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Abstract

This paper uses uniquely rich and representative data on the unit values of “outputs” (products)
and inputs of Colombian manufacturing plants to draw inferences about the extent of quality
differentiation at the plant level. We extend the Melitz (2003) framework to include heterogeneity
of inputs and a complementarity between plant productivity and input quality in producing
output quality and we show that the resulting model carries distinctive implications for two simple
reduced-form correlations — between output prices and plant size and between input prices and
plant size — and for how those correlations vary across sectors. We then document three plant-
level facts: (1) output prices are positively correlated with plant size within industries, on average;
(2) input prices are positively correlated with plant size within industries, on average; and (3)
both correlations are more positive in industries with more scope for quality differentiation, as
measured by the advertising and R&D intensity of U.S. firms. The correlations between export
status and input and output prices are similar to those for plant size. These facts are consistent
with our model of quality differentiation of both outputs and inputs, and difficult to reconcile with
models that assume homogeneity or symmetry of either set of goods. Beyond recommending an
amendment of the Melitz (2003) model, the results highlight shortcomings of standard methods
of productivity estimation, generalize and provide an explanation for the well-known employer
size-wage effect, and suggest new channels through which liberalization of trade in output markets
may affect input markets and vice-versa.
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1 Introduction

Recent work using information on unit values in trade-flow data has documented a number of strik-

ing empirical regularities. Schott (2004) shows that, within the most narrowly defined trade cate-

gories (7- or 10-digit, depending on the year), imports into the U.S. from richer, more capital- and

skill-abundant countries have higher unit values than imports from poorer, more labor-abundant

ones. Using data on bilateral trade flows at the 6-digit level, Hummels and Klenow (2005) show

not only that richer countries export goods with higher unit values but also that they export a

greater volume within categories. These patterns suggest quality differences within sectors, and

have kindled a resurgence of research on vertical differentiation in international trade.1 It is not

clear, however, whether they reflect quality variation across individual firms or simply variation

across sub-sectors, for instance at the (unobserved) 12-digit level. As a consequence, it is not

clear what implications these results carry for the burgeoning theoretical and empirical literature

on heterogeneous firms.2 At the same time, because plant- or firm-level datasets typically lack

product-level information — in particular, information on prices and physical quantities — it has

been difficult to investigate the extent of quality differentiation at the firm or plant level.

In this paper, we use simple reduced-form correlations in uniquely rich and representative data

on Colombian manufacturing plants to evaluate the extent of quality differentiation at the plant

level. The data, from yearly censuses over the period 1982-2005, contain detailed information

on the unit values and physical quantities of both “outputs” (products) and inputs, for use in

constructing the national producer price index. To our knowledge, these data represent the richest

source of product-level information available in a nationally representative plant-level dataset in

any country.

Like Hummels and Klenow (2005), Hallak and Schott (2005) and others, we do not observe

product quality directly and we must make inferences about quality from information on prices

and quantities. Our first main empirical finding is that the analogue of the above Hummels-
1Other notable recent contributions using unit value information in trade-flow data include Hallak (2006), Hallak

and Schott (2005), Choi, Hummels, and Xiang (2006), and Khandelwal (2007).
2For a review, see Tybout (2003).
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Klenow result holds at the plant level: on average, within narrow industries, output prices and

plant size are positively correlated. A similar pattern holds for the correlation of output prices and

export status. We also note, however, that any of a variety of plant-level demand shifters could

generate this positive correlation, even in the absence of quality differentiation across plants, as

for instance in the framework of Foster, Haltiwanger, and Syverson (forthcoming). In other words,

the implications of quality models are likely to be observationally equivalent to those of a number

of other plausible models in trade-flow data or in plant-level data containing only output prices

and quantities.

To break this observational equivalence, we push the implications of quality models on two

key dimensions. First, we argue that differences in the quality of plants’ outputs are likely to be

accompanied by differences in the quality of their inputs as well. Drawing on the O-ring theory

of Kremer (1993), Verhoogen (2008) hypothesized that labor quality and plant productivity are

complementary in the production of output quality. Here we generalize the hypothesis to apply

to material inputs as well as labor inputs, name it the quality-complementarity hypothesis, and

extend the Melitz (2003) model to accommodate it. The resulting general-equilibrium framework

nests the standard Melitz (2003) model and a quality model akin to Verhoogen (2008) as special

cases.3 In this framework, the hypothesis of complementarity between input quality and plant

productivity in determining output quality — the quality-complementarity hypothesis — implies

that larger plants will in general pay higher prices for inputs. Our next main empirical finding is

that the prediction of our quality model holds in the data: on average, within narrow industries,

input prices and plant size are positively correlated. Again, the pattern for export status and input
3In an important series of papers and books, John Sutton and Avner Shaked have developed an alternative

approach that emphasizes the role of fixed and sunk costs in raising product quality (Shaked and Sutton, 1982,
1987; Sutton, 1991, 1998, 2007). Because our goal is to provide a framework in which to analyze the empirical
relationship between the variable costs of producing quality — in particular, input prices — and plant size, we
abstract from such fixed costs, which are not observed in the Colombian data. An attractive feature of our
framework is its tractability in analyzing the quality choices of large numbers of heterogeneous firms. That said,
two insights from Sutton and Shaked’s work are worth emphasizing. First, the constant-elasticity-of-substitution
(CES) demand framework is poorly suited to analyzing market concentration, because it is difficult to reconcile with
the fact that in many industries the number of market players remains fixed as the market grows large. Second, even
under alternative demand structures, fixed costs of improving quality are generally necessary in order to generate
the result that the number of market players remains fixed (and that firms cannot profitably enter at the low-quality
end of the product spectrum) as the market grows. (See in particular Sutton (1991, Ch. 3).)
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prices is similar to that for plant size. We also present evidence that market power of buyers or

sellers in input markets cannot fully explain the positive input price-plant size correlation.

Second, we argue that the output price-plant size and input price-plant size correlations are

likely to vary in a systematic and predictable way across industries — in particular, industries

with greater scope for quality differentiation are likely to have greater output price-plant size and

input price-plant size slopes. As a measure of the scope for quality differentiation at the industry

level, we follow Sutton (1998) in using the ratio of expenditures on advertising and R&D to sales

for U.S. firms as reported in the Line of Business Survey of the U.S. Federal Trade Commission

(FTC). These data have been widely used to measure R&D and advertising intensity (e.g. Cohen

and Klepper (1992), Brainard (1997), and Antras (2003)), and Sutton (1998) has given a rigorous

justification for the use of the advertising and R&D intensity as a measure of the scope for quality

differentiation. Our third main empirical finding is that the price-plant size correlations vary

across sectors in the way our theory predicts: the slopes of both output prices and input prices vs.

plant size are increasing in the scope for quality differentiation across industries, as measured by

the advertising and R&D intensity of U.S. firms.

Our main conclusion is that the three main empirical findings — the positive average output

price-plant size slope, the positive average input price-plant size slope, and the fact that both

slopes are increasing in the scope for quality differentiation across industries — are consistent

with our model of quality differentiation of both outputs and inputs, and are difficult to reconcile

with models that impose symmetry or homogeneity of either set of goods. While the particular

quality model we present uses a number of special functional forms, the cross-sectional predictions

we highlight — as well as the distinctiveness of those predictions relative to other models — are

likely to be robust for a broad set of demand and production specifications.

This conclusion carries a number of broader implications. First, it recommends an amendment

of the influential Melitz (2003) model. Although Melitz (2003) is careful to point out that his

model is consistent with the existence of quality differentiation given an appropriate choice of

units (as we discuss in more detail below), much recent work has taken the model at face value
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and imposed the assumption that products are symmetric in the actual units observed in data.

Furthermore, both the standard and the “quality” interpretations of the Melitz (2003) model

impose the assumption that inputs are homogeneous. Our results suggest that both of these

assumptions are inappropriate, and that heterogeneous-plant models should explicitly allow for

quality differentiation of both outputs and inputs. The model we present in this paper is one

example of a general-equilibrium model that satisfies this criterion.

Second, our results highlight shortcomings of widely used methods of productivity estimation.

A standard approach is to deflate both output revenues and input expenditures by sector-level

price indices, and to estimate productivity as the residual in a regression of log deflated output

revenues on log deflated input expenditures. Katayama, Lu, and Tybout (2006) have argued that

even if the coefficients of this regression can be estimated consistently, the resulting productivity

estimates confound (at least) four distinct dimensions of heterogeneity across plants: (1) produc-

tive efficiency, (2) mark-ups, (3) output quality, and (4) input prices, which in part reflect input

quality. They also note that the mere availability of data on physical units of inputs and outputs

is not sufficient to identify productive efficiency separately from the other factors without further

homogeneity assumptions. While a number of techniques have recently been developed to separate

technical efficiency and mark-ups (see e.g. Melitz (2000), Bernard, Eaton, Jensen, and Kortum

(2003)), comparatively little attention has been paid to the quality dimensions, especially to the

heterogeneity in input quality.4 Our results provide empirical reinforcement for the argument

that ignoring heterogeneity in output and input quality is likely to lead to misleading inferences.

Third, our results generalize and provide a possible explanation for a familiar and well-

established finding in labor economics: the employer size-wage effect. Labor is the one input

for which both quantity (i.e. hours) and price (i.e. wage) are commonly observed in nationally

representative plant-level datasets, and wages have long been known to co-vary positively with
4Exceptions include de Loecker (2007) and the Katayama, Lu, and Tybout (2006) paper itself, both of which

structurally estimate demand systems to help distinguish the contributions of mark-ups, demand shocks (i.e. output
quality) and productive efficiency. A valid alternative approach has been to focus on homogeneous industries
where quality differentiation is likely to be limited (Foster, Haltiwanger, and Syverson, forthcoming; Syverson,
2004). Developing methods of productivity estimation that can be applied to vertically differentiated sectors while
weakening functional-form assumptions would seem to be a fruitful direction for research.
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plant size (Brown and Medoff, 1989).5 To our knowledge, our paper is the first to present evi-

dence from broadly representative data that this pattern generalizes to material inputs. The fact

that the pattern holds for material inputs as well as labor lends weight to the argument that the

size-wage correlation at least in part reflects differences in labor quality (a favored hypothesis of

Brown and Medoff (1989)), and not solely institutions or contracting patterns that are specific

to the labor market. Our results also point to a natural explanation for the size-input price cor-

relation: high productivity leads plants both to grow large and to produce high-quality outputs,

which in turn require high-quality inputs.

Fourth, our findings point to new channels linking changes in final-good markets to changes

in input markets, which are likely to play an important role in shaping how economies react to

international integration. Consider the case of a developing country integrating with a richer set

of countries. If rich-country consumers impose more stringent quality demands, then as poor-

country final-good producers increase exports and upgrade quality they will in turn increase

quality demands on input suppliers. These pressures will affect the distribution of gains from lib-

eralization between suppliers of different qualities of inputs, which may in turn affect the political

support of different constituencies for liberalization. Verhoogen (2008) developed this argument

with reference to labor inputs and wage inequality; this paper suggests that the argument can

be generalized to suppliers of material inputs as well. The fact that the cross-sectional price

implications of the Verhoogen (2004, 2008) model, developed in the Mexican context, generalize

to material inputs and hold “out of sample” in the Colombian data, raises our confidence that the

quality-complementarity hypothesis is likely to hold true more generally. Note that the hypothesis

also suggests that output quality choices will respond to changes in the availability of inputs of

different qualities, for instance following changes in tariffs on imported inputs; this may in turn

magnify the effects of such tariff changes.

The paper is organized as follows. The next section reviews related literature. Section 3.1

develops our extension of the Melitz (2003) model to include heterogeneity of inputs and the
5Bernard and Jensen (1995, 1999) document that export status is positively correlated with plant size and

(unsurprisingly, given the size-wage correlation) with wages.
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complementarity between input quality and plant productivity. Section 3.2 discusses how the

cross-sectional price implications of our model differ from those of a number of other models.

Section 4 describes the dataset. Section 5 describes our simple regression method for constructing

plant-level price indices and discusses our econometric strategy. Section 6 presents the results:

Section 6.1 presents the baseline price-plant size correlations; Section 6.2 examines how these

correlations vary across industries; and Section 6.3 investigates the extent to which market power

in input markets can explain the results. Section 7 concludes.

2 Related Literature

Ours is not the first study to use information on product prices at the plant level. Several studies

use data from the U.S. Census of Manufactures for a limited number of relatively homogeneous

sectors for which unit values can be calculated on a consistent basis. Focusing on six homogeneous

products, Roberts and Supina (1996, 2000) find a negative correlation between plant size and

output prices. In a similar vein, Syverson (2007) and Hortacsu and Syverson (2007) find negative

output price-plant size correlations in the cement and ready-mixed concrete industries, also quite

homogeneous sectors. Foster, Haltiwanger, and Syverson (forthcoming) present a theoretical

framework that can accommodate a positive output price-plant size correlation, as we discuss in

Section 3.2.1 below, but their empirical work focuses on a small number of homogeneous industries

and on the relationship between product prices and physical output productivity.6 A subset of the

studies mentioned above use information on unit values of material inputs, which are available on

a consistent basis for a limited number of inputs (Dunne and Roberts, 1992; Roberts and Supina,

1996, 2000; Syverson, 2007; Hortacsu and Syverson, 2007); none of these papers explicitly reports
6In other work on output prices, Dunne and Roberts (1992) investigate the determinants of output prices of

U.S. bread producers, but do not focus on the correlation with plant size. Abbott (1992) reports indicators of
price dispersion and presents a test for product quality variation based on a perfect-competition model that yields
the strong — and in our view implausible — prediction that quality differentiation will lead total revenue to be
uncorrelated with observed output unit values. Unit value information on outputs (not inputs) is available in the
U.S. Commodity Flow Survey (CFS) used by Hillberry and Hummels (forthcoming), but to our knowledge this
information has not been related to plant size.
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cross-sectional correlations of material input prices with plant size.7 Davis, Grim, Haltiwanger,

and Streitwieser (2006) analyze the prices paid by manufacturing plants for electricity, a canonical

homogeneous input, and show that large purchasers pay lower prices. The primary advantage of

our study over this previous work in the U.S. is that we have access to data on consistently

defined output and material input prices for a much broader set of sectors — indeed, for the

universe of manufacturing plants with 10 or more workers in Colombia and all the products they

produce or consume. The results we report below are consistent with the U.S. findings for the

most homogeneous sectors, but they also suggest that the most homogeneous sectors should not

be taken as representative of the manufacturing sector as a whole.

In other related work, Aw, Batra, and Roberts (2001) use two cross-sections of plant-level

data on output unit values from the Taiwanese electronics sector to investigate plant-level price

differences between goods sold on the export and domestic market, but do not present evidence

on cross-sectional price-plant size correlations. Bernard, Jensen, Redding, and Schott (2007) have

developed a dataset based on customs declarations for international transactions that includes unit

values at the plant level.8 This exciting dataset opens up a range of new research possibilities,

but it has the disadvantage that it contains unit-value information only for firms that engage in

international transactions, and only for the subset of transactions that cross borders. It is not

clear to what extent the results for the minority of plants that export or import in each industry

can be generalized to the industry as a whole, and no price comparisons can be made between firms

that engage in international transactions and firms that do not. The product-level information in

the Colombian manufacturing census has been used by Eslava, Haltiwanger, Kugler, and Kugler

(2004, 2005, 2006, 2007) in studies that focus on the effects of market reforms on productivity,

plant turnover, and factor adjustments, rather than on price-plant size correlations or quality

differentiation.

The work perhaps most closely related to ours is the independent project of Hallak and
7Roberts and Supina (1996, 2000) report that estimated marginal costs are declining in plant size, which they

argue in part reflects lower factor prices for larger plants. Syverson (2007) reports that input prices are positively
correlated with output prices, which are negatively correlated with plant size.

8Halpern and Koren (2007) and Eaton, Eslava, Kugler, and Tybout (2007) use similar data for Hungary and
Colombia, respectively, but physical quantity information is available only in tons.
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Sivadasan (2006), which is ongoing. Hallak and Sivadasan develop a model with minimum quality

requirements for entering the export market and also document, in Indian data, positive output

price-plant size and output price-export status correlations, similar to our first main finding above.

An advantage of the Colombian data we use is that they contain information on the unit values of

material inputs, which we argue is important for distinguishing the implications of quality models

from a number of competing explanations.9

There is a large literature in empirical industrial organization using consumer- and product-

level information to estimate consumers’ preferences for different products or product attributes,

which can be used to estimate dispersion in product quality within sectors.10 In contrast to this

literature, our approach is to take advantage of rich plant-level information to draw inferences

about product quality without imposing strong functional-form assumptions on the demand side.

One advantage of our approach is that we are able to relate output prices and input prices to

each other and to plant size and export status, which clearly would not be possible without such

data. Another advantage is that our approach is more amenable to cross-sector comparisons than

approaches that rely on data on detailed product attributes.

Our work is also related to two recent papers relating unit values in trade-flow data to exten-

sions of the Melitz (2003) model: Baldwin and Harrigan (2007) and Johnson (2007). Both papers

make the provocative observation that exports to more distant or difficult-to-reach markets have

higher unit values on average. This fact is difficult to explain with the standard interpretation

of the Melitz (2003) model, which would suggest that more productive firms both charge lower

prices and enter more distant markets than less productive firms. The fact is consistent with the

hypothesis that more productive firms produce higher-quality goods and charge higher prices, a
9We are aware of two other independent projects using producer-level output price information that are currently

ongoing. In Mexican data, Iacovone and Javorcik (2007) document that plants raise output prices in preparation for
exporting, which suggests that the quality-upgrading process highlighted by Verhoogen (2004, 2008) begins prior
to entry into the export market. Crozet, Head, and Mayer (2007) use price information and direct quality ratings
on French wines to test the implications of a quality sorting model of trade. Neither of these projects has access to
data on the unit values of material inputs.

10See Ackerberg, Benkard, Berry, and Pakes (2007) for a useful overview. Goldberg and Verboven (2001) use
direct information on product attributes in conjunction with demand-system estimation to analyze quality-adjusted
price dispersion in the European automobile market. Khandelwal (2007) uses techniques developed in this literature
to estimate quality dispersion using unit-value information in trade-flow data, without relying on information on
detailed product attributes.
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hypothesis that is explicitly present in the Verhoogen (2004, 2008) model as well as in the vari-

ants of the Melitz model presented by Baldwin and Harrigan (2007) and Johnson (2007). The

hypothesis is also implicitly present in the Melitz (2003) model itself, given a suitable redefinition

of quality units — a redefinition alluded to (albeit not fully developed) in the Melitz’s original

paper (Melitz, 2003, p. 1699). Appendix A.1 spells out the “quality” version of the Melitz (2003)

model, shows how it relates to the model we present in the next section, and shows that it is iso-

morphic to the Baldwin and Harrigan (2007) model, if one abstracts from differences in distance

between countries.11 As will become clear below, the key difference between our quality model

and the quality Melitz/Baldwin-Harrigan model is the allowance for heterogeneity of inputs and

the complementarity between plant productivity and input quality, which generates distinctive

implications for input prices. An additional difference is that our framework treats product qual-

ity as a choice variable of plants, rather than a deterministic function of plants’ productivity

draws; this enables us to provide an account of how differences in quality distributions emerge

endogenously across sectors.

3 Theory

This section presents an extension of the Melitz (2003) framework to include heterogeneity of

inputs and a complementarity between input quality and plant productivity in producing output

quality, along the lines of Verhoogen (2008). We also discuss verbally a number of relevant theories

that do not fit within our framework. While the model we present is special in many ways, we

would argue that the implications we draw are likely to be robust across a variety of specifications

of demand systems and production technologies. Similarly, although our model has just two

countries, one differentiated sector per country and one type of input, the implications are likely

to be generalizable to a setting with many countries, sectors and inputs.
11The Johnson (2007) model also carries implications similar to the quality Melitz model if one abstracts from

distance.
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3.1 A General-Equilibrium Model with Quality-Differentiated Inputs

There are two symmetric countries and in each country there are two sectors, a differentiated, mo-

nopolistically competitive sector and a non-differentiated numeraire sector with constant returns

to scale and perfect competition. In each country, a representative consumer has the following

standard asymmetric CES utility function:

U =

{[∫
λ∈Λ

(q(λ)x(λ))
σ−1

σ dλ

] σ
σ−1

}β

{z}1−β (1)

where z is consumption of the non-differentiated good; λ indexes varieties (and will also index

plants) in the differentiated sector; Λ represents the set of all differentiated varieties available in

the market (produced in either country); σ is a parameter capturing the elasticity of substitution

between varieties, where we make the standard assumption that σ > 1; q(λ) is the quality of variety

λ, assumed to be observable to all; and x(λ) is the quantity consumed. The Cobb-Douglas form

implies that the representative consumer in each country spends a constant share of income β on

differentiated varieties and a share 1− β on the non-differentiated good. Consumer optimization

yields the following demand for a particular differentiated variety, λ:

x(λ) = Xq(λ)σ−1

(
p(λ)
P

)−σ

(2)

where P is an aggregate quality-adjusted price index and X is a quality-adjusted consumption

aggregate of the differentiated varieties available on the market.12

We assume that there is just one input, as in Melitz (2003), but we allow for heterogeneity

in the quality of this input. We denote quality of the input by c, and assume that in each

country there is a mass of suppliers, heterogeneous in c distributed with positive positive support
12Specifically,

P ≡

"Z
λ∈Λ

„
p(λ)

q(λ)

«1−σ

dλ

# 1
1−σ

(3)

X ≡
»Z

λ∈Λ

(q(λ)x(λ))
σ−1

σ dλ

– σ
σ−1

(4)
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over (0,∞). Suppliers are assumed to supply the input inelastically. We assume the marginal

productivity of an input in the non-differentiated, constant-returns-to-scale numeraire sector is c

and hence the price that the input commands in that sector, which we refer to as the “wage”, is

also c. In each country, wages in the non-differentiated sector pin down wages for the differentiated

sector; plants in the differentiated sector are assumed to be price-takers in the input market.

In the differentiated sector in each country, there is a continuum of potential plants,13 hetero-

geneous in what, borrowing a term from Sutton (2007), we refer to as “capability”, represented by

the parameter λ with distribution g(λ) with support over [λm,∞), where λm > 0. We allow this

capability parameter to play two roles: it may reduce unit input requirements, as productivity

does in the standard interpretation of the Melitz model, or it may raise output quality for a given

set of inputs.14

As in Verhoogen (2008), we separate the production of physical units of output and the

production of quality. Each unit of output is assumed to require 1
λa units of the input, where

a ≥ 0. Also following Verhoogen (2008), we assume a complementarity between the plant’s

capability and the quality of the input in the production of output quality. Rather than use

the Cobb-Douglas formulation of that paper, we use a CES generalization of the Cobb-Douglas

form recently used in a different context by Jones (2007). It is convenient to parameterize the

contribution of plant capability as λb where b ≥ 0 and to parameterize the contribution of input

quality as c2.15 The production function for quality is then:

q(λ) =
[
1
2

(
λb

)α
+

1
2

(
c2

)α
] 1

α

(5)

13In this section, we treat plants as decision makers, equivalent to single-establishment firms. In the empirical
section we have data only on plants and do not know which firms they belong to, and for this reason refer to plants
rather than firms in the theory.

14Sutton (2007) uses the term “capability” to refer to a pair of parameters, one reflecting unit input requirements
and the other governing quality for a given set of inputs. Here we collapse the two dimensions of plant heterogeneity
to one dimension. The Hallak and Sivadasan (2006) model mentioned above maintains the two dimensions of
heterogeneity. See also Brooks (2006).

15The choices of 1
2

as the weighting factors and the quadratic form c2 are convenient but not essential. If the
quality production function (5) were instead:

q(λ) =
h
µ

“
λb

”α

+ (1− µ)
“
cγ

”αi 1
α

then the conditions 0 < µ < 1 and γ > 1 would be sufficient.
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The parameter α reflects the degree of complementarity between capability and input quality.

As α becomes more negative, the complementarity increases; as α → −∞, the function becomes

Leontief, where quality is the minimum of λb and c2. Following Jones (2007), we assume α < 0; this

will ensure that the second-order conditions for a maximum in the plants’ optimization problem

are satisfied. The parameter b reflects the technological ease or difficulty in translating higher

plant capability into improved product quality. If b = 0 then superior capability will not translate

into higher quality and outputs will be symmetric across plants; a higher b reflects a greater scope

for quality differentiation. A high b corresponds loosely to what Khandelwal (2007) (borrowing

the term from Grossman and Helpman (1991)) calls a long “quality ladder” and more closely to

what Sutton (1998) calls a high “escalation parameter” in a sector with a single technological

“trajectory” (i.e. one technologically related group of products).16 To keep the model simple,

we have not introduced a parameter capturing the willingness of consumers to pay for product

quality, which may also vary across sectors. We would expect such differences across sectors to

play a similar role as differences in the technological possibilities for quality upgrading. That is,

one could interpret a higher b as indicating either greater technological ease in improving quality

or greater willingness of consumers to pay for product quality improvements, or both.

The remainder of the model is as in Melitz (2003). There is a fixed cost of production, f ,

and no cost of differentiation, with the result that all plants differentiate. Plants are constrained

to produce one good. Plants do not know ex ante what their capability is and must pay an

investment cost fe, paid to input suppliers, in order to receive a capability draw. There is an

exogenous probability of death δ in each period. There is a fixed cost of producing for the export

market, fex, where fex > f by assumption.17 In the interests of simplicity, we assume that there

are no variable costs of trade. We focus on steady-state equilibria in which the number of entrants

equals the number of deaths and the distribution of capabilities in the market does not change.

To simplify the exposition, we first focus on plants’ decisions conditional on being only in
16In the case of an industry with a single technological trajectory, Sutton’s escalation parameter α varies inversely

with the elasticity of required fixed and sunk investments (i.e. R&D and advertising expenditures) with respect to
the resulting quality, which he labels β (Sutton, 1998, Ch. 3).

17As in Melitz (2003), it does not matter whether we think of fex as a per-period fixed cost or as the amortized
per-period portion of a single, large sunk cost paid when first entering the export market.

12



the domestic market, and then briefly discuss the general-equilibrium analysis of the two-country

economy (the details of which appear in Appendix A.2). Plants choose input quality and output

price. The input quality determines the wage (in our simple model, the two are equal); input

quality and λ together determine output quality, which, together with the output price, determines

the number of units sold. The profit-maximization problem facing each plant, conditional on

entering only the domestic market, is the following:

max
p,c

{[
p− c

λa

]
x− f

}
(6)

where x is given by (2).

Each plant in the continuum of plants is infinitesimally small and ignores the effects of its

decisions on the aggregates X and P . Optimization yields the following:

c(λ) = λ
b
2 (7a)

q(λ) = λb (7b)

p(λ) =
(

σ

σ − 1

)
(λ)

b
2
−a (7c)

r(λ) =
(

σ − 1
σ

)σ−1

XP σ(λ)η (7d)

where r(λ) represents revenues and we define η ≡ (σ − 1)
(

b
2 + a

)
> 0.18

Several points are important to notice. First, marginal cost is c
λa = (λ)

b
2
−a (since the non-

differentiated sector pins w = c) and price is a fixed mark-up over marginal cost, as is standard

in models with Dixit-Stiglitz (1977) CES demand specifications.

Second, plant size, as measured by revenues, is unambiguously increasing in plant capability.

Third, if there is no scope for quality differentiation — that is, if b = 0 — then (as long as

a > 0) this model reduces to the Melitz (2003) model.19 When b = 0, there is no complementarity

between plant capability and input quality, and all plants choose the same wage. Marginal cost is
18The fact that α drops out of these expressions is a consequence of the choice of the exponent on c in (5). In

general, if the exponent were γ in place of 2 (see footnote 15) then c(λ) and hence p(λ) would depend on α.
19To reproduce the Melitz (2003) model to the letter, three additional minor modifications are required. See

Appendix A.1.
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then declining in plant capability, since capability reduces unit input requirements. Because the

mark-up is constant, p(λ) also declines in λ. In the standard interpretation of the Melitz model,

p(λ) is taken to represent observed output prices. Thus the standard interpretation predicts a

negative correlation between output price and plant size. Because all plants choose the same

wage, the model predicts zero correlation between input prices and plant size. Melitz (2003)

is careful to point out that his model is consistent with quality differentiation given a suitable

choice of quality units. In particular, if we interpret p(λ) as reflecting price in quality units, the

model can generate a zero or positive correlation between observed output price in physical units

and plant size. (Appendix A.1 spells out this argument in detail.) But, again, since there is no

complementarity between plant capability and input quality, the model predicts zero correlation

between input prices and plant size. Columns 1 and 2 of Table 1 summarize the predictions of

the standard and quality interpretations of the Melitz (2003) model.

Fourth, if there is some scope for quality differentiation — that is, if b > 0 — then the com-

plementarity between plant capability and input quality generates positive relationships between

plant capability λ and both input price w and output quality q.

Fifth, the previous point implies a tendency toward a positive correlation between output

prices and λ. This tendency may be offset, however, by the input-requirement-reducing effect of

capability. At sufficiently low values of b, the input-requirement-reducing effect will dominate,

and output prices will be declining in plant capability, λ. At sufficiently high values of b, the

quality-complementarity effect will dominate, and output prices will be increasing in λ. Using

the fact that plant size in unambiguously increasing in λ, it is straightforward to show (1) that

the output price-plant size slope is negative for low values of b (0 ≤ b < 2a) and positive for high

values of b (b > 2a); (2) that as long as b > 0 the input price-plant size slope is positive (although

the relationship may be weak if b is close to zero); and (3) that both slopes increase with b.20

Columns 3 and 4 of Table 1 summarize these predictions.

Sixth, if plant capability only affects quality conditional on inputs and does not reduce unit

input requirements — that is, if a = 0 — then (as long as b > 0) this model reduces to a model akin
20Formally, using logs as we will in the empirical section below, it follows from (7a),(7c) and (7d) and that fact
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to Verhoogen (2008), in which both output prices and input prices are unambiguously increasing

in plant capability and hence positively correlated with plant size.21

Seventh, a possibly counter-intuitive prediction of our model is that in industries with scope

for quality differentiation (b > 0), output quality is positively correlated with plant size. This

may seem implausible to rich-country consumers of, for example, French wines or Swiss watches.

While it may well be that this model fails to describe quality choices and the extreme high-quality

end of many industries, it appears that it does capture an important characteristic of industrial

sectors in countries at roughly Colombia’s level of development. For instance, Verhoogen (2008)

finds that larger plants in Mexico were more likely to have ISO 9000 certification, an international

production standard commonly interpreted as a measure of product quality. We will also see below

that the positive plant size-quality relationship is consistent with our findings in the Colombian

data.

The remainder of the model works essentially as in Melitz (2003), and for that reason has been

relegated to Appendix A.2. To summarize briefly, three conditions — a zero-profit condition for

remaining in the domestic market, a zero-profit condition for entering the export market, and a

free-entry condition that the ex ante expected present discounted value of paying the investment

cost to receive a capability draw is zero — pin down the cut-off values for remaining in the domestic

market, λ∗, and entering the export market, λ∗ex. Since fex > f by assumption, the cut-off for

entering the export market is to the right of the cut-off for remaining in the domestic market:

λ∗ < λ∗ex . (Refer to equation (A11) in the appendix.) The facts that total revenues of plants

are equal to total income of input suppliers in the differentiated sector in each country and that

that w = c that:

ln p =

„
b− 2a

2η

«
ln r −

„
b− 2a

2η

«
ln

"
XP σ

„
σ − 1

σ

«σ−1
#
− ln

„
σ − 1

σ

«
(8)

ln w =
b

2η
ln r − b

2η
ln

"
XP σ

„
σ − 1

σ

«σ−1
#

(9)

If 0 < b < 2a, then d ln p
d ln r

< 0. If 0 < 2a < b then d ln p
d ln r

> 0. d ln w
d ln r

> 0 in both cases. It also follows that
∂
∂b

`
d ln p
d ln r

´
> 0 and ∂

∂b

`
d ln w
d ln r

´
> 0; both slopes are increasing in b.

21The Verhoogen (2008) model uses discrete-choice microfoundations for demand, rather than a CES represen-
tative consumer, uses a different specification of the quality production function, and is partial-equilibrium, but is
otherwise similar to this model in the case where a = 0.
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the representative consumer dedicates a constant share of expenditures to the differentiated good

pin down the scale of the economy. The most important point of the solution of the two-country

case for our empirical purposes is that, since the export cut-off is to the right of the cut-off for

entry into the domestic market, export status is correlated with λ and hence we have the same

predictions for the correlations of output and input prices with an indicator for export status as

we have for the correlations with plant size.22

3.2 Discussion of Alternative Models

This sub-section discusses three additional types of models — models of plant-specific idiosyncratic

demand shocks, models in which input suppliers have market power, and perfect competition

models — and asks whether they can generate cross-sectional price implications similar to those

of the model of the previous sub-section without appealing to differences in output and input

quality across plants.

3.2.1 Idiosyncratic Demand Shocks

The approach of inferring product quality from output prices and quantities typically defines

quality as any factor that shifts the demand curve for a product outward. But there are many

factors that may lead to greater demand for the products of a particular plant that do not corre-

spond to conventional notions of product quality. One example might be favorable contracts from

a well-placed government procurement official. Another might be collusive agreements between

particular plants not to compete head-on in particular markets. Another might be plant- or firm-

specific import licenses (Mobarak and Purbasari, 2006). Although in Dixit-Stiglitz-type frame-

works such shocks would typically not affect output prices since they would not affect marginal

costs, in the context of other demand systems it is quite plausible that such idiosyncratic shocks
22Note that the symmetry across countries in this model implies that if plants enter the export market they will

sell the same amount in the export market as in the domestic market. Thus the model does not predict a positive
correlation of plant size and the export share of sales, conditional on exporting. Nonetheless, below we also use the
export share of sales as an indicator of export status, partly for the purposes of comparison with existing results in
the literature, and partly because it is not difficult to imagine extensions to our model in which the export share
and plant capability would be positively related, for instance if capability reduced per-unit export costs as well as
unit input requirements or if plants exported higher-quality goods with higher prices to richer consumers in foreign
markets.
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would lead plants both to raise prices and to increase output. For example, in the framework

of Foster, Haltiwanger, and Syverson (forthcoming), which is based on a demand system similar

to that of Melitz and Ottaviano (forthcoming) with endogenous mark-ups, plant-specific demand

shocks unrelated to quality can have such an effect. (In their model, productivity tends to lower

costs and output prices, as in the model above, so the prediction for the output price-plant size

correlation is not unambiguous.) Plant-specific demand shocks unrelated to quality pose a chal-

lenge for the quality story, since they may generate a positive output price-plant size correlation

even in the absence of heterogeneity in product quality. In other words, under some parameter

values, the implications of the plant-specific demand shocks story and the quality story for the

output price-plant size correlation are observationally equivalent.

To differentiate the implications of the competing theories, we turn to the relationship between

input prices and plant size, and how the price-size correlations differ across sectors. Regarding

input prices, Foster, Haltiwanger, and Syverson (forthcoming) consider the possibility that plants

are also subject to idiosyncratic input price shocks, but in their model, a high input price is

unambiguously bad for plants: it raises input costs and output prices, and leads to reduced

output. This mechanism generates a negative correlation between input prices and plant size.

While it is possible that a positive shock to plant-specific demand could coincide with a positive

shock to plant-specific input prices, in their framework there is no explicit mechanism that would

lead this to happen systematically.

An extension of the Foster et al. framework could generate a systematically positive input

price-plant size correlation. Consider the possibility that plants have monopsony power in input

markets and face upward-sloping supply curves for inputs. In this case, a plant-specific demand

shock will generate an increase in derived demand for inputs, which will in turn tend to lead plants

to pay a higher input price. This effect could offset the effect of shocks to input prices discussed in

the previous paragraph, and generate a positive input price-plant size correlation overall, even in

the absence of quality differentiation. This extension of the demand-shocks story carries different

implications from our quality model for how the input price-plant size correlation varies across
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sectors, however. First, the mechanism would not lead us to expect a robustly positive input price-

plant size correlation in competitive or near-competitive input sectors, where plants presumably

face flat or very nearly flat supply curves. Second, the mechanism would not lead us to expect

either the output price-plant size correlation or the input price-plant size correlation to increase

with the scope for quality differentiation.

Note also that the prediction of a positive input price-plant size correlation relies on the

presumption that large plants do not have significantly more monopsony power than smaller

plants purchasing in the same input markets. If larger plants had more monopsony power than

smaller plants — the analogue of the “Wal-Mart effect” for the manufacturing sector — then all

else equal one would again expect a negative input price-plant size correlation.

Columns 5 and 6 of Table 1 summarize the predictions of the two versions of the demand-

shocks model. The output price-plant size correlation may be positive or negative. In competitive

input markets with plant-specific input-price shocks, we would expect a negative input price-plant

size correlation. In input markets in which producers have market power, the input price-plant

size correlation may be positive or negative.

3.2.2 Supplier Market Power

An alternative but related idea is that plants are subject to plant-specific demand shocks but

that suppliers have market power in input markets. Within industries, plants facing positive

demand shocks for their output may face lower elasticities of output demand, which may in

turn lead them to be less sensitive to the prices of inputs. If suppliers have market power, they

will optimally charge higher prices to these less price-sensitive producers. Halpern and Koren

(2007) have recently presented a model with this feature, which they call “pricing-to-firm.” This

mechanism is consistent with both a positive correlation of output prices and plant size and a

positive correlation of input prices and plant size. Note that the mechanism requires that suppliers

have market power in input markets. Note also, as above, that the mechanism would not lead us

to expect either the output price-plant size correlation or the input price-plant size correlation
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to increase with the scope for quality differentiation. Columns 7 and 8 of Table 1 summarize the

predictions of this model: a positive output price-plant size correlation in all sectors, a positive

input price-plant size correlation in input sectors in which suppliers have market power, and zero

input price-plant size correlation in competitive input sectors.

3.2.3 Perfect-Competition Models

In this final theoretical sub-section, we briefly consider models with perfect competition. In our

framework, if the elasticity of substitution were to grow without bound, the model would approach

perfect competition and the plant with the lowest quality-adjusted cost would take over the entire

market. A standard way of reconciling perfect competition with a non-degenerate distribution

of plant sizes is to introduce marginal costs that increase with output, as in the span-of-control

model of Lucas (1978). Under some conditions, such increasing-costs models are isomorphic

to Melitz-type monopolistic-competition models with constant costs; see for instance Atkeson

and Kehoe (2005). A model with such increasing costs and the assumptions (a) that producing

higher quality goods requires higher-quality inputs, and (b) that plants with lower marginal cost

curves have differentially lower costs of producing high quality could generate cross-sectional price

implications similar to those of our monopolistic-competition quality model.

The key point, however, is that perfect-competition models cannot generate such correlations

in the absence of quality differences of inputs and outputs. In the absence of such quality differ-

ences, models with perfect competition and increasing costs have the feature that plants expand

output until price equals marginal cost; only plants with the same price and costs can produce

the same good in equilibrium. Thus we would not expect a systematic relationship between ei-

ther input prices or output prices and plant size. A possible alternative argument is that the

plants observed to charge different prices are selling different products that should be thought of

as belonging to different “industries”. But in this view, there is no compelling economic reason

for plants selling one good to be systematically larger or smaller than plants selling a different

good. (One could assume that technology dictates that the optimal plant size is larger in indus-
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tries with higher-priced goods, but this is assuming what needs to be proven.) In the absence

of such an economic reason, there is no expectation of a systematic correlation between output

or input prices among the plants that have been classified together in one industry. Column 9

of Table 1 summarizes the predictions of perfect-competition models without quality differences:

zero cross-sectional correlation between plant size and either output or input prices.

4 Data

The data we use are from the Encuesta Anual Manufacturera (EAM) [Annual Manufacturing

Survey], collected by the Departamento Administrativo Nacional de Estad́ıstica (DANE), the

Colombian national statistical agency. The dataset can be considered a census of manufacturing

plants with 10 or more workers. The plant-level data are the same that have been used, for

instance, in Roberts and Tybout (1997), Clerides, Lach, and Tybout (1998), and Das, Roberts,

and Tybout (2006). Complete data (including product-level information) are available for the

1982-2005 period. Data on exports and imports, as well as employment and earnings of blue-collar

and white-collar workers, are available on a consistent basis only for 1982-1994. We construct two

separate plant-level unbalanced panels, a 1982-2005 panel and a 1982-1994 panel. We observe

approximately 4,500-5,000 plants in each year.

In conjunction with this standard plant survey, DANE also collects information on the value

and physical quantity of each output and input of each plant, which is used to calculate national

product price indices. The product classification scheme is based on the 4-digit International

Standard Industrial Classification (ISIC) revision 2; DANE then adds four Colombia-specific dig-

its. We observe approximately 6,000 distinct product codes in the data. A strength of these data

is that DANE analysts have been careful about ensuring that units of measurement are homoge-

neous within product categories. In some cases new categories have been created, corresponding

to the same physical product but using different units of measurement, in order to ensure homo-

geneity. From these data we are able to calculate unit values for every product produced and

every input consumed by each plant. See Appendix B.1 for variable definitions and Appendix B.2
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for details on the processing of the datasets.

Table 2 presents summary statistics on our two panels, the 1982-1994 unbalanced panel and

the 1982-2005 unbalanced panel. Consistent with patterns for the U.S. documented by Bernard

and Jensen (1995, 1999), exporting plants are larger, in terms of both sales and employment, and

pay higher wages; also, a minority of plants export and conditional on exporting, plants derive

a minority of their sales from the export market. Consistent with patterns for Taiwan (Aw and

Batra, 1999) and Mexico (Verhoogen, 2008), exporting plants have a higher white-collar-to-blue-

collar wage ratio. Exporting plants produce in a larger number of distinct output categories and

purchase from a larger number of distinct input categories than non-exporters.23

5 Econometric Strategy

Our econometric goal is to estimate the cross-sectional correlations between output prices, input

prices, plant size and export status, and compare them to the predictions of the various theoretical

models summarized in Table 1. In order to compare price levels to plant characteristics, it is

convenient first to aggregate the information on unit values at the product level to an “average”

price at the plant level. This task is complicated by two difficulties. First, it is not clear how

to compare prices or quantities across goods, since units are typically not comparable across

products. Second, industry classifications of plants are to some extent arbitrary and a given good

may be produced (or consumed) by plants in a number of different industries. Our solution is to

use a simple regression method to estimate a plant-specific average price based on comparisons of

a plant’s price to those of other plants producing (or consuming) the same product, regardless of

industry, controlling flexibly for the plant’s product mix. Specifically, we run an OLS regression

of product-level prices on full sets of product-year effects and plant-year effects and take the
23The fact that exporters produce in more distinct output categories than non-exporters is consistent with the

prediction of the multi-product-firm theory of Bernard, Redding, and Schott (2006b) and the patterns documented
in U.S. data by Bernard, Redding, and Schott (2006a).
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coefficients on the plant-year effects as our plant-specific price indices. Our basic specification is:

ln pijt = αt + θit + µjt + uijt (10)

where i, j, and t index goods, plants, and years, respectively; ln pijt is the log real unit value of

the good; αt is a year-specific intercept; θit is a product-year effect; µjt is a plant-year effect; and

uijt is a mean-zero disturbance. We run this regression separately for output prices and input

prices, and refer to the estimates of the plant-year effects, µ̂jt, as the output price index and the

input price index, respectively. These indices are identified by differences between the unit values

of a given plant and unit values of other plants producing (or consuming) the same products; the

effect of product composition is controlled for flexibly by the product-year effects.

Econometric identification of the plant-year and product-year effects in this model is not

assured. Intuitively, the issue is that if in a particular year a plant only produces one product,

and in that year the product is only produced by that plant, then it is not possible to identify the

plant-year effect for that plant separately from the product-year effect for that product. A similar

issue arises in the literature using employer-employee data to identify plant and person effects

(Abowd, Kramarz, and Margolis, 1999). Generally speaking, the plant-year effects can only be

uniquely identified for plants that are “connected” to other plants by a “switcher” — that is, a

product produced (or consumed) simultaneously by more than one plant — in a given year. To

ensure this, we find the largest such group of connected plants and drop the plants not in that

connected set. This leads us to drop fewer than 5% of plant-year observations in the sample.

Once we have estimated the output and input price indices, the next step is to compare them

to measures of plant size and export status. Our basic model for estimating the cross-sectional

correlations is simply:

µjt = Xjtγ + δr + ηkt + vjt (11)

where µjt is the plant-year effect from (10); Xjt is a measure of plant size for plant j in year t; δr
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and ηkt are region and industry-year effects, respectively;24 and vjt is a mean-zero disturbance. We

estimate this model on the full unbalanced panel, including all available years in which a plant has

complete data. Observations across years are likely not to be independent within plants; we allow

for within-plant correlation across years and cluster errors by plant. The coefficient of interest in

this regression is γ; this is the estimate we will compare to the theoretical predictions in Table 1.

In some specifications, we estimate (11) with an indicator for export status or the export share of

sales as the Xjt variable. In others, we interact Xjt with a sector-level measure to examine how

the slope term, γ, varies across sectors. It is worth underlining the fact that the estimate of γ

reflects a correlation, not a causal effect of plant size on plant-level average prices. Indeed, our

argument is precisely that both plant size and prices are determined by unobserved heterogeneity

in plant capability. Nonetheless, we argue that the estimate of γ is informative in the sense that

it may help us to discriminate between competing models with contrasting predictions for the

cross-sectional correlations.

A natural measure of plant size is gross output; this is in fact the standard measure of plant

size used by the Colombian statistical agency, measured as total sales plus net intra-firm trans-

fers plus net change in inventories. Measurement error in gross output is a potential concern,

however; plant data from developing countries are notoriously noisy, and the Colombian data are

no exception.25 To the extent that the measurement error is classical, it may simply attenuate

coefficient estimates toward zero. But non-classical measurement error is also a possibility. To

address this concern, we use an alternative measure of plant size for which measurement error

is likely to be less severe and, importantly, uncorrelated with reports of values and quantities of

outputs and inputs: total employment. We use log total employment as an instrument for log

total output in an instrumental-variables procedure; under the assumption that the measurement
24Note that it is not redundant to have industry-year effects in this regression, even though product-year effects

were controlled for in the estimation of µjt. The reason is that there is not a perfect mapping from product
categories to industries; two plants producing the same product may belong to two different industries, depending
on the other products they produce.

25Concerns about measurement error explain why we do not simply regress prices on physical quantities at the
product level. Unit values are calculated by dividing total value produced or consumed by quantity. Hence any
measurement error that biases quantity up will bias unit value down, generating a spurious negative correlation
between them.
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errors in gross output and total employment are uncorrelated, the IV estimates will not be subject

to the measurement-error bias.

The two-step procedure described by (10) and (11) is econometrically nearly equivalent to a

one-step procedure in which log prices are regressed directly on Xjt. Substituting (10) into (11),

we have:

ln pijt = αt + θit + Xjtγ + δr + ηkt + {uijt + vjt} (12)

If the the disturbances, uijt and vjt, are uncorrelated with the co-variates in this equation, the two-

step estimator corresponding to (10)-(11) and the one-step estimator corresponding to (12) will

converge asymptotically to the same estimate. As discussed above, Xjt is likely to be correlated

with unobserved plant capability, contained in vjt. As long as vjt is uncorrelated with the other co-

variates — in particular, θit, the product-year effects — then the two-step and one-step estimators

are still expected to converge to the same value (albeit not the causal effect of Xjt on prices.) If

θit and vit are correlated, however, then the one-step and two-step estimators may not converge.

Baker and Fortin (2001) contain a useful discussion of the relationship between such one-step

and two-step estimators, and note that the two-step procedure may be preferred because it is

consistent even in the presence of a correlation between θit and vjt, since vjt is absorbed by the

plant-year fixed effects in the first step. Below we report estimates from both the two-step and

one-step models, and show that they are qualitatively similar, although not identical.

6 Results

6.1 Baseline Estimates

Panel A of Table 3 presents estimates of equation (11) with the output price index as the dependent

variable.26 Columns 1 and 2 use log total output and log employment, respectively, as the measures
26The first step of our estimation procedure generates thousands of plant-specific price indices for outputs and

inputs in each year, too many to report in a table. We simply note that the mean values of the output price index
are -0.023 (standard error 0.005) for non-exporters and 0.106 (standard error 0.010) for exporters. The mean values
of the input price index are -0.009 (standard error 0.002) for non-exporters and 0.050 (standard error 0.004) for
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of plant size. Column 3 reports the instrumental-variable estimate of the coefficient on log total

output using log employment as the excluded instrument.27 The IV estimate for log total output

is notably larger than the OLS estimate, consistent with the observation above that measurement

error in gross output may generate attenuation bias. The coefficient on log employment is quite

close to the IV estimate for total output, consistent with the hypothesis that employment is

measured with less error than gross output. While the Column 1 coefficient is insignificant, the

estimates in Columns 2 and 3, arguably less subject to bias than Column 1, indicate that output

prices are positively correlated with plant size on average. The price index is in log terms and the

estimates can be interpreted as elasticities: Column 2 suggests, for instance, that a 10% greater

employment is associated with .13% higher output prices.

Panel B of Table 3 presents the analogous regressions with the input price index as the

dependent variable. In moving from Column 1 to Columns 2 and 3, the coefficient on plant

size falls. This suggests a non-classical measurement error bias.28 But again, the arguably more

reliable estimates are those in Columns 2 and 3. The important message of those columns is that

input prices are positively correlated with plant size on average. The estimates suggest that 10%

greater plant size is associated with .11-.12% higher input prices. Note that the magnitudes of

the input-price estimates in Columns 2-3 of Panel B are reassuringly similar to the magnitudes of

the corresponding results for output prices in Columns 2-3 of Panel A. We return to the question

of whether the positive input price-plant size correlation can be explained by market power of

buyers or sellers in input markets in Section 6.3 below.

To check robustness, Table 4 presents estimates using the one-step procedure, described by

equation (12), for output prices (Panel A) and input prices (Panel B).29 The point estimates

exporters. The average for all plants is normalized to zero in each year.
27To work around computational constraints due to the large number of fixed effects, we use an indirect least

squares (ILS) estimator, estimating the first stage and reduced form in a single stacked regression (allowing for
clustering of errors across equations), then dividing the relevant reduced-form coefficient by the corresponding first-
stage coefficient and calculating the standard error by the delta method. We also implement this ILS estimator in
the instrumental-variables models below.

28One possibility is the following. Suppose that a “producer” re-sells a good produced by a “supplier”, reports
the money paid to the supplier as input expenditure, reports sales of the good in total revenues, but does not
include the number of physical units in quantity of the good produced. Then a regression of input unit value on
gross output will yield a positively biased coefficient. Other measurement biases are possible.

29For computational reasons, we include industry fixed effects rather than industry-year fixed effects in this
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for output prices in Panel A are larger than the corresponding estimates using the two-step

method in Panel A of Table 3. One possible explanation, as noted above, is that the product-

year indicator variables (θit in (12)) may be correlated with unobserved plant characteristics (vjt

in (12)). Nonetheless, it is reassuring that the qualitative story is similar: output prices are

positively correlated with plant size. It is also reassuring that the one-step estimates for input

prices in Panel B are essentially identical to the corresponding one-step estimates in Panel B of

Table 3.

Table 5 uses the 1982-1994 panel, in which export status is observed on a consistent basis,

to estimate correlations between export status and output and input prices. To simplify the

presentation of results, hereafter we focus on the reduced-form regressions with log employment

as the key co-variate; the IV estimates are similar. Results for the output price index are in Panel

A, and for the input price index in Panel B. For comparison purposes, Column 1 of each panel

presents a regression with log employment as the key co-variate, comparable to Column 2 of Table

3; the results are similar to those for the longer 1982-2005 panel. Columns 2 and 3 indicate that

both output and input prices are higher among exporters. On average, exporters (i.e. plants with

non-zero exports) have approximately 6% greater output prices and 4.7% greater input prices

than non-exporters. Caution is warranted in interpreting the results in Columns 4 and 5, since,

if one believes our theoretical framework, both employment and export status are functions of a

single underlying capability parameter, λ, and are likely to be collinear. Subject to that caveat,

the results in Columns 4 and 5 of Panel A indicate that being an exporter is associated with

higher plant-level output prices even conditional on plant size.30 The results in Columns 4 and 5

of Panel B are more mixed but by no means rule out a positive association of export status with

input prices, even conditional on plant size.

As mentioned in the introduction, the one input for which unit values are commonly observed

in plant-level datasets is labor. To compare our results for material inputs to results for employee

specification. Because we also include product-year fixed effects, this modification makes little difference for the
point estimates.

30These results are consistent with the results of Hallak and Sivadasan (2006) in Indian data mentioned above.
The fact that their theoretical model contains two dimensions of heterogeneity means that it is able to provide a
coherent account of the finding of systematically higher prices among exporters conditional on plant size.
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wages, Columns 1-5 of Table 6 present regressions that are similar to those in Columns 1-3, Panel

B, Table 5 but with earnings of all employees, blue-collar employees, and white-collar employees,

log earnings ratio and log skill ratio of white-collar to blue-collar workers, respectively, as the

dependent variables. The table presents 15 separate regressions, of the dependent variable at the

top of the column on the co-variate at left (as well as industry-year and region effects). We see

clear evidence that the earnings of both blue-collar and white-collar workers, as well as the relative

earnings of white-collar workers, are greater in larger plants and in plants with more exports. The

positive wage-plant size relationship is a robust and familiar fact (Brown and Medoff, 1989), and

the positive wage-exporting relationship is also consistent with long-established results (Bernard

and Jensen, 1995, 1999). The positive relationships between wage inequality and plant size and

between wage inequality and exporting in Column 4 are less well known, but are also consistent

with findings from Taiwan (Aw and Batra, 1999) and Mexico (Verhoogen, 2008). The results in

Column 5 are less robust but nonetheless are suggestive that the skill ratio is higher in larger

plants and plants with greater exports.

6.2 Comparison Across Industries

The results above indicate that output and input prices are positively correlated with plant size

when we constrain the slope coefficient to be the same across industries. But these average

correlations may conceal significant differences across sectors. As discussed in Section 3.1 above,

our model would lead us to expect negative output price-plant size and zero or low input price-

plant size correlations in homogeneous industries yet strongly positive correlations in industries

with more scope for quality differentiation.

As mentioned in the introduction, our measure of the scope for quality differentiation at the

industry level is the ratio of total industry advertising and R&D expenditures to total industry

sales for large U.S. firms from the 1975 U.S. Federal Trade Commission (FTC) Line of Business

Survey.31 The Line of Business Program, which was in existence from 1974 to 1977, is unique in

that it required firms to break down advertising and R&D expenditures by industry as opposed to
31We are indebted to John Sutton for suggesting this measure.
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reporting consolidated figures at the firm level. As a consequence, the data are generally perceived

to be the most accurate industry-level information on advertising and R&D expenditures, and

have been used in a large number of studies, including Cohen and Klepper (1992), Brainard (1997),

Sutton (1998), and Antras (2003). In the context of a model with fixed costs of improving quality,

Sutton (1998) demonstrates rigorously that there is a mapping between the (unobserved) scope

for quality differentiation in an industry and the (observed) extent of fixed investments in raising

quality, which we measure here by the advertising and R&D/sales ratio.32 Although we use a

different model in this paper, the same intuition carries through: if incurring greater costs to raise

consumer willingness to pay is ineffective, profit-maximizing firms will not incur the costs; if such

costs are observed, it must be that they are effective. Under the assumption of optimal behavior

by firms, we can infer that the scope for raising consumers’ willingness to pay — that is, the

scope for quality differentiation — is greater in industries where firms invest more in advertising

and R&D. The advertising/sales ratio may arguably be more closely tied to consumer willingness

to pay than the R&D/sales ratio, so we also run separate regressions with the advertising ratio

alone. We converted the information on advertising and R&D expenditures and sales from the

FTC industry classification (which approximates the 1972 U.S. Standard Industrial Classification)

to the ISIC revision 2 4-digit level using verbal industry descriptions. Table 7 lists the 15 ISIC 4-

digit industries with the lowest and the highest advertising and R&D/sales ratios. The industries

in the two groups seem to accord roughly with an intuitive ranking of less and more quality-

differentiated sectors. We report basic summary statistics on these measures of differentiation

(as well as the Rauch (1999) measure of horizontal differentiation, discussed below) in Panel A of

Table 8.

We report the results using the differentiation measures in Table 9. Because of slippage in

the concordance process, we do not have the differentiation measures for several ISIC industries,

and we lose a number of plants. For comparison purposes, Columns 1 and 6 report specifications
32See Theorem 3.3, the remark immediately following, and footnote 12 in Sutton (1998, Ch. 3). Sutton (1998)

emphasizes R&D intensity and Sutton (1991) emphasizes advertising expenditures, but the two types of quality
investments play broadly similar roles in the theory, which suggests that they should be aggregated in our empirical
application.
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similar to Column 2 of Table 3 for the modified sample; the point estimates are not statistically

different from those in the earlier table. The results in Columns 2-3 and 7-8 for the interactions

of log employment with the advertising/sales ratio or the advertising and R&D/sales ratio are

consistent with the predictions of our model above: the output price-plant size slope and the

input price-plant size slope are significantly more positive in industries with more scope for quality

differentiation.

A potential concern with the specification in Columns 2-3 and 7-8 is that the differences in

slopes across sectors may be reflecting horizontal rather than vertical differentiation. Theoret-

ically, one might very well expect sectors with greater horizontal differentiation to have greater

price-plant size correlations: in our model, for a given level of b (as long as b > 2a), a greater

degree of horizontal differentiation (a lower σ) will give rise to steeper output price-plant size

and input price-plant size slopes.33 In the idiosyncratic demand-shocks story as well, the posi-

tive output price-plant size correlation is likely to be stronger in more horizontally differentiated

sectors. To address this issue, we control for the effect of differences in horizontal differentiation

by including an interaction of plant size with a widely used measure of horizontal differentiation:

the Rauch (1999) differentiation measure, based on whether a good is traded on a commodity

exchange, has a quoted price in industry trade publications, or neither. (Details of the construc-

tion of the measure and conversion to the ISIC rev. 2 industry categories, which generated some

fractional values, are in Appendix B.2.) The specifications with the additional Rauch interaction

are reported in Columns 4-5 and 9-10. We find that more horizontally differentiated sectors have

significantly greater output price-plant size slopes but not significantly greater input price-plant

size slopes. The important point, however, is that the coefficient estimates for the indicators

of vertical differentiation, the advertising/sales ratio and the advertising and R&D/sales ratio,

are largely unaffected by the inclusion of the horizontal differentiation measure. The estimates

for these coefficients in Columns 4-5 and 9-10 are not statistically distinguishable from those in

Columns 2-3 and 6-7.
33Equations (8) and (9) in footnote 20 imply that ∂

∂σ

`
d ln w
d ln r

´
< 0 and ∂

∂σ

`
d ln w
d ln r

´
< 0 and hence that the slopes

are increasing in the extent of horizontal differentiation.
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A final important point about Table 9 is that the estimates for log employment without

interactions in Columns 4-5 are negative and significant. That is, we find a negative output

price-plant size correlation for the most homogeneous — least horizontally and least vertically

differentiated — sectors. This finding is consistent both with our model and with previous findings

by Roberts and Supina (1996, 2000), Syverson (2007) and Hortacsu and Syverson (2007) for

homogeneous sectors in the U.S. But the estimates on the interaction terms, as well as the results

for the average output price-plant size slopes (for instance in Column 1), suggest that the most

homogeneous sectors are not representative of the manufacturing sector as a whole.

6.3 Evaluating Alternative Hypotheses

As discussed in Sections 3.2.1 and 3.2.2 above, the demand-shock and pricing-to-firm models can

generate positive input price-plant size slopes when inputs markets are characterized by market

power, either monopsony power of purchasers in the demand-shocks story or monopoly power of

suppliers in the pricing-to-firm story. In this sub-section, we investigate whether this possibility

can explain the positive input price-plant size correlation.

As measures of market power, we construct Herfindahl indices at the 8-digit level of inputs,

separately for buyers and sellers in input markets. The Herfindahl index for purchasers is the

sum of squared expenditure shares, where expenditure share refers to a given purchaser’s share of

total expenditures on the input. The Herfindahl index for suppliers is the sum of squared market

shares, where market share refers to a given supplier’s share of total sales the input. Panel B of

Table 8 presents summary statistics on these measures, as well as on the raw number of purchasers

and suppliers.

Consider the monopsony power of purchasers. Panel A of Table 10 presents product-level

regressions for inputs as in Panel B of Table 4 but interacting log employment with the purchaser

Herfindahl index. To check robustness with respect to functional form, we also transform the index

into a binary variable, assigning 0 to input sectors below the median value of the index and 1 to

input sectors above the median. For comparison purposes, Column 1 replicates Column 2 in Panel
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B of Table 4 for the sample of input-plant-year observations for which all of the market power

measures can be calculated.34 The coefficients on the interactions in Columns 2 and 3 suggest

that the input price-plant size correlation is slightly higher in input markets where purchasers are

more concentrated, but the estimate is insignificant in Column 2 and only marginally significant

in Column 3. The more important point is that the coefficient on (uninteracted) log employment

remains positive and significant, indicating that there is still a positive estimated input price-

plant size slope even in input markets that approximate perfectly competitive sectors. A possible

objection to the specifications in Columns 2-3 is that the effect of purchaser monopsony power may

be stronger in sectors characterized by horizontal differentiation. Columns 4-6 report regressions

similar to Columns 1-3, but for input sectors with values of the Rauch (1999) measure above the

median value. The results for the coefficient on uninteracted log employment remain positive and

significant.

Now consider the market power of suppliers. Panel B of Table 10 presents product-level re-

gressions similar to those in Panel A, but interacting log employment with the supplier Herfindahl

index. In this case, the estimates in Columns 2-3 indicate that greater supplier monopoly power

is associated with a lower input price-plant size slope. This is consistent with the hypothesis that

the analogue of the Wal-Mart effect holds in manufacturing: large producers may be better able

to bargain with suppliers with market power. Again, however, the important point is that the

input price-plant size slope in the least concentrated sectors remains positive and significant. And

again, focusing on more horizontally differentiated sectors in Columns 5-6 does not affect this key

point. The standard error on the interaction with the supplier Herfindahl index in Column 5 is

greater than in Column 2 (due in part to the smaller sample size), but the point estimates on

the interaction terms in Columns 5-6 are not statistically distinguishable from those in Columns

2-3.35

34Not all of the products used as inputs by plants in the dataset are produced as outputs by plants in the dataset;
hence the supplier Herfindahl index cannot be calculated for all products. For this reason the sample used in Table
10 is smaller than the sample in Table Table 4.

35An additional piece of evidence on the supplier market power story was reported in Table 6 above. One input
in which there is scope for quality differentiation and for which suppliers arguably have little market power is
unskilled labor. Union density in Colombia is low; the unionization rate in 2002 was 5.2% overall, and 4.7% in the
private sector — low by Latin American standards (Farné, 2004). In Table 6 we saw that there is a strong positive
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Overall, we interpret Table 10 as suggesting that market power of buyers or sellers in input

markets cannot be the complete explanation for the positive input price-plant size correlation we

observe, since the positive correlation exists even in the most competitive sectors.

7 Conclusion

This paper has used simple reduced-form cross-sectional correlations between output or input

prices on one hand and plant size or export status on the other to draw inferences about the extent

of quality differentiation across plants. The Colombian data are a uniquely rich and representative

source of information on unit values of outputs and inputs at the plant level. We have three main

findings. First, output prices and plant size or export status are positively correlated within

narrow industries on average. Second, input prices and plant size or export status are positively

correlated within narrow industries on average. Third, both patterns are stronger in industries

that have more scope for quality differentiation as measured by advertising and R&D intensity

of U.S. firms. We have also shown that the input price-plant size correlation cannot be fully

explained by market power of either suppliers or purchasers in input markets. These findings

are consistent with our general-equilibrium Melitz-type model with quality differentiation of both

outputs and inputs, and difficult to reconcile with other existing models of heterogeneous firms.

We take the results as supportive of the quality-complementarity hypothesis — that input quality

and plant capability are complementary in determining output quality. This hypothesis carries a

number of broader implications, which were discussed in the introduction. At a minimum, this

paper has laid down a challenge to theories of plant heterogeneity: they should be consistent with

positive correlation of both output and input prices with plant size and export status, and with

the cross-sector patterns we have documented.

correlation between plant size and the wage of unskilled (as well as skilled) workers. Given the low unionization
rate, it does not seem likely that individual, non-union workers have the power to set higher wages at plants they
perceive to be facing less elastic demand.
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A Theory Appendix

A.1 “Quality” Melitz Model

This appendix spells out a “quality” interpretation of the Melitz (2003) model, which is alluded
to but not made explicit in the original paper. As mentioned in the text, our model reduces to the
Melitz (2003) model when b = 0. To reproduce the Melitz model to the letter, we make three addi-
tional minor modifications: (1) since the Melitz (2003) model does not contain a non-differentiated
sector, the share of income the representative consumer spends on the non-differentiated good
must be set to zero, which corresponds to β = 1 in equation (1); (2) since inputs are assumed to
be homogeneous, we assume all input suppliers have c = 1 and w = 1;36 (3) the distribution of
plant capabilities must be left as a general distribution, rather than imposing the assumption of
a Pareto distribution as we do in Appendix Section A.2. Let ϕ ≡ λa and express other variables
in terms of ϕ. Then (1)-(4) and (7a)-(7d) become:

U = X =
[∫

ϕ∈Φ
x(ϕ)

σ−1
σ dϕ

] σ
σ−1

(A1a)

P ≡
[∫

ϕ∈Φ
p(ϕ)1−σdϕ

] 1
1−σ

(A1b)

w(ϕ) = q(ϕ) = 1 (A1c)

p(ϕ) =
(

σ

σ − 1

)
1
ϕ

(A1d)

r(ϕ) =
(

σ − 1
σ

)σ−1

XP σϕσ−1 (A1e)

x(ϕ) =
(

σ

σ − 1

)−σ

XP σϕσ (A1f)

which correspond exactly to the equations in Melitz (2003).
Now consider the following thought experiment, which generates the quality interpretation of

the Melitz model. Suppose that the above equations refer to goods measured in quality units,
which we will call “utils”. Suppose further that higher-ϕ plants, in addition to requiring fewer
units of inputs to produce one util of output, also produce goods with more utils per physical
unit, where utils per physical unit are given by:

q̃(ϕ) = ϕε (A2)

The existence of a relationship of this kind is alluded to in Melitz (2003, p. 1699) but not explicitly
specified. This functional form is convenient but not essential to make the point. Given (A2),
price and quantity in physical units are given by:

p̃(ϕ) = p(ϕ) q̃(ϕ) =
(

σ

σ − 1

)
ϕε−1 (A3)

x̃(ϕ) =
x(ϕ)
q̃(ϕ)

=
(

σ

σ − 1

)−σ

XP σϕσ−ε (A4)

36If there is no complementarity between plant capability and input quality, then all plants choose the same input
quality, so it is not crucial to make this simplification.
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The expression for revenues is unchanged by the redefinition of units.37

Several remarks are in order. First, if ε > 1, then both output price in physical units and
revenues are increasing in ϕ and hence are positively correlated with one another. Note also that
setting ε = 1 yields a model in which higher ϕ corresponds to higher quality but marginal cost
and hence output price in physical units are constant, as alluded to by Melitz (2003, p. 1699).

Second, this “quality” Melitz model is isomorphic to the quality model of Baldwin and Harri-
gan (2007, Section 4) if one abstracts from the differences in distance between countries. Baldwin
and Harrigan’s parameter a represents marginal cost, which here corresponds to ϕε−1, and their
θ corresponds to 1

ε−1 . Their assumption that θ > 0 here corresponds to the condition that ε > 1,
which guarantees that output price is increasing in ϕ. The value-added of the Baldwin-Harrigan
model over this quality Melitz model is that it explicitly considers distance and the differential
selection of higher-productivity firms into more-distant markets.

Third, the key difference between this quality Melitz model (with ε > 1) and the quality
model we present in this paper lies in the role of inputs. Here output price and marginal cost per
physical unit are increasing in ϕ because plants are using more units of inputs of homogeneous
quality to produce each physical unit, rather than inputs of higher quality as in our model. (That
is, higher-ϕ plants use fewer units of inputs per util, but since the number of utils per physical unit
increases in ϕ faster than input requirements decline, they use more units of inputs per physical
unit.) Even if one were to introduce heterogeneity of inputs in this quality Melitz framework, in
the absence of the complementarity between plant capability and input quality, there would be
no systematic reason for higher-ϕ plants to use higher-quality inputs.

Fourth, a shortcoming of the quality Melitz/Baldwin-Harrigan framework for addressing issues
of quality differentiation is that quality is a deterministic function of a plant’s capability draw.
There is no quality choice. Hence quality does not depend on factors such as the technological
possibilities for upgrading quality or consumers’ willingness to pay for such improvements, and
there is no endogenous variation in the extent of quality differentiation across sectors.

A.2 Solution of Two-Country Version of Model with Quality-Differentiated
Inputs

In this section of the appendix, we complete the solution of our two-country general-equilibrium
model with quality differentiated inputs. The symmetry of the two economies implies that the
optimal choices in (7a)-(7d) do not depend on which markets a plant has entered. The fact that
profitability is monotonically increasing in λ (which follows from the fact that r(λ) is monotoni-
cally increasing in λ) implies that in each country in equilibrium there will be a cut-off value of λ
for remaining in in the domestic market, call it λ∗; plants will leave immediately after receiving
their capability draw if it is below λ∗. There is also a cut-off λ∗ex for entering the export market.
To make it possible to solve explicitly for these cut-offs, we assume that in each country capability
has a Pareto distribution such that g(λ) = kλk

m

λk+1 and the corresponding c.d.f. is G(λ) = 1−
(

λm
λ

)k
.

As in Helpman, Melitz, and Yeaple (2004), in order to ensure that both the distribution of ca-
37The aggregates P and X can then be rewritten as:

X =

»Z
ϕ∈Φ

(x̃(ϕ)q̃(ϕ))
σ−1

σ dϕ

– σ
σ−1

(A5)

P ≡

"Z
ϕ∈Φ

„
p̃(ϕ)

q̃(ϕ)

«1−σ

dϕ

# 1
1−σ

(A6)
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pability draws and the distribution of plant revenues have finite variances, we must impose an
assumption on the “shape” parameter of the Pareto distribution, in our case that k > η.

The values of the cut-offs (which, again because of symmetry, are the same in each country) are
pinned down by three conditions. First, the profit of the plant on the margin between remaining
in the domestic market and stopping production is zero:

π(λ∗) =
r(λ∗)

σ
− f = 0 (A7)

where r(·) is given by (7d). Second, the additional profit of entering the export market for the
plant on the margin between entering the export market and producing only for the domestic
market is also zero:

πex(λ∗ex) =
r(λ∗ex)

σ
− fex = 0 (A8)

where r(·) is again given by (7d). Third, there is a free-entry condition: the ex ante expected
present discounted value of receiving a capability draw must be equal to the investment cost
required to receive the draw, such that ex ante expected profits are zero. Formally, given the
steady-state probability of death, δ, and assuming there is no discounting, the condition is:

[1−G(λ∗)]
∞∑

t=0

(1−δ)t

{
E(r(λ))

σ
− f

}
+[1−G(λ∗ex)]

∞∑
t=0

(1−δ)t

{
Eex(r(λ))

σ
− fex

}
−fe = 0 (A9)

where E(r(λ)) and Eex(r(λ)) are the expected per-period revenues in the domestic and export
markets, respectively, conditional on being in each market, and the terms in brackets are expected
profits in the domestic and export markets, conditional on being in each market. Using (A7), (A8),
and the fact that r(λ)

r(λ∗) =
(

λ
λ∗

)η
, we have that E(r(λ)) = k

k−η (σf) and Eex(r(λ)) = k
k−η (σfex).

Then using (A9), we can solve for the entry cut-offs:

λ∗ = λm

{
fη

feδ(k − η)

[
1 +

(
f

fex

) k−η
η

]} 1
k

(A10)

λ∗ex = λ∗
(

fex

f

) 1
η

(A11)

A particularly convenient feature of the Melitz (2003) framework which carries over to this model
is that these cut-off values do not depend on the scale of the economies.

In steady state, the mass of new entrants in each country — that is, potential entrepreneurs
who pay the investment cost to receive a capability draw and who have a capability above the
cur-off to remain in the market — is equal to the mass of plants that die:

Me (1−G(λ∗)) = δM (A12)

where Me is the mass of entrepreneurs who pay the investment cost and M is the mass of firms that
remain in business. Combining this equation with the free-entry condition (A9), it is straightfor-
ward to show that the total amount spent on investment, Mefe (which is paid to input suppliers),
is equal to total profits in the differentiated sector, and hence that total plant revenues are equal
to total payments to input suppliers in the differentiated sector.38 Because input suppliers with

38Total profit is given by the mass of plants in production times the expected profit conditional on being in the
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quality c are paid a wage c, the total revenues of input suppliers in each country are simply the
summation of c over all input suppliers, which we label C. The symmetry between countries en-
sures that total revenues of all plants based in a particular country are equal to total expenditures
on varieties of the differentiated good in that country:

βC = ME(r(λ)) + MexEex(r(λ)) (A14)

where E(r(λ)) and Eex(r(λ)) are as defined above and the share parameter β is from the Cobb-
Douglas utility of the representative consumer (1). Using the fact that Mex

M = 1−G(λ∗ex)
1−G(λ∗) , we can

then solve for the mass of plants:

M =
βC(k − η)

kσf

[
1 +

(
f

fex

) k−η
η

] (A15)

This completes the solution of the model.

B Data Appendix

B.1 Variable Definitions

Output unit value: Value of output of 8-digit product, divided by number of physical units
of product produced. Output is sales plus net intra-firm transfers plus net increase in
inventories. We also refer to the output unit value (somewhat loosely, since it represents an
average) as the output price. In 1998 Colombian pesos.

Input unit value: Value consumed of 8-digit product, divided by number of physical units of
product consumed. Consumption is purchases minus net intra-firm transfers minus net
increase in inventories. We also refer to the input unit value (somewhat loosely, since it
represents an average) as the input price. In 1998 Colombian pesos.

Output price index: Coefficient on plant-year effect in regression of log real output unit value
on full sets of product-year and plant-year dummies, as described by equation (10).

Input price index: Coefficient on plant-year effect in regression of log real input unit value on
full sets of product-year and plant-year dummies, as described by equation (10).

Total output: Total value of output of all products, valued at factory price. Total output is
sales plus net transfers to other plants in same firm plus net increases in inventories. In
billions of 1998 Colombian pesos.

Exporter: Indicator variable taking the value 1 if plant has export sales > 0, and 0 otherwise.

Export share: Export sales as a fraction of total sales.

market:

Π = M

»
E(r(λ))

σ
− f

–
+

1−G(λ∗ex)

1−G(λ∗)

»
Eex(r(λ))

σ
− fex

–ff
(A13)

where E(r(λ)) and Eex(r(λ)) are defined as above. Combining (A9), (A12), and (A13), we have Π = Mefe.
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Average earnings: Total annual wage bill of permanent, remunerated workers, in millions of
1998 Colombian pesos, divided by total number of permanent, remunerated workers on Nov.
15 of corresponding year.

Average white-collar earnings: Annual wage bill of permanent, remunerated white-collar work-
ers, in millions of 1998 Colombian pesos, divided by number of permanent, remunerated
white-collar workers on Nov. 15 of corresponding year. White-collar workers defined as
managers (directivos), non-production salaried workers (empleados), and technical employ-
ees (técnicos). White-collar/blue-collar distinction available on a consistent basis only for
1982-1994.

Average blue-collar earnings: Annual wage bill of permanent, remunerated blue-collar work-
ers, in millions of 1998 Colombian pesos, divided by number of permanent, remunerated
blue-collar workers on Nov. 15 of corresponding year. Blue-collar workers are defined as
operators (obreros and operarios) and apprentices (aprendices). White-collar/blue-collar
distinction available on a consistent basis only for 1982-1994.

Advertising/sales ratio: Ratio of advertising expenditures to total sales at sector level, from
the U.S. Federal Trade Commission (FTC) 1975 Line of Business Survey. Converted from
FTC 4-digit industry classification to ISIC 4-digit rev. 2 classification using verbal industry
descriptions.

Advertising + R&D/sales ratio: Ratio of advertising plus research and development (R&D)
expenditures to total sales, from the U.S. Federal Trade Commission (FTC) 1975 Line of
Business Survey. Converted from FTC 4-digit industry classification to ISIC 4-digit rev. 2
classification using verbal industry descriptions.

Rauch (1999) measure of differentiation: SITC 4-digit sectors classified by Rauch’s “lib-
eral” classification as “homogeneous” or “reference-priced” are assigned 0, others are as-
signed 1. SITC 4-digit industries were then converted to ISIC rev. 2 4-digit using concor-
dance from OECD, which generated some fractional values.

Herfindahl index (of purchasers): Sum of squares of expenditure shares of purchasers of the
corresponding 8-digit input, where the expenditure sure is the expenditure by a given pur-
chaser as a share of total expenditures on the good.

Number of purchasers of input: Number of plants in census reporting non-zero expenditures
on the corresponding 8-digit input.

Herfindahl index (of suppliers): Sum of squares of market shares of producers of the corre-
sponding 8-digit input.

Number of producers of input: Number of plants in census reporting non-zero output of the
corresponding 8-digit input.

All monetary variables have been deflated to constant 1998 values using the national producer
price index. Average 1998 exchange rate: 1,546 pesos/US$1.
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B.2 Data Processing

The data we use in this paper are from the Encuesta Anual Manufacturera (EAM) [Annual
Manufacturing Survey]. Plant-level data are available over the 1977-2005 period, but product-
level data are available only for 1982-2005. The EAM is a census of all manufacturing plants
in Colombia with 10 or more workers, with the following qualification. Prior to 1992, the sole
criterion for initial inclusion of a plant in the census was that the plant have 10 or more workers.39

Beginning in 1992, an additional criterion was added: a plant would be included if it had 10 or
more workers or nominal value of total output (defined as in Appendix B.1) in excess of 65
million Colombian pesos (approx. US$95,000) (DANE, 2004, p. 8). The monetary limit has been
raised in nominal terms over time. There are two exceptions to these rules. First, once a plant is
included in the sample it is followed over time until it goes out of business, regardless of whether
the criteria for inclusion continue to be satisfied. Second, multi-plant firms are included, even if
not all plants satisfy one of the above criteria. To maintain consistency of the sample over time,
we removed all plants with fewer than 10 workers.

The longitudinal links between plant-level observations we use are those that are reported
directly by DANE. In 1991 and again in 1992, plant identification numbers were changed, with
the result that it was no longer possible to follow some plants over time, despite the fact that
they remained in the dataset.40

From 1982-2000, the product-level data were reported using an 8-digit classification system
with four digits from the International Standard Industrial Classification (ISIC) revision 2 and
four Colombia-specific digits (one of which is only used for verification purposes).41 In 2001, a
new classification was constructed, with the first five digits based on the U.N. Central Product
Classification (CPC) version 1.0 and two Colombia-specific digits. We used a concordance pro-
vided by DANE to convert back to the earlier product classification. There are approximately
6,000 distinct product categories. To construct a plant’s 5 digit industry, we followed DANE’s
procedure and aggregated within plants from the 8-digit to the 5-digit level, then chose the 5-
digit category with the greatest value. Our procedure differed from the DANE procedure in that
we aggregated across years in order to maintain stable industry definitions, while DANE defines
industry year-by-year.

In the process of data cleaning, we dropped any plant-year observation for which a key variable
— total output, employment, white-collar wage, blue-collar wage or average wage — had changed
by more than a factor of 5 from the previous period. To reduce the influence of outliers, we
followed a suggestion of Angrist and Krueger (1999) and “winsorized” the data within each year,
setting all values below the 1st percentile to the value at the 1st percentile, and all values above
the 99th percentile to the 99th percentile. At the plant level, we performed this procedure for total
output, employment, white-collar wage, blue-collar wage or average wage. At the product level,
because of the small number of observations for many products, we winsorized real unit values
within product for all years together.

We dropped product-level observations in the “not elsewhere classified” product category. The
product-level data also contain an identifier (an additional digit in the product code) to indicate
whether the good is produced or purchased under a sub-contracting arrangement. Goods produced
under subcontract are included in total output, but we did not use the unit value information

39This was the sole criterion over the 1970-1992 period. Prior to 1970, an additional output criterion had been
in place.

40Eslava, Haltiwanger, Kugler, and Kugler (2004) construct some links probabilistically (see the data appendix
of that paper); we use only the links constructed on the basis of name, address and telephone information.

41The Spanish acronym for this classification system is CIIU2AC, for Clasificación Internacional Industrial Uni-
forme revisión 2 adaptada para Colombia [ISIC revision 2 adapted for Colombia].
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for subcontracted goods, since the reported value typically does not reflect the market price. We
dropped plants that were reported to be cooperatives, publicly owned, or owned by a religious
organization. We also dropped plants that were missing a key variable — employment, average
wage, total output — or product-level information on outputs and inputs.

We refer to the unbalanced panel consisting of all plant-year observations with complete data
on total output, employment, average earnings, and outputs and inputs as the 1982-2005 panel.
This panel is used in Column 4 of Table 2 and in Table 3. We also selected two plant-level
subsets. First, we selected the subset of plant-year observations with complete information on
white-collar and blue-collar wages and employment and on exports as a share of revenues and
imported inputs as a share of expenditures. This information is available on a consistent basis
only for the 1982-1994 period.42 We refer to this subset as the 1982-1994 panel; it is used in
Columns 1-3 of Table 2 and in Tables 5 and 6. Second, we selected the subset of plant-year
observations for which complete sector-level information on our measures of the scope for quality
differention — advertising and R&D intensity — and the Rauch (1999) measure was available.
This subset is used in Table 7, Panel A of Table 8, and Table 9.

The product-level datasets containing outputs and inputs corresponding to the full 1982-2005
unbalanced panel are used in Table 4, Panel B of Table 8, and Table 10. For computational reasons,
we treat observations in product categories with fewer than 24 plant-product-year observations
as belonging to a single product category for the product-level analysis.

The primary sub-national administrative region in Colombia is the departamento, of which
there are 32 plus the federal district of Bogotá. Four departamentos have zero plants in our
sample. Another eight little-populated departamentos — Amazonas, Arauca, Caqueta, Casanaré,
Chocó, La Guajira, Putumayo, and San Andres — together have just 184 plant-year observations
in the entire 1982-2005 panel. We aggregated these eight departamentos into a single region.

42Information on exports and imported inputs is also available in 2000-2005, but the information is collected in
a different way and there appear to be incomparabilities between the 1982-1994 and 2000-2005 values.
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Table 2:
Summary statistics by export status

1982-1994 panel 1982-2005 panel
non-exporters exporters all plants all plants

(1) (2) (3) (4)
Output 2.78 12.05 4.37 5.48

(0.04) (0.19) (0.05) (0.04)
Employment 56.69 193.81 80.17 83.22

(0.40) (2.06) (0.53) (0.40)
Avg. earnings 3.26 4.67 3.50 4.40

(0.01) (0.02) (0.01) (0.01)
White-collar earnings 4.37 6.63 4.75

(0.01) (0.03) (0.01)
Blue-collar earnings 2.77 3.48 2.89

(0.00) (0.01) (0.00)
White-collar/blue-collar earnings ratio 1.62 1.97 1.68

(0.00) (0.01) (0.00)
White-collar employment share 0.29 0.33 0.30

(0.00) (0.00) (0.00)
Number of output categories 3.48 4.53 3.66 3.66

(0.01) (0.04) (0.01) (0.01)
Number of input categories 10.42 17.26 11.59 11.81

(0.03) (0.15) (0.04) (0.03)
Export share of sales 0.17

(0.00)
Import share of input expenditures 0.06 0.23 0.09

(0.00) (0.00) (0.00)

N 49671 10259 59930 114952

Notes: Standard errors of means in parentheses. Exporter defined as export sales > 0. Export share is fraction

of total sales derived from exports. Annual sales measured in billions of 1998 Colombian pesos. Annual earnings

measured in millions of 1998 pesos. Average 1998 exchange rate: 1,546 pesos/US$1. Number of output or input

categories refers to number of distinct categories in which non-zero sales or expenditures are reported. See Appendix

B.1 for more detailed variable descriptions and Appendix B.2 for details of data processing.



Table 3:
Price indices vs. plant size, 1982-2005 panel

OLS Reduced form IV
(1) (2) (3)

A. Dependent variable: output price index

log total output 0.007 0.012**
(0.005) (0.006)

log employment 0.013**
(0.006)

industry-year effects Y Y Y
region effects Y Y Y
R2 0.57 0.57
N 114952 114952 114952

B. Dependent variable: input price index

log total output 0.016*** 0.011***
(0.002) (0.003)

log employment 0.012***
(0.003)

industry-year effects Y Y Y
region effects Y Y Y
R2 0.36 0.36
N 114952 114952 114952

Notes: Output (input) price index defined as coefficient on plant-year effect from product-level regression of log real

output (input) unit values on full sets of plant-year and product-year effects. (Refer to equation (10) in Section 5 of

text.) Total output is total value of production, defined as sales plus net transfers plus net change in inventories. In

Column 3, log employment is instrument for log total output; the coefficient on log employment, its robust standard

error and the R2 in the first stage are 1.075, 0.008 and 0.800, respectively. See Appendix B.1 for more detailed

variable descriptions and Appendix B.2 for details of data processing. Errors clustered at plant level. Robust

standard errors in parentheses. *10% level, **5% level, ***1% level.



Table 4:
Product-level prices vs. plant size

OLS Reduced form IV
(1) (2) (3)

A. Dependent variable: log real output unit value

log total output 0.013** 0.017***
(0.006) (0.006)

log employment 0.018***
(0.007)

product-year effects Y Y Y
industry effects Y Y Y
region effects Y Y Y
R2 0.86 0.86
N 412733 412733 412733

B. Dependent variable: log real input unit value

log total output 0.015*** 0.011***
(0.003) (0.003)

log employment 0.012***
(0.003)

product-year effects Y Y Y
industry effects Y Y Y
region effects Y Y Y
R2 0.74 0.74
N 1353579 1353579 1353579

Notes: Estimates correspond to one-step method described by equation (12) in Section 5 of text. Total output

is total value of production, defined as sales plus net transfers plus net change in inventories. In Column 3, log

employment is instrument for log total output; the coefficient on log employment, its robust standard error and the

R2 in the first stage are 1.059, 0.010 and 0.847 in Panel A and 1.081, 0.010 and 0.838 in Panel B, respectively.

Product-year and industry effects are not perfectly collinear because industry is defined as the industry category

with the greatest share of plant sales, and two plants producing the same product may be in different industries.

See Appendix B.1 for more detailed variable descriptions and Appendix B.2 for details of data processing. Errors

clustered at plant level. Robust standard errors in brackets. *10% level, **5% level, ***1% level.



Table 5:
Price indices vs. plant size and exporting variables, 1982-1994 panel

(1) (2) (3) (4) (5)

A. Dependent variable: output price index

log employment 0.013* 0.005 0.011
(0.008) (0.008) (0.008)

exporter 0.061*** 0.056***
(0.020) (0.022)

export share 0.148** 0.130*
(0.069) (0.070)

industry-year effects Y Y Y Y Y
region effects Y Y Y Y Y
R2 0.56 0.56 0.56 0.56 0.56
N 59930 59930 59930 59930 59930

B. Dependent variable: input price index

log employment 0.013*** 0.008** 0.013***
(0.004) (0.004) (0.004)

exporter 0.046*** 0.037***
(0.009) (0.009)

export share 0.050* 0.028
(0.026) (0.026)

industry-year effects Y Y Y Y Y
region effects Y Y Y Y Y
R2 0.36 0.36 0.36 0.36 0.36
N 59930 59930 59930 59930 59930

Notes: Output (input) price index defined as coefficient on plant-year effect from product-level regression of log real

output (input) unit values on full sets of plant-year and product-year effects. (Refer to equation (10) in Section 5 of

text.) Exporter equals 1 if plant has exports>0, and 0 otherwise. Export share is fraction of total sales derived from

exports. See Appendix B.1 for more detailed variable descriptions and Appendix B.2 for details of data processing.

Errors clustered at plant level. Robust standard errors in parentheses. *10% level, **5% level, ***1% level.



Table 6:
Wage variables vs. plant size and exporting variables, 1982-1994 panel

log avg.
earnings

log blue-
collar

earnings

log white-
collar

earnings

log earnings
ratio

white-collar
share

(1) (2) (3) (4) (5)

log employment 0.141*** 0.101*** 0.200*** 0.098*** 0.008***
(0.003) (0.003) (0.004) (0.003) (0.002)

exporter 0.278*** 0.188*** 0.338*** 0.150*** 0.037***
(0.009) (0.008) (0.011) (0.008) (0.004)

export share 0.322*** 0.214*** 0.490*** 0.276*** -0.013
(0.028) (0.023) (0.034) (0.026) (0.011)

industry-year effects Y Y Y Y Y
region effects Y Y Y Y Y
N 59930 59930 59930 59930 59930

Notes: Table reports 15 separate regressions, all with N=59930 and including region and industry-year effects.

The coefficient on log employment, its robust standard error and the R2 in the first stage are 1.202, 0.007 and

0.862 respectively. Exporter equals 1 if plant has exports > 0, and 0 otherwise. Export share is fraction of total

sales derived from exports. See Appendix B.1 for more detailed variable descriptions and Appendix B.2 for details

of data processing. Errors clustered at plant level. Robust standard errors in parentheses. *10% level, **5% level,

***1% level.



Table 7:
Industries with least and most scope for quality differentiation,
as measured by advertising + R&D/sales ratio

ISIC
category

Industry
description

advertising
ratio

adv. + R&D
ratio

A. Lowest advertising + R&D/sales ratio
3692 Cement, lime and plaster 0.000 0.002
3231 Tanneries and leather finishing 0.000 0.002
3841 Ship building and repairing 0.002 0.003
3118 Sugar factories and refineries 0.002 0.004
3530 Petroleum refineries 0.002 0.004
3311 Sawmills, planing and other wood mills 0.002 0.005
3412 Containers and boxes of paper and paperboard 0.001 0.005
3710 Iron and steel basic industries 0.001 0.006
3111 Slaughtering, preparing and preserving meat 0.005 0.006
3411 Pulp, paper and paperboard 0.003 0.008
3720 Non-ferrous metal basic industries 0.002 0.011
3691 Structural clay products 0.003 0.011
3115 Vegetable and animal oils and fats 0.010 0.013
3112 Dairy products 0.011 0.013
3842 Railroad equipment 0.001 0.014

B. Highest advertising + R&D/sales ratio
3513 Synthetic resins, plastic materials and man-made fibres 0.007 0.045
3521 Paints, varnishes and laquers 0.015 0.045
3620 Glass and glass products 0.008 0.046
3853 Watches and clocks 0.035 0.046
3901 Jewellery and related articles 0.046 0.049
3122 Prepared animal feeds 0.042 0.050
3851 Professional and scientific equipment 0.012 0.051
3832 Radio, television and communication equipment 0.009 0.053
3116 Grain mill products 0.052 0.058
3140 Tobacco manufactures 0.076 0.082
3825 Office, computing and accounting machinery 0.007 0.085
3852 Photographic and optical goods 0.024 0.095
3131 Distilling, rectifying and blending spirits 0.119 0.121
3523 Soaps, perfumes, cosmetics and other toiletries 0.105 0.124
3522 Drugs and medicines 0.079 0.166

Notes: Data on ratio of industry advertising and R&D expenditures to total industry sales are from the U.S. Federal

Trade Commission (FTC) 1975 Line of Business Survey, converted from FTC 4-digit industry classification to ISIC

4-digit rev. 2 classification using verbal industry descriptions.



Table 8:
Summary statistics, measures of differentiation and market power

mean median std. dev. min. max.

A. Defined at level of industry (4-digit)
advertising/sales ratio 0.019 0.010 0.024 0.000 0.119
advertising + R&D/sales ratio 0.035 0.025 0.032 0.002 0.166
Rauch (1999) measure 0.690 0.970 0.385 0 1

B. Defined at level of input (8-digit)
herfindahl index (of purchasers) 0.62 0.58 0.31 0.01 1
number of purchasers 7.32 3 16.99 1 407
herfindahl index (of suppliers) 0.38 0.30 0.29 0.01 1
number of suppliers 47.69 14 108.12 1 1627

Notes: Data on ratio of industry advertising and R&D expenditures to total industry sales are from the U.S. Federal

Trade Commission (FTC) 1975 Line of Business Survey, converted from FTC 4-digit industry classification to ISIC

4-digit rev. 2 classification using verbal industry descriptions. At SITC 4-digit level, Rauch (1999) measure set

to 0 if good is “homogeneous” or “reference-priced” according to the Rauch “liberal definition”, to 1 if reported

not to be in either category, and then concorded to ISIC rev. 2 4-digit categories. Herfindahl index of purchasers

is sum of squared expenditure shares of purchasers of input. Number of purchasers is number of plants in census

reporting non-zero expenditures on input in entire census. Herfindahl index of suppliers is sum of squared market

shares of producers of input. Number of producers of input is number of plants in census reporting non-zero sales

of the good as an output. Averages assign equal weight to each industry (Panel A) or product-year (Panel B). See

Appendix B.1 for more detailed variable descriptions and Appendix B.2 for details of data processing.
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