
Rapid location of mount points
JONATHAN M. SMITH

Compu.ter Science Department, Columbia University

New York, New York 10027

CUCS-366-88

SUMMARY

"Mount points" allow more storage to be grafted into tree-structured hierarchical file systems.
Administrative tasks use their 10~ltionS, which are tabulated in a file. In our System V U~IX
environment, this file was occasionally removed. Getmnt was written to recover the information.

Getmnt has had three significant versions. The original version (getmntl) was a highly optimized
naive tree traversal. Getmnt2 improved the real time performance by a mean factor of 7 by pruning
unnecessary branches from the tra\'ersal. GetmnU doubled getmnt2' s speed, with a change from
depth-first to breadth·first search. On our development system, getmntJ required 647.6 seconds to
run, while getmnt3 required 42.53 seconds.

KEY WORDS Mount Point File System Search Perfonnance

INTRODUCTION

The UNIX® file system 1-3 manages collections of data called files. Data and a file con

trol block called an inode comprise a UNIX file. [nodes are stored in a list maintained

per device. A pointer to the list entry, the i-number, identifies the file. Directories are

lists of <name, i-number> pairs. Directories are files, and can be components of another

directory. A rooted tree structure constrains the resulting "graph". A file is uniquely

named by the path from the root to the file in the directory tree, called the path name.

Name components are separated by the distinguished value "/". Referring to Figure 1.

the path name of the file "core" is "/u2/smith/core". The current directory is a

directory-valued variable. It is an implied prefix, used to abbreviate path names. Direc

tories have pointers to their containing directory to ease traversal; the root contains itself.

This scheme is extensible across multiple media through mount points. A mount

point is a named directory used to graft subtrees onto the tree. A mount point in a path

name causes interpretation of the portion after the mount point name to occur within the

context of the subtree rooted at that mount point. References to the containing directory

in the root of the subtree must resolve to the mount point.

The UNIX kernel does not store the path name passed to system calls. For open(2),

;!!) UKlX i, a registered trademark of AT&T. DEC. Digital, RA8;. and VAX are trademarks of Digital Equipment Corporation.

- 2-

this absence prevents easy duplication of the MUL TICS4 hcs _$Is _get yath _ name() call,

which returned the segment name of the segment descriptor argument. For chdir(2).

pwd(1). which finds a path from the root to "."*. is roughly equivalent to converting the

descriptor to a name. For mount(2). an attempt to remedy the lack of path names is made

by maintaining a file. letclmnttab on System V, containing a mapping between mount

point names and device names. Administrative commands such as mount(1) and dl(1)

use letc/mnttab.

The Problem

In principle. locating the mount points is not hard. They must be distinguished in some

fashion. The difficulty is in determining the' 'path named" location of the mount points

in a file system tree. The solution could be as simple as examining system data struc

tures. either directly or with a system call, if the operating system stored the path name.

The UNIX operating system kernel does not store path names associated with the mount

points. A file containing the names of mount points and their associated disk devices is

maintained so that administrative functions such as unmounting file systems can be per

formed. Administrative accidents or errant programs can incorrectly update the file.

Such errors are infrequent on any given system, but large numbers of systems increase

the frequency of such errors. Several approaches to corrupt or deleted files exist:

• Maintain redundant copies of the file. All programs writing to the file must

adhere to this backup maintenance strategy.

• Maintain mount-point names in the kernel for recovery purposes. Path names are

not long in practice; the total storage required for null-terminated path name

strings on one large system with 38 mount points is 225 characters, less than a

system buffer. Thus, storing these names should require a manageable amount of

kernel storage.

• Restoring the file from alternate sources of information. For example, the set of

commands invoked on system startup could be examined for mount(1) com

mands. This approach does not account for activity after startup. Another possi

bility is the use of some utility to examine the kernel-maintained data structures.

This examination is difficult, and the data may be misleading. File system names

stored with the volume may not be accurate, as when a backup copy of a mounted

file system is examined.

'" By convention. "." is synonymous with the current directory. and with its parenL

- 3-

The first two are impractical, as they require either command or kernel changes. Such

changes are discouraged; experience has shown that the changes necessary for new

releases of the system software become unmanageable. Without these changes, the first

two methods are either not attractive or not robust. Setmnt(1) can create a new

letclmnttab if auxiliary information is available.

Related Work

This work consists of both a result, getmnt, and a methodology. Since the algorithms are

problem-specific, there is little prior work related to the result. Hence, relevant com

parisons must be drawn based on the methodology used for performance analysis.

Profiling has been used5-7 for an analysis of system events. The analysis was

applied to improving system performance. These previous studies focus on operating

system performance. Disk performance8 has been studied using trace-gathered measure

ments of driver activity. but no performance improvements based on these measurements

were reported. Similar techniques9 were used to improve the performance of a com

monly llsed network news management utility by a factor of 19; the focus was divided

between the results and the methods used to achieve them. While the goals of the pro

grams are unrelated, a similar methodology was used in the development of getmnt, that

of profile-based performance analysis to refine a program. Getmnt's performance

increases were achieved in two major jumps rather than in many small steps. The

increases were achieved through algorithmic changes rather than implementation

changes: many of the optimizations 9 had been applied in the construction of getmntl.

The techniques used for getmnt may be useful in other hierarchical file system

searches where mount points are significant, such as finding the machines in a network

file system tree.

GETMNTI

The UNIX system call stat(2) returns, among other data, the device, identified by a

number. that its file name argument resides on. Since the device on which a file is

mounted changes for files beneath a mount point, they are found in a file tree traversal.

On UNIX. device access is done with special flies, which are entries in the file system

name space kept by convention in the directory "/dev". These special files also contain

a device datum in their inode entries, so that we can create a mapping between names

and devices. This mapping is unfortunately not 1-to-1: "swap" typically shares a

number.

Using these facts. getmntl was written. Getmntl builds a table of special fIle

- 4-

names, subject to certain naming constraints, indexed by the device id. It then recur

sively descends the directory tree starting from the root. Whenever the device id of a file

differs from that of its "parent", the mount point name and the associated special file

name are output. The recursive algorithm is:

while(dir not empty)

get next element;

if(dev(dir) != dev(element)

mount_point (dir);

if(is_dir(element)

get_mount_points(element);

The first draft in the development of getmntl was slow, much like a "'find /

- depth" would be. The following optimizations were applied to yield acceptable per

formance:

- Relative path names and cluiir(2) were used to cache namei() results. As pointed out

in a UNIX system performance study5 the namei() procedure used by stat() and

chdir() is very expensive.

- Read(2) calls on directories were buffered in a 512 byte buffer.

- Traversal depth was bounded, e.g., to four directories deep.

Gemmtl was used from late 1983 until the summer of 1987.

I
GETMNT2

Getmntl's static and empirically-determined depth bound was unattractive. Worse, its

approach did not scale well. The amount of disk storage associated with each processor

had increased over time. For example, consider system E, a DEC™ 8650 processor. It

has 38 file systems distributed over 12 RA81 drives, comprising 5.4 gigabytes of disk

storage. Getmntl took tens of minutes of real time to nm on E and similarly configured

systems. Since getmnt is used frequently as an administrative tool this performance was

unacceptable. The analysis began with a profiled version of gemmtl. The stal() system

call consumed about 47 percent of the execution time, with 29626 calls at 0.88 mil

liseconds per call; 14 percent by read() with 19460 calls at 0.41 msec/call; 14 percent by

chdir() with 16108 calls at 0.46 msec/call; and 7 percent by open() with 8054 calls at

- 5 -

0.48 msec/call. The code was optimized to reduce the cost of system calls so that the

problem clearly lay with the number being issued. It was not obvious that this number

could be reduced * . Small changes made to the program resulted in equally small perfor

mance improvements.

- Directories had been read using an old block size of 512 bytes, and the program logic

had used Iseek(2) to skip past the "." and " .. " entries in a directory before reading

began, thus misaligning the blocks read with respect to the blocks on disk. The

buffer size was adjusted to the file system block size, halving the number of read()

calls.

The program read information from /dev and its subdirectories one directory entry at

a time. Buffering was applied, as before. Experimental data showed that the simplis

tic hashing scheme used in device name lookup was effective in generating short,

well-distributed lists.

Get _ mnt yts(). the file tree walking routine, and the source of most string manipula

tion calls, checked whether it had exceeded the depth limit specified. Checking

before the routine was called eliminated many calls. This pre-checking exemplifies a

rule for bushy trees: when you can, examine from the top.

These changes gave improvements of a few percent, not the desired order of magnitude.

The next section describes our first method for achieving major performance improve

ments, "Leaf Pruning".

Leaf Pruning

The system calls in the profile results, e.g., stat() , read(), chdir() and open(). are used as

part of a search process. The number of system calls is reduced if the search is more effi

cient. One way of making a search more efficient is a better criterion for stopping the

search.

Extra infOlmation can give us a better stopping criterion. In the example file tree

structure of Figure 1, mount points are marked with a parenthesized "device number".

Getmntl would traverse the illustrated tree to the depth bound of 4.

The extra infonnation about the organization of the tree is obtained as follows:

- The system mount table structure is read from /devlkmem, a file system name-space

entry for the kernel memory. A flag associated with each device is initially marked

* Stat() system calls issued during a file tree walk are llsed to gather information. e.g., directory status and device number. Chdir() is
used in tree traversal. The open(), readj), and close() system calls are used to gather information from directories.

- 6-

UNREFERENCED.

- The system mount table is examined, and the inode table entry is obtained for each

mounted-on file system. This data forms a table of <file system device #. mounted-on

file system device #> pairs.

Table 1. Device numbers with parents

device parent
number device

0 0
10 0
23 0
12 10
31 10
33 0

- The flags of devices in the right-hand column of the table are marked INTERNAL,

as mounted-on file systems are parents in the tree structure. Devices present in the

left-hand column but not in the right-hand column are marked LEAF. The special

devices are thus partitioned into UNREFERENCED, LEAF, and INTER.NAL. Thus,

a membership test can determine the type of a given file system.

This information can be used to "prune" nodes from the search for mount points; no

mount points can be found beneath a leaf node. For example, referring again to Figure 1,

the search beneath lui, lusr/src, lusrlspoollnews. and 1u2 is unnecessary because they

are leaf nodes. Getmntl would search directories such as 1u2lsmith and /ulljms. The

algorithm for get_mount_points (dir) is:

while (dir not empty

get next element;

if(dev(dir) != dev(element)

mount_point (element);

if(is_dir(element) && !leaf(dev(element))

get_mount_points(element);

- 7 -

Discussion

The extra information is used as a "hint", as an old letclmnttab could be, thus it only

improves performance; in the worst case the performance reverts to that of the old algo

rithm. However, a profile illustrates the performance can improve significantly. Stat()

now consumes about 81 percent of the execution time, with 8100 calls at 0.95 msec/call;

chdir() 4 percent, with 556 calls at 0.69 msec/call; get _ mnt yts(), a local function. about

3 percent, with 6749 calls at 0.04 msec/call; and read() about 3 percent, with 751 calls at

0.36 msec/call.

This technique is particularly effective where many leaf file systems are mounted at

or near the root of the tree structure. The algorithm discovers the leaves almost immedi

ately, and thus dispenses with their subtrees. The effectiveness of the technique is sensi

tive to the shape of the tree, but is remarkably effective in practice. Performance results

were computed by gathering data for 17 systems. All command executions were timed

with timex(1), which provides three statistics: real time, the amount of wall clock time

used during the execution; user time, the amount of time the application program spent

in control of the CPU; and system time, the amount of time the operating system spent in

control of the CPU for the application. Timesharing of the system with other applica

tions and waiting for I/O to complete account for real-(user+system). The data was gath

ered when the systems were in "single-user" mode to remove the effects of timesharing;

the system buffer cache was pre-flushed. The ratio time(getmntl)/time(getmnt2) is used

to measure the improvement; this ratio allows comparison between unlike systems . ..
Statistics' for these ratios are given for each relevant variety of time in Table 2. Column

A VG 1 contains the computed mean of the run times, in seconds, for getmntl.

Table 2. Performance Summary, getmnt2/getmntl

Time mean median max min std_dev AVGl
real 7.1 7.9 13.5 2.7 2.8 276.6
user 8.4 6.5 14.8 3.3 4.1 8.2
sys 3.2 2.3 7.0 1.3 1.8 60.5

GETMNT3

Mmmt points naturally tend to be located near the root of the tree. A depth-first strategy,

even one with leaf-pruning, does not take advantage of this fact. It encouraged a strategy

of exploring the top of the tree first, e.g., breadth-first search.

* Detailed data is availablc.10

- 8 -

Breadth-first search was implemented in early 1988:

List : = "/";

while (not(all mount points found))

get next directory, dir, from List;

while (dir not empty)

get next element for which is_dir(element)

if(dev(dir) != dev(element)

mount_point (element);

if(leaf(dev(element»

continue;

append element to List;

The change in search strategy was made in an attempt to reduce the number of stat()

calls still further. It was successful, as profile results * demonstrate: Stat() now requires

88 percent of the execution time, with 1767 calls at 1.471 msec/call; match(), a local

pattern-matching function, about 3 percent, with 7680 calls at 0.01 msec/call; and ma/

loc() a library function for memory allocation, requires about 2 percent, with 1623 calls

at 0.03 msec/call. This reduction in the number of calls should translate into a perfor

mance improvement. Open(), chdir(), and read() have become relatively minor costs.

While fewer in number, each stat() call has become about 50 percent more costly, due to

the greater effectiveness of the UNIX disk buffer cache in depth-first search. The table

shows that the performance always improves and improves significantly on average. The

magnitude of the improvement is not uniform; the variation is due to differences in tree

shape. A VG2 is the computed mean of the times for getmnt2,' from A VG2 the run times

can be estimated using the ratios.

* ldev was removed from the search, as it is traversed when device names, e.g., Idevldsk/llsO. are being mapped to device numbers.
Idev is also an unlikely place for ftle systems to be mounted. This (hack) removed about 600 stat() calls.

TRUE;

-9-

Table 3. Performance Summary, getmnt3/getmnt2

Time mean median max min std_dev AVG2
real 2.0 1.9 3.0 1.1 0.5 46.3
user 2.8 2.4 5.8 1.3 1.2 1.2
sys 2.4 2.3 4.0 1.3 0.6 29.2

Table 4 relates the performance of getmnt3 to the performance of getmntl.

Table 4. Performance Summary, getmnt3/getmntl

Time mean median max min std_dev
real 13.6 13.5 24.1 3.6 4.9
user 27.0 24.25 65.3 4.7 20.4
sys 7.4 8.3 15.5 2.7 4.2

To illustrate why the performance increases, consider the tree in Figure 1, and imagine

that lusrlspoollnews is not a mount point. A directory font with many subdirectories is

found previous to src in Illsr. Since src remains to be found, lusr is not a leaf and the

font directory must be searched to the depth bound. Such search can be costly.

Breadth-first search postpones such traversals until necessary for correctness.

There were other improvements whose effect was not dramatic:

- Path bunching; in an attempt to reduce the cost of chdir() calls, the number of calls

was traded against a slightly increased complexity for each call. Consider a directory

search, shown in a she I) -like notation:

for i in abc d

do

cd ${i}

work

cd

done

Equivalently:

cd a

#work

for i in b c d

do

cd .. / $ {i}

#work

done

cd ..

-10-

Note that five calls to chdir() do the work of eight. A routine cheap_cdr from_dir.

to _dir) applies several such heuristics to reduce the cost of directory changes.

Directories are read with a single system call. A set of routines emulating the

4.2BSD 11 directory access routines was written. When accessed, the entire directory

is read into a buffer. Subsequent calls for directory entries are satisfied from this

buffer. While space utilization might be a problem in a recursive search, the strategy

employed in getmnt3 completes its examination of a given directory before beginning

another. The space allocated to directory buffers is thus proportional to the single

largest directory examined.

The information gathered about the kernel table of mounted file systems was

expanded to a complete tree structure. This organization has the advantage that

changes in the tree structure can be noted as leaves are detected and removed. Ter

mination of the search is detected by the root node's transition to a leaf, when all its

children, and their children, and so on, have been detected.

However, the major gain was effected by the change in search strategy.

Costs

One potential problem was overuse of memory, but the memory utilization of getmnt3

was roughly comparable, about a factor of 2 greater than getmnt2. The major cost of the

changes is clearly in code complexity. Efficient breadth-first search required more com

plex data structures and procedures for traversing the UNIX file tree. The code complex

ity increased from getmntl to getmnt2 mainly as a result of the examination of kernel

memory. While a single conditional test was added to the main loop of getmntl for

getmnt2, the cost of implementing the conditional was great.

The knowledge of many system details makes the code harder to understand and is

an impediment to portability. The increase in source lines from getmntl, 445, to

getmnt2, 818. including comments, was about 80 percent; getmnt3 showed a 60 percent

- 11 -

increase, from 818 to 1317 lines. As a result of the changes, the code is less portable,

and more effort is required to maintain it for new architectures and UNIX releases.

Copies of previous versions are archived for reference by maintainers.

CONCLUSIONS

The performance increase is particularly satisfying on our development system, E, as the

difference between getmntl and getmnt3 on this machine was a factor of 15, somewhat

greater than the mean. The performance increases have been achieved by reducing the

number of system calls. Under a timesharing workload, each system call causes the

caller to be rescheduled, possibly resulting in a service delay. Thus, the observed

improvements are more dramatic lO when a system is timesharing.

In locating mount points the items of interest are near the top of the file hierarchy,

and information about relative positions was available. We pruned nodes from our

search and used breadth-first search to yield a significant performance improvement.

The main ideas, of using extra information and adapting the search strategy to the prob

lem. are applicable to many instances of file system search, and to algorithms in general.

In addition, the methodology may be useful to others; the results are embodied in

the current getmnt.

ACKNOWLEDGMENTS

Henry Wong, Lorenzo Bonnani and John Ashmead instigated the development of

getmnt2. Questions from John Ashmead and Gerald Maguire prompted getmnt3.

The presentation was improved by constructive criticism and suggestions from

reviewers. Jonathan Gross made the presentation of performance data more meaningful.

Charles Colbert, Vivian Hsu, Dave Slade and Jack Pucci helped to make new measure

ments for a revision. Some development and all testing was done at Bell Communica

tions Research, Inc.

REFERENCES

1. D.M. Ritchie and K.L. Thompson, "The UNIX Operating System," Communica
tions of the ACM 17, pp. 365-375 (July 1974).

2. K.L. Thompson. "UNIX Implementation," The Bell System Technical Journal
57(6, Pan 2), pp. 1931-1946 (July-August 1978).

3. M. J. Bach. The Design of the UNIX Operating System, Prentice-Hall (1986).

4. Elliott I. Organick, The Mu/tics System, Massachusetts Institute of Technology
Press (1972).

- 12 -

5. Samuel J. Leffler, Michael J. Karels, and Marshall Kirk McKusick, "Measuring and
Improving the Performance of 4.2BSD," in Proceedings, Summer 1984 USENIX
Technical Conference, Salt Lake City, Utah (June 12-15, 1984), pp. 237-252.

6. Marshall Kirk McKusick, Samuel J. Leffler, Michael J. Karels, and Luis Felipe
Cabrera, "Measuring and Improving the Performance of Berkeley UNIX," Techni
cal Repon, Computer Systems Research Group, University of California, Berkeley
(November 30, 1985).

7. J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson,
"A Trace-Driven Analysis of the UNIX 4.2 BSD File System," in Proceedings of
the Tenth ACM Symposium on Operating Systems Principles (ACM Operating Sys
tems Review), Orcas Island, W A (December, 1985).

8. Thomas D. Johnson, Jonathan M. Smith, and Eric S. Wilson, "Disk Response Time
Measurements," in Proceedings, Winter 1987 USENIX Technical Conference,
Washington, DC (January, 1987), pp. 147-162.

9. Geoff Collyer and Henry Spencer, "News Need Not Be Slow," in Proceedings,
Winter 1987 USENIX Technical Conference, Washington, DC (January, 198'Z),
pp.181-190.

10. Jonathan M. Smith, "Performance Analysis and Improvement in UNIX·File System
Tree Traversal," Technical Report CUCS-323-88, Columbia University Computer
Science Department (1988).

11. W. Joy, 42BSD System Manual, 1982.

Figure 1. Samp~ File Tree

