk

Rreg[f ] =
1

PM
i=1

mi

M
∑

i=1

mi
∑

j=1

Li ((Wif)(xi,j), yi,j) +
1

2
〈f, f〉

attains its minimum over F at an f̂ of the form

f̂ =

M
∑

i=1

mi
∑

j=1

αi,jW
†
i ki

xi,j
(9)

for some real coefficients
((

αi,j

)mi

j=1

)M

i=1
.

Proof. The proof is essentially identical to that in [3] or [4]. We define the sub-

space V = span((W †
i ki

xi,j
)mi

j=1)
M
i=1 and consider the orthogonal decomposition

f = fV + fV ⊥ , where fV ∈ V and fV ⊥ ⊥ V . Substituting this into (8), we see
that fV ⊥ does not affect the loss term, while the regularization term becomes
1
2 〈fV , fV 〉+ 1

2 〈fV ⊥ , fV ⊥〉 ≥ 1
2 〈fV , fV 〉. Hence, at the minimum of Rreg, fV ⊥ = 0.

It follows that f̂ ∈ V and hence can be written in the form (9).



6

Now it is clear what remains to be done. Plugging (9) back in (8) and ex-
panding the inner products we arrive at the analog of (5).

Theorem 2. The multi facet learning problem of Definition 1 is equivalent to

solving

α̂ = arg min
α

[

1

m

M
∑

i=1

mi
∑

i=1

L
(

[Qα]i,j , yi,j

)

+
1

2
αTQα

]

(10)

where α is an
∑M

i=1 mi dimensional real vector and

[Q](i,j),(i′,j′) =
〈

W †
i ki

xi,j
, W †

i′k
i′

xi′,j′

〉

. (11)

The solution can be evaluated using

f(x) =

M
∑

i=1

mi
∑

j=1

α̂i,j

(

W †
i ki

xi,j

)

(x) =

M
∑

i=1

mi
∑

j=1

α̂i,j

〈

W †
i ki

xi,j
, kx

〉

. (12)

Equations (10)–(12) make use of somewhat unusual notation. It is important
to bear in mind that α is a vector, even though it is indexed by i and j together.
The indices can be taken to run (1, 1), (1, 2), . . . , (1, m1), (2, 1), (2, 2), . . . to form
a single multi-index. Similarly, Q is to be regarded as a matrix, despite the fact
that it has 4 indices.

What remains to be done, and this will be specific to the choice of Wi’s, is to
compute the inner products appearing in (11) and (12). By comparison, in the
conventional setting computing 〈kx, kx′〉= k(x, x′) is trivial.

It is worth noting that from (12) the adjoint is easy to eliminate:

〈

W †
i ki

xi,j
, kx

〉

=
〈

ki
xi,j

, Wikx

〉

Hi
= (Wikx) (xi,j) .

Eliminating the adjoints from (11) requires some additional assumptions. Specif-

ically, if H1 =H2 = . . .=HM = F and Wi and W †
i′ commute (WiW

†
i′ = W †

i′Wi)
we may write

〈

W †
i ki

xi,j
, W †

i′k
i′

xi′,j′

〉

=
〈

ki
xi,j

, WiW
†
i′k

i′

xi′,j′

〉

=
〈

Wi′kxi,j
, Wikxi′,j′

〉

.

In this case the entire problem can be formulated in terms of the forward maps
W1, W2, . . . , WM only.

4 Learning from Derivatives

One of the most natural applications of generalized RKHS learning is learning
from data about the partial derivatives of f . We assume that X is an M dimen-
sional differentiable manifold with local coordinates indexed 1 through M , and
that kx is differentiable on X for any x. The most immediate example of course
is X =R

M with its usual global coordinate system.



7

To avoid possible ambiguities we now define some notation. Given a dif-
ferentiable function f : X → R, ∂if will denote its derivative with respect to
coordinate i, which is itself a function from X to R. We regard ∂i as a linear
operator, mapping functions to functions.

By contrast, ∂f(x)/∂ [x]i will denote the i’th derivative of f of x at x, which
is a real number. We have the general relation

(∂if) (x) =
∂f(x)

∂ [x]i
.

It is important to note that when dealing with functions of the form gx = g(x, x′),
the notation ∂igx refers to differentiation with respect to the second, hidden
argument of g and not with respect to x.

Letting Wi = ∂i, as we have seen in section 3.2, solving the multi facet
learning problem requires computing the “one-sided” inner products 〈kx, ∂†

i kx′〉

and “two-sided” inner products 〈∂†
i kx, ∂†

j kx′〉. The former are easy to evaluate
for any differentiable k:

〈kx, ∂†
i kx′〉 = 〈∂ikx, kx′〉 = (∂ikx) (x′) =

∂k(x, x′)

∂[x′]i
. (13)

To derive similar closed form expressions for the two-sided inner products, we
need to make the setting more concrete.

4.1 Stationary Kernels on Euclidean Spaces

Often the most straightforward choice of input space is X = R
n.

Definition 3. A kernel k : R
n×R

n → R is called a stationary kernel, if k(x, x′) =
κ(x′−x) for some function κ : R

n → R.

The significance of stationarity is that it allows us to relate ∂i to its adjoint.
On the one hand we have

〈∂ikx, kx′〉 = (∂ikx) (x′) =
∂k(x, x′)

∂[x′]i

while on the other hand

〈

∂†
i kx, kx′

〉

= 〈kx, ∂ikx′〉 = (∂ikx′) (x) =
∂k(x, x′)

∂[x]i
= −

∂k(x, x′)

∂[x′]i
.

This shows that ∂†
i kx = −∂ikx.

Evaluating the two-sided inner products appearing in (11) is now straight-
forward:

〈

∂†
i kx, ∂†

j kx′

〉

=
〈

∂j∂
†
i kx, kx′

〉

= −
(

∂i∂jkx

)

(x′) = −
∂k(x, x′)

∂[x′]i ∂[x′]j
. (14)

The generalization of (13) and (14) to higher order derivatives is summarized
in the following proposition.



8

Fig. 1. The Gaussian RBF kernel and its first two derivatives (with appropriate signs)
corresponding to 〈kx, k′

x〉,
˙

kx, ∂†kx′

¸

and
˙

∂†kx, ∂†kx′

¸

with x′ fixed at 0.

Proposition 1. Let k be a stationary kernel on R
n and define the differential

operators W = ∂i1∂i2 . . . ∂ir
and W ′ = ∂i′

1
∂i′

2
. . . ∂i′

r′
. Then the inner products

appearing in Theorem 2 are of the form
〈

kx, W †kx′

〉

= (∂i1∂i2 . . . ∂ir
kx) (x′) , (15)

〈

W †kx, W ′†kx′

〉

= (−1)
r (

∂i1∂i2 . . . ∂ir
∂i′

1
∂i′

2
. . . ∂i′

r′
kx

)

(x′) . (16)

Example 3. The Gaussian RBF kernel. One of the most popular kernels on
R

n, partly due to its appealing regularization properties5, is the Gaussian RBF
(Radial Basis Function) kernel

k(x, x′) = e−‖x−x′‖2/(2σ2).

Substituting into (15) and (16) gives

〈∂†
i kx, kx′〉 = −

[x − x′]i
2σ2

e−‖x−x′ ‖2/(2σ2)

〈∂†
i kx, ∂†

j kx′〉 =
1

2σ2

(

δi,j −
[x − x′]i [x − x′]j

2σ2

)

e−‖x−x′ ‖2/(2σ2)

where δi,j = 1 if i= j and 0 otherwise. It is instructive the examine the behav-
ior of these functions, especially in light of the Gaussian Process approach to
learning, where the kernel corresponds to prior estimates of covariances (Figure
1). The first plot just shows that the correlation between f(x) and f(0) falls off
exponentially with ‖x ‖. The second plot shows that f(x) is positively correlated
with (∂f)(0) when x > 0, but is anti-correlated with (∂f)(0) when x < 0. This
is exactly what we would expect from the assumption that f is “smooth”.

Finally, the last plot tells us that when x is close to zero, (∂f)(x) is positively
correlated with (∂f)(0), while futher away they are anti-correlated. This can be
understood as a competition between two opposing tendencies. On the one hand,
just as for f itself, nearby values of ∂f are correlated by virtue of smoothness.
On the other hand, the prior tends to pull f itself to zero: if there is a positive
derivative at some x′, there has to be a negative derivative just before it or just
after it, to allow f to approach zero on both sides.

5 If we let f̃ be the Fourier transform of f , then 〈f, f〉 =
R `

f̃ (ω)
´2

e ω2σ2/2 dω. [5]



9

5 Regularization in H

In this section we consider the case of just a single mapping W : F → H. In
Section 3 we have seen that in this case the learning problem

f̂ = argmin
f∈F

[

1

m

m
∑

i=1

L ((Wf) (xi), yi) +
1

2
〈f, f〉F

]

reduces to a standard regularized risk minimization problem with the represen-
ters kx replaced by W †kH

x . We can equivalently set up a a different RKHS G
with representers kG

x and inner product
〈

kG
x , kG

x′

〉

=
〈

W †kH
x , W †kH

x′

〉

and in that
space solve

ĥ = argmin
h∈G

[

1

m

m
∑

i=1

L (h(xi), yi) +
1

2
〈h, h〉F

]

.

This is just a conventional regularized risk minimization problem in a RKHS
induced by the kernel kG(x, x′) =

〈

W †kH
x , W †kH

x′

〉

whose solution will satisfy

ĥ = Wf̂ in the function sense.
So then for a single W what is the benefit of the multi learning formalism at

all? If our data tell us about h, why do we not learn h directly? The answer to
this question has to do with the kernel kG and what functions make up G.

We have the following general theorem.

Proposition 2. Let H be a RKHS over a domain X , let F be a Hilbert space

and define a linear mapping W : F → H. Then k(x, x′) =
〈

W †kH
x , W †kH

x′

〉

is a

positive definite symmetric kernel on X .

Hence the multi facet procedure naturally induces new kernels. Constructing
those kernels from scratch might not have been easy or intuitive. For example,
considering learning first derivatives with the Gaussian RBF kernel gave us the
kernel

k(x, x′) =
1

2σ2

(

δi,j −
[x − x′]i [x − x′]j

2σ2

)

e−‖x−x′ ‖2/(2σ2)

which has probably not previously been used in Machine Learning.
A more serious issue is what space the derived representers

{

kG
x

}

actually
span. For example, in the case Wi = ∂i, the various functions h1, h2, . . . , hM will
be related by virtue of being the derivatives of some f ∈ F . In particular, the
vector valued function h = (h1, h2, . . . , hm) will be conservative, meaning that
for any closed loop Γ

∮

Γ

h · dx = 0. (17)

These conditions are automatically enforced in the multi facet learning setting.
Learning the derivatives individually with generic kernels would not necessarily
yield a solution satisfying (17). In the physical applications we explore at the very
end of this paper, learning from measurements of force (which is the gradient of
the potential) it is crucial that the learned force field be conservative, because
otherwise it cannot correspond to a potential.



10

0

20

40

60

80

−20

−10

0

10

20

−5000

−4000

−3000

−2000

−1000

0

1000

Fig. 2. Learning a single particle double potential well. The first plot is the original
energy surface with a particle trajectory indicated, the second is the Gaussian process
model learnt from its derivatives, while the third plot shows the squared error and the
locations of the training points.

6 Applications in Computational Physics

The initial motivation for this paper came from a specific problem in Computa-
tional Condensed Matter Physics.

Given a multi-atom physical system, such as a molecule, to numerically com-
pute the trajectory xi(t) of each of the atoms normally requires knowing the
joint energy function E(x1, . . . , xN ). The atoms are then moved along the di-
rection of the forces f i = −∇xi

E(x1, . . .xN ) using some standard numerical
integration scheme.

The energy function of a real system is a complicated many body func-
tion. Even when E(x1, . . . , xN ) is modeled by a fixed function, evaluating its
derivative for each atom at every step of a dynamical simulation is prohibitively
expensive. Instead, the standard procedure is to approximate E in a form

E =

N
∑

i=1

ε(x1−xi, . . . , xN −xi). (18)

Here ε is a generic ansatz describing the interaction of any one of the atoms with
all the others. This is called the classical potential approximation.

To date, all the classical potentials used in numerical simulations have been
simple analytic forms with just a few adjustable parameters. The parameters
are typically fitted to reproduce results of expensive quantum mechanical cal-
culations and experimental data on a very small carefully selected set of con-
figurations. Usually, ε is a simple sum over bond lengths and angles, neglecting
correlations between them.

By contrast, we propose to learn ε with a kernel based nonparametric learning
algorithm, specifically a Gaussian Process. This will allow much more flexibility
in the form of ε, while evaluating our estimate at each step of the simulation
will still be relatively fast, certainly much faster than evaluating the derivatives
of the full model E.

A specific advantage of Gaussian Processes is that the variance of the a pos-
terioiri estimate can give an indication of the accuracy of the model at each point



11

of the domain. This suggests an online learning scheme, where the confidence in
ε(x) is evaluated at each step of the simulation, and when it falls below a certain
threshold, the model for ε is updated by acquiring a new training point from E.
It is important to note that we are only interested in learning ε in regions actu-
ally visited by particles. However, it is not possible to know what those regions
are before running the simulation. Gaussian Processes offer a natural solution
to this problem.

Conventional kernel methods cannot learn ε from E because of the large
amount of freedom in the decomposition (18). At a given (x1, x2, . . . , xN ), there
are many ways to divide the total energy between each of the N terms of the
sum. Multi facet learning allows us to overcome this problem by considering the
mapping

(Wf) (x1, x2, . . . , xN ) =
∑N

i=1 f(x1−xi, x2 − xi, . . . , xN −xi),

which is somewhat similar to Example 2.
Due to the nature of the computations involved in evaluating E(x1, . . . , xN ),

once we have the point value, additionally computing derivatives is relatively
inexpensive. Hence by learning from the forces f i = −∇xi

E, we can effectively
gain 3N times as many data points. Learning from the derivatives is the second
sense in which we take advantage of the multi facet learning approach in this
application.

In our preliminary experiments we trained a Gaussian Process on a simple
single particle double potential well energy function, learning only from forces
(Figure 6). The training points were concentrated in the region actually traversed
by the particle, and as evidenced by the squared error, in this region the Gaussian
Process model is quite accurate. The drastically different behavior of the model
and the original function outside the well is of no concern, since particles are
never expected to visit this region, anyway.

Real simulations involving large systems of intrinsic physical interest are in
preparation.

References

1. F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks
architectures. Neural Computation, 7(2):219–269, 1995.

2. G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82–95, 1971.

3. B. Schölkopf, R. Herbrich, A. J. Smola, and R. C. Williamson. A generalized rep-
resenter theorem. Technical Report 2000-81, NeuroCOLT, 2000. To appear in
Proceedings of the Annual Conference on Learning Theory 2001.

4. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

5. A. Smola and B. Schölkopf. From regularization operators to support vector ker-
nels. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural

Information Processing Systems 10, pages 343–349, Cambridge, MA, 1998. MIT
Press.



12

6. A. J. Smola and B. Schölkopf. On a kernel-based method for pattern recognition,
regression, approximation and operator inversion. Algorithmica, 22:211–231, 1998.

7. G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional

Conference Series in Applied Mathematics. SIAM, 1990.


