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Abstract

Mixtures of distributions are present in many econometric models, such as models with un-
observed heterogeneity. It is thus crucial to have a general approach to identify them non-
parametrically. Yet the literature so far only contains isolated examples, applied to specific
models. We derive the identifying implications of a conditional independence assumption
in finite mixture models. It applies for instance to models with unobserved heterogeneity,
regime switching models, and models with mismeasured discrete regressors. Under this as-
sumption, we derive sharp bounds on the mixture weights and components. For models with
two mixture components, we show that if in addition the components behave differently in
the tails of their distributions, then components and weights are fully nonparametrically
identified. We apply our findings to the nonparametric identification and estimation of out-
come distributions with a misclassified binary regressor. This provides a simple estimator
that does not require instrumental variables, auxiliary data, symmetric error distributions
or other shape restrictions.



Introduction

Many models used in econometrics can be interpreted as mixtures of distributions. Mod-
els with unobserved heterogeneity are an obvious example (see, for example, Heckman
and Singer (1984) and Cameron and Heckman (1998) for applications in labor economics).
Many dynamic structural models use mixtures to incorporate unobserved heterogeneity (e.g.
Keane and Wolpin (1997)). Further examples of models with unobserved heterogeneity are
given in Section 2.

As is well known, regime switching models also are mixture models. Take the Hamilton
(1989) model: we have

yt = a(st) + εt

where the mean term a(·) depends on the state st, the innovation εt is independent from
the past values y1, ..., yt−1 of y and st is a hidden Markov chain taking values 0 or 1. The
density of yt conditional on its history is, letting f denote the density of ε, given by

f(yt − a(st))

if we knew the realization of the Markov chain (s1, . . . , sT ). As we do not, we need to
integrate over its possible values. The conditional density of yt given its past values becomes

∑

s=0,1

f(yt − a(st)) Pr(st = s|y1, . . . , yt−1)

which is recognizable as a mixture. Similarly, stochastic volatility models (e.g. Kim and
Nelson (1998))

yt = exp(vt/2)εt

with unobserved volatility
vt = a + bvt−1 + σut

belong to the family of hidden Markov chains, which are all mixture models.

Measurement error models with discrete regressors are finite mixture models (see the sur-
veys by Carroll, Ruppert, Stefanski, and Crainiceanu (2006) and Chen, Hong, and Nekipelov
(2009)) as are models with data contamination (Horowitz and Manski (1995)).

As shown by these examples, a large number of models commonly used in econometrics
are conditional mixture models: they explain the distribution, or some moments, of a
random variable y through a mixture of statistical models that are conditional on another
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random variable z1. A conditional mixture model is written as

FY |Z(y|z) =
∫

FY |Z,S(y|z, s)FS|Z(ds|z),

where the F notation denotes a cdf. We call s the mixture index, FS|Z(ds|z) the mixture
weights, and each FY |Z,S(.|.; s) a mixture component..

Our main focus in this paper will be on the identification of FY |S,Z and FS|Z when FY |Z
is directly identified from the data. If the object of interest is not a cdf F but a linear
functional TF of it, all of our results would apply without any change—the case in which
TF is EF G for a given function G of the random variables of course is a case in point.

Without further assumptions there is of course no way to identify the mixture weights
and components: e.g. choosing a mixture index t and putting all the weight on component
t with FY |Z,S(y|z; t) ≡ FY |Z(y|z) rationalizes the data.

The case when the distribution of the mixture index has finite support has generated
a voluminous literature in statistics. The main focus of the literature (see e.g. Teicher
(1963), Farewell (1982) Lindsay and Roeder (1993)) has been on parametric identification
and on two difficult problems: numerical instabilities in estimation, and testing for the
number of mixture components. Some recent work has started to come to terms with
nonparametric identification of mixture models, continuous or finite. This literature uses
several approaches, depending on the specific problem it attempts to solve.

• In a regression model with mismeasured binary regressor model with conditional inde-
pendence, Mahajan (2006) and Lewbel (2007) have proposed an instrumental variable
approach; Chen, Hu, and Lewbel (2008b) and Chen, Hu, and Lewbel (2009) rely on
moment restrictions on the error term.

• Hu (2008) uses a similar strategy in discrete regressor models in the presence of
nonlinear measurement error, while Chen, Hu, and Lewbel (2008a) again impose
moment restrictions on the error term.

• Hall and Zhou (2003) and Kitamura (2003) study nonparametric identification of finite
mixtures without relying on exclusion restrictions. An interesting related paper on
this subject is Kasahara and Shimotsu (2008), which, as in Kitamura (2003), uses
identification power of covariates, and then applies the technique developed by Hall
and Zhou (2003). Their result is useful in analyzing conditional choice probability

1The term “random variable” here should not be taken to imply that we focus on scalar-valued variables:

y and z can take values in a vector space, for instance.
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(CCP) type estimation procedures, such as Hotz and Miller (1993), which have gained
renewed attention in the recent literature on dynamic structural estimation. In a
related application, Hu and Shum (2008) consider identification of a Markov chain
with some unobserved components.

Our first contribution is to set up a general identification strategy in finite mixture mod-
els; we show how a single exclusion restriction that underlies most previous work generates
partial identification without further assumptions. This exclusion restriction consists in
assuming that each component of the mixture FY |Z,S(y|z; s) only depends on some compo-
nents of the conditioning random variable z.

To be more precise, we assume that z = (x′, w′)′ and that for all s and z,

FY |Z,S(.|z; s) ≡ FY |X,S(.|x; s)

is independent of w conditional on x and s. This exclusion restriction needs to be sup-
plemented with only one more assumption: that the mixture weights do depend on w

conditional on x. We state these two assumptions as Assumptions 1 and 2 in section 1.

The surprising fact, proved in section 1, is that in finite mixture models we do not
actually need much more: these two assumptions identify the mixture weights and the
mixture components nonparametrically, up to a linear transformation whose coefficients
can only be functions of x. Moreover, these coefficients must satisfy a simple set of linear
inequalities; these describe a partially identified region for the parameters of interest. For
notational simplicity, we then focus on the case when only two components coexist (s can
only take two values.) We first discuss our exclusion restriction in section 2; we show that
it holds by construction in a number of the models that have been used in the literature.
We give a detailed study of the partially identified region in section 3, and we show that
some quantities of interest are actually point identified from our two assumptions.

An interesting feature of our approach is that Assumption 1 has testable consequences:
it implies a multiplicative separability property that can be checked on the estimates, in
the manner of an overidentification test (even though the model itself is only partially
identified.)

It is actually possible in many applications to go from partial identification to full
nonparametric identification of the components and weights. To do this, we rely on a
argument that is a rather natural version of “identification at infinity”. Suppose individuals
in a population are indexed by an unobserved binary characteristic, say “high” and “low”.
If the high value of the index tends to correspond to relatively good outcomes, then upon
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observing a very good outcome the analyst would normally find it quite likely that the
individual belongs to the population with the high index value. We formalize and extend
this intuition as Assumption 3 in section 4 and we show that if two such restrictions hold
(say the one above and a polar one for very bad outcomes), then in the binary mixture
model components and weights are nonparametrically point identified.

This suggests a fairly simple fully nonparametric estimation procedure; we examine
its properties in the misclassified binary regressor model in section 5, and we appeal to
results on the tail empirical process to prove that it yields a consistent and asymptotically
normal estimator. The identification strategy has important similarities with traditional
identification at infinity, as in Chamberlain (1986) and Heckman (1990). The identification
relies on the fact that the propensity score tends to one in the right tail and to zero in the
left tail of the distribution of outcomes. However, it relies on the distributions of outcomes
themselves and not on the distribution of covariates, and thus is more straightforward and
easier to rationalize. While our estimator is asymptotically normal, it converges more slowly
than the parametric rate.

The paper is organized as follows. Section 1 presents general partial identification re-
sults for an arbitrary finite mixture of distributions. Section 2 develops three major classes
of econometric applications of our framework in the case of mixtures of two component
distributions. Section 3 develops sharp bounds on the mixture weights and component
distributions, with special emphasis on the case of mismeasured binary regressors and pos-
sibly missing observations. Section 4 gives the identification results based on relative tail
behaviour of the component distributions, and section 5 applies the identification rationale
to the construction of a very simple and asymptotically normal estimator of causal effect
distributions. The last section concludes.

1 Partial Identification of Finite Mixtures

Let y and z be two random variables; we assume that the conditional model is a mixture
of J > 1 otherwise unrestricted components:

F (y|z) =
J−1∑

j=0

λj(z)Fj(y|z).

The mixture weights λj(z) are non-negative and sum to 1; we allow for the possibility that
some of them are actually zero, so that the model has fewer than J components for some
or all values of z. The assumptions and results are stated for the case where all weights are
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positive, as this simplifies the statements.

As explained in the introduction, our main assumption is an exclusion restriction: the
conditioning variables z = (x′, w′)′ are such that

Assumption 1 The variable w is excluded from the component distributions’ conditioning
set, i.e.

Fj(y|z) = Fj(y|x),

for all j = 0, . . . , J − 1 and all possible values of (y, z).

We put off the discussion of Assumption 1 to section 2; for now, we focus on proving
that it is sufficient to ensure that the J components of the mixture and their (J−1) weights
are identified up to J(J − 1) functions of x.

Take the first mixture component as reference point and define the new unknown quan-
tities

∆(y|x) = (F1(y|x)− F0(y|x), . . . , FJ−1(y|x)− F0(y|x))′

and λ(z) = (λ1(z), . . . , λJ−1(z)).

Then we can write
F (y|z) = F0(y|x) + ∆(y|x)′λ(w, x);

and if w and w′ are two values of the excluded variable,

F (y|w, x)− F (y|w′, x) = ∆(y|x)′(λ(w, x)− λ(w′, x)). (M)

This equation is the basis for our identification strategy. One very strong implication is
worth noting: for given x, the function of three variables

(y, w, w′) −→ F (y|w, x)− F (y|w′, x)

is a scalar product of two (J − 1)-dimensional vectors; the first one is only a function of
y, and the other one is an additively separable, antisymmetric function of w and w′ only.
This points towards overidentification tests, as mentioned before.

The case J = 2 is of special interest to us, and it makes the testable implications of the
exclusion restriction even more transparent: now conditional on x,

F (y|w, x)− F (y|w′, x) = (λ(w, x)− λ(w′, x))(F1(y|x)− F0(y|x))

is the product of a scalar function of y and an additively separable, antisymmetric function
of w and w′ only.

Going back to the general finite case, we define a first “regular” set of values of x:
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Definition 1 Let X̃ be the set of x such that for some (w0, . . . , wJ−1) in the support of w

given x and some (y1, . . . , yJ−1) in the support of y given x, the (J − 1) × (J − 1) matrix
∆ with (i, j)-th element Fj(yi) − F0(yi) and the (J − 1) × (J − 1) matrix Λ with (i, j)-th
element λi(wj)− λi(w0) are invertible.

Note that the set X̃ may well be empty. This could only happen in uninteresting cases if
J = 2, but for larger J it may be for instance that w only takes fewer than J distinct values
for all x. Then a fortiori the linear independence property in Definition 1 would fail. Our
second assumption rules out such cases, in which the excluded variable w does not generate
enough variation in the y variable:

Assumption 2 The set X̃ is non-empty.

Under Assumptions 1 and 2, our model has at least J(J − 1) dimensions of indetermi-
nacy. To see this, let v(x) be any (J − 1)-dimensional vector function of x and M(x) be
any function of x whose values are invertible (J − 1)-dimensional matrices. Start from the
true DGP (λ,∆, F0) and define

µ(w, x) = M(x)(λ(w, x) + v(x))

δ(y|x) = (M(x)−1)′∆(y|x)

G0(y|x) = F0(y|x)−∆(y|x)′v(x).

It is easy to check that the new vector of functions (µ, δ,G0) also generates the observed cdf
F (y|z). The only caveat is that mixture components must remain cdfs and mixture weights
must remain probabilities, which imposes linear inequalities on admissible transformations
(v(x),M(x)). We call a pair (v, M) that satisfies these constraints an admissible (v, M)
transform. Note that it has (J − 1) + (J − 1)2 = J(J − 1) degrees of freedom, subject to
linear inequalities.

If J = 2, things are much simpler: an admissible (v,M) transform is simply given by
a pair of numbers (v(x),M(x)) such that M(x) 6= 0 and some other linear inequalities
hold—these are presented in much more detail in section 3.

Our main result shows that admissible (v, M) transforms in fact exactly define partial
nonparametric identification:

Theorem 1 If assumptions 1 and 2 hold, then for each x ∈ X̃ , the mixture components
F0, . . . , FJ−1 and the mixture weights λ are nonparametrically identified up to an admissible
(v, M) transform.
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Proof Take an x ∈ X̃ and fix any of the J values (w0, . . . , wJ−1) of w and (J − 1) values
(y1, . . . , yJ−1) of y that make x an element of X̃ . Drop x from the notation from now on.

Suppose that F and G are observationally equivalent and both satisfy assumptions 1
and 2. Hence we have the following for all y and w.

F (y|w) = F0(y) + ∆(y)tλ(w),

G(y|w) = G0(y) + δ(y)tµ(w),

from which we deduce

F (y|w)− F (y|w0) = ∆(y)t[λ(w)− λ(w0)],

G(y|w)−G(y|w0) = δ(y)t[µ(w)− µ(w0)].

Hence

∆(y)t[λ(w)− λ(w0)] = δ(y)t[µ(w)− µ(w0)], (1.1)

and
∆[λ(w)− λ(w0)] = δ[µ(w)− µ(w0)],

with both ∆ and δ invertible. We therefore have

µ(w) = M [λ(w) + v],

with M = δ−1∆ and v = ∆−1δµ(w0)− λ(wJ), so that equation (1.1) becomes

∆(y)[λ(w)− λ(w0)] = δ(y)M [λ(w)− λ(w0)]

which is true for w = wj , all j = 1, . . . , J − 1. But since the matrix Λ is invertible, we can
conclude that δ(y) = M−1∆(y).

Finally, since F and G are observationally equivalent, we have

F0(y) + ∆(y)tλ(w) = G0(y) + δ(y)tµ(w),

hence

G0(y) = F0(y) + ∆(y)tλ(w)−∆(y)tM−1M [λ(w) + v]

= F0(y)−∆(y)tv,

hence the result. ¥
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Assumption 2 bears on the true model, and thus cannot be tested directly. We now
define a second set of “regular” values of x that only involves observable quantities.

Definition 2 Let X be the set of x such that for some (w0, . . . , wJ−1) in the support of w

given x and some (y1, . . . , yJ−1) in the support of y given x, the (J − 1) × J matrix with
(i, j)-th element (F (yi|wj−1, x) has full rank.

Again, this is easier to understand when J = 2. Then x ∈ X iff there exist w1 and
w2 that are in the support of w|x and such that F (.|w1, x) and F (.|w2, x) do not coincide.
Equivalently, we require that for some value of y, the function w −→ F (y|w, x) takes at
least two different values.

Definition 2 is just a generalization to J > 2. Take J = 3 for instance; then it is easy to
see that x ∈ X requires the existence of (w0, w1, w2) and (y1, y2) that satisfy:

1. F (y1|w2, x) 6= F (y1|w0, x)

2. F (y2|w2, x) 6= F (y2|w1, x)

3. and finally,

F (y1|w1, x)− F (y1|w2, x)
F (y1|w0, x)− F (y1|w2, x)

6= F (y2|w1, x)− F (y2|w2, x)
F (y2|w0, x)− F (y2|w2, x)

.

Item 1 (resp. 2) simply requires that there exist a value y1 (resp. y2) where F (.|w0, x) (resp.
F (.|w1, x)) and F (.|w2, x) differ. Item 3 is slightly more complex, but in essence it requires
that when w moves from w2 to w0 or to w1, the ratios of the changes in the cdf of y are
different in y1 and y2. It is hard to find non-degenerate examples in which item 3 would
not apply2

Note that definition 2 involves properties of the observed mixture. It will allow us to
state necessary conditions for identification that involve only “observables” (i.e. F (y|z)
which is directly identified from the data.) This follows from the following Lemma:

Lemma 1 If assumptions 1 and 2 hold, then X̃ ⊆ X .

Proof Take an x ∈ X̃ and fix any of the J values (w1, . . . , wJ) of w and J − 1 values
(y1, . . . , yJ−1) of y that make x an element of X . From now on, we drop x from the
notation.

2Uniform distributions of y on a fixed-length interval whose location depends on w seem to be pretty

much the only possibility.
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By assumption 2, the (J −1)× (J −1) matrix A with (i, j)-th element Aij = F (yi|wj)−
F (yi|wJ) is invertible. If it were otherwise, then we would have

J−1∑

j=1

Aijuj = 0

for all i and some nonzero vector (u1, . . . , uJ−1); but this gives

J−1∑

j=1

F (yi|wj)uj = F (yi|wJ)
J−1∑

j=1

uj

which contradicts x ∈ X̃ .

By assumption 1, the matrix A is the product ∆× Λ, where ∆ is the (J − 1)× (J − 1)
matrix with (i, j)-th element Fj(yi) − FJ(yi) and Λ is the (J − 1) × (J − 1) matrix with
(i, j)-th element λi(wj)− λi(wJ). Hence ∆ is invertible, and so is Λ. Hence x is in X . ¥

Theorem 1 and Lemma 1 immediately imply that

Corollary 1 If assumptions 1 and 2 hold, then for each x ∈ X the mixture components
F0, . . . , FJ−1 and the mixture weights λ are nonparametrically identified up to an admissible
(v, M) transform.

This series of results calls for a couple of remarks. First, the intuition for this order
of indeterminacy is fairly simple. Fix one particular value of x. Under assumption 1, the
distribution of y given w is a sum of products of J functions of y with weights that only
depend on w. Clearly, one can apply a transformation matrix to any particular solution in
a J-dimensional space. Any such matrix has J2 elements; but it must also keep the total
mass of the weights equal to one, which introduces J restrictions.

Second, the definition of X only refers to observable quantities: the conditional cdfs
F (y|z). Thus in principle it is possible to determine whether a given x actually belongs
to X , or at least to get a forewarning of difficulties if the linear independence condition in
Definition 2 fails.

Finally and as already mentioned, assumption 1 generates overidentifying restrictions.
Thus even though the model is only partially identified under assumptions 1 and 2, it is
still possible to test and reject either of these assumptions.
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2 Mixtures with Two Components

From now on we focus on mixtures of two components, i.e. J = 2. We do this for sev-
eral reasons: first, several of the main applications that we mentioned in the introduction
explicitly assume two components. Second, it simplifies our notation, thereby easing our
exposition of identification results. Third, the order of indeterminacy J(J − 1) = 2 is quite
manageable with only two components; but with more components any attempt to impose
further restrictions must be much more model-specific, so that there is less scope for a
general discussion.

With two mixture components, Assumption 1 becomes

F (y|z) = λ(z)F1(y|x) + (1− λ(z))F0(y|x)

= λ(z)∆(y|x) + F0(y|x),

where ∆(y|x) = F1(y|x)− F0(y|x).

As explained in section 1, with two components X is simply the set of values x such
that the function w −→ F (.|w, x) takes at least two values (in the space of cdfs.) Take such
a value x ∈ X ; then it follows from corollary 1 that in x, the model is identified up to two
numbers.

We now review three classes of applications and we show that assumption 1 holds in
each case. In later sections, we shall illustrate our partial and point identification results in
each of these models.

2.1 Models with misclassified binary regressor

Consider a regression model with misclassified binary regressor, where y is the regression
outcome. The true regressor T ∗ = 0, 1 is unobserved by the econometrician, who only ob-
serves reported status T = 0, 1. In addition, even this may be missing for some individuals;
we then write T = ∅.

We drop other observable covariates from the notation, but they could be incorporated
with trivial changes. We have the following identity:

F (y|T ) =
∑

s=0,1

F (y|T ∗ = s, T ) Pr(T ∗ = s|T ).

In this application z = T . The variable w that we exclude in assumption 1 can only be T ,
so that

F (y|T ∗, T ) ≡ F (y|T ∗).
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Thus we require that the cdf of outcomes for any group with actual regressor value T ∗

does not depend on the reported value. This assumption is imposed in recent work on
identification with misclassified binary regressors, including Mahajan (2006), Hu (2008),
Lewbel (2007) and Chen, Hu, and Lewbel (2009), as surveyed in Chen, Hong, and Nekipelov
(2009). It should hold if errors in regressor values are due to clerical mistakes; on the other
hand, we would expect it to fail if individuals can manipulate reports and causal effects
vary across observationally identical individuals.

Given this exclusion restriction, the model becomes

F (y|T ) =
∑

s=0,1

F (y|T ∗ = s) Pr(T ∗ = s|T ),

where the components to be identified are the cdf F (y|T ∗ = 1) of outcomes when T ∗ = 1,
the cdf F (y|T ∗ = 0) of outcomes when T ∗ = 0, and the probabilities of T ∗ = 1 given
information Pr(T ∗ = 1|T ) for T = 0, 1,∅. Assumption 2 requires that Pr(T ∗ = s|T )
depend on T . This holds automatically if report (or missing report, as we will see later) is
informative on the actual value, as one would expect.

The identification strategy in Mahajan (2006), Hu (2006) and Lewbel (2007) relies on an
additional instrument, whereas Chen, Hu, and Lewbel (2009) rely on a moment condition on
the measurement error3. In both cases, only results on expectations are provided, whereas
we give here results on the distributions of outcomes. We provide partial identification
results, and we we show that missing data can be informative: in many cases it helps shrink
the size of the identified regions. Moreover, we prove nonparametric point identification with
a strategy of identification at infinity. Our main results are concerned with the identification
of F (y|T ∗ = s), s = 0, 1 and Pr(T ∗ = s|T = s′), s, s′ = 0, 1. If we further let y = T ∗y1 +
(1 − T ∗)y0 and impose the standard unconfoundedness assumption, that is, (y0, y1) ⊥⊥ T ∗

(possibly conditional on covariates), then it is immediate that the average treatment effect
E[y1]−E[y0] is identified in the presence of misclassification in treatments.

2.2 Regime switching

Consider the Markov switching model discussed in the introduction, where yt, t = 1, . . . , T

is independently and identically distributed conditionally on a state variable St ∈ {0, 1}
that follows a Markov chain with transition probabilities

Pr(St = 1|St−1 = 1) = P11

Pr(St = 0|St−1 = 0) = P00.

3Their condition holds in particular if measurement error is symmetric.
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In such a model, Assumption 1 is automatically satisfied with y = yt and w = yt−1. Indeed,
we have

F (yt|yt−1 = w) = λ(w)F (yt|St = 1) + (1− λ(w))F (yt|St = 0).

We can also get a simple closed form formula for the mixture weight λ(w) if the mixture
components are known; this can be very useful in applications.

Lemma 2

λ(w) := P (St = 1|yt−1 = w) = 1− P00 +
P11 + P00 − 1

1 +
1− P11

1− P00

f0(w)
f1(w)

where f0 (resp. f1) is the pdf of yt conditional on St = 0 (resp. St = 1.)

Proof of Lemma 2:

P (St = 1 and yt−1 ≤ w)

= P (St = 1 and yt−1 ≤ w|St−1 = 1)P (St−1 = 1)

+P (St = 1 and yt−1 ≤ w|St−1 = 0)P (St−1 = 0)

= P (St = 1|St−1 = 1)P (St−1 = 1)P (yt−1 ≤ w|St−1 = 1)

+P (St = 1|St−1 = 0)P (St−1 = 0)P (yt−1 ≤ w|St−1 = 0)

= P11P (St−1 = 1)F1(w) + (1− P00)P (St−1 = 0)F0(w).

(The second equality above uses the exclusion restriction: conditionally on St−1, yt−1

and St are independent.)

Moreover,

P (yt−1 ≤ w) = P (yt−1 ≤ w|St−1 = 1)P (St−1 = 1) + P (yt−1 ≤ w|St−1 = 0)P (St−1 = 0)

= P (St−1 = 1)F1(w) + P (St−1 = 0)F0(w).

In addition, the steady state probabilities of the Markov chain are

P (St−1 = 1) =
1− P00

1− P11 + 1− P00

P (St−1 = 0) =
1− P11

1− P11 + 1− P00
;

take the derivatives in w and divide to get:
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P (St−1|yt−1 = w) =
P11(1− P00)f1(w) + (1− P00)(1− P11)f0(w)

(1− P00)f1(w) + (1− P11)f0(w)
,

and the result follows.

Special cases include mean switching, with yt i.i.d. conditionally on S and µSt = Stµ1 +
(1 − St)µ2, and stochastic volatility, with yt i.i.d. conditionally on V ar(yt) = σ2

St
, and

σ2
St

= Stσ
2
1 + (1− St)σ2

2.

This example can easily be extended: as long as the distribution of yt conditional on
St, yt−1, . . . , y1 has finite memory in y, so that there exists an m with

F (yt|St, yt−1, . . . , y1) ≡ F (yt|St, yt−1, . . . , yt−m),

then the variable zt = (yt−1, . . . , y1) can be split into xt = (yt−1, . . . , yt−m) and wt =
(yt−m−1, . . . , y1). Thus Assumption 1 holds in any model in which the observed trajectory
is a finite-order autoregressive conditionally on the hidden Markov chain. This is the case
in most of the models in the literature.

2.3 Unobserved heterogeneity

Consider agents of unobserved type s = 0 or s = 1, and the following, fairly typical model
with unobserved heterogeneity:

y = f(s, z, u).

Then Assumption 1 is implied by the following two restrictions:

1. for all (s, z, u),
f(s, z, u) = f(s, x, u);

or equivalently,
y ⊥⊥ w | (s, x, u).

2. the distribution of u is conditionally independent of w:

u ⊥⊥ w | (x, s),

Assumption 2 then requires that w give some information on s, conditional on x. Many
models used in the literature satisfy these assumptions. A random effects multinomial
choice model (such as a mixed logit model) of consumer demand for instance would be

y = arg max
k=1,...,m

(vk(z, s) + uk),
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with the u’s are iid draws conditionally on z and s, so that item 2 above trivially holds.
Item 1 holds if the mean utilities uk do not depend on w, and Assumption 2 requires that
the distribution of s conditional on z depend on w.

Thus what is crucial here, not surprisingly, is that there exist regressors w that do not
enter mean utilities or random utility terms but that (loosely speaking) are correlated with
the unobserved type s, as in (but not limited to) an auxiliary statistical model

s = 1 iff η > P (z),

with η independent of w given x, and P (z) depending on w.

In the consumer demand model for instance, this would hold if preferences can be well-
approximated by a mixture of two types, whose proportion in each submarket (say) depends
on geographical variables w, which do not enter their utility. Or, it applies if policies vary
across subpopulations, but the policy variable does not appear in the utility function. In a
labor supply model, the distribution of labor disutilities could vary across several groups w

of observations. Note again that while such assumptions may be more or less convincing in
a given application, they are testable.

Dynamic programming models often include “types”: agents who are unobservably
different, and whose differences are persistent over time. In a labor supply model for
instance, the unobserved disutility of labor of a given agent can be approximated by breaking
it into a time-invariant component (the type) and an iid component (or shock.) Then, just
as in the regime switching model, past observed labor supplies give information on the type,
while they are excluded from the distribution of labor supply given type.

We now turn to a less obvious example, inspired by the empirical industrial organization
literature. Consider an oligopoly with N firms. Each firm i operates with constant marginal
cost of production ci and faces demand Di(pi, p−i, s), where the demand parameter s can
take on two values s > s.

The timing of the game and the information structure are the following:

• Costs ci are realized and observed by all firms.

• The firms simultaneously choose pi to maximize their expected profits.

• Then s is realized.

14



• The econometrician later observes costs, prices, market shares, and profits of all firms:




c̃i = ci + εci

p̃i = pi + εpi

D̃i = Di(pi, p−i, s) + εDi

π̃i = (pi − ci)Di(pi, p−i, s) + επi.

Let D̃, p̃, c̃, π̃ be the vectors of observed market shares, prices, costs, profits. Then, we
have:

F (D̃|p̃, π̃, c̃) = F (D̃|π̃, p̃, c̃, s = s) Pr(s = s|π̃, p̃, c̃) + F (D̃|π̃, p̃, c̃, s = s) Pr(s = s|π̃, p̃, c̃).

Assumption 1 is satisfied under the following conditions:

1. Prices are observed by the econometrician without measurement error: εpi ≡ 0.

2. The measurement error on market shares εDi and on costs εci are independent of the
measurement error on profits επi, conditional on c̃i and s.

When these conditions hold, we have the desired structure:

F (D̃|p̃, π̃, c̃) = F (D̃|p̃, c̃, s = s) Pr(s = s|π̃, p̃, c̃) + F (D̃|p̃, c̃, s = s) Pr(s = s|π̃, p̃, c̃),

where in the notation of the general structure above, the outcome y is observed demand D̃,
the instrument w is observed profits π̃, and x consists of the vector (p̃, c̃) of observed prices
and costs.

Note that condition 2 above can be realistically assumed if the information on profits
comes from a later source, as in the case of Hendricks, Pinkse, and Porter (2003) where
ex-post information is obtained on the value of oil tracts in wildcat lease contracts. Part 1
also is crucial: if prices were observed with error, then observing π̃ would give information
on D̃, even after conditioning on observed prices and costs.

3 Partial Identification Results

We first exhaust the identifying power of assumption 1 before considering full nonparametric
identification results in section 4. We present here partial identification results for the
mixture weights and the mixture components, when only assumptions 1 and 2 hold.
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3.1 Identifying the Weights

Now take any x in the set X of Definition 2. By construction, for such an x there exist two
values of w which imply different cdfs of y conditional on x. Take any two such values and
denote them w0(x) and w1(x). Clearly,

λ(w0(x), x) 6= λ(w1(x), x)

since otherwise the cdf of y conditional on (wk(x), x) would not depend on k = 0, 1 and x

could not be in X .

Under assumption 1, we can write for any y and any z = (w, x):

F (y|z)− F (y|w0(x), x)
F (y|w1(x), x)− F (y|w0(x), x)

=
λ(z)− λ(w0(x), x)

λ(w1(x), x)− λ(w0(x), x)
. (3.1)

Hence, denoting

Λ(z) :=
F (y|z)− F (y|w0(x), x)

F (y|w1(x), x)− F (y|w0(x), x)
,

any weight λ that rationalizes the data can only differ from Λ by an unknown pair (φ(x), ψ(x)),
which we called a (v, M) transform in section 1:

λ(z) = φ(x) + ψ(x)Λ(z).

Note that φ(x) and ψ(x) are related to the values of λ in (wk(x), x) according to the
following very simple formulae: it follows from the definition of Λ that

φ(x) = λ(w0(x), x) and ψ(x) = λ(w1(x), x)− λ(w0(x), x).

Thus φ(x) ≥ 0, but ψ(x) may be negative. For the pair (φ, ψ), hence the (v, M) transform
to be admissible, the corresponding λ needs to be a valid probability. It is easy to obtain
identification regions for the functions φ and ψ. Denote Λ(x) = supw Λ(w, x) and Λ(x) =
infw Λ(w, x). Then the following constraints for φ and ψ result from 0 ≤ λ(z) ≤ 1:

0 ≤ φ(x) + ψ(x)Λ(x) ≤ 1

0 ≤ φ(x) + ψ(x)Λ(x) ≤ 1.

Equivalently,

−ψ(x)Λ(x) ≤ φ(x) ≤ 1− ψ(x)Λ(x)

−ψ(x)Λ(x) ≤ φ(x) ≤ 1− ψ(x)Λ(x).
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and finally

−min(ψ(x)Λ(x), ψ(x)Λ(x)) ≤ φ(x) ≤ 1−max(ψ(x)Λ(x), ψ(x)Λ(x)). (3.2)

The inequalities in (3.2) completely define all admissible (v, M) transforms, and there-
fore they also define the partially identified regions for λ. Note that they immediately
imply

max(ψ(x)Λ(x), ψ(x)Λ(x))−min(ψ(x)Λ(x), ψ(x)Λ(x)) ≤ 1

and therefore

|ψ(x)| ≤ 1
Λ(x)− Λ(x)

.

This last inequality on ψ(x) shows the impact of the variation of the cdf of y given z

that is explained by w. If w strongly shifts the distribution of y given x , then it is clear
from the definition of Λ that the bounds Λ(x) and Λ(x) will be further apart; then ψ(x) will
be constrained to a smaller interval, so that the variations of λ in w will be pinned down
more closely.

Figure 1 represents the constraints on the pair (ψ(x), φ(x)), suppressing the dependence
in x for simplicity. It illustrates the point just made: a larger support for w will lead to an
increase in Λ− Λ, and hence to a smaller identification region.

3.2 Identifying the Components

Once we settle on values for φ and ψ that satisfy (3.2) and thus on a λ that rationalizes the
data, the mixture components obtain immediately. For all x ∈ X ,

∆(y|x) = F1(y|x)− F0(y|x) =
F (y|w1(x), x)− F (y|w0(x), x)

λ(w1(x), x)− λ(w0(x), x)
.

This also shows that ∆(y|x) is identified up to a multiplicative function of x. In fact,
denoting ∆̃(y|x) = F (y|w1(x), x)− F (y|w0(x), x), we have

∆(y|x) =
∆̃(y|x)
ψ(x)

,
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Λ−Λ
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φ
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1− Λψ

−Λψ

1− Λψ−Λψ
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Λ−Λ

Figure 1: The shaded area is the identified region for the pair (ψ, φ) in a case where Λ < 0 and Λ > 1. In the

binary regressor illustration with missing data, we shall see a case where Λ < 0 and Λ = 1. The only remaining case

possible is Λ = 0 and Λ = 1, when the region is uninformative.

with the function ψ defined above.

The partial identification region for the mixture components can now be described as
follows. By construction, we have

F0(y|x) = F (y|w0(x), x)− λ(w0(x), x)∆(y|x),

F1(y|x) = ∆(y|x) + F0(y|x)

= F (y|w0(x), x) + [1− λ(w0(x), x)]∆(y|x).

By definition, φ(x) = λ(w0(x), x) and ψ(x) = λ(w1(x), x)−λ0(w0(x), x). Hence the mixture
components can be written

F0(y|x) = F (y|w0(x), x)− φ(x)
ψ(x)

[F (y|w1(x), x)− F (y|w0(x), x)],

F1(y|x) = F (y|w0(x), x) +
1− φ(x)

ψ(x)
[F (y|w1(x), x)− F (y|w0(x), x)].

and the identified region for the pair (−φ(x)/ψ(x), (1 − φ(x))/ψ(x)) is given in figure 2,
where, as before, the dependence on x has been suppressed for simplicity.

A consequence of the identification of ∆ up to scale is that some quantities of interest
are in fact point identified without further assumption. For instance, take any function g

of y such that EF1g−EF0g 6= 0. Then for any other function f of y, it is straightforward to
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Figure 2: The shaded orthant is the identified region for the pair (−φ/ψ, (1 − φ)/ψ) which parameterize the two

component distributions F1 and F0.
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see that

r(x) :=
EF1f − EF0f

EF1g − EF0g
(3.3)

=
∫

f(y)dF (dy|w1(x), x)− ∫
f(y)dF (dy|w0(x), x)∫

g(y)dF (dy|w1(x), x)− ∫
g(y)dF (dy|w0(x), x)

One possible interpretation of this result is in term of “relative average effects of the true
regressor”: under Assumptions 1 and 2, we can compare the scale of the effects of the true
regressor on various outcomes.

3.3 Illustration: Mismeasured Binary Regressor

The construction of φ and ψ requires that x ∈ X , which implies the existence of two suitable
values w0(x) and w1(x) for the instrument w. But if w can only take these two values, (3.2)
in fact does not restrict λ in any way: Λ only takes the values 0 and 1, so that (3.2) boils
down to

−min(0, ψ(x)) ≤ φ(x) ≤ 1−max(0, ψ(x)),

which defines a triangle in (ψ, φ) space with corners (−1, 1), (0, 1), and (1, 0). Easy calcu-
lations show that this maps into the [0, 1]× [0, 1] square in (λ(w0(x), x), λ(w1(x), x)) space,
so that the mixture weights could be anything. In this case partial identification does not
achieve much: we need more values for w. Note, however, that (3.3) still holds and so it is
possible to make some statements about ratios of differences.

This can be illustrated in the regression model with binary regressor. First consider
the case where all individuals are classified, with possible misclassification error, so that
reported status T only takes values T = 0 and T = 1. Then (dropping x ∈ X from the
notation)

Λ(T ) =
F (y|T )− F (y|T = 0)

F (y|T = 1)− F (y|T = 0)

(which, again, does not depend on y given Assumption 1) can only take the values zero
or one. As explained above, this is entirely uninformative about the mixture probabilities
λ(T ) = Pr(T ∗ = 1|T ). The data does not tell us anything about the mismeasurement
process. Nor can we deduce much about the components F1 and F0; we cannot go beyond
quantities like the ratio (3.3) above.

Now consider the case where some classification information is missing, so that reported
T can take three distinct values: T = 1, T = 0 and T = ∅ if the individual is not classified.

20



Then we can define (for instance)

Λ(T ) =
F (y|T )− F (y|T = ∅)

F (y|T = 1)− F (y|T = ∅)

which can take three distinct values: Λ(1) = 1, Λ(∅) = 0 and Λ(0).

Suppose Λ(0) < 0, so that the maximum and minimum values in our partial identifica-
tion analysis are now Λ = Λ(1) = 1 and Λ = Λ(0) < 0.

Now the restrictions on φ and ψ are

−min(ψ, ψΛ(0)) ≤ φ ≤ 1−max(ψ,ψΛ(0));

and the partial identification regions are no longer trivial. Denote L = 1/(1−Λ(0)) so that
0 < L < 1; then (ψ, φ) must be in the trapeze defined by the corners (−L,L), (0, 0), (0, 1)
and (L, 1− L).

The mixture components are given for any y by

F (y|T ∗ = 1) = F (y|T = ∅) +
1− φ

ψ
(F (y|T = 1)− F (y|T = ∅))

and
F (y|T ∗ = 0) = F (y|T = ∅)− φ

ψ
(F (y|T = 1)− F (y|T = ∅)).

This example also shows how easy it is to test for our exclusion restriction: one could
compute

Λ(0) =
F (y|T = 0)− F (y|T = ∅)
F (y|T = 1)− F (y|T = ∅)

for several values of y for instance and check that they give similar answers, as they should.

4 Point Identification

We now turn to full nonparametric identification of mixture weights and mixture compo-
nents based on tail conditions that we illustrate and interpret in our main examples.

Definition 3 Call V− the set of values of x such that F1(y|x)/F0(y|x) →y→−∞ 0, V+ the
set of values of x such that (1− F0(y|x))/(1− F1(y|x)) →y→+∞ 0.

With this definition, we have
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Figure 3: Identified region for component distributions with mismeasured binary regressor

Lemma 3 Under assumption 1, for all x ∈ X∩V−∩V+, λ, F1 and F0 are nonparametrically
identified.

Proof Let w0(x) and w1(x) be chosen as in section 3. Since x ∈ X , λ(w0(x), x) can be
chosen different from zero or one. Assumption 1 implies that on X , we have for all y such
that F0(y|x) 6= 0 (which will hold for y large enough if x ∈ V− ∩ V+)

F (y|z) = F0(y|x)
(

1 + λ(z)
(

F1(y|x)
F0(y|x)

− 1
))

so that

ζ(y, x) :=
F (y|w1(x), x)
F (y|w0(x), x)

=
1 + λ(w1(x), x)

(
F1(y|x)
F0(y|x)

− 1
)

1 + λ(w0(x), x)
(

F1(y|x)
F0(y|x)

− 1
) .

Hence, calling ζ−(x) = limy→−∞ ζ(y, x), we have

1− λ(w1(x), x)
1− λ(w0(x), x)

= ζ−(x). (4.1)

Similarly,

1− F (y|z) = (1− F0(y|x))
(

1− λ(z) + λ(z)
(

1− F1(y|x)
1− F0(y|x)

))
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so that

ξ(y, x) :=
1− F (y|w1(x), x)
1− F (y|w0(x), x)

=
1− λ(w1(x), x) + λ(w1(x), x)

(
1− F1(y|x)
1− F0(y|x)

)

1− λ(w0(x), x) + λ(w0(x), x)
(

1− F1(y|x)
1− F0(y|x)

) .

Hence, calling ξ+(x) = limy→+∞ ξ(y, x), on X ∩ V− ∩ V+ we have

λ(w1(x), x)
λ(w0(x), x)

= ξ+(x) (4.2)

Combining equations (4.1) and (4.2) and noting that ζ−(x) 6= ξ+(x) (otherwise we would
have λ(w0(x), x) = λ(w1(x), x), contradicting x ∈ X ) gives the result:

φ(x) = λ(w0(x), x) =
1− ζ−(x)

ξ+(x)− ζ−(x)

ψ(x) = λ(w1(x), x)− λ(w0(x), x) =
(1− ξ+(x))(1− ζ−(x))

ζ−(x)− ξ+(x)
.

To illustrate this result, first go back to the mismeasured binary regressor model. Then
the assumption needed for point identification of component distributions and mixture
weights is the following:

F (y|T ∗ = 1)
F (y|T ∗ = 0)

→ 0 as y → −∞ and
1− F (y|T ∗ = 0)
1− F (y|T ∗ = 1)

→ 0 as y → +∞.

In other words, the conditional distribution of outcomes given T ∗ = 1 dominates the right
tail and that with T ∗ = 0 dominates the left tail. Note that nothing is required of the rest
of the distribution Of course, the roles of right and left tail could be reversed if the model
under study makes it more natural.

If in particular the mismeasurement is such that y ⊥⊥ T |T ∗, outcomes are normally
distributed conditionally on the regressor, and the regressor only shifts the mean outcome,
then this condition is satisfied; in fact in that case F (y|T ∗ = 1) and F (y|T ∗ = 0) are normal
with identical variances and different means, which implies the tail conditions we need, as
shown in the following simple lemma (which we include here for completeness, as we could
not find a simple reference in the literature).

Lemma 4 Let Φ be the cumulative distribution of the standard normal random variable,
and µ0 < µ1 two real numbers. Then

1− Φ
(y−µ0

σ

)

1− Φ
(y−µ1

σ

) → 0 as y → +∞ and
Φ

(y−µ1

σ

)

Φ
(y−µ0

σ

) → 0 as y → −∞.
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Proof By L’Hôpital’s rule, the result follows if the densities have the required limit-
ing ratios, which is verified as follows. Let φ be the density of a standard normal ran-
dom variable. Then, with K = exp((µ2

1 − µ2
0)/(2σ2)), we have φ

(y−µ0

σ

)
/φ

(y−µ1

σ

)
=

K exp(2y(µ1 − µ0)/(2σ2)), which tends to 0 as y tends to +∞. The other case is treated
identically.

The previous lemma shows that the tail dominance of definition 3 necessary for nonpara-
metric identification of the model is satisfied in the case of normally distributed outcomes,
where the regressor only affects location. This extends to more general location models, as
shown below.

Lemma 5 In the location model F (y|T ∗, x) = F (y − m(T ∗)|x), where m is a decreasing
function and − ln(1− F (y|x)) (resp. − ln F (y|x)) has a derivative that grows unboundedly
for y large enough (resp. small enough), we have x ∈ X ∩ V− ∩ V+ so that the model is
nonparametrically identified.

Proof of lemma 5: Let f(y|T ∗ = j, x) = f(y − mj , x), j = 0, 1 be the density of the
two regimes, with m1 > m0. Let g(x, y) = − ln(1 − F (y|x)). The first derivative of g is
increasing to +∞ by assumption. Hence

1− F (y −m0|x)
1− F (y −m1|x)

= exp[g(x, y −m1)− g(x, y −m0)]

tends to 0 when y → +∞.

Under the identifying assumption, we can write

ζ− = lim
y→−∞F (y|T = 1)/F (y|T = 0) = Pr(T ∗ = 0|T = 1)/Pr(T ∗ = 0|T = 0)

and

ξ+ = lim
y→+∞[1− F (y|T = 1)]/[1− F (y|T = 0)] = Pr(T ∗ = 1|T = 1)/Pr(T ∗ = 1|T = 0),

from which the mixture weights and the component distributions are identified.

The tail conditions also hold in most variants of the regime switching model which have
been considered in the literature. Take an application to macroeconomic data for instance.
Then V−∩V+ corresponds to the set of conditioning points where the regime associated with
F1 dominates the upper tail, hence is the expansionary regime, and the regime associated
with F0 dominates the lower tail, hence the contraction regime. Note that this would be
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the case, for instance, with F1 and F0 normal with identical variances and different means
(as in the original model of Hamilton (1989)).

In some applications it may be too much to ask for tail conditions at both ends. If a
tail condition holds only in one tail, then we are back to partial identification, but more is
point identified than in section 3. More precisely, focus for instance on tail dominance in
the right tail. On the larger set X ∩ V+ of conditioning points, the following lemma shows
that the dominated regime is fully identified.

Lemma 6 Under assumption 1, for all x ∈ X ∩ V+, F0 is point identified, whereas F1 and
λ are identified up to a constant.

Proof As above, we have

λ(w1(x), x)
λ(w0(x), x)

= ξ+(x).

Since λ(z) = φ(x) + ψ(x)Λ(z), we have

φ(x) + ψ(x)Λ(w1(x), x)
φ(x) + ψ(x)Λ(w0(x), x)

= ξ+(x),

from which it follows that

φ(x) = κ̃(x)ψ(x),

with (remember that ξ+(x) 6= 1 for x ∈ X )

κ̃(x) =
Λ(w1(x), x)− ξ+Λ(w0(x), x)

ξ+ − 1

Hence, we have

F (y|z) = λ(z)∆(y|x) + F0(y|x)

= (φ(x) + ψ(x)Λ(z))
∆̃(y|x)
ψ(x)

+ F0(y|x)

= ψ(x)(κ̃(x) + Λ(z))
∆̃(y|x)
ψ(x)

+ F0(y|x)

= (κ̃(x) + Λ(z))∆̃(y|x) + F0(y|x)

and F0 is point identified.

The stochastic volatility model illustrates the usefulness of lemma 6. By definition, the
regime with more volatility dominates in both tails; then we can resort to this result to
prove that the regime with lower volatility is point identified.
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5 Estimation

We now propose an estimator for the mixture components and mixture weights. This is
based on the identifiable quantities

ζ−(x) := lim
y→−∞

F (y|w1(x), x)
F (y|w0(x), x)

and
ξ+(x) := lim

y→+∞
1− F (y|w1(x), x)
1− F (y|w0(x), x)

.

We already showed that

F0(y|x) = F (y|w0(x), x)− φ(x)
ψ(x)

[F (y|w1(x), x)− F (y|w0(x), x)],

F1(y|x) = F (y|w0(x), x) +
1− φ(x)

ψ(x)
[F (y|w1(x), x)− F (y|w0(x), x)],

which, under the identifying assumptions of lemma 3 can be rewritten as

F0(y|x) = F (y|w0(x), x) +
1

1− ξ+(x)
[F (y|w1(x), x)− F (y|w0(x), x)],

F1(y|x) = F (y|w0(x), x) +
1

1− ζ−(x)
[F (y|w1(x), x)− F (y|w0(x), x)].

For some diverging sequences R → ∞ and L → −∞, we propose the following estimators
for ζ−(x) and ξ+(x).

Definition 4 (Estimators) Define ζ̂L(x) = F̂ (L|w1(x), x)/F̂ (L|w0(x), x) and ξ̂R(x) =
[1− F̂ (R|w1(x), x)]/[1− F̂ (R|w0(x), x)], where F̂ is a nonparametric estimator of the con-
ditional cumulative distribution of y given x and w.

We now give the statistical properties of our estimation strategy in the case of the
mismeasured binary regressor, where the outcome distributions of interest are characterized
by F (y|T ∗ = 1, x) and F (y|T ∗ = 0, x). An iid sample of individuals is available with their
reported regressor values and their outcomes. For simplicity, we assume that T ∗ is the only
observed regressor, so that x drops from the notation. The results extend trivially to the
case with any number of additional discrete-valued regressors x.

Assumption 3 ((y1, T1), . . . , (yn, Tn)) is an iid sample.

Remark 1 The results can be extended to weakly dependent sequences using convergence
results for tail empirical processes in Rootzén (2009), and to the case with conditioning
information using more general local empirical process results in Einmahl and Mason (1997).
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For diverging sequences R → ∞ and L → −∞, we have ζ̂L = F̂ (L|T = 1)/F̂ (L|T = 0)
and ξ̂R = [1 − F̂ (R|T = 1)]/[1 − F̂ (R|T = 0)]. In the above expressions, F̂ (y|T = 1) and
F̂ (y|T = 0) are the empirical cumulative distributions of the sample of the T = 1 and
T = 0 categories respectively. For instance, F̂ (y|T = 1) is the fraction of outcomes of T = 1
individuals in the sample that fall below y.

Definition 5 The empirical distributions are defined as follows. F̂ (y|T = j) = #{1 ≤ i ≤
n : Ti = j, Yi ≤ y}/nj where nj = #{1 ≤ i ≤ n : Ti = j}, j = 1, 0. The corresponding
empirical processes are defined as Gnj (y|T = j) = √

nj(F̂ (y|T = j)−F (y|T = j)), j = 1, 0.

Since (1 − ζ̂L)−1 = −F̂ (L|T = 0)/[F̂ (L|T = 1) − F̂ (L|T = 0)] and (1 − ξ̂R)−1 =
[1 − F̂ (R|T = 0)]/[F̂ (R|T = 1) − F̂ (R|T = 0)], the resulting estimators for the outcome
distributions are the following.

Definition 6 (Nonparametric estimators for the component distributions:)

F̂ (y|T ∗ = 0) = F̂ (y|T = 0) + [1− F̂ (R|T = 0)]
F̂ (y|T = 1)− F̂ (y|T = 0)
F̂ (R|T = 1)− F̂ (R|T = 0)

F̂ (y|T ∗ = 1) = F̂ (y|T = 0)− F̂ (L|T = 0)
F̂ (y|T = 1)− F̂ (y|T = 0)
F̂ (L|T = 1)− F̂ (L|T = 0)

.

As we have shown in section 4, the mixture weights are identified as λ(T = 1) = ξ+(1 −
ζ−)/(ξ+ − ζ−) and λ(T = 0) = (1− ζ−)/(ξ+ − ζ−), we estimate them in the following way:

Definition 7 (Nonparametric estimators of mixture weights)
(

λ̂(T = 1)
λ̂(T = 0)

)
= g

(
ξ̂R

ζ̂L

)
with g :

(
x

y

)
7→

(
x(1−y)

x−y
1−y
x−y

)

Notice that for these estimators to make sense, we need some outcomes of the units with
T = 0 to fall on the right of R and on the left of L. For statistical purposes, we need these
numbers of outcomes to grow with n. Hence the following assumption on the sequences R

and L:

Assumption 4 (Order statistics) R (resp. L) is chosen as the statistic of order rn + 1
(resp. n0 − ln), i.e. the rn + 1-th largest (resp. ln-th smallest) outcome value of the sample
of individuals with T = 0, with rn/n0 → 0 and rn/

√
n0 ln lnn0 →∞ (and similar conditions

hold for ln).
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Remark 2 In practice, one would definitely want to choose R and L after examining the
distributions of outcomes for observations with T = 0 and observations for T = 1. In
particular, to prevent the estimator from taking infinite values, we should choose R and L

such that 1− F̂ (R|T = 1) 6= 1− F̂ (R|T = 0) and F̂ (L|T = 1) 6= F̂ (L|T = 0).

We assume that reported regressor value is informative, but not perfectly correlated
with actual value (in which case, the identification issue would disappear).

Assumption 5 We have 1/2 < Pr(T ∗ = 1|T = 1) < 1 and 1/2 < Pr(T ∗ = 0|T = 0) < 1.

Our identification strategy relies on tail dominance of the outcome distribution under
T = 1 in the right tail and dominance of the outcome distribution under T = 0 in the left
tail of the distribution4. For asymptotic normality of the proposed estimator, we need to
assume this dominance holds at a certain rate.

Assumption 6 [1 − F (R|T ∗ = 0)]/[1 − F (R|T ∗ = 1)]) = op(1/
√

rn), and F (L|T ∗ =
1)/F (L|T ∗ = 0) = op(1/

√
ln).

Assumption 6 is relatively easy to check. It holds in particular in the following cases:

• The case where F (y|T ∗ = 1) and F (y|T ∗ = 0) have log concave tails (which includes,
but is not restricted to Gaussian tails) as shown in lemma 7.

• The case where F (y|T ∗ = 1) and F (y|T ∗ = 0) have fat tails satisfying the conditions
of lemma 8.

Lemma 7 (Case of log concave tails:) If we have

− ln(1− F (y|T ∗)) ∼
(

y

σ+(T ∗)

)α+(T ∗)
as y → +∞

− ln F (y|T ∗) ∼
(

y

σ−(T ∗)

)α−(T ∗)
as y → −∞,

with σ−,+(T ∗) > 0 and α−,+(T ∗) > 1, then

• α+(T ∗ = 1) < α+(T ∗ = 0) or [α+(T ∗ = 1) = α+(T ∗ = 0) and σ+(T ∗ = 1) > σ+(T ∗ =
0) ],

4Again, this could be reversed if the model under study calls for it.
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• α−(T ∗ = 1) > α−(T ∗ = 0) or [α−(T ∗ = 1) = α−(T ∗ = 0) and σ−(T ∗ = 1) < σ−(T ∗ =
0)],

jointly imply assumption 6.

Proof of lemma 7: In what follows, K is a generic constant and ∼p denotes first order
equivalence in probability as n →∞.

We have 1−F (R|T = 0) = Pr(T ∗ = 1|T = 0)[1−F (R|T ∗ = 1)] + Pr(T ∗ = 0|T = 0)[1−
F (R|T ∗ = 0)] = (1 − Pr(T ∗ = 0|T = 0))[1 − F (R|T ∗ = 1)](1 + op(1)) under assumption 5
and the tail conditions.

Moreover, by assumption 4, rn/n0 = 1 − F̂ (R|T = 0) = 1 − F (R|T = 0) + Gn0(R|T =
0)/
√

n0 = [1 − F (R|T = 0)] + Oa.s.(
√

ln lnn0/n0) by the law of iterated logarithm. With
the result of the previous paragraph, this yields rn/n0 = K[1− F (R|T ∗ = 1)](1 + op(1)).

Given the assumption on the tails of F , this yields R ∼p K(lnn0)1/α(1). Hence,

1− F (R|T ∗ = 0)
1− F (R|T ∗ = 0)

∼p exp

((
R

σ+(1)

)α+(1)

−
(

R

σ+(0)

)α+(0)
)

.

The latter is of order exp
{−K(lnn0)α+(0)/α+(1)

}
when α+(0) > α+(1), and of order

exp {−K ln n0} when α+(0) = α+(1) and σ+(1) > σ+(0).

Lemma 8 (Case of Pareto tails) Suppose α0R > α1R > 0 and α1L > α0L > 0. Denote
by c > 0 a generic positive finite constant. Suppose the distribution of outcomes conditional
on T ∗ = 1 has right (resp. left) tail index α1R (resp. α1L), namely 1−F (y|T ∗ = 1) ∼ cy−α1R

when y tends to ∞ (resp. F (y|T ∗ = 1) ∼ c(−y)−α1L as y tends to −∞). Suppose similarly
that the distribution of outcomes conditional on T ∗ = 0 has right (resp. left) tail index α0R

(resp. α0L), namely 1 − F (y|T ∗ = 0) ∼ cy−α0R when y tends to ∞ (resp. F (y|T ∗ = 0) ∼
c(−y)−α0L as y tends to −∞). Then, under assumptions 4 and 5, assumption 6 holds when

rn = o

(
n

2(α0R−α1R)

2α0R−α1R
0

)
and ln = o

(
n

2(α1L−α0L)

2α1L−α0L
0

)
.

In particular, when α0R = 2α1R, assumption 6 will be satisfied if rn = o(n2/3
0 ), and when

α0R = 3α1R, assumption 6 will be satisfied if rn = o(n4/5
0 ), and similarly for ln.

Proof of lemma 8: First note that 1 − F (R|T = 0) = Pr(T ∗ = 1|T = 0)[1 − F (R|T ∗ =
1)] + Pr(T ∗ = 0|T = 0)[1 − F (R|T ∗ = 0)] = (1 − Pr(T ∗ = 0|T = 0))[1 − F (R|T ∗ =
1)](1 + op(1)) under assumption 5 and α1R < α0R.
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Now, by assumption 4, rn/n0 = 1 − F̂ (R|T = 0) = 1 − F (R|T = 0) + Gn0(R|T =
0)/
√

n0 = [1 − F (R|T = 0)] + Oa.s.(
√

ln lnn0/n0) by the law of iterated logarithm. With
the result of the previous paragraph, this yields rn/n0 = c[1− F (R|T ∗ = 1)](1 + op(1)).

Finally, by the assumption of the lemma, 1 − F (R|T ∗ = 1) ∼ cR−α1R , hence rn/n0 =
cR−α1R(1 + op(1)).

The tail dominance requirement of assumption 6 is [1 − F (R|T ∗ = 0)]/[1 − F (R|T ∗ =
1)] = o(r−1/2

n ), which is therefore equivalent to Rα1R−α0R = o(r−1/2
n ) or

[(n0/rn)1/α1R ]α1R−α0R = o(r−1/2
n ),

and the result follows. The case of the left tail is treated identically.

Finally, for the asymptotic treatment of the tail empirical process, we assume that the
conditional cumulative outcome distribution functions given T ∗ = 0, 1 are invertible.

Assumption 7 Both y → F (y|T ∗ = 0) and y → F (y|T ∗ = 1) are continuous and strictly
increasing.

Remark 3 Notice that assumption 7 is very mild. It does not require the existence of
moments for the outcome distributions.

Under the previous assumptions, we have the following theorem.

Theorem 2 Under assumptions 1-7, the centered and re-scaled estimator of definition 6

√
rn

(
F̂ (y|T ∗ = 1)− F (y|T ∗ = 1)
F̂ (y|T ∗ = 0)− F (y|T ∗ = 0)

)

is asymptotically normal with mean zero and variance [F (y|T = 1) − F (y|T = 0)]2A−1V

with

V =

(
ξ2
+ + ρξ+ 0

0 ζ2− + ρζ−

)
and A =

(
(1− ξ+)2 0

0 (1− ζ−)2

)

where ρ = Pr(T = 0)/Pr(T = 1).

The corresponding rescaled and centered mixture weights estimator of definition 7

√
rn

(
λ̂(T = 1)− λ(T = 1)
λ̂(T = 0)− λ(T = 0)

)
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is asymptotically normal with mean zero and variance BV Bt with

B =
1

(ξ+ − ζ−)2

(
ξ+(1− ξ+) (1− ξ+)(1− ζ−)

1− ξ+ ζ− − 1

)

Proof of Theorem 2 In all that follows, the stochastic dominance relations are uniform
with respect to y. Consider first F̂ (y|T ∗ = 0)−F (y|T ∗ = 0). We use the following notation.

F̂ (y|T ∗ = 0) = F̂ (y|T = 0) + K̂nD̂

F (y|T ∗ = 0) = F (y|T = 0) + KD,

where

D = F (y|T = 1)− F (y|T = 0)

D̂ = F̂ (y|T = 1)− F̂ (y|T = 0)

and

K =
1

1− ξ+

K̂n =
1

1− ξ̂R

,

where ξR = S1/S0 and ξ̂R = Ŝ1/Ŝ0 and where Sj denotes the survival functions for j = 0, 1:

Ŝj = 1− F̂ (R|T = j)

Sj = 1− F (R|T = j).

Finally, we use standard notation for the empirical process, namely:

Gn0(y) =
√

n0

(
F̂ (y|T = 0)− F (y|T = 0)

)

Gn1(y) =
√

n1

(
F̂ (y|T = 1)− F (y|T = 1)

)

We these notations, by the Glivenko-Cantelli Theorem, we have

√
rn

[
F̂ (y|T ∗ = 0)− F (y|T ∗ = 0)

]

=
√

rn

(
F̂ (y|T = 0)− F (y|T = 0)

)
+ D̂

√
rn(K̂n −K) + K

√
rn(D̂ −D)

= D̂
√

n(K̂n −K) + op(1).
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Now

ξR =
Pr(T ∗ = 1|T = 1)[1− F (R|T ∗ = 1)] + (1− Pr(T ∗ = 1|T = 1))[1− F (R|T ∗ = 0)]
(1− Pr(T ∗ = 0|T = 0))[1− F (R|T ∗ = 1)] + Pr(T ∗ = 0|T = 0)[1− F (R|T ∗ = 0)]

,

=
Pr(T ∗ = 1|T = 1) + [1− Pr(T ∗ = 1|T = 1)]1−F (R|T ∗=0)

1−F (R|T ∗=1)

[1− Pr(T ∗ = 0|T = 0)] + Pr(T ∗ = 0|T = 0)1−F (R|T ∗=0)
1−F (R|T ∗=1)

.

Hence ξR − ξ+ is equal to

ξR − Pr(T ∗ = 1|T = 1)
1− Pr(T ∗ = 0|T = 0)

=
[1− Pr(T ∗ = 0|T = 0)]

(
Pr(T ∗ = 1|T = 1) + [1− Pr(T ∗ = 1|T = 1)]1−F (R|T ∗=0)

1−F (R|T ∗=1)

)

[1− Pr(T ∗ = 0|T = 0)]
(
[1− Pr(T ∗ = 0|T = 0)] + Pr(T ∗ = 0|T = 0)1−F (R|T ∗=0)

1−F (R|T ∗=1)

)

−
Pr(T ∗ = 1|T = 1)

(
[1− Pr(T ∗ = 0|T = 0)] + Pr(T ∗ = 0|T = 0)1−F (R|T ∗=0)

1−F (R|T ∗=1)

)

[1− Pr(T ∗ = 0|T = 0)]
(
[1− Pr(T ∗ = 0|T = 0)] + Pr(T ∗ = 0|T = 0)1−F (R|T ∗=0)

1−F (R|T ∗=1)

)

=
[1− Pr(T ∗ = 0|T = 0)− Pr(T ∗ = 1|T = 1)]1−F (R|T ∗=0)

1−F (R|T ∗=1)

[1− Pr(T ∗ = 0|T = 0)]
(
[1− Pr(T ∗ = 0|T = 0)] + Pr(T ∗ = 0|T = 0)1−F (R|T ∗=0)

1−F (R|T ∗=1)

) ,

which is Op([1 − F (R|T ∗ = 0)]/[1 − F (R|T ∗ = 1)]) because 0 < Pr(T ∗ = 0|T = 0) < 1
under assumption 5. Hence we have shown that

√
rn(ξR − ξ+) is Op(

√
rn[1 − F (R|T ∗ =

0)]/[1− F (R|T ∗ = 1)]), which is op(1) by assumption 6.

We can therefore write

√
rn(ξ̂R − ξ+) =

√
rn(ξ̂R − ξR + ξR − ξ+)

=
√

rn(ξ̂R − ξR) + op(1).

But

√
rn(ξ̂R − ξR) =

√
rn

(
Ŝ1

Ŝ0

− S1

S0

)

=
√

rn
1
Ŝ0

[
(Ŝ1 − S1)− ξR(Ŝ0 − S0)

]

=
√

rn

n0

1
Ŝ0

[ξRGn0(R)−Gn1(R)]

By construction, Ŝ0 = rn/n0, so that

√
rn(ξ̂R − ξR) =

√
n0

rn
[ξRGn0(R)−Gn1(R)]
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By assumption 7, we can apply the quantile transformation to yield

Gn0(R) = αn0(1− F (R|T = 0))

where αn(u) =
√

n(Un(u) − u) and Un is the empirical distribution of a sample of n inde-
pendent uniform random variables on [0, 1]. Now, αn0(1−F (R|T = 0)) = αn0(1− F̂ (R|T =
0) + F̂ (R|T = 0) − F (R|T = 0)), which by definition of the order statistic R is equal to
αn0(rn/n0 +Gn0(R)/

√
n0) = αn0(rn/n0[1 + (

√
n0/rn)Gn0(R)]).

By the law of iterated logarithm, Gn0(R) = Oa.s.(
√

ln lnn0), and therefore

(
√

n0/rn)Gn0(R) = Oa.s.(
√

n0 ln lnn0/rn) = oa.s.(1)

under assumption 4. Denoting un := −(
√

n0/rn)Gn0(R), we have un = oa.s.(1) and
√

n0/rnαn0(rn/n0[1 + (
√

n0/rn)Gn0(R)]) =
√

n0/rnαn0(rn/n0[1− un]).

By Mason’s central limit theorem for tail empirical processes (see for instance theo-
rem 2.1 page 139 of Einmahl (1992) and del Barrio, Deheuvels, and van de Geer (2007) for
a recent account of the theory), there exists a sequence of standard Brownian motions Bn

such that

sup
0<t≤K<∞

∣∣∣∣
√

n0

rn
αn0(

rn

n0
t)−Bn(t)

∣∣∣∣ = op(1). (5.1)

We have therefore
√

n0/rnαn0(rn/n0[1 − un]) = Bn(1 − un) + op(1) and by continuity of
Brownian motion sample paths, it follows that

√
n0
rn

αn0(
rn
n0

(1 − un)) converges weakly to

B(1), which is standard normal, and hence so is
√

n0
rn
Gn0(R).

With similarly defined quantities, Gn1(R) is equal to αn1(1− F (R|T = 1)). Now:

αn1(1− F (R|T = 1)) = αn1((1− F (R|T = 0))ξR)

= αn1((1− F̂ (R|T = 0))ξR + ξRGn0(R)/
√

n0)

= αn1

(
rn

n0
ξ+ +

rn

n0
(ξR − ξ+)

+ξ+Gn0(R)/
√

n0 + (ξR − ξ+)Gn0(R)/
√

n0)

= αn1

(
rn

n0
ξ+

[
1 +

ξR − ξ+

ξ+

+ξ+

√
n0

rn
Gn0(R) +

ξR − ξ+

ξ+

√
n0

rn
Gn0(R)

])
.

Now

ξR − ξ+ = Op

(
1− F (R|T ∗ = 0)
1− F (R|T ∗ = 1)

)
= op(1).
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Hence, as previously,
√

(ρn1/(ξ+rn))Gn1(R) has standard normal limiting distribution.

Finally,

√
rn(ξ̂R − ξ+) = ξ+

√
n0

rn
Gn0(R)−

√
ρξ+

√
ρn1

ξ+rn
Gn1(R) + op(1),

hence is converges weakly to ξ+Z − √
ρξ+Z ′ where Z and Z ′ are independent standard

normal random variables, and, as before, ρ = P(T = 0)/P(T = 1).

To conclude, since K̂n = h(ξ̂R), with h(x) := 1
1−x a continuous function, the delta

method yields

√
rn(K̂n −K) ⇒ 1

(1− ξ+)2
(ξ+Z −

√
ρξ+Z ′).

and since D̂ →p D, we have, finally:

√
rn(F̂ (y|T ∗ = 0)− F (y|T ∗ = 0)) ⇒ D

(1− ξ+)2
(ξ+Z −

√
ρξ+Z ′).

The case of F̂ (y|T ∗ = 1) is handled identically, and the asymptotic normality result for
the mixture weights estimator follows readily from the delta method. ¤

It is of practical interest to obtain uniform confidence bands for the proposed nonpara-
metric estimators. To this end, note that the convergence in Theorem 2 is uniform in y ∈ R,
as shown in the proof. Moreover, define

σ2(y) := D2(y)
ξ2
+ + ρξ+

(1 + ξ+)2
, σ̂2(y) := D̂2(y)

ξ̂2
R + ρ̂ξ̂R

(1 + ξ̂R)2
,

where D(y) = F (y|T = 1)− F (y|T = 0), D̂(y) = F̂ (y|T = 1)− F̂ (y|T = 0) and ρ̂ = n0/n1,
then supy∈R |σ̂2(y)− σ2(y)| = op(1). From these the next corollary follows immediately.

Corollary 2 Under assumptions 1-7,

lim
n→∞Pr



sup

y

∣∣∣∣∣∣

√
rn

(
F̂ (y|T ∗ = 1)− F (y|T ∗ = 1)

)

σ̂(y)

∣∣∣∣∣∣
> zα/2



 = α

where zα denote the 1− α quantile of the standard normal distribution.

A similar result holds F (y|T ∗ = 0). One may obtain uniform asymptotic confidence bands
for F (y|T ∗ = 1) and F (y|T ∗ = 0) by inverting the inequality in the corollary.
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6 Simulations

We now turn to a small Monte Carlo experiment to assess the performance of our proposed
estimation procedure. To do this, we set up a mismeasured binary regressor model. The
true regressor value T ∗ = 0, 1 is drawn randomly, with Pr(T ∗ = 1) = 0.5. Following
assumption 1, for any given value of T ∗ the mismeasured regressor T and the outcome
Y must be drawn independently of each other. In our experiment, T is drawn randomly
conditionally on T ∗ with transition probabilities

p11 = Pr(T = 1|T ∗ = 1) and p00 = Pr(T = 0|T ∗ = 0).

The probabilities p00 and p11 measure the quality of the measurement of the true regressor;
we try values

p11 = 0.7, 0.8, 0.9 and 0.95

and set p00 = p11 in each case. If for instance p11 = p00 = 0.8, then in large samples the
regressor will be mismeasured for one observation in five.

We chose to focus on the simplest possible instance of this model: the normal location
model, in which outcomes are generated by

yi = (2T ∗i − 1)β + ui

where the ui’s are drawn from the standard normal distribution. This specification serves
as an unfavorable benchmark for our estimation procedure: Lemma 5 implies that assump-
tion 4 and assumption 6 cannot hold simultaneously in this model. Yet as we will show,
the estimator still performs very well in practice.

Given our specification, the unfeasible regression model of y on T ∗ has a true coefficient
equal to 2β, and its R2 is β2/(β2 + 1); the R2 of the feasible regression of y on the mismea-
sured regressor T of course has a lower R2, especially for smaller values of p00 = p11. We
chose values

β = 0.25, 0.5, 1 and 2,

which correspond to “true model” R2’s of 0.06, 0.2, 0.5 and 0.8.

For each choice of parameters, we simulated 10, 000 samples of size n = 1, 000 and
another 10,000 of size n = 10, 000. For each such sample, we computed estimators of the
cdfs F̂ (y|T ∗ = 1) and F̂ (y|T ∗ = 0) from the formulæ in definition 6, where R is the statistic
of order (r+1) of the sample with T = 0 and L is the statistic of order (n− l) of the sample
of outcomes with T = 1. As usual, the asymptotic theory gives little practical guidance
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as to optimal values of l and r (and in any case it does not apply to this model.). We
experiment with r and l such that 1 − r/n = l/n = 5%, 10%, 25% when n = 1, 000 and
1%, 5%, 10% for n = 10, 000.

Finally, we use the estimated conditional distributions to compute three effects of the
true regressor on quantiles: for the median, the upper quartile and the upper decile. We
then compare them with the true quantile effects in the model, which are equal to 2β for
all quantiles. In the tables, “BIAS” refers to the average estimation error of the quantile
effect over the 10,000 replications, and “RMSE” to the root mean squared estimation error.
“Decile” refers to the 90%-quantile, “Quartile” to the 75%-quantile, and “Median” of course
refers to the 50%-quantile.

Table 1 reports our results when the transition probabilities p00 = p11 are equal to 0.7
(i.e. 30% of observations are misclassified.) The first thing to notice is that small effects
are not properly estimated. This is not surprising: our method is based on tail dominance,
and the difference between the tails of two normals with the same variance and means
that are so close is very small. Also, one should see these results as a worst-case scenario:
other distributions have tails that are better-separated. On the other hand, the results are
surprisingly good for β = 1 and β = 2. For β = 1 for instance (a “true model” R2 of 0.5),
and defining tails as 10% of the sample, with as little as 1,000 observations the bias on all
three quantile effects is rather small, at about 0.07—recall that the true quantile effects are
equal to 2 in this case. The RMSE is about 0.2 for the median, and is somewhat higher for
other quantiles as expected.

Next, we investigate the effect of the misclassification probability. Table 2 reports results
when transition probabilities are equal to 0.95 (only 5% of observations are misclassified).
We find very large overall improvements over the previous case, in which misclassification
was much more pronounced. The results for probabilities of 0.8 and 0.9 tell a similar story,
and so we do not report them here.

A common concern with estimation methods which depend on a smoothness parameter
(here 1 − r/n = l/n) is the sensitivity of results to this parameter. Our tail estimation
procedure is obviously not immune to sensitivity to the choice of order statistic. However,
we have explored a very large range (from 1% to 25%); estimation results seem reliable
over the whole range, except for the choice 25%, which can be seen to be too extreme for
n = 1, 000.

If the econometrician knew the actual parametric specification of the model, then he
could estimate the quantile effect by using maximum likelihood. Table 3 gives the results
of such an infeasible benchmark. The weakness of our estimation procedure is apparent
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for effects below 0.5; but for larger effects and large samples (n = 10, 000 rather than
n = 1, 000) it appears to perform quite well, relative to the infeasible alternative.

As the mixture weights λ(T ) give the probabilities of each regime, their estimation is
also of interest, especially in regime switching applications. Here their true values are

λ(T = 0) = 1− p11 and λ(T = 1) = p11.

We report results for mixture weights estimators in tables 4 and 5. Once again, the RMSEs
are large for small values of the regressor β, irrespective of the size of the misclassification
error (0.7 or 0.95.) They decrease by about half when the sample size increases from
n = 1000 to n = 10, 000. For larger values of the regressor (β = 1 and β = 2), the RMSEs
tend to be much smaller. Reducing the misclassification error this time has ambiguous
effects: it yields better estimates of λ(T = 1), but worse estimates of λ(T = 0). When using
large bandwidths, the RMSEs on λ(T = 1) are driven by the bias, whereas the RMSEs
on λ(T = 0) are driven by the variance. We should note here that getting good estimates
of the mixture weights is a hard problem, even with the infeasible maximum likelihood.
Table 6 shows the performance of maximum-likelihood estimates of λ(T = 1)—note that
with maximum likelihood we use all parametric assumptions, and so the estimator for
λ(T = 0) is just a mirror image. Again, when the difference in the location parameters of
the components are small (β = 0.25, 0.5) the maximum likelihood estimates of λ(T = 0)
and of λ(T = 1) have non-negligible biases. Moreover, the estimates often become negative,
as indicated by the numbers between brackets: for about 20% of the samples with small β’s
when the measurement error is large, and even more when it is small since then the true
λ(T = 0), at 0.05, is closer to zero. We discarded these samples when computing the biases
and RMSEs. Surprisingly, our nonparametric estimates are much more robust: none of
our samples generated an estimator smaller than zero or larger than one for either mixture
weight. We do not have a ready explanation, but we find this to be an appealing property
of our method.

Conclusion

We proposed partial identification results under an exclusion restriction that holds for a
large variety of mixture models in econometrics, including unobserved heterogeneity mod-
els, regime switching models and measurement error models. Partial identification results
point naturally to an identification strategy based on tail dominance conditions, which
also allow nonparametric estimation of mixtures of two distributions based on intermediate
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quantiles. Simulation results show that the nonparametric estimation strategy performs
surprisingly well on a Gaussian location model. There are several natural extensions of this
work. First, our estimation results should be extended to the case with continuous con-
ditioning information, using conditional quantile methods. Second, partial identification
results should be extended to continuous mixtures, to cover a richer class of applications
to models with unobserved heterogeneity, in particular nonlinear panel data models and
models of games with asymmetric information.
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Table 1: Estimated Quantiles for p11 = p00 = 0.7

β n l/n Decile Quartile Median
bias (rmse) bias (rmse) bias (rmse)

0.25

1000
5% 0.752 (0.961) 0.668 (0.853) 0.635 (0.801)
10% 0.894 (1.058) 0.783 (0.921) 0.759 (0.876)
25% 1.221 (1.346) 1.063 (1.137) 0.997 (1.039)

10,000
1% 0.518 (0.685) 0.459 (0.589) 0.435 (0.545)
5% 0.590 (0.617) 0.529 (0.554) 0.513 (0.534)
10% 0.719 (0.733) 0.642 (0.654) 0.621 (0.631)

0.5

1000
5% 0.415 (0.634) 0.350 (0.532) 0.322 (0.478)
10% 0.457 (0.576) 0.383 (0.472) 0.364 (0.439)
25% 0.699 (0.748) 0.587 (0.614) 0.569 (0.580)

10,000
1% 0.207 (0.380) 0.167 (0.294) 0.152 (0.250)
5% 0.261 (0.289) 0.222 (0.244) 0.216 (0.232)
10% 0.361 (0.372) 0.309 (0.316) 0.302 (0.308)

1

1000
5% 0.097 (0.589) 0.094 (0.418) 0.090 (0.319)
10% 0.078 (0.407) 0.067 (0.262) 0.067 (0.200)
25% 0.161 (0.301) 0.137 (0.197) 0.153 (0.183)

10,000
1% 0.049 (0.475) 0.0477 (0.303) 0.043 (0.216)
5% 0.022 (0.197) 0.019 (0.118) 0.020 (0.083)
10% 0.042 (0.137) 0.034 (0.083) 0.037 (0.063)

2

1000
5% -0.333 (1.690) 0.026 (0.489) 0.064 (0.317)
10% -0.236 (0.893) 0.012 (0.289) 0.029 (0.187)
25% -0.082 (0.469) 0.004 (0.158) 0.009 (0.114)

10,000
1% -0.252 (0.987) 0.014 (0.342) 0.034 (0.216)
5% -0.055 (0.360) 0.002 (0.134) 0.005 (0.063)
10% -0.020 (0.204) 0.001 (0.063) 0.002 (0.054)
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Table 2: Estimated Quantiles for p11 = p00 = 0.95

β n l/n Decile Quartile Median
bias (rmse) bias (rmse) bias (rmse)

0.25

1000
5% 0.634 (0.699) 0.573 (0.627) 0.558 (0.602)
10% 0.738 (0.769) 0.667 (0.691) 0.657 (0.677)
25% 1.058 (1.078) 0.947 (0.957) 0.931 (0.935)

10,000
1% 0.375 (0.398) 0.347 (0.363) 0.341 (0.353)
5% 0.544 (0.548) 0.501 (0.504) 0.498 (0.500)
10% 0.685 (0.687) 0.626 (0.627) 0.621 (0.622)

0.5

1000
5% 0.277 (0.327) 0.250 (0.284) 0.258 (0.281)
10% 0.373 (0.397) 0.337 (0.354) 0.353 (0.365)
25% 0.636 (0.650) 0.578 (0.584) 0.606 (0.611)

10,000
1% 0.137 (0.164) 0.125 (0.141) 0.129 (0.137)
5% 0.252 (0.256) 0.232 (0.234) 0.246 (0.246)
10% 0.355 (0.356) 0.326 (0.328) 0.345 (0.346)

1

1000
5% 0.040 (0.197) 0.047 (0.134) 0.066 (0.114)
10% 0.079 (0.167) 0.091 (0.137) 0.128 (0.154)
25% 0.214 (0.248) 0.239 (0.245) 0.323 (0.333)

10,000
1% 0.009 (0.126) 0.010 (0.070) 0.013 (0.044)
5% 0.038 (0.070) 0.044 (0.054) 0.062 (0.063)
10% 0.078 (0.089) 0.089 (0.094) 0.125 (0.126)

2

1000
5% -0.021 (0.248) 0.005 (0.134) 0.009 (0.094)
10% 0.015 (0.181) 0.041 (0.114) 0.067 (0.109)
25% 0.128 (0.189) 0.176 (0.200) 0.266 (0.277)

10,000
1% -0.014 (0.170) -0.0004 (0.077) 0.0006 (0.044)
5% -0.0005 (0.077) 0.003 (0.031) 0.006 (0.031)
10% 0.030 (0.063) 0.043 (0.054) 0.066 (0.070)
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Table 3: Estimated Quantiles: Infeasible Maximum Likelihood

p11 = p00 n β

0.25 0.5 1 2

0.7
1000

0.082 -0.018 -0.005 0.0003
(0.371) (0.316) (0.094) (0.063)

10,000
0.011 -0.017 -0.0006 -0.00009

(0.248) (0.126) (0.028) (0.020)

0.95
1000

0.160 -0.010 -0.001 -0.001
(0.372) (0.216) (0.077) (0.063)

10,000
0.005 -0.002 -0.0003 -0.00007

(0.178) (0.054) (0.024) (0.020)
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Table 4: Estimated Mixture Weights: p11 = p00 = 0.7

β n l/n λ(T = 0) λ(T = 1)
bias (rmse) bias (rmse)

0.25

1000
5% 0.114 (0.226) -0.098 (0.231)
10% 0.132 (0.223) -0.110 (0.219)
25% 0.163 (0.215) -0.119 (0.188)

10,000
1% 0.090 (0.172) -0.090 (0.186)
5% 0.120 (0.144) -0.092 (0.125)
10% 0.137 (0.149) -0.098 (0.116)

0.5

1000
5% 0.055 (0.153) -0.047 (0.175)
10% 0.079 (0.134) -0.042 (0.133)
25% 0.130 (0.147) -0.044 (0.090)

10,000
1% 0.029 (0.097) -0.026 (0.116)
5% 0.057 (0.071) -0.026 (0.057)
10% 0.079 (0.085) -0.031 (0.048)

1

1000
5% 0.007 (0.113) -0.018 (0.147)
10% 0.014 (0.074) -0.008 (0.099)
25% 0.058 (0.068) 0.009 (0.054)

10,000
1% 0.001 (0.080) -0.012 (0.105)
5% 0.005 (0.033) -0.001 (0.043)
10% 0.013 (0.025) 0.000 (0.030)

2

1000
5% -0.000 (0.110) -0.018 (0.145)
10% 0.001 (0.071) -0.008 (0.097)
25% 0.001 (0.034) -0.002 (0.053)

10,000
1% 0.001 (0.079) -0.009 (0.102)
5% -0.000 (0.032) -0.002 (0.043)
10% -0.000 (0.021) -0.001 (0.029)
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Table 5: Estimated Mixture Weights: p11 = p00 = 0.95

β n l/n λ(T = 0) λ(T = 1)
bias (rmse) bias (rmse)

0.25

1000
5% 0.275 (0.293) -0.217 (0.254)
10% 0.312 (0.322) -0.229 (0.049)
25% 0.374 (0.378) -0.255 (0.264)

10,000
1% 0.215 (0.221) -0.166 (0.182)
5% 0.276 (0.278) -0.200 (0.204)
10% 0.312 (0.313) -0.220 (0.222)

0.5

1000
5% 0.153 (0.157) -0.065 (0.096)
10% 0.203 (0.206) -0.080 (0.095)
25% 0.310 (0.311) -0.107 (0.113)

10,000
1% 0.085 (0.087) -0.037 (0.056)
5% 0.153 (0.154) -0.059 (0.062)
10% 0.204 (0.204) -0.075 (0.077)

1

1000
5% 0.046 (0.048) -0.002 (0.045)
10% 0.093 (0.093) -0.000 (0.030)
25% 0.228 (0.228) 0.000 (0.018)

10,000
1% 0.009 (0.012) -0.001 (0.032)
5% 0.046 (0.046) -0.000 (0.014)
10% 0.093 (0.093) 0.000 (0.010)

2

1000
5% 0.006 (0.009) -0.001 (0.045)
10% 0.051 (0.051) 0.002 (0.030)
25% 0.200 (0.200) 0.010 (0.019)

10,000
1% 0.000 (0.008) -0.001 (0.032)
5% 0.005 (0.005) 0.000 (0.014)
10% 0.051 (0.051) 0.003 (0.010)
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Table 6: Infeasible Maximum Likelihood: Estimating λ(T = 1)

p11 = p00 n β

0.25 0.5 1 2

0.7

1000
[22.0%] [8.1%] [0.0%] [0.0%]
0.048 -0.003 -0.001 -0.000

(0.118) (0.075) (0.030) (0.021)

10,000
[15.8%] [0.3%] [0.0%] [0.0%]
-0.001 -0.007 0.000 -0.000
(0.096) (0.036) (0.009) (0.007)

0.95

1000
[29.6%] [28.6%] [1.2%] [0.0%]
0.163 0.037 -0.001 -0.000

(0.186) (0.062) (0.019) (0.010)

10,000
[36.0%] [5.9%] [0.0%] [0.0%]
0.074 0.002 -0.000 0.000

(0.099) (0.024) (0.006) (0.003)
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