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SUMMARY 

"Mount points" allow more storage to be grafted into tree-structured hierarchical file systems. 
Administrative tasks use their 10~ltionS, which are tabulated in a file. In our System V U~IX 
environment, this file was occasionally removed. Getmnt was written to recover the information. 

Getmnt has had three significant versions. The original version (getmntl) was a highly optimized 
naive tree traversal. Getmnt2 improved the real time performance by a mean factor of 7 by pruning 
unnecessary branches from the tra\'ersal. GetmnU doubled getmnt2' s speed, with a change from 
depth-first to breadth·first search. On our development system, getmntJ required 647.6 seconds to 
run, while getmnt3 required 42.53 seconds. 
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INTRODUCTION 

The UNIX® file system 1-3 manages collections of data called files. Data and a file con

trol block called an inode comprise a UNIX file. [nodes are stored in a list maintained 

per device. A pointer to the list entry, the i-number, identifies the file. Directories are 

lists of <name, i-number> pairs. Directories are files, and can be components of another 

directory. A rooted tree structure constrains the resulting "graph". A file is uniquely 

named by the path from the root to the file in the directory tree, called the path name. 

Name components are separated by the distinguished value "/". Referring to Figure 1. 

the path name of the file "core" is "/u2/smith/core". The current directory is a 

directory-valued variable. It is an implied prefix, used to abbreviate path names. Direc

tories have pointers to their containing directory to ease traversal; the root contains itself. 

This scheme is extensible across multiple media through mount points. A mount 

point is a named directory used to graft subtrees onto the tree. A mount point in a path 

name causes interpretation of the portion after the mount point name to occur within the 

context of the subtree rooted at that mount point. References to the containing directory 

in the root of the subtree must resolve to the mount point. 

The UNIX kernel does not store the path name passed to system calls. For open(2), 

;!!) UKlX i, a registered trademark of AT&T. DEC. Digital, RA8;. and VAX are trademarks of Digital Equipment Corporation. 
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this absence prevents easy duplication of the MUL TICS4 hcs _$Is _get yath _ name() call, 

which returned the segment name of the segment descriptor argument. For chdir(2). 

pwd(1). which finds a path from the root to "."*. is roughly equivalent to converting the 

descriptor to a name. For mount(2). an attempt to remedy the lack of path names is made 

by maintaining a file. letclmnttab on System V, containing a mapping between mount 

point names and device names. Administrative commands such as mount( 1) and dl( 1 ) 

use letc/mnttab. 

The Problem 

In principle. locating the mount points is not hard. They must be distinguished in some 

fashion. The difficulty is in determining the' 'path named" location of the mount points 

in a file system tree. The solution could be as simple as examining system data struc

tures. either directly or with a system call, if the operating system stored the path name. 

The UNIX operating system kernel does not store path names associated with the mount 

points. A file containing the names of mount points and their associated disk devices is 

maintained so that administrative functions such as unmounting file systems can be per

formed. Administrative accidents or errant programs can incorrectly update the file. 

Such errors are infrequent on any given system, but large numbers of systems increase 

the frequency of such errors. Several approaches to corrupt or deleted files exist: 

• Maintain redundant copies of the file. All programs writing to the file must 

adhere to this backup maintenance strategy. 

• Maintain mount-point names in the kernel for recovery purposes. Path names are 

not long in practice; the total storage required for null-terminated path name 

strings on one large system with 38 mount points is 225 characters, less than a 

system buffer. Thus, storing these names should require a manageable amount of 

kernel storage. 

• Restoring the file from alternate sources of information. For example, the set of 

commands invoked on system startup could be examined for mount( 1) com

mands. This approach does not account for activity after startup. Another possi

bility is the use of some utility to examine the kernel-maintained data structures. 

This examination is difficult, and the data may be misleading. File system names 

stored with the volume may not be accurate, as when a backup copy of a mounted 

file system is examined. 

'" By convention. "." is synonymous with the current directory. and ...... with its parenL 
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The first two are impractical, as they require either command or kernel changes. Such 

changes are discouraged; experience has shown that the changes necessary for new 

releases of the system software become unmanageable. Without these changes, the first 

two methods are either not attractive or not robust. Setmnt( 1) can create a new 

letclmnttab if auxiliary information is available. 

Related Work 

This work consists of both a result, getmnt, and a methodology. Since the algorithms are 

problem-specific, there is little prior work related to the result. Hence, relevant com

parisons must be drawn based on the methodology used for performance analysis. 

Profiling has been used5-7 for an analysis of system events. The analysis was 

applied to improving system performance. These previous studies focus on operating 

system performance. Disk performance8 has been studied using trace-gathered measure

ments of driver activity. but no performance improvements based on these measurements 

were reported. Similar techniques9 were used to improve the performance of a com

monly llsed network news management utility by a factor of 19; the focus was divided 

between the results and the methods used to achieve them. While the goals of the pro

grams are unrelated, a similar methodology was used in the development of getmnt, that 

of profile-based performance analysis to refine a program. Getmnt's performance 

increases were achieved in two major jumps rather than in many small steps. The 

increases were achieved through algorithmic changes rather than implementation 

changes: many of the optimizations 9 had been applied in the construction of getmntl. 

The techniques used for getmnt may be useful in other hierarchical file system 

searches where mount points are significant, such as finding the machines in a network 

file system tree. 

GETMNTI 

The UNIX system call stat(2) returns, among other data, the device, identified by a 

number. that its file name argument resides on. Since the device on which a file is 

mounted changes for files beneath a mount point, they are found in a file tree traversal. 

On UNIX. device access is done with special flies, which are entries in the file system 

name space kept by convention in the directory "/dev". These special files also contain 

a device datum in their inode entries, so that we can create a mapping between names 

and devices. This mapping is unfortunately not 1-to-1: "swap" typically shares a 

number. 

Using these facts. getmntl was written. Getmntl builds a table of special fIle 
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names, subject to certain naming constraints, indexed by the device id. It then recur

sively descends the directory tree starting from the root. Whenever the device id of a file 

differs from that of its "parent", the mount point name and the associated special file 

name are output. The recursive algorithm is: 

while( dir not empty) 

get next element; 

if( dev(dir) != dev(element) 

mount_point ( dir ); 

if( is_dir(element) 

get_mount_points( element); 

The first draft in the development of getmntl was slow, much like a "'find / 

- depth" would be. The following optimizations were applied to yield acceptable per

formance: 

- Relative path names and cluiir(2) were used to cache namei() results. As pointed out 

in a UNIX system performance study5 the namei() procedure used by stat() and 

chdir() is very expensive. 

- Read(2) calls on directories were buffered in a 512 byte buffer. 

- Traversal depth was bounded, e.g., to four directories deep. 

Gemmtl was used from late 1983 until the summer of 1987. 

I 
GETMNT2 

Getmntl's static and empirically-determined depth bound was unattractive. Worse, its 

approach did not scale well. The amount of disk storage associated with each processor 

had increased over time. For example, consider system E, a DEC™ 8650 processor. It 

has 38 file systems distributed over 12 RA81 drives, comprising 5.4 gigabytes of disk 

storage. Getmntl took tens of minutes of real time to nm on E and similarly configured 

systems. Since getmnt is used frequently as an administrative tool this performance was 

unacceptable. The analysis began with a profiled version of gemmtl. The stal() system 

call consumed about 47 percent of the execution time, with 29626 calls at 0.88 mil

liseconds per call; 14 percent by read() with 19460 calls at 0.41 msec/call; 14 percent by 

chdir() with 16108 calls at 0.46 msec/call; and 7 percent by open() with 8054 calls at 
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0.48 msec/call. The code was optimized to reduce the cost of system calls so that the 

problem clearly lay with the number being issued. It was not obvious that this number 

could be reduced * . Small changes made to the program resulted in equally small perfor

mance improvements. 

- Directories had been read using an old block size of 512 bytes, and the program logic 

had used Iseek(2) to skip past the "." and " .. " entries in a directory before reading 

began, thus misaligning the blocks read with respect to the blocks on disk. The 

buffer size was adjusted to the file system block size, halving the number of read() 

calls. 

The program read information from /dev and its subdirectories one directory entry at 

a time. Buffering was applied, as before. Experimental data showed that the simplis

tic hashing scheme used in device name lookup was effective in generating short, 

well-distributed lists. 

Get _ mnt yts(). the file tree walking routine, and the source of most string manipula

tion calls, checked whether it had exceeded the depth limit specified. Checking 

before the routine was called eliminated many calls. This pre-checking exemplifies a 

rule for bushy trees: when you can, examine from the top. 

These changes gave improvements of a few percent, not the desired order of magnitude. 

The next section describes our first method for achieving major performance improve

ments, "Leaf Pruning". 

Leaf Pruning 

The system calls in the profile results, e.g., stat() , read(), chdir() and open(). are used as 

part of a search process. The number of system calls is reduced if the search is more effi

cient. One way of making a search more efficient is a better criterion for stopping the 

search. 

Extra infOlmation can give us a better stopping criterion. In the example file tree 

structure of Figure 1, mount points are marked with a parenthesized "device number". 

Getmntl would traverse the illustrated tree to the depth bound of 4. 

The extra infonnation about the organization of the tree is obtained as follows: 

- The system mount table structure is read from /devlkmem, a file system name-space 

entry for the kernel memory. A flag associated with each device is initially marked 

* Stat() system calls issued during a file tree walk are llsed to gather information. e.g., directory status and device number. Chdir() is 
used in tree traversal. The open(), readj), and close() system calls are used to gather information from directories. 
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UNREFERENCED. 

- The system mount table is examined, and the inode table entry is obtained for each 

mounted-on file system. This data forms a table of <file system device #. mounted-on 

file system device #> pairs. 

Table 1. Device numbers with parents 

device parent 
number device 

0 0 
10 0 
23 0 
12 10 
31 10 
33 0 

- The flags of devices in the right-hand column of the table are marked INTERNAL, 

as mounted-on file systems are parents in the tree structure. Devices present in the 

left-hand column but not in the right-hand column are marked LEAF. The special 

devices are thus partitioned into UNREFERENCED, LEAF, and INTER.NAL. Thus, 

a membership test can determine the type of a given file system. 

This information can be used to "prune" nodes from the search for mount points; no 

mount points can be found beneath a leaf node. For example, referring again to Figure 1, 

the search beneath lui, lusr/src, lusrlspoollnews. and 1u2 is unnecessary because they 

are leaf nodes. Getmntl would search directories such as 1u2lsmith and /ulljms. The 

algorithm for get_mount_points ( dir ) is: 

while ( dir not empty 

get next element; 

if( dev(dir) != dev(element) 

mount_point ( element ); 

if( is_dir(element) && !leaf(dev(element)) 

get_mount_points( element ); 
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Discussion 

The extra information is used as a "hint", as an old letclmnttab could be, thus it only 

improves performance; in the worst case the performance reverts to that of the old algo

rithm. However, a profile illustrates the performance can improve significantly. Stat() 

now consumes about 81 percent of the execution time, with 8100 calls at 0.95 msec/call; 

chdir() 4 percent, with 556 calls at 0.69 msec/call; get _ mnt yts(), a local function. about 

3 percent, with 6749 calls at 0.04 msec/call; and read() about 3 percent, with 751 calls at 

0.36 msec/call. 

This technique is particularly effective where many leaf file systems are mounted at 

or near the root of the tree structure. The algorithm discovers the leaves almost immedi

ately, and thus dispenses with their subtrees. The effectiveness of the technique is sensi

tive to the shape of the tree, but is remarkably effective in practice. Performance results 

were computed by gathering data for 17 systems. All command executions were timed 

with timex( 1), which provides three statistics: real time, the amount of wall clock time 

used during the execution; user time, the amount of time the application program spent 

in control of the CPU; and system time, the amount of time the operating system spent in 

control of the CPU for the application. Timesharing of the system with other applica

tions and waiting for I/O to complete account for real-(user+system). The data was gath

ered when the systems were in "single-user" mode to remove the effects of timesharing; 

the system buffer cache was pre-flushed. The ratio time(getmntl)/time(getmnt2) is used 

to measure the improvement; this ratio allows comparison between unlike systems . .. 
Statistics' for these ratios are given for each relevant variety of time in Table 2. Column 

A VG 1 contains the computed mean of the run times, in seconds, for getmntl. 

Table 2. Performance Summary, getmnt2/getmntl 

Time mean median max min std_dev AVGl 
real 7.1 7.9 13.5 2.7 2.8 276.6 
user 8.4 6.5 14.8 3.3 4.1 8.2 
sys 3.2 2.3 7.0 1.3 1.8 60.5 

GETMNT3 

Mmmt points naturally tend to be located near the root of the tree. A depth-first strategy, 

even one with leaf-pruning, does not take advantage of this fact. It encouraged a strategy 

of exploring the top of the tree first, e.g., breadth-first search. 

* Detailed data is availablc.10 
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Breadth-first search was implemented in early 1988: 

List : = "/"; 

while ( not( all mount points found) ) 

get next directory, dir, from List; 

while ( dir not empty) 

get next element for which is_dir(element) 

if( dev(dir) != dev(element) 

mount_point ( element ); 

if( leaf(dev(element» 

continue; 

append element to List; 

The change in search strategy was made in an attempt to reduce the number of stat() 

calls still further. It was successful, as profile results * demonstrate: Stat() now requires 

88 percent of the execution time, with 1767 calls at 1.471 msec/call; match(), a local 

pattern-matching function, about 3 percent, with 7680 calls at 0.01 msec/call; and ma/

loc() a library function for memory allocation, requires about 2 percent, with 1623 calls 

at 0.03 msec/call. This reduction in the number of calls should translate into a perfor

mance improvement. Open(), chdir(), and read() have become relatively minor costs. 

While fewer in number, each stat() call has become about 50 percent more costly, due to 

the greater effectiveness of the UNIX disk buffer cache in depth-first search. The table 

shows that the performance always improves and improves significantly on average. The 

magnitude of the improvement is not uniform; the variation is due to differences in tree 

shape. A VG2 is the computed mean of the times for getmnt2,' from A VG2 the run times 

can be estimated using the ratios. 

* ldev was removed from the search, as it is traversed when device names, e.g., Idevldsk/llsO. are being mapped to device numbers. 
Idev is also an unlikely place for ftle systems to be mounted. This (hack) removed about 600 stat() calls. 

TRUE; 
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Table 3. Performance Summary, getmnt3/getmnt2 

Time mean median max min std_dev AVG2 
real 2.0 1.9 3.0 1.1 0.5 46.3 
user 2.8 2.4 5.8 1.3 1.2 1.2 
sys 2.4 2.3 4.0 1.3 0.6 29.2 

Table 4 relates the performance of getmnt3 to the performance of getmntl. 

Table 4. Performance Summary, getmnt3/getmntl 

Time mean median max min std_dev 
real 13.6 13.5 24.1 3.6 4.9 
user 27.0 24.25 65.3 4.7 20.4 
sys 7.4 8.3 15.5 2.7 4.2 

To illustrate why the performance increases, consider the tree in Figure 1, and imagine 

that lusrlspoollnews is not a mount point. A directory font with many subdirectories is 

found previous to src in Illsr. Since src remains to be found, lusr is not a leaf and the 

font directory must be searched to the depth bound. Such search can be costly. 

Breadth-first search postpones such traversals until necessary for correctness. 

There were other improvements whose effect was not dramatic: 

- Path bunching; in an attempt to reduce the cost of chdir() calls, the number of calls 

was traded against a slightly increased complexity for each call. Consider a directory 

search, shown in a she I) -like notation: 

for i in abc d 

do 

cd ${i} 

# work 

cd 

done 

Equivalently: 



cd a 

#work 

for i in b c d 

do 

cd .. / $ {i} 

#work 

done 

cd .. 
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Note that five calls to chdir() do the work of eight. A routine cheap_cdr from_dir. 

to _dir ) applies several such heuristics to reduce the cost of directory changes. 

Directories are read with a single system call. A set of routines emulating the 

4.2BSD 11 directory access routines was written. When accessed, the entire directory 

is read into a buffer. Subsequent calls for directory entries are satisfied from this 

buffer. While space utilization might be a problem in a recursive search, the strategy 

employed in getmnt3 completes its examination of a given directory before beginning 

another. The space allocated to directory buffers is thus proportional to the single 

largest directory examined. 

The information gathered about the kernel table of mounted file systems was 

expanded to a complete tree structure. This organization has the advantage that 

changes in the tree structure can be noted as leaves are detected and removed. Ter

mination of the search is detected by the root node's transition to a leaf, when all its 

children, and their children, and so on, have been detected. 

However, the major gain was effected by the change in search strategy. 

Costs 

One potential problem was overuse of memory, but the memory utilization of getmnt3 

was roughly comparable, about a factor of 2 greater than getmnt2. The major cost of the 

changes is clearly in code complexity. Efficient breadth-first search required more com

plex data structures and procedures for traversing the UNIX file tree. The code complex

ity increased from getmntl to getmnt2 mainly as a result of the examination of kernel 

memory. While a single conditional test was added to the main loop of getmntl for 

getmnt2, the cost of implementing the conditional was great. 

The knowledge of many system details makes the code harder to understand and is 

an impediment to portability. The increase in source lines from getmntl, 445, to 

getmnt2, 818. including comments, was about 80 percent; getmnt3 showed a 60 percent 
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increase, from 818 to 1317 lines. As a result of the changes, the code is less portable, 

and more effort is required to maintain it for new architectures and UNIX releases. 

Copies of previous versions are archived for reference by maintainers. 

CONCLUSIONS 

The performance increase is particularly satisfying on our development system, E, as the 

difference between getmntl and getmnt3 on this machine was a factor of 15, somewhat 

greater than the mean. The performance increases have been achieved by reducing the 

number of system calls. Under a timesharing workload, each system call causes the 

caller to be rescheduled, possibly resulting in a service delay. Thus, the observed 

improvements are more dramatic lO when a system is timesharing. 

In locating mount points the items of interest are near the top of the file hierarchy, 

and information about relative positions was available. We pruned nodes from our 

search and used breadth-first search to yield a significant performance improvement. 

The main ideas, of using extra information and adapting the search strategy to the prob

lem. are applicable to many instances of file system search, and to algorithms in general. 

In addition, the methodology may be useful to others; the results are embodied in 

the current getmnt. 
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