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Abstract

We study trust, reciprocity and favors in a repeated trust game with
private information. In our main analysis, players are willing to exhibit
trust and thereby facilitate cooperative gains only if such behavior is re-
garded as a favor that must be reciprocated, either immediately or in the
future. Private information is a fundamental ingredient in our theory. A
player with the ability to provide a favor must have the incentive to reveal
this capability, and this incentive is provided by an equilibrium construc-
tion in which favors are reciprocated. We also offer the novel prediction
that the size of a favor owed may decline over time, as neutral phases of the
relationship are experienced. Indeed, a favor-exchange relationship with
this feature offers a higher total payoff than does a simple favor-exchange
relationship. We also describe specific circumstances in which a relation-
ship founded on favor exchange may be inferior to a relationship in which
an infrequent and symmetric punishment motivates cooperative behavior.
Finally, we show that a hybrid relationship, in which players begin with a
honeymoon period and then either proceed to a favor-exchange relationship
or suffer a symmetric punishment, can also offer scope for improvement.

*Atila Abdulkadiroglu is an Associate Professor of Economics, Department of Economics,
Columbia University; Kyle Bagwell is Kelvin J. Lancaster Professor of Economic Theory (De-
partment of Economics) and Professor of Finance and Economics (School of Business), Columbia
University. We would like to thank Alberto Martin for his excellent research assistance and Ra-
jiv Sethi, Ennio Stacchetti, Eric Verhoogen and seminar participants at Maryland and NYU for
their valuable comments.



1. Introduction

A substantial experimental literature confirms that subjects exhibit trust and
practice reciprocity. For example, Berg, Dickhaut and McCabe (1995) consider
the trust game, in which one subject (the investor) has income and can invest
by sending some or all of this income to another subject (the trustee), where the
income sent grows en route and is received as a larger amount. The trustee may
then choose to reciprocate, by returning some income to the investor. An investor
that gives income to the trustee has shown trust, since the investor has incurred
a cost and cannot be sure that the trustee will reciprocate. Berg, Dickhaut and
McCabe find that subjects often exhibit trust and practice reciprocity. In par-
ticular, evidence of positive reciprocity is reported: many subjects reward kind
behavior with a kind response. de Quervain (2004) et al. study a modified trust
game, in which the investor can incur a cost and punish the trustee if the latter
does not reciprocate. They observe that such punishments often occur, indicating
that subjects may also practice negative reciprocity, whereby they punish unkind
behavior with an unkind response.!

Psychological and anthropological studies also report that an important cate-
gory of human social interactions emphasizes trust and reciprocity. For example,
Fiske (1992) surveys ethnographic field work and experimental studies and ar-
gues that virtually all human social interactions can be described in terms of four
patterns, each with a distinctive psychological basis. One pattern is called “equal-
ity matching” (EM). As Fiske (1992, p. 703) states, “The operating principle is
that when people relating in an EM mode receive a favor, they feel obligated
to reciprocate by returning a favor.” In EM relationships, people keep track of
the imbalances between them and engage in score keeping, with the restoration
of balance being a primary aspiration. As Fiske (1992, p. 705) puts it, “People
think about how much they have to give to reciprocate or compensate others or
come out even with them. EM always entails some kind of additive tally of who
owes what and who is entitled to what.” Following Blau (1964), we may think of
an initial favor as involving trust and the expectation of subsequent reciprocation.

Why do humans exhibit trust and practice reciprocity? One hypothesis is

!de Quervain, et al (2004) also use PET scans and investigate the neural basis of punishment,
finding evidence that humans derive satisfaction from the punishment of defectors. See also King-
Casas, et al (2005) for related evidence of positive and negative reciprocity in a multi-round trust
game. As Fehr and Gatcher (2000a) observe, subjects in public-good games may also practice
negative reciprocity. See Camerer (2003) and Fehr and Gachter (2000b) for excellent surveys of
experimental work.



that trusting and reciprocal behaviors facilitate gains from cooperation. Person a
may be willing to incur some cost to assist Person b when the benefit to Person
b exceeds the cost to Person a, if Person a believes that this favor will one day
be returned when the roles are reversed. From this perspective, these behaviors
generate cooperative gains for calculating, self-interested individuals. Over time,
an instinct for trust and reciprocity may thus have evolved among our ancestors, as
a means to facilitate cooperation and thereby promote survival among individuals
that interact frequently.?

In this paper, we assume self-interested players and use repeated-game theory
to study trust and reciprocity. In making the assumption of self-interested players,
our purpose is not to deny that individuals have social preferences that perhaps
include an instinct for trust and reciprocity. Rather, our purpose is to better un-
derstand the underlying advantages that trusting and reciprocal behaviors afford
when gains from cooperation are present.?

It is well known that repeated interaction can foster cooperation. Consider
a repeated trust game with two players in which, in each period, one player is
randomly selected as the investor. Given that the investment technology is value
enhancing, the players recognize a gain from cooperation: if in each period the
investor were to send all income to the trustee, then the players would both enjoy
higher payoffs than they would were instead the investor always to keep all income.
For sufficiently patient players, this cooperative behavior can be enforced as a
subgame perfect equilibrium, if the players threaten that any deviation induces a
reversion to the autarkic Nash equilibrium of the stage game. The repeated trust
game thus gives a direct interpretation of positive reciprocity: in the cooperative
equilibrium, when a player is selected as the investor, that player is willing to
exhibit trust provided that the other player has always done so in the past when

2This instinct may explain why experimental subjects often exhibit trust and practice reci-
procity even in one-shot settings. At the same time, self-interested calculations remain as an
influence on contemporary behavior. For example, Engle-Warnick and Slonim (2003) find that
experimental subjects tend to show more trust when they understand that the relationship is
on-going. As Seabright (2004, Chapter 3) emphasizes, we may regard instinctive and calculating
reciprocity as complementary human virtues: an ability to calculate enables an individual to
adopt the behavior that is most effective for a given social environment, while an instinct for
reciprocity inspires the trust of other individuals. For further discussion of the evolutionary
foundations of the human instincts for cooperation and reciprocity, see Field (2002), Pinker
(2002) and Ridley (1997). See also Sethi and Somanathan (2003) for a survey of evolutionary
game theory models that analyze cooperation.

3Qur approach thus shares important themes with the sociology literature on social exchange
theory. See Blau (1964) and Coleman (1988).



the roles were reversed.

But the repeated trust game fails in other respects. First, while the repeated
trust game admits a large set of equilibria, the cooperative equilibrium is simple,
efficient and thus focal; however, this equilibrium does not offer an interpreta-
tion of EM relationships. For all histories in which no deviation occurs, the same
equilibrium behavior (namely, a transfer of all income by the current investor)
is specified. Behavior in the cooperative equilibrium is thus insensitive to the
balance of favors owed. Second, the cooperative equilibrium also fails to offer an
interpretation of negative reciprocity. On the equilibrium path, negative reci-
procity is never induced, since the investor always transfers all income and thus
only behaves in a kind way. Finally, at a descriptive level, the repeated trust game
is limited in that it precludes the realistic and important possibility that players
are asymmetrically informed with regard to their respective abilities to provide
favors at a given point in time.

We argue here that the predictive power and realism of the repeated-game
analysis can be greatly enhanced, if the repeated trust game is modified to in-
clude private information. We thus study the repeated trust game with private
information. In the stage game, either player a is given income, player b is given
income, or neither player is given income. Each player is privately informed as to
whether or not he is the investor. Thus, if a player does not receive income, then
the player does not observe whether neither player received income or the other
player received income. Next, if one player receives income, then that player may
choose to exhibit trust and invest by sending some or all of his income to the
other player. If a transfer is made, then the level of the investment is publicly
observed; however, while the investment is value enhancing on average, the out-
come is random. The investment either succeeds or fails, and the investment is
completely lost when it fails. The trustee privately observes the investment out-
come. If the investment is successful, then the trustee can reciprocate within the
period and send some (or even all) of the returns back to the investor. Thus, if the
investor exhibits trust and reciprocation does not occur within the current period,
then the investor does not observe whether the trustee elected not to immediately
reciprocate or the investment failed.

This game is highly stylized, but it serves to introduce two key incentive prob-
lems. First, when a player is selected as the investor, the gains from cooperation
can be enjoyed only if this player has incentive to exhibit trust and thereby reveal
that he is the investor. This constraint suggests a role for EM relationships. If a
player reveals that he is the investor and exhibits trust, then the player has given



a favor to the other player. As the investor always has the option of pretending
that he has not received income, some gain must be anticipated when a favor is
extended in this way. This gain may take the form of a favor that the current
trustee now owes the current investor. This favor may be paid in the current
period if the investment is successful, or it may be paid in the future if the players
then adopt a path of play for the continuation that favors the current investor.
We think of the former payment as immediate reciprocity and the latter payment
as dynamic reciprocity. Second, when a successful investment is made, if the coop-
erative equilibrium calls for immediate reciprocity, then the trustee must be given
incentive to reciprocate and thereby reveal that the investment is successful.

More generally, the repeated trust game with private information serves as a
simple framework within which to explore the provision of favors among individ-
uals in on-going relationships. A self-interested individual that extends a favor
naturally hopes for some gain in return. But the individual may not be able to
determine when the recipient is in a position to return the favor. The recipient
may not be in a position to reciprocate immediately, and we capture this possi-
bility by assuming that the investment may be unsuccessful. As well, while at
some point in the future the recipient will be in a position to pay the favor, the
individual may not be able to observe the date at which this occurs. Further, the
individual may find that he is in a position to extend another favor before having
been paid for his last favor. We capture these possibilities with the assumption
that each player is privately informed as to whether he is the investor, where there
is a chance that neither player is the investor.

In our formal analysis, we follow Abreu, Pearce and Stacchetti (1986, 1990)
and use the concept of self generation. We thus look for a set of payoffs that
can be enforced using only continuation payoffs that are drawn from that set.
Athey and Bagwell (2001) also use this concept to examine a repeated game in
which colluding firms are privately informed about their respective costs.* For
a two-type model, they implement a self-generating line of payoffs along which
total payoffs sum to the first-best value. Specifically, they show that the “corner”
utility pairs can be implemented and then observe that all other payoffs along the
line can be achieved using a public-randomization device. The implementation is

4For related contributions in the collusion literature, see Aoyagi (2003), Athey and Bagwell
(2004), Athey, Bagwell and Sanchirico (2004) and Skryzpacz and Hopenhayn (2004). Related
themes are also explored in macroeconomics; early contributions include Green (1987) and Wang
(1995). See Fudenberg, Levine and Maskin (1994) for an analysis of a general class of repeated
games with private information.



symmetric, if each corner is selected with equal probability at the start of the game.
Similarly, we characterize the properties of the highest symmetric self-generating
line (HSSGL) of the repeated trust game with private information.

A first set of findings concerns properties of symmetric self-generating lines.
One finding is that a HSSGL does not achieve first-best payoffs. Another finding
is that dynamic reciprocity is required for the implementation of any payoff pair
along a symmetric self-generating line. In particular, a player expects a better
future payoff if in the current period the player is an investor that does not receive
immediate reciprocity than if in the current period that player is a trustee that
does not extend immediate reciprocity.

We next consider the implementation of a HSSGL. Following Athey and Bag-
well (2001), we consider the implementation of the corner utility pair that repre-
sents the lowest (highest) payoff for player a (player b) along a HSSGL. We show
that this implementation initially requires that player a transfers all income if he
is the investor, while player b transfers less than all income if he is the investor. If
player a is selected as the investor and transfers all income, we may understand
that player a’s favor is paid, and the game moves to the opposite corner utility
pair, at which player a (player b) receives his highest (lowest) payoff along this
HSSGL. The opposite corner is implemented analogously. Here, it is player b that
owes the favor. In this way, when a player owes a favor, the player is induced to
admit that he is the investor and pay the favor, since the player gains the future
reward of becoming the favored player. The implementation reflects an intertem-
poral balancing of favors that is broadly consistent with EM relationships.

A novel feature of the implementation arises following a period in which neither
player receives income. In the implementation of the corner utility pair that gives
the lowest payoff for player a, if neither player reports income, a new utility pair
is induced in the following period, where the new pair favors player b but to a
smaller extent than did the initial corner utility pair. This intermediate utility
pair can be realized, in expectation, by using a public-randomization device. This
feature suggests a novel prediction: the “size” of favor that is owed diminishes
in expectation when a “neutral” state (i.e., a state in which neither player has
income) is encountered. Another interesting feature of our implementation is that
it does not require the use of immediate reciprocity.

We next construct an implementation of a HSSGL that does not require a
public-randomization device. The implementation works as above, except that
we now directly implement the intermediate utility pair that follows a neutral
state. Our implementation indicates that the size of favor that is owed diminishes



with the realization of every successive neutral state. Thus, if player a owes a
favor to player b, then player a transfers all income if player a is immediately
selected as the investor; however, if a neutral state is experienced first and player
a is selected as the investor in the next period, then player a can fulfill his favor by
transferring less than all income. Similarly, if two neutral states are encountered
and then player «a is selected as investor, then player a can fulfill his favor with an
even smaller transfer. Intuitively, this process gives player b incentive to transfer
the required amount when he is the investor, since otherwise a neutral state would
be observed and in the next period player b would be favored to a smaller extent.

Thus, following several neutral periods, the disfavored player continues to ac-
knowledge that a favor is owed but holds that less is now required to fulfill the
favor. One may imagine the disfavored player remarking: “Yeah, but what have
you done for me lately?” The prediction that the size of the favor owed deteri-
orates over time when neutral states are experienced is novel to our framework
and does not appear to be a feature of the EM relationships that Fiske (1992)
describes. At the same time, the prediction has some intuitive appeal. We show
as well that this prediction is necessary for the implementation of a HSSGL.

We next compare the total payoffs achieved in a HSSGL with those enjoyed
under other benchmarks. We first introduce the benchmark of a simple EM re-
lationship: in such a relationship, once a player provides a favor, the player is
unwilling to provide any further favors - of any size - until the favor is paid in
full (i.e., until the other player provides a favor of equal size). We show that a
simple EM relationship can be described in terms of a symmetric self-generating
line; however, this line is not a HSSGL. Thus, our implementation of a HSSGL of-
fers strictly higher total payoff than does any simple EM relationship. Intuitively,
our implementation captures a sophisticated EM relationship in that it induces a
player to transfer some income even when that player provided the most recent
favor. As explained above, it is precisely this feature that implies that favors must
deteriorate in size following the experience of neutral states.

Second, we relax the requirement of self-generating lines and characterize the
set of strongly symmetric equilibria (SSE). In such equilibria, asymmetric contin-
uation values are not allowed, and so players cannot use future favors as they do
in a HSSGL. But the players can provide incentives for trust, if a period without
an investor triggers a symmetric punishment. Likewise, the players can provide
incentives for immediate reciprocity, if a symmetric punishment may be initiated
once an investment is not reciprocated. We show that players are unable to co-
operate in SSE, if both informational asymmetries are significant (i.e., if a period



without an investor often occurs and investments are often unsuccessful). But,
when either informational asymmetry is less significant, the players can construct
SSE with payoffs that exceed those under autarky. Indeed, the optimal SSE may
then even offer a total payoff exceeding that attained in a HSSGL.

Intuitively, if the probability that neither player is selected as the investor is
small, then the players may impose a severe and symmetric punishment when nei-
ther player reports income. This punishment gives each player a great incentive
to be honest when he is the investor; furthermore, the punishment is rarely expe-
rienced along the equilibrium path. It is then possible to use such a construction
to generate equilibrium payoffs that lie above the HSSGL. One interesting feature
of this construction is that it offers an equilibrium interpretation of negative reci-
procity. If neither player is “nice” to the other, then the relationship runs the risk
of deteriorating, with both players being “mean” to each other in the future.

Third, we build from the HSSGL and SSE constructions and introduce the
benchmark of a hybrid equilibrium. In such an equilibrium, players begin with a
“honeymoon” period that is characterized by a high level of trust. If in the first
period some player is chosen as the investor and makes the appropriate transfer,
then the players proceed in the next period and thereafter to implement a HSSGL.
The player that made the first-period investment begins as the favored player.
Alternatively, if no income is reported in the first period, then the players suffer a
symmetric punishment (“break up”). Thus, in a hybrid equilibrium, sophisticated
EM relationships and negative reciprocity are both predicted.

We first compare the optimal hybrid equilibrium with equilibria that imple-
ment a HSSGL. For a large set of parameters, we show that a honeymoon period
is valuable: the optimal hybrid equilibrium offers a greater total payoft than is
achieved in a HSSGL. The underlying insight here is that the first period is unique,
since then players are not encumbered by obligations that are derived from past
favors; hence, players may exhibit full trust in the first period. In a second com-
parison, we show that a large set of parameters also exists over which the optimal
hybrid equilibrium offers a greater total payoff than is obtained in the optimal
SSE. We show, however, that the optimal SSE can offer a greater total payoff if
the probability that neither player is selected as the investor is sufficiently small.

Our paper is related to two recent papers that provide theoretical analyses of
favors. First, in a collusion model, Athey and Bagwell (2001) provide a theory of
“future market share favors.” In the present paper, we study a different repeated
game and provide equilibrium interpretations for favors that decline in size as
neutral phases are experienced, negative reciprocity and honeymoon phases. Sec-



ond, Mobius (2001) also studies equilibrium favor provision when the ability to
provide a favor is private information. Mobius studies a continuous-time game
and focuses on the existence of particular equilibria that specify intuitive rules for
favor provision. Our paper is also related to Watson’s (1999, 2002) recent work
on long-term partnerships with persistent and two-sided incomplete information.
In this setting, a role for learning is present, and players may “start small;” by
contrast, in our model, a role for learning does not arise, and indeed players may
“start big” with an initial honeymoon period.

The paper is organized as follows. Section 2 presents the model. Section 3
provides our findings for HSSGL. Section 4 considers simple EM relationships.
Section 5 contains our analysis of SSE. Section 6 characterizes optimal hybrid
equilibria. Section 7 concludes. Remaining proofs are located in the Appendix.

2. The Model

We study a stylized model with two players, a and b. In the stage game, either
player a is given an income of $1, player b is given an income of $1, or neither
player is given an income. The former two events each occur with probability
p € (0,1/2) and the latter event thus occurs with probability 1 — 2p. In any
period, a player who receives income becomes an investor. Each player is privately
informed as to whether or not he is the investor. Thus, if a player does not receive
income, then the player does not observe whether neither player received income
or the other player received income. If a player receives income, then that player
may choose to exhibit trust and invest by sending any = € [0,1] to the other
player. The transfers between players are publicly observed. The outcome of
the investment is random. The investment either succeeds or fails, where success
occurs with probability ¢ < 1. The investment produces kx when it is successful,
and the investment is completely lost otherwise. We assume ¢k > 1; that is, the
investment is value enhancing on average. The trustee is the player to whom an
investment is sent. The trustee privately observes the investment outcome. If the
investment is successful, then the trustee can reciprocate within the period and
send some (or even all) of the returns back to the investor. Thus, if the investor
exhibits trust and reciprocation does not occur within the current period, then
the investor does not observe whether the trustee elected not to reciprocate in the
current period or the investment failed. We assume risk neutral players in order
to abstract from insurance arrangements, and we let 5 € (0, 1) denote the players’
common discount factor.



Let ¢ denote the time index. For i € {a,b}, let w; = 1 if player i receives
income and w! = 0 otherwise. Player i privately observes W} = {w’}!_;. Let
7 = (j,z) if player j invests in the amount of x > 0 in period ¢ and 7, = 0
otherwise. Both players observe T; = {7.}!_,. Let xi = 1 if player j invests in
player i and the investment succeeds, xi = 0 if player j invests in player 7 and the
investment fails, and k! = () if player j does not invest in player i. The trustee
privately observes K} = {k! : k! # 0}!_,. Since k' is relevant only when player
J invests, we do not consider k. = ) as part of player ’s private history. Let
0, = (i,r) if player j invests and player i reciprocates in the amount of r > 0,
and 6; = 0 otherwise. Both players observe R, = {6,}._,. Note that §; = 0 when
7¢ = 0; that is, if there is no investment, then there is no reciprocity by the other
player either.

Thus, the private history of player i at time ¢ is denoted hi = (W}, K}), and
the public history is denoted H; = (T}, R;). Let H! denote the set of possible
private histories, and H; denote the set of public histories at ¢.

A strategy o; for player ¢ consists of an investment decision I} : Hi x H; 1 —
[0,1], such that I}(hi, H;_1) = 0 when w! = 0, and I}(hi, H; 1) € [0,1] if w} =
1; and a reciprocity decision R; : Hj x (Hi—1,7) % [0,1] — [0,k] such that
Ri(hi, Hy, 1) = 0 if 7 # (j,I]) or k} = 0 and Rj(h}, Hy, 7, = (j,17])) € [0,kI}].
Note that 7; = (j, I/) if and only if I} > 0, and 6, = (i, R}) if and only if R! > 0.

Following Fudenberg, Levine and Maskin (1994), we use the solution concept
of perfect public equilibrium (PPE). A strategy for player i is public if at every
period ¢, it depends only on player i’s current-period private information, (w, x?),
and the public history, H;, ;. A PPE is a profile of public strategies that forms a
Nash equilibrium at any date, given any public history.

Following Abreu, Pearce and Stacchetti (1990), we can define an operator B
which yields the set of PPE values, U*, as the largest self-generating set.® This

®To this end, let us note that players’ strategy spaces are effectively finite. Using terminology
provided by Athey, Bagwell and Sanchirico (2004), we say that a deviation is an off-schedule
deviation (i.e., observable, as a deviation, to other players) if it contains a positive investment
or positive reciprocity that differs from the equilibrium value. Such deviations can be avoided
by the threat of reverting to autarky. Thus, a deviation is relevant to our analysis only if
it is an on-schedule deviation (i.e., unobservable, as a deviation, to other players). In such
a deviation, a player selects zero investment or zero reciprocity, even though the equilibrium
strategy calls for a positive value. A player effectively chooses between the action that is sug-
gested by his equilibrium strategy and an on-schedule deviation with zero investment or zero
reciprocity. Therefore, a player reveals his income or the investment outcome truthfully in a
PPE. Equivalently, if an income level or investment outcome represents the player’s type, then
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operator is defined as follows:

For any set ¥ C R?, consider the following mapping: B(¥) = {(u,v) : 3
(uig,vig) € ¥, for i € {a,b} and 6 € {0,1}; (uo,v,) € Y52,y € [0,1], 7 € [0, kx]
and s € [0, ky| such that:

[R3U7717U107U107anvo Z % (21)

ICS 1 — x4+ q(r+ Pug) + (1 — q)Buge > 14 Su, (2.2)

ICS 1 —y+q(s+ Bup) + (1 — q)Pup, > 1+ S, (2.3)

ICY : ky — s+ Bup > ky + Bupe (2.4)

IC’é7 ckx — 1+ Pug > kx + Bug (2.5)

PK®* : u=p[l —x+4q(r+ Bua)+ (1 — q)Bua] (2.6)

+pla(ky — s + Bupt) + (1 — @) Buse] + (1 — 2p)Bu,
PK" : v=p[l—y+q(s+ Buw) + (1 — q)Buvs) (2.7)

+plg(kx — 1+ Bva) + (1 — ¢)Bvao] + (1 — 2p)Bu,}.

Observe that we use u to denote player a’s payoff, x to denote investment
level by player a, and r to denote the amount that player b reciprocates when
the investment is successful. Similarly, we use v to denote player b’s payoft, y to
denote the investment level by player b, and s to denote the amount that player a
reciprocates when the investment is successful. The utility pairs that are induced
may depend on the public path of play: we use (u,, v,) to denote the continuation
values that are induced when neither player reports income, and we use (u,,,v,,)
to denote the continuation values that are induced when player i € {a, b} invests
and the other player reciprocates (6 = 1) or not (§ = 0). For a given ¥, we will
say that {z,y,r, s, U, vig, Uo, Vo }, for i = a,b and § = 0, 1, implements a utility
pair (u,v) if all of the constraints above are satisfied.

We now mention two important benchmarks. First, the Nash equilibrium of
the static game is autarky: no player invests, and so each player expects a payoff
of p. In the Nash benchmark, in every period, the players use the Nash equilibrium

a player’s action space consists of this finite type space. We can thus directly apply the dynamic
programming techniques of Abreu, Pearce and Stacchetti (1990).

11



of the stage game. The payoffs for the repeated game are then u =v = and

D
1-3°
sou—+v= i—pﬁ. The Nash benchmark payoff is used in the IR constraint above,
since autarky is the worst punishment. Second, given our assumption that ¢k > 1,
the first-best benchmark occurs when each player invests all of his income. The
players’ joint per-period payoff is then 2pgk. Thus, in the first-best benchmark,
u+v= i{—qk.

We observe that the first-best benchmark could be achieved by patient play-
ers, if either informational asymmetry were absent. If some player always receives
income (i.e., p = 1/2), then in any period it is common knowledge among the two
players as to which player received income. When the players are sufficiently pa-
tient, they can then support an equilibrium with first-best payofts, by threatening
an infinite reversion to the autarky equilibrium of the static game in the event
that a player with income does not invest all income. Likewise, if an investment is
always successful (i.e, ¢ = 1), then in any period it is common knowledge among
the two players that the trustee has received k£ > 1 and is thus able to reciprocate
immediately this entire quantity. If the players are sufficiently patient, they can
again support an equilibrium with first-best payoffs, by threatening an infinite re-
version to the autarky equilibrium of the static game in the event that the trustee
does not immediately reciprocate the quantity £ > 1.

3. Self-Generating Lines

In this section, we consider PPE that can be characterized in terms of a self-
generating line. We characterize the necessary features of such equilibria, finding
that they involve trust and dynamic reciprocity. We then characterize some nec-
essary features of equilibria that are constructed along a highest self-generating
line. Next, we provide an implementation of the utility pairs that rest upon a
highest self-generating line. Finally, we characterize the unique features of such
implementations.

3.1. Self-Generating Lines: Necessary Features

A line (segment) is defined by a closed and convex set of utility pairs, (u,v), that
sum to the same total; thus, a line is defined by (u,7) — (@,v) where T' = u + v
along the line. A self-generating line is a line such that, for any utility pair (u, v)
on the line, the pair can be implemented using some (x,y,r, s) and continuation
values, (u, vig, Uo, Vo), where the continuation values are all drawn from the given

12



line. Thus, if a pair (u,v) is on a self-generating line, with u 4+ v = T then it is
necessary that u, + v, = T and u;p + vig = T, for all i and 0. Our focus in this
subsection is on the necessary features of self-generating lines.

We first define the notions of trust and reciprocity in our model. Fix an
implementation of a utility pair, (u,v), that rests on a self-generating line. We
define the level of trust in the implementation as x + y, and we say that player
a (b) exhibits more trust if * > y (zr < y). Likewise, we will say that player
a (b) exhibits immediate reciprocity if s > 0 (r > 0). Finally, we say that the
implementation embodies dynamic reciprocity if u,, > up, and vy, > V4.

We begin by considering the level of trust along a self-generating line. Our
first finding is that the level of trust is fixed along a self-generating line.

Lemma 3.1. Along a self-generating line, total payoff is given as

1—-p

and so the same level of trust, x + vy, is used when implementing any pair on the
self-generating line.

Proof: Using (2.6) and (2.7), if we can implement a pair (u, v) on a self-generating
line, then

T = utv=p{2—2—y+q(r+ s+ B(ta +ve1)) + (1 — ¢)B(tao + Vbo)
+qlk(x +y) — (r+5) + Blups + va1)] + (1 = ¢)B(tpo + Vao) }
+(1 - 2p>5(uo + Uo)

Rearranging terms and using u, + v, = T and wu; + v,y = T, we may solve for T
and confirm (3.1). |

We now consider whether a self-generating line can take the form of a self-
generating point. In other words, can we implement a single utility pair, (u,v),
using continuation values that satisfy (u, vig) = (u,v) and (u,, v,) = (u,v)? Our
next finding confirms that the opportunities for such an outcome are quite limited.

Lemma 3.2. A point (u,v) constitutes a self-generating line if and only if u =

_ _p
v =155
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Proof: Suppose u;y = u, = v and vy = v, = v. Using (2.2), it follows that ¢r > x.
Likewise, (2.3) implies that gs > y. Next, (2.4) and (2.5) respectively imply that
0 > s and 0 > r, from which it follows (from feasibility) that s = 0 = r. It
thus follows that 0 > y and 0 > x, from which it follows (from feasibility) that
x=0=y. Using ujg = u, =uand s =r = x = y = 0, we may solve (2.6) for u,
finding that u = [

p
-3
This finding indicates that a point is self-generating only if it entails no trust (i.e.,
x =1y =0) and thus results in the Nash (autarky) payoff.

We consider now the implementation of the corner of a self-generating line,

(u, 7). We focus here on symmetric self-generating lines, where u = v, and w = 7.

Our finding places some structure on x and y.

Lemma 3.3. Consider any symmetric self-generating line with T > ﬁ. Let
(u, ) denote the point on the line at which player a's utility is minimized. The
implementation of (u,u) requires x > y, and so player a exhibits more trust.

Proof: Given T' > 153, the line must not be a point (by Lemma 3.2). Thus,

u < T/2. Using Lemma 3.1, it follows that

M?+@+w@k—D]

U < 3.2
u 0= 0) (3.2)
Next, using (2.2) and (2.4), we have from (2.6) that
u =z p(l + Buo> +p{q(ky + Bubo) + (1 - q)ﬂubo} + (1 - 2p>6uo
= p+pgky + (1 —p)Bu, + pBup
> p+pgky + (1 —p)Bu+pPu
= p+pgky + Pu,
where in the second inequality we use u, > u and up, > u. It follows that
P+ paky
> — .
Uz (3.3)
Using (3.2) and (3.3), it is clearly necessary that
P2+ (x+1y)(gk —1 p + pqk
flo,y) = B2 ETYahZ D] Yo (3.4)

2(1-p) 1=p
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Calculations confirm the following inequalities: f, > 0 > f, and f(z,z) < 0. By
the latter inequality and (3.4), x = y is not possible. Likewise, if z < y, then a
contradiction is reached with (3.4), since the inequalities just stated then imply
that f(z,y) <0. H

Thus, a player’s utility can be driven to its minimum level along a self-generating
line only if that player exhibits more trust. In essence, the trust that the player
shows is the means through which that player’s utility is reduced.

In our model, players can achieve a first-best outcome only if they exhibit total
trust (x =y = 1). Building on Lemma 3.3, we now establish that players are not
able to use a symmetric self-generating line to achieve a first-best outcome.

Corollary 3.4. There does not exist a symmetric self-generating line that yields
first-best total payofis.

The argument is simple. By Lemma 3.1, if a self-enforcing line generates first-best
total payoffs, then x + y = 2 is required, so that total payoff is T' = 2pgk/(1 — f3).
Given z € [0,1] and y € [0,1], this means that each utility pair on the self-
generating line is implemented using x = y = 1. By Lemma 3.2, this total payoff
cannot be achieved with a self-generating point. Further, as shown in Lemma 3.3,
when a symmetric line is used, we can implement the corner only if x < y.

We consider next a necessary condition that is associated with the imple-
mentation of any (u,v) along a symmetric self-generating line. This condition
establishes a key relationship between the level of trust and dynamic reciprocity.

Proposition 3.5. Consider any symmetric self-generating line and associated
value x + y. For any (u,v) on this line to be implemented, it is necessary that

r+y
B

Proof: Consider the implementation of any utility pair (u,v) along a symmetric
self-generating line. Using u, + v, = T and wu;y + v;g = T', we may rewrite (2.3) as

1 —y+qls — Bup| — (1 — q)Bup, > 1 — Bu,. (3.6)

We may now add (2.2) and (3.6) to obtain

Ugo — Upp > ) (3.5)

r+y—q(r+s)
5 .

(3.7)

Ugo — Upo + Q[ual — Up1 — Uqo + ubo] Z
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In similar fashion, using u; + vy = T, we may rewrite (2.5) as
kx —1r — Bug > kx — Buge. (3.8)
We may now add (2.4) and (3.8) to obtain

—(r+s)
&)

Combining (3.7) and (3.9), we see that implementation of (u, v) is possible only if

Z Ugl — Upl — Ugo + Upo- (39)

g(r+s) _rt+y—qlr+s)
g~ 5 '

Ugo — Upo —

Equivalently, (3.5) must hold. H

This proposition reveals two important lessons. First, if players achieve a pos-
itive level of trust, then dynamic reciprocity is necessary for the implementation
of any utility pair along a symmetric self-generating line. In words, when the
two players are cooperating along a line, player a must do better tomorrow when
player a made an investment today and player b did not reciprocate than when
player b made an investment today and player a did not reciprocate. It is perhaps
surprising that dynamic reciprocity is required. After all, players have available
some instruments (7, s) with which to achieve immediate reciprocity. The im-
portant point, though, is that these instruments are useless when the investment
is unsuccessful, as then there is no money to return, and the incentive problem
associated with this state (IC¢ and IC%) thus requires reciprocity through the
remaining instruments - future continuation values. Second, as the players in-
crease the level of trust (i.e., as they implement larger values for = + y), incentive
compatibility implies that the degree of dynamic reciprocity (i.e., tzo — Up,) must
also grow. Greater trust is associated with greater dynamic reciprocity.

3.2. Highest Symmetric Self-Generating Lines: Necessary Features

We turn next to consider some necessary conditions for implementing a highest
symmetric self-generating line (HSSGL). A HSSGL is a symmetric self-generating
line that achieves the highest value for T' = u + v. Following Athey and Bagwell
(2001), we focus on the implementation of a corner utility pair, (u,v) = (u, @), of
a HSSGL. By the symmetry of the environment, if we can implement the corner
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pair (u,u), then we can also implement the other corner pair, (@,u). Assuming
that players have access to a public randomization device, we can then implement
any utility pair along the HSSGL as a convex combination of the two corners.
Further, as shown in the next subsection, once we can implement a corner utility
pair of a HSSGL, we can devise an implementation of a HSSGL that does not
require a pubic randomization device.

Let {z,y,r, s, ug, vig, Uy, V,} implement (u,7) on a HSSGL. Our game allows
for a rich set of instruments, and a given utility pair on a HSSGL may have
multiple implementations. In particular, (u, %) on a HSSGL may admit distinct
implementations. It is also possible that multiple HSSGL’s may exist. By defi-
nition, all such lines achieve the same value for T" = u + v and thus x + y; but
one HSSGL may be wider than another, and so the corner utility pairs, (u, %) and
(@,u), may differ across HSSGL’s. Our characterizations of necessary features
thus take different forms. Our strongest characterizations hold for any HSSGL
and for any implementation of the associated (u,w). But it is also useful to offer
characterizations of necessary features that apply only to certain HSSGL’s. In
particular, by characterizing the necessary features of an implementation of the
widest HSSGL (i.e., the HSSGL for which @ — u is greatest), we acquire insights
that then enable us to construct a HSSGL.S

Henceforth, we maintain the assumption that [ is sufficiently large, so that

1

Bzﬁ*zl—kp(qk:—l)'

(3.10)
For any > 0, this constraint is sure to hold for gk sufficiently large. At the other
extreme, this constraint can only hold for 8 near unity when gk is close to unity.

We begin by confirming that a HSSGL must achieve some trust (i.e., x+y > 0)
and thus generate a total payoff that exceeds the Nash autarky payoff (i.e., T >
2p/(1 — j3)). To establish these points, we construct a symmetric self-generating
line in which z +y = 1.7

Lemma 3.6. There exists a symmetric self-generating line, in which x +y = 1
and thus T = p[1 + qk|/(1 — B) > 2p/(1 — [3).

6Given a symmetric self-generating line, it is straightforward to use the techniques of Abreu,
Pearce and Stacchetti (1990) and establish the existence of a widest self-generating line that
contains the given line. The existence of a widest HSGGL is used below in the proof of Lemma
3.9, for example.

"See also Proposition 4.1 below, which provides a deterministic implementation of a symmet-
ric self-generating line with the same total payoff.
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Proof: We implement the corner utility pair (u, @) for a symmetric self-generating
line with x = 1 > y = 0. As discussed above, the opposite corner utility pair,
(@, u), then can be implemented in symmetric fashion (with y = 1 > = = 0),
and all utility pairs on the line between the corners can be implemented using
a public randomization device. Consider then the following specifications: x =
Ly=0,r=5=0,Uq = Uqr = U+ 1/5,Upo = Up1 = Up = U, Vgo = Va1 =T — 1/3
and vy, = vy = U, = U, where u = p/(1 — B) and @ = pgk/(1 — ). Observe that
u+T =T = p[l+qk]/(1—0) = tag+ Vs = Uy +,, for all 6 € {0,1}. Tt is direct to
confirm that the specifications satisfy the IR and IC constraints, (2.1)-(2.5), and
also the promise keeping constraints, (2.6) and (2.7). Finally, given that g > 5,
simple calculations confirm that u 4+ 1/5 < @, and so every specified utility pair
indeed falls on the line that connects (u,7) and (7,u). ®

Using Lemmas 3.2 and 3.6, we may conclude that a HSSGL cannot be a point
(i.e., @ > u on a HSSGL).

We now report a finding that holds for any HSSGL and implementation of the
associated (u,@).

Lemma 3.7. Fix any HSSGL. For any implementation of the associated (u, ),
x =1 and thus y < 1.

Proof: Assume to the contrary that (u, @) is implemented on a HSSGL with
x < 1. Recall from Lemma 3.1 that T" = w. We obtain a contradiction
by constructing an alternative self-generating line with v +v = 7" > T. To
construct this alternative line, it is sufficient to implement a new corner pair,
(u/, @), on a line with 7" > T. The rest of the alternative line can be implemented
using convex combinations of (v, @) and (@', ).

Starting from the implementation of (u, ), we implement the new corner pair
(v, @) by making several changes. First, we increase x by a small amount, ¢ > 0.
This change leads to a higher value for 7', which increases in amount p(‘fkfgl)s = 7.
To place our new continuation pairs on this higher line, we must ensure that u'+u’
is higher than u +u by ~; likewise, we must ensure that the values for u, 4+ v, and
U9 + v;p increase by +, for all 7 and 0. To this end, we leave u,, up, and uy; at
their original levels, increase u,, and u,; by £/, increase vy, and v, by v —¢/f,
and increase vp1, Uy, and v, by 7. Note that v — /8 > 0 if and only if 5 > 5.
We leave s, r and y unaltered. Given that (u,7) was originally implemented, it
is straightforward to confirm that the new specifications satisfy the IR and IC
constraints, (2.1)-(2.5). Referring to (2.6), we calculate that u is unchanged (i.e.,
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u = u'). We may use (2.7) to confirm that @ has increased by v (i.e., @' —u = 7).
Thus, all new continuation values are at or above v’ and at or below @', given
B > %, and thus rest on the new - and strictly higher - self-generating line. This
is a contradiction, and so x = 1 is necessary. Finally, given Corollary 3.4, it follows
immediately that y < 1. W

Thus, when implementing the worst value on any HSSGL for player a, player a
must exhibit full trust (i.e., z = 1) even though player b does not (i.e., y < 1).

We next report two simple conditions that characterize any implementation of
(u, ) along the widest HSSGL.

Lemma 3.8. Consider the widest HSSGL. For any implementation of the asso-
ciated (u, ), up, = u and (2.4) binds.

Proof: Consider any implementation of (u, ) along the widest HSSGL and sup-
pose to the contrary that wu,, > w. Then v, < w = T — u. Starting with this
implementation, let us now decrease uy, by € > 0 and increase v, by . Making
no other changes, we observe that the new specifications satisfy the IR and IC
constraints (2.1)-(2.5). Referring to (2.6) and (2.7), we see that the new corner
utility pair, (v, @), satisfies v’ < v and @ > @, contradicting the assumption that
the original implementation corresponded to the widest HSSGL.

Next, consider any implementation of the widest HSSGL and suppose to the
contrary that (2.4) is slack. Then (up; — upo) > s > 0, and it follows that uy > u
and wup, < u. Starting with this implementation, let us now decrease u;; by € > 0
and increase vy by €. We note that (2.2) and (2.5) are unaffected by this change
and thus continue to hold. Further, (2.3) is now sure to hold with slack, and (2.4)
holds provided that ¢ is sufficiently small. Once again, we refer to (2.6) and (2.7)
and observe that the new corner utility pair, (v/,@’), satisfies v/ < u and @ > 7,
contradicting the assumption that the original implementation corresponded to
the widest HSSGL. H

As this result confirms, when implementing the worst value for player a along the
widest HSSGL, player a’s continuation value remains at this worst value in the
event that player a fails to reciprocate in the current period.

We now consider specific implementations of the corner utility pair for the
widest HSSGL. In particular, we posit an implementation of the widest HSSGL
and then show that an implementation must exist that satisfies useful properties.
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Lemma 3.9. Consider the widest HSSGL. There exists an implementation of the
associated (u, @) in which (i). (2.5) binds, (ii). 7 = s = 0, Ug1 = Ugo and Upy = Upo,
(iii). (2.3) and (2.2) bind, (iv). Ua, = Upo + (z +y)/B, and (v). © =1, up, = u
and (2.4) binds.

Proof: To prove part (i), we fix any symmetric self-generating line and implemen-
tation of the associated (u,u). Suppose that (2.5) is slack. Then (v, — V40) =
B(tgo — ug1) > 1 > 0, and it follows that u,; < @ and ug, > u. Starting with this
implementation, let us now decrease u,, by € > 0 and increase u,; by (1 — ¢q)e/q.
Correspondingly, we increase v,, by € > 0 and decrease v,; by (1 — ¢q)e/q. For ¢
sufficiently small, (2.5) continues to hold; furthermore, all other constraints are
unaffected by this change. Thus, the new specification also implements (u,7)
along the same self-generating line. We can proceed in this way until (2.5) binds.

For part (ii), we consider the widest HSSGL. By Lemma 3.8, we know that
(2.4) binds in the implementation of (u,@). Further, as just established, there
exists an implementation of (u,u) under which (2.5) binds. Thus, (u,7) can
be implemented with a specification under which (2.4) and (2.5) bind. For this
implementation, we thus have that r + fu, = Bug, and s + Suy; = Pug,. Given
Uqo and vy, any values for r; s, u,; and vy, that satisfy these latter two equations
and feasibility constraints can also be used to implement (u, ). Thus, there exists
an implementation in which .1 = g0, Vs1 = Vpo, ¥ = 0 and s = 0.

For part (iii), we consider the widest HSSGL. We know that there exists an
implementation of (u, %) in which (2.4) and (2.5) bind, and u,; = Uao, Vo1 = Upo,
r = 0 and s = 0. Further, by Lemma 3.8, we also know that u,, = u. Since
x = 1 by Lemma 3.7, we may use Proposition 3.5 and further conclude that
Ugl = Ugo > Upo + ( +y) /B > u. Finally, we know from Corollary 3.4 that y < 1.

Let us now suppose that (2.3) is slack in this implementation. Using the
properties just reported, we then find that B[u, — up] > y > 0, and so it follows
that u, > u. We now derive a contradiction, by implementing an alternative
utility pair, (¢/,7'), such that 77 = v/ + @ > «' +u = T. Starting with the
original implementation, we first increase y by € > 0, where ¢ is small. This
change generates an increase in 7' in amount v = p((l]kf;)e. It also increases the

right-hand side of (2.6) by pgke. Second, we decrease tuq,, 1, and u, in amount
9, where 0 satisfies p3d + (1 — 2p)35 = pgke and is thus given by § = 6’(’35‘;).
Third, we increase v,,, 1,1 and v, in amount 0 + 7. Finally, we increase v,; and
Upo in amount J, while leaving wuy; and wuy, unaltered. It is straightforward to
confirm that our new specifications satisfy the IR and IC constraints (2.1)-(2.5),

where (2.3) continues to hold if ¢ is sufficiently small. Referring to (2.6), we see
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that v/ = w. Since u,1, uq, and u, all exceed u, all continuation values under our
new specification continue to exceed u' = w, provided that ¢ is small. Referring
to (2.7), we see that @ = W+ . Since vy, v, and v, are all less than @, all
continuation values under our new specifications rest below @', if ¢ is sufficiently
small. The contradiction is now established.

Last, we suppose that (2.2) is slack in this implementation. Recalling the
properties reported above, we know that u,; = u., > u and hence v, = v,, < 7.
We now derive a contradiction by constructing a wider HSSGL. To this end, we
start with the original implementation, and then decrease u,; by € and increase
Va1 by €. Making no other changes, we observe that the new specifications satisfy
the IR and IC constraints (2.1)-(2.5). Referring to (2.6) and (2.7), we see that
the new specification implements (v',7’), with ¥’ < u and @ > @. Thus, we can
implement a wider line without changing 7', which is a contradiction.

For part (iv), we observe from above that there exists an implementation of
(u, ) on the widest HSSGL, in which all four incentive constraints (i.e., (2.2)-
(2.5)) bind, and w1 = Ugo, Vp1 = Upo, 7 = 0 = 8, Up, = w and z = 1 > y. Given
that all four incentive constraints bind, we may follow the steps in the proof of
Proposition 3.5 and confirm that the necessary condition (3.5) then must hold
with equality: uq, — upo = (z +y)/B. Thus, us =u+ (x +y)/5.

Finally, part (v) simply lists properties (identified and used above) which we
establish in Lemmas 3.7 and 3.8 as being true in any implementation of the widest
HSSGL. =

According to part (ii) of this result, if we can implement a corner utility pair
and thereby construct the widest HSSGL, then we can do so with an imple-
mentation for which (2.5) binds and in which neither player exhibits immediate
reciprocity. Referring to Proposition 3.5 and Lemma 3.9, we are now able to
summarize some key findings on dynamic and immediate reciprocity.

Corollary 3.10. For any symmetric self-generating line, any utility pair on the
line can be implemented only if the implementation embodies dynamic reciprocity.
In particular, for any HSSGL, the associated (u,u) can be implemented only if
the implementation embodies dynamic reciprocity. In the widest HSSGL, there
exists an implementation of the associated (u, @) such that neither player exhibits
immediate reciprocity.

In short, dynamic reciprocity is necessary for constructing a HSSGL, but imme-
diate reciprocity is not.
We are now in position to derive an upper bound for .

21



Proposition 3.11. Fix any HSSGL. For any implementation of the associated
m — B=B*

(w7), z=1andy < 5.

Proof: Consider any HSSGL and the implementation of the associated (u,@). By
Lemma 3.7, z = 1. Suppose to the contrary that y > % Let us now consider the
widest HSSGL. (Recall that = and y are invariant across all HSSGL’s.) By Lemma
3.9, we can implement the associated (u, @) with all four incentive constraints (i.e.,
(2.2)-(2.5)) binding, us = Uso = u+ (1 +y)/B, upy = upo = u, and r = 0 = s.
Referring to the binding (2.3), we find that u, may be expressed as u, = u+y/f.
Using this expression, we may derive from (2.6) that

p+ylp(gk — 1) +1]
1- 5 '

Using as well that u, + v, = u;y + v = u + U, we may derive from (2.7) that

(3.11)

Q:

pak —y
1-38°

Recalling that g1 = e, = u+ (1 4+ y)/f and using (3.11), we may derive that

W 1ty =Bl —p—yplgk —1)]

v B(1—p5)
Finally, we may use (3.12) and (3.13) to find that 7 > w,, if and only if y < %
%, it follows that @ < u,,, and so a

u =

(3.12)

(3.13)

Thus, under our assumption that y >
contradiction is obtained. W

We note that Proposition 3.11 implies an upper bound for the total level of
trust; in particular, this proposition establishes that, in the HSSGL,

20

Thus, Proposition 3.11 provides important guidance as we go forward and attempt
to construct a HSSGL: if we can implement a symmetric self-generating line with
x4y =208/(8+ "), then we can be assured that we have constructed a HSSGL.
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3.3. Highest Self-Generating Line: Implementation

We now construct a HSSGL. We do this in two ways. First, we assume the
existence of a public-randomization device and achieve the construction by im-
plementing the corner utility pair (u, %) along a HSSGL. Using Proposition 3.11,
we can be assured that we have a HSSGL if x = 1 and y = % Under this
approach, when the implementation calls for an intermediate utility pair follow-
ing an event in which neither player reports income (i.e., when u < u,, v, < ),
we may require that the players use the device to achieve a distribution over the
corner utility pairs, (u, @) and (@, u), that generates the desired intermediate pair
in expectation. Second, we construct a HSSGL when players do not have a public-
randomization device. In this case, when the implementation of (u, %) requires
that an intermediate utility pair is used following an event in which neither player
reports income, then that pair itself must be implemented. This approach has the
benefit of offering predictions about the evolution of trust between players as a
succession of events are experienced in which neither player reports income.

We begin with the situation in which players have access to a public random-
ization device.

Proposition 3.12. There exists a HSSGL, in which x +y = 28/(8 + 8*) and
thus T = p[2 + %(qk —1)]/(1 — ). In particular, the corner utility pair (u,7)
can be implemented using the following specifications: v = 1,y = (8 — 8%)/(8 +
B)r =8 =0,Up = U1 = u+ (1 +9)/8 =T, up = upy = w,u, = u+y/p,
Vao = Vg1l = U, Upo = Up1 = U, and v, = U — y/ 3, where

B—B* 1
_ Pt s
u= 5 ,and (3.15)
Tt — (3.16)
U=1u - :
- B+

The corner utility pair (U, u) can be implemented symmetrically, by interchanging
x with y and v with v in the above specification. Finally, any utility pair on
the line between the corners - and specifically the utility pair (u,,v,) - can be
implemented using a public randomization device so that each corner utility pair
is selected for implementation with appropriate probability.

Proof: By Proposition 3.11, if a symmetric self-generating line exists for which
x+y=28/(6+ "), then this line is a HSSGL. Thus, the proof is complete if we
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show that the specifications above implement the corner utility pair (u,v) = (u, @)
for a symmetric self-generating line. First, we observe that u +u = T = p[2 +
Bi_%*@k —D]/(1 = B) = up + vig = u, + v,, for all ¢ € {a,b} and 6 € {0, 1}.
Second, we observe that @ = wu,, = us > u, > u, where the final inequality is
strict when § > §*. Third, it is direct to confirm that the specifications satisfy
the IR and IC constraints, (2.1)-(2.5), and also the promise keeping constraints,
(2.6) and (2.7). In particular, the IC constraints all bind. Finally, as explained
in the statement of the proposition, it is now direct to implement the opposite
corner utility pair, (@, u), and we may then implement (u,,v,) by using a public
randomization device. W

To interpret this implementation, let us suppose that the players begin the
game with a coin toss, where with probability 1/2 they implement (u, %) and
with probability 1/2 they implement (@, u). Each player then expects an ex ante
payoff of (1/2)(u+1). For simplicity, suppose that player b wins the toss, and the
players thus start by implementing (u, ). Player b is now the favored player, since
v =1 > u = u. In this case, player a is expected to exhibit more trust: if player a
receives the income, then player a exhibits full trust (x = 1); however, if player b
receives the income, then player b does not exhibit full trust (y < 1). Three events
may happen. First, if player a receives the income and exhibits full trust, then
player a’s “favor” is paid, and in the next period the players implement (@, u).
Player a then becomes the favored player, since u = @ > u = v, and so it then
becomes player b’s turn to pay a favor. Second, if player b receives the income
and exhibits (partial) trust by sending y to player a, then player a’s favor has not
yet been paid, and so in the next period the players again implement (u, @), with
player b thus again the favored player. Third, if neither player reports income,
then in the next period the players implement the utility pair (u,,v,), by using a
public randomization device and randomizing over (u,u) and (@, u). Notice that
v = v, > u, = u, and thus player b remains the favored player. However, if
B > B* so that y > 0, then player a’s expected utility following the event in
which no income is reported is strictly greater than player a’s expected utility at
the beginning of the period (or following an event in which player b receives the
income). In expectation, the “size” of the favor that player a owes is thus reduced
when the neutral event (neither player reports income) is experienced. The key
intuition derives from the I C’g constraint. As (2.3) reveals, when the players are
attempting to implement player b’s preferred utility pair (u, @), they must be sure
to give player b the incentive to report income (and thus send y to player a) when
player b receives income. This is accomplished by penalizing player b somewhat
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when no income is reported.

The behavior described in Proposition 3.12 is relatively simple and yet it
generates the highest possible expected utility for players when self-generating
lines are used. We emphasize that players do not need to use immediate reci-
procity: the implementation of a HSSGL is achieved with » = s = 0. We note,
though, that alternative implementations of a HSSGL exist in which immediate
reciprocity is used. Consider the following specifications: z = 1,y = (86— ") /(8+
/8*>,Ub1 - 3/5 = Ubo = U, Ugo = Uql +T/5 =u-+ (]- +y)/5 = U, Uy = Q—f—y/ﬁ?
Vao = Va1 — 7/ = w, Vpo = Vp1 + $/B =, and v, = U — y/3. These specifications
satisfy the IR and IC constraints, (2.1)-(2.5), and also the promise keeping con-
straints, (2.6) and (2.7). Further, it is direct to confirm that @ > uy = u+ s/ if
s < Bla —u] =1+ y; likewise, we see that u < uy; if 7 < 14 y. Recalling that s
and r are feasible if and only if s € [0, ky|] and r € [0, kz], we may conclude that
these specifications also implement a HSSGL provided that s € [0, min(ky, 1+ y)]
and r € [0, min(k, 1 + )], where y = (5 — 5%)/(8 + £*). We note that this family
of implementations includes the implementation featured in Proposition 3.12 as
a special case. Based on this discussion, we see that the practice of immediate
reciprocity implies that a player that extends trust enjoys a less valuable future
when some of that trust is reciprocated in the immediate period; for example, if
the players seek to implement (u, %) and player a receives income, we see that
Uq1 < Ugq, When 7 > 0. By contrast, as Proposition 3.5 suggests, our analysis indi-
cates that the extent of dynamic reciprocity, which we define as u,, — up,, remains
at the value w— u whether or not players exhibit immediate reciprocity.

We now suppose that players do not use a public-randomization device.

Proposition 3.13. There exists a HSSGL that can be implemented without a
public-randomization device and in which x +y = 2(/(8 + %) and thus T =
pl2+ Bi% (gk—1)]/(1—=5). In particular, let (u, @) be defined by (3.15) and (3.16)
and consider any utility pair (u,v) along the line connecting (u,w) and (@, u).
This pair can be implemented using the following specifications: ¥ = s = 0, Ug, =

Ugr = U+ (x4 Y)/B =T, Upo = Up1 = W, Voo = Va1 = U, Upo = Upy = U, and

v = BB ;p — ), (3.17)
y=6ﬁ*[“;p — ), (3.18)
w =5 “(1525*)1, (3.19)
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Proof: Pick any utility pair (u,v) such that u € [u,@],v € [u,u] and u+v = u+a.
From Proposition 3.12, we know that u +u7 =T = p[2 + Biﬁﬁ (gk —1)]/(1 — B).

Simplifying, we have that u+u = 12_—”/3 + % We also know that 7 —u =
2/(B + ), where u is given by (3.15). Using these facts, we may use (3.17) and
(3.18) to confirm that x +y = 23/(8 + ). Thus, by setting u,, = u, = U, we
also set g, = ug1 = u+ (z+y)/B. We now proceed as follows. First, using (3.19)
and (3.20), we may confirm that u + T = u + vy = u, + v,, for all i € {a,b} and
0 € {0,1}. Second, we may use (3.17)-(3.20) to confirm that the values for x, y, u,
and v, are feasible. In particular, using (3.17), we find that = > 0 since v > u and
B> (% where x > 0if v > u or 8 > 8; and we find that x < 1 since v < u, where
x < 1if v < @. Similarly, using (3.18), we find that y > 0 since u > w and > 7,
where y > 0 if u > w or # > *; and we find that y < 1 since u < 7, where y < 1
if u < . Next, we may use (3.19) to confirm that u, < 7 since u <7 and § > 7,
where u, < wif u <@or f > *; and we find that u, > u since u > u and § > 5%,
where u, > u if u > w or § > *. Finally, given that u +u = u, + v, = u + v,
it now follows that v, > u since v > w and 8 > %, where v, > u if v > u or
B > [*; and it follows as well that v, < 7 since v < u and 8 > %, where v, < u
if v <@or B > % Third, it is direct to confirm that the specifications satisfy
the IR and IC constraints, (2.1)-(2.5), and also the promise keeping constraints,
(2.6) and (2.7). In particular, the IC constraints all bind. Thus, any (u,v) along
the line connecting (u, @) and (@, u) can be implemented using only continuation
values drawn from that line. W

). (3.20)

In the implementation featured in Proposition 3.13, any utility pair (u,v) on
the line that connects (u, ) and (%, 1) can be implemented using only continuation
values drawn from that line. For example, at the start of the game, the players
might seek to implement a symmetric utility pair corresponding to the midpoint
of this line. Let (u,u) denote the midpoint:

17*

Notice from (3.17) and (3.18) that x = y when u = v; thus, since z+y = 25/(5 +
£*), we have that x = y = B/(8 + 8*) in the first period. Suppose, for example,
that player b receives income in the first period. The implementation then calls for
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player b to exhibit trust and send y = /(5 + 5*) to player a. Play then moves to
the second period, at which point the players seek to implement the (asymmetric)
utility pair (u,@). This asymmetric pair rewards player b for reporting income and
showing trust toward player a in the first period. To implement the corner pair
(u, ), the players use the corresponding values for z and y that are given by (3.17)
and (3.18). When (u,v) = (u, ), it is direct to confirm that these values are given
by x =1and y = (8 — 8%)/(8 + 87), indicating that player a now exhibits more
trust than player b. Notice that this is the same implementation for the corner
utility pair that is used above in Proposition 3.12.

Continuing with this example, suppose next that no income is reported in the
second period. Going into the third period, the players now seek to implement the
utility pair (u,,v,), as given by (3.19) and (3.20) when (u,v) = (u,@). As Propo-
sition 3.13 shows, this pair may be implemented deterministically (i.e., without
a public randomization device). To determine the implementation for the pair
(u,v) = (uo,v,), we again refer to (3.17)-(3.20). At this point, it is important
to use the notation with care. Given (u,v) = (u,,v,), we may think of the two
left-hand-side variables determined by (3.19) and (3.20) as a pair (u,, v,) that rep-
resents the utilities that the players seek to implement at the start of the fourth
period, in the event that no income is reported in the third period. In this general
manner, for any given path of income realizations for the infinite game, we may
refer to (3.17)-(3.20) and determine the path of trust (i.e., the amounts of income
that are given from one player to another) for the infinite game.

As the discussion above suggests, one interesting possibility is that the players
report no income over successive periods. Following the example above, suppose
that player b sends income to player a in the first period, so that player b is
the favored player in the second period, and suppose that neither player reports
income in the second, third, etc., periods. Does player b remain the favored player,
until a period finally arrives in which player a has income? Is the size of the favor
that player a owes reduced in each successive period that no income is reported?

These questions are readily answered using (3.17)-(3.20). To this end, we may
use (3.17) and (3.18) to find that

x—y=["v—ul. (3.22)

Equation (3.22) captures a basic relationship between the utility pair that the
players seek to implement and the extent to which each player exhibits trust.
In particular, if the players seek to implement a utility pair in which player b is
favored (i.e., in which v > w), then player a must exhibit more trust (i.e., x > y).
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Next, given the expressions for u and u presented in (3.15) and (3.21), respectively,
we may use (3.19) to derive that

uo—ﬂzﬁ—[u—ﬂ]. (3.23)
p
Of course, given that 2u = u, + v, = u+ v = u + W, we may equivalently restate
(3.23) as .
U— v, = B—[ﬂ—v]. (3.24)
p
Equations (3.23) and (3.24) indicate key relationships between the utility pair
(u,v) that the players seek to implement in a given period and the utility pair
(uo, v,) that they seek to implement in the next period in the event that no income
is reported in the given period.

Consider first the possibility that 8 = 5*. Using (3.23) and (3.24), we see then
that (u,v) = (e, v,). In this case, when the players seek to implement (u,v) and
neither player reports income, then the players again seek to implement (u,v) =
(uo,v,) at the beginning of the next period. As (3.22) confirms, the trust levels
that players are expected to exhibit are then unchanged. Put differently, the favor
that is owed does not diminish as successive no-income states are encountered.
Consider next the case in which g > *. If u = v = u, then once again the favor
owed does not diminish as successive no-income states are experienced. In this
case, if no income is reported in the given period, then the players again seek to
implement the same utility pair, (u,v) = (u,, v,) = (U, ), in the next period. In
particular, x and y both remain at the symmetric level, 3/(5 + 5%).

The final possibility is that 5 > g and (u,v) # (u,w). In this case, patient
players seek to implement an asymmetric utility pair. For simplicity, let us focus
on the situation in which player b is favored: v > u > u. We thus have from (3.22)
that z > y. Now suppose that neither player reports income in the current period.
Referring to (3.23) and (3.24), we see then that the players proceed to the next
period and seek to implement (u,,v,), where u, < u < v,. Given §*/5 < 1, we
may further observe that u < u, and v, < v. Thus, when 5 > * and the players
seek to implement (u,v) such that v > u > u, if no income is reported, then in the
next period the players seek to implement (u,,v,) such that u < u, < u < v, < v.
Applying (3.22), we see that in the next period player a continues to exhibit more
trust than does player b; however, the extent of the trust differential is reduced
(i.e., x remains larger than y, but  — y is lower). Recalling the two questions
posed above, we thus conclude that player b remains the favored player until a
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period occurs in which player a has income. But the size of the favor that player
a owes is reduced in each successive period that no income is reported.

Thus, when player b is the favored player and a period is experienced in which
neither player reports income, player a acknowledges that a favor is still owed but
insists that the favor is now smaller in size. We may imagine player a exclaiming,
“Yeah, but what have you done for me lately?” As suggested previously, the
key intuition is associated with the / C’;’ constraint. As (2.3) indicates, when the
players are attempting to implement a utility pair that favors player b, they must
be sure to give player b the incentive to report income. To accomplish this, they use
a utility pair (u,, v,) that penalizes player b somewhat when no income is reported.
Recall that in the implementation with public randomization, the players always
end up at a corner utility pair, with one or the other player showing full trust,
and the intermediate utility pair (u,,v,) is achieved in expectation through an
appropriate selection of probabilities. By contrast, in the implementation without
public randomization, (u,,v,) is directly implemented; as a consequence, both
players may exhibit partial trust, and we can analyze how these trust levels evolve
as successive no-income periods are experienced.

We may summarize the discussion above as follows:

Corollary 3.14. Consider the implementation of a HSSGL that is specified in
Proposition 3.13. If § = [* or (u,v) = (w,u), then (u,,v,) = (u,u) and so
the values for x and y are not altered following a period in which no income is
reported. If B > " and v > uw > u, then u < u, < u < v, < v and so x — y
remains positive but is reduced following a period in which no income is reported.
Likewise, if 5 > " andu > u > v, thenv < v, < u < u, < u and so y — x remains
positive but is reduced following a period in which no income is reported.

3.4. Highest Symmetric Self-Generating Line: Unique Implementation

In Propositions 3.12 and 3.13, we present implementations of a HSSGL. The imple-
mentations are different, in that the former uses a public-randomization device.
Further, as explained in the discussion following Proposition 3.12, alternative
implementations that feature immediate reciprocity also can be provided for a
HSSGL. Despite these findings, we show in this subsection that, for any utility
pair on the widest HSSGL, every implementation is characterized by the same
values for x, vy, u, and v,.

We begin by defining our notion of uniqueness. Fix any (u,v) on the widest

/ /

HSSGL. Let {z,y,r, s, wig, vig, Uo, U} and {&’, 3/, 1", &', 1y, vy, ul, v} be two imple-
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mentations of (u, v), where each implementation uses only continuation values that
are drawn from a HSSGL. We then say that (u,v) is implemented uniquely (up to
{r, s, uip, viy}) if, for any such two implementations, we have x = 2’, y = v/, u, = u,,
and v, = v/. Otherwise, we say that there exists multiple implementations for
(u,v). Thus, we define uniqueness in terms of the trust relationship (i.e., the
values of z and y) and the manner in which utility pairs evolve following neutral
states (i.e., the values of u, and v,).
Our result is as follows:

Proposition 3.15. Every (u,v) on the widest HSSGL is implemented uniquely.

We prove this proposition in the appendix. With this proposition, we have a
uniqueness result for our prediction that the size of favor that is owed diminishes
in expectation when a neutral state is encountered.

This concludes our characterization of HSSGL’s. In the next three sections, we
compare the total payoff achieved along the HSSGL with alternative benchmarks.

4. EM Relationships

In this section, we introduce the benchmark of a simple EM relationship. After
defining and characterizing a simple EM relationship, we interpret the implemen-
tation featured in Proposition 3.13 in terms of a sophisticated EM relationship.
Assuming 8 > %, we then show that the total payoff induced along a HSSGL by
a sophisticated EM relationship is strictly greater than the total payoff achieved
in a simple EM relationship.

In a simple EM relationship, once a player provides a favor, the player is
unwilling to provide any further favors - of any size - until the favor is paid in
full (i.e., until the other player provides a favor of equal size). We now construct
a symmetric self-generating line that specifies a simple EM relationship. The
construction yields the highest total payoff possible in such a relationship, since
players exchange favors that are as large as possible. In the specification, the
players move deterministically between two corner utility pairs, (u, %) and (@, ).
The utility pair (u, @) is implemented when player a owes the favor. The players
implement this utility pair as follows: (i) if player a receives income, then player
a transfers all income (z = 1); (ii) if player b receives income, then no transfer
(y = 0) is required; and (iii) if neither player receives income, then no transfer
is feasible. In case (i), player a’s favor is paid, and it is then player b’s turn to
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provide a favor. The players thus implement the other corner utility pair, (T, ),
in the next period. In case (ii), player a’s favor is not yet paid, and the players
thus implement (u,%) again in the next period. Finally, in case (iii), player a ’s
favor is also regarded as unpaid, and so the players implement (u, %) again in the
next period. The utility pair (@, u) is implemented in similar fashion, except here
it is player b that owes the favor.

We now provide a formal characterization of a simple EM relationship.

Proposition 4.1. There exists a symmetric self-generating line that specifies a
simple EM relationship, in which x +y = 1 and thus T = p[1 + ¢k]/(1 — 3). The
line can be implemented without a public-randomization device. In particular, let

p*B(1 + gk)
(1-5)1 - B+ 20p)

p(1+qk)(1 — 5+ Bp)

(1—=6)(1—-5+28p)
The pair (u,u) can be implemented using the following specification: r = s = 0,
Ugo = Ugl = U, Upp = Upy = U, = U, Vgo = Vg1 = U, Vpo = Vp1 = Vo = U, and
x = 1> 0 =y. The corner utility pair (U, u) can be implemented symmetrically,
by interchanging x with y and w with v in the above specification.

(4.1)

Q:

(4.2)

u =

Proof: We show that the specifications above implement the corner utility
pair (u,v) = (u,w) for a symmetric self-generating line. First, we observe that
u+aw =T = p[l +qk]/(1 = B) = uyy +vig = u, +v,, for all i € {a,b} and
6 € {0,1}. Second, we observe that © — u = p(1 + ¢k)/(1 — B8+ 20p) > 1/,
where the inequality is strict if g > 8*. Third, it is now direct to confirm that the
specifications satisfy the IR and IC constraints, (2.1)-(2.5), and also the promise
keeping constraints, (2.6) and (2.7). Finally, as explained in the statement of the
proposition, we may now implement the opposite corner utility pair, (7, z). H

We note that the symmetric self-generating line implemented in Proposition 4.1
achieves the same total payoff, T', as does the symmetric self-generating line imple-
mented in Lemma 3.6. The implementation in Proposition 4.1, however, specifies
a simple EM relationship, and thus does not use a public-randomization device.®

8We also note that the implementation given in Proposition 4.1 corresponds to a narrower
symmetric self-generating line than does the implementation given in Lemma 3.6. In particular,
u is greater and @ is lower in the implementation given in Proposition 4.1, with the difference
being strict when 8 > 5.
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The simple EM relationship generates payoffs that exceed the autarkic pay-
offs that arise under repeated play of the Nash equilibrium of the stage game.
Thus, this intuitive relationship can be interpreted as efficiency enhancing. An
important limitation of the simple EM relationship, however, is that the benefit of
investment if foregone when the same player receives income in successive periods.
By contrast, in the implementation that we feature in Proposition 3.13, players
adopt a sophisticated EM relationship, in which a player transfers some income
even when that player provided the most recent favor. As explained above, an
incentive for such behavior is provided, if favors deteriorate in size following the
experience of neutral states. When S > 8%, a sophisticated EM relationship of-
fers a strictly higher total payoff than does any simple EM relationship, since the
self-generating line that describes the former is strictly above that which describes
the latter. In other words, a sophisticated EM relationship is then described by a
strictly higher level of trust than is any simple EM relationship.

We may summarize the comparison as follows:

Corollary 4.2. If 5 > 3", the sophisticated EM relationship characterized in
Proposition 3.13 generates a strictly higher level of trust and thus offers a strictly
higher total payoff than does any simple EM relationship.

5. Strongly Symmetric Equilibria

In the analysis above, we allow that players can promise future favors through
asymmetric continuation values, but we do not allow that players may threaten
a symmetric punishment whereby u = v is lowered following certain public out-
comes. We now consider strongly symmetric equilibria (SSE) and thus adopt the
opposite emphasis: players’ utilities are no longer allowed to move asymmetri-
cally along a negatively sloped line, but players’ utilities are now allowed to move
symmetrically along the 45-degree line. We characterize the set of SSE and, in
particular, identify specific circumstances under which SSE generate a symmetric
payoff for the game that exceeds that obtained in a HSSGL.

5.1. A Simple Example

To illustrate the main ideas, we begin with a simple example. Consider the fol-
lowing simple strategy profile for each player: if there has been a period with an
investment level of less than one unit, then each player consumes his income and
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makes no transfer; otherwise, a player that receives a unit of income invests it
all in the other player. Further, a player that receives a transfer does not offer
any reciprocation in the current period. We demonstrate that this strategy profile
may constitute an SSE in which players’ total payoff exceeds that in a HSSGL.

Let v be the utility level that each player derives if both players use this
strategy. We may calculate v as follows:

v =p(0+ Bv) + plgk + Bv) + (1 — 2p)(0 + Bugu),

where g, = ﬁ;ﬁ. The first (second) term is a player’s utility if he (his opponent)
receives the income, while the third term is the player’s utility if neither player
receives income. Solving for v, we obtain

v = 1 — 2]76(ka + (1 - 2p)5uaut>'

This simple strategy profile is an equilibrium strategy if a player with income
would prefer not to deviate. The optimal deviation would be not to invest at all.
Therefore, v would be an equilibrium payoff if

1 + Buaut S BU

or equivalently
1

g>—-. 5.1
p(gk +1) 51)
Thus, if m < 1, or equivalently p > qk—1+1, then there exists § > m for

which the simple strategy profile is an equilibrium. At the start of the game, the
players’ total payoff is then 2v.

We now compare this total payoff with that received in a HSSGL. By (3.1)
and Proposition 3.12, the players’ total payoff on a HSSGL is given by

e P2+ (@ +y)lgk —1)]

1-p ’
where z +y = % Comparing 2v with 7™, we obtain 2v > T™ if and only if
1-p5
= (1 —=2p)(1 + p(gk —1)). (5.2)
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Therefore, we may refer to (5.1) and (5.2) and draw the following conclusion: if
gk is sufficiently large and p is close to %, then an SSE exists that yields a total
payoff that is higher than that received in a HSSGL (i.e., 2v > T™).

This example suggests that SSE may be attractive when it is rare that an
investor fails to exist (i.e., when p is close to %) and investments are very productive
(i.e., gk is large). Intuitively, the players may then threaten a severe symmetric
punishment in the event that neither player reports that he is the investor. This
severe punishment ensures that a player has incentive to be honest when he is the
investor; furthermore, the punishment is “almost off the equilibrium path” when
it is rare that an investor fails to exist, and thus incentives are provided at little
cost to expected equilibrium payoffs. Such a severe punishment is not possible
when payoffs must sum to a fixed total, as along a HSSGL, and it is thus intuitive
that SSE can offer a higher total payoff than does a HSSGL in such circumstances.

5.2. Characterization of Optimal Strongly Symmetric Equilibria

We proceed now to characterize optimal SSE. To begin, we follow Abreu, Pearce
and Stacchetti (1990) and define an operator B** which yields the set of strongly
symmetric PPE values, 7, as the largest self-generating set. This operator is
defined as follows:

For any v, = [ugu,u| consider the following mapping: B*(¢,) = {v : 3
x € [0,1],r € [0, kx|, v,, v10, v11 € ¥, such that:

IC, : 1 —x+q(r+ Pon) + (1 — q)Bvye > 1+ o, (5.3)
I1Cy : kx —r + Pvy > kx + Buig (5.4)
PK : v=p[l —z+q(r+ Bvn) + (1 — q)Bvio] (5.5)

+plg(kz — 1+ Boir) + (1 — ¢)Bvio] + (1 — 2p)Bv,}-

Let ¥% = [Uqut, Umax] e the maximal fixed point of B*S. That is, if [u;, us] is a
fixed point of B*, then [u;, up] C [Uaut, Umax)-

Observe that this operator requires symmetry across players, with u denoting
the payoff enjoyed by each player, x denoting the investment that a player makes
in the current period if that player receives income, r denoting the reciprocity
that the trustee then offers in the current period if the investment is successful,
and v,,v1; and vyp denoting the continuation values that each player receives in
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the future if the current period has no investor, a successful investment and an
unsuccessful investment, respectively. For a given ¢, = [ugy, u], we thus say that
{z, 7, v10, V11, 0o} implements v if all of the constraints above are satisfied.

We refer to a pair (¢,p) as an information structure. Consider the set I =
{(¢,p) : q € [%, 1],p € |0, %]}, which is the set of all feasible information structures.
The characterization of optimal SSE reveals that behavior differs depending upon
which of three different information-structure regions is in place. The respective
regions are illustrated in Figure 1. We now describe the behavior that emerges in
each region. The proofs are contained in the Appendix.

5.2.1. Region /;: Low q and not so high p

Let ¢* = H—W € (3,1). Consider I; = {(¢,p) € I : ¢ < ¢ and p < qk_1+1}
In this region, we find that t.c = ey Thus, under this information structure,
the players are unable to cooperate using SSE. Intuitively, given that p is small,
no-investor states are common. Hence, if players attempt to provide incentives
for trust by using the threat of a symmetric punishment, then this punishment
often would be experienced on the equilibrium path. Further, with ¢ being small
as well, the value of future cooperation is not huge. The players are thus unable
to enforce a strongly symmetric equilibrium in which trust is exhibited. Clearly,
if § is sufficiently high that a HSSGL exists, then the players earn a higher total
payoff in a HSSGL than in the optimal (autarkic) SSE.

5.2.2. Region /5: Not so high q but high p

Consider now Iy = {(¢,p) € I : ¢ < ﬁ and p > qk_1+1} For 8 > o L we

gk+1)?
find that Umax = Ugur + %. The following implements the optimal SSE:

T =1,010 = V11 = Unmax,” = 0 and v, = Umax — = > Ugus-

We observe that implementation of u,.y, is achieved without use of immediate
reciprocity (i.e., r = 0), and that players incur a moderate punishment when the
neutral (no-investor) state is experienced (i.e., Umax > Vo > Ugy). We also find

that lim Umax = lim ucrr, where uqpp = Pak s the payoff that a player enjoys

p—1/2 p—1/2 1-p
in the first-best benchmark. This implies that, when p is sufficiently close to %,
patient players achieve a higher total payoff in the optimal SSE than they do on a
HSSGL. Intuitively, when p is close to %, the neutral state is rare; thus, the players
can use the threat of a symmetric punishment in this state to provide incentives
for trust while only rarely experiencing the punishment on the equilibrium path.
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5.2.3. Region I5: High q but not so high p
Finally, consider I3 = {(¢,p) € I : ¢ > ¢* and p < 1 — 2%1} DeﬁneB =

W‘ Then B < 1 if and Only if q > q* For /6 Z B, we find that
2

Umax = Uqut + ﬁ, where A = % > 0 since ¢ > ¢*. The following

implements the optimal SSE: x = 1,v, = v11 = Umax, V10 = Umax — 5(2;71) > Ugut

and r = Tl—l > 0.

We observe that implementation of uy. is achieved without punishment in
the neutral (no-investor) states (i.e., v, = Umax). Instead, players punish one
another when there is no immediate reciprocity (i.e., v19 < Umax). Thus, in this
implementation, immediate reciprocity plays an important role (i.e., r > 0). We
also find that lim uy. = qli_rr}lue ¢¢- This implies that, when ¢ is close to 1, patient

—1
players achievé a higher total payoff in the optimal SSE than they do on a HSSGL.
Intuitively, when ¢ is close to 1, investment is almost always successful; thus, the
players can use the threat of a symmetric punishment when immediate reciprocity
is not offered to provide incentives for trust while only rarely experiencing the
punishment on the equilibrium path.

5.2.4. Comparisons

It is interesting to compare regions I and [3. Start with (¢, p) € I, where imme-
diate reciprocity plays no role. As we increase ¢, we reach I3, where immediate
reciprocity begins playing a role. Also, as we move from I, to I3, the punishment
phase shifts from following a neutral (no-investor) state to following the state in
which trust is exhibited but immediate reciprocity is not offered. As suggested
above, the intuition is that players provide incentives most efficiently by em-
phasizing the information asymmetry for which the “bad” outcome (no investor,
unsuccessful investment) is unlikely. Further, it is precisely in those circumstances
where a bad outcome is very unlikely that the optimal SSE offers a total payoff
that exceeds that in a HSSGL.

Finally, we have not specified whether a punishment-phase utility is itself im-
plemented or if instead it is achieved in expectation via a public-randomization
device that induces a lottery over 4. and w4, The latter interpretation is imme-
diate and requires no further analysis. Under this interpretation, any punishment
phase entails the risk of permanent autarky. Similarly, it is possible to implement
a punishment-phase utility with a lottery in which the players risk temporary
autarky, whereby in each period the players leave autarky (return to tmya,) with
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a constant hazard rate. To implement in expectation a given punishment-phase
utility, the lottery must place a higher probability on going to autarky when the
autarky relationship is temporary.

For future reference, we now collect our findings for payoffs:

Proposition 5.1. Let uy., represent the utility achieved in the optimal SSE.
(i). For (q,p) € I, Umax = Uaw- (). For (q,p) € Iy, if § > k—+1) then
Umax = Uqut + p(qk+—1 (iii). For (q,p) € I3, if B > B, then Umax = Ugut +

p(2kq27qk*1)
B > 0.

- 5’
where \ =

Thus, throughout region I, the optimal SSE offers a strictly lower payoff than
does a HSSGL. For 3 sufficiently high, however, the optimal SSE offers a strictly
higher payoft than does a HSSGL in subsets of region I, and I3 within which p is
sufficiently close to % and ¢ is sufficiently close to 1, respectively.

As Proposition 5.1 confirms, our analysis of the optimal SSE in regions /5 and
I3 imposes additional restrictions on § beyond our maintained assumption that
B > [*. The restrictions are important For example, consider the subset of region
I, in which ¢ < 1 and 8 < (1+ ;- Letting ps = B(li 5y, We may state the latter
inequality as ps > p. We observe that p, < = When q = 1if and only if 8 > 5 %
: +k Given 8 > 3", we thus conclude
that p, < 1 when ¢ = 1. As Figure 2 illustrates, Proposition 5.1 part (ii) refers to
that portion of region I, that lies above the p; = p curve. In contrast, our present
interest is in the subset of region I that rests below the p, = p curve and in which
q<3?

We now provide our main finding for this subset.

But snnple calculations confirm that 5% >

Proposition 5.2. Let .y represent the utility achieved in the optimal SSE. For
(q,p) € I, ifg < % 5 and f < 1+ TEETDE then Umax = Ugut-

Thus, in this subset of region I, the optimal SSE corresponds to autarky and
therefore offers a strictly lower payoff than does a HSSGL.

9We observe that p, > % when p; is evaluated at ¢ = %, if k € (1,2]. Thus, in the special case
where k € (1,2], the subset of interest is defined simply as that portion of region Iy in which

g<4%
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6. Hybrid Equilibria

Our discussion above characterizes HSSGL’s and optimal SSE. With these con-
structions established, we are now able to consider the possibility of hybrid equi-
libria. In such equilibria, players begin the game by exhibiting a high level of trust
in period one. If some player receives and transfers income in the first period, then
the players thereafter exchange favors by implementing a HSSGL, with that player
being the favored player in the second period. Alternatively, if no player receives
income in the first period, then the players may revert to a symmetric punishment
in the second period. In broad terms, such equilibria are thus characterized by an
initial “honeymoon” period, after which the players either continue with a sophis-
ticated favor-exchange relationship or experience a breakdown. In this section,
we characterize the optimal hybrid equilibria and compare the associated payoffs
with those achieved in HSSGL’s and optimal SSE.

6.1. Characterization of Optimal Hybrid Equilibria

Recall the definition of implementation in Section 2. For a given ¢ = [ugy, u], we
now say that a pair {x, u,} implements u in a hybrid equilibrium if {x,y, r, s, w9, Vig, Uy, Vo },
for i = a,b and # = 0, 1, implements the utility pair {u,u} when z = y,r = s =
0,Ua1 = Ugo = Up1 = Vpo = U, Up1 = Upo = Va1l = Vgo = U aNd Uy = Vo € [Uqut, U],
where u and T are defined by (3.15) and (3.16). In an optimal hybrid equilibrium,
x and u, are chosen to deliver the maximal value for u. Thus, in a hybrid equi-
librium, the players exhibit equal trust in the first period (i.e., z = y). If some
player receives income and transfers the amount z, then in period two the players
implement a HSSGL. At this point, the player that made the period-one transfer
is favored and thus enjoys a continuation value of w while the other player’s con-
tinuation value is u. If instead neither player received income in period one, then
in period two the players implement a symmetric utility pair, (u,, u,).
We begin with the following lemma:

Lemma 6.1. In any implementation of an optimal hybrid equilibrium, (2.2) and
(2.3) bind and
u=p+ Puoll — p(1+ qk)] + pBlaku + u]. (6.1)

Proof: Suppose (2.2) is slack. If x = y < 1, then we can raise z and y by a

small amount while keeping u, = v, fixed. This new implementation satisfies
all constraints and generates a higher utility, contradicting the hypothesis that
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the original specification implemented an optimal hybrid equilibrium. Likewise,
ifr =y =1 and u, = v, < u, then we can obtain a contradiction by increasing
U, = U, a small amount while keeping x = y = 1. Finally, if u, = v, = u and
r=y=1thenu <u—-1/8 <u—1/(8+8") = (TW+ wu)/2 = u, where the
first inequality follows from the supposition that (2.2) is slack. A contradiction is
now obtained, since players may implement a hybrid equilibrium that generates
the higher utility u, by using the implementation of a HSSGL that is specified in
Proposition 3.13 when (u,v) = (4, %) = (uo,v,). (See also Corollary 3.14.) Thus,
(2.2) is binding, and by symmetry so is (2.3). Next, given that (2.2) and (2.3)
bind, we may substitute for  and y in (2.6) and thereby derive (6.1). W

Our next finding indicates that the characterization of optimal hybrid equilib-
ria is sensitive to the sign of 1 — p(1 + gk).

Lemma 6.2. Suppose {z,u,} implements u in an optimal hybrid equilibrium. If
1 <p(l+qk), thenx =1, u, =7u—1/8 and

u=[p(gh+1) =1 +p+B(1—pJu+ Bpu (6.2)

If 1 > p(1 + gk), then z = % and u, =u =w. If 1 = p(1 + gk), then u = u.
Proof: First, suppose {z,u,} implements u in an optimal hybrid equilibrium
and that 1 < p(1 + ¢k). Using (6.1), we see that u is greater when u, is lower.
Lemma 6.1 indicates that (2.2) must bind; thus, it is necessary that u, =7 —x/f.
Suppose = < 1. We then have that u, =7 — 2/ > a0 — 1/ > u > ugyu, where
the weak inequalities are strict if S > £*. With x < 1 and u, > u4,, we may thus
increase x = y by € and decrease u, = v, by /3. All constraints remain satisfied.
Using (2.6), we see that utility is increased by —pe + pgke + (1 — 2p)3(—¢/5) =
elp(gk 4+ 1) — 1] > 0, a contradiction. Thus, if {z,u,} implements u in an optimal
hybrid equilibrium, then x = 1 and w, = uw — 1/5. Using (6.1), we may then
confirm that u is given as in (6.2).

Second, suppose {x,u,} implements u in an optimal hybrid equilibrium and
that 1 > p(1 + ¢k). As noted in the proof of Lemma 6.1, we may implement a
hybrid equilibrium that generates the payoff . Thus, it is necessary that u > w.
Suppose u > u. Since (2.2) and (2.3) bind in the implementation of @, we may
reason as in the proof of Lemma 6.1 and conclude that u satisfies

u=p+ full —p(1+ qk)] + pBlgku + wu]. (6.3)
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Likewise, u and u, must satisfy (6.1). Subtracting (6.3) from (6.1) and using
B[1—p(1+qk)] € (0,1), we obtain u —u = [1 — p(1 + gk)|(uo — U) < u, — U, and
so it follows that u, > u. This contradicts the requirement that u, = v, € [Ugus, ul.
It follows that the optimal hybrid equilibrium utility is @, when 1 > p(1 + ¢k).
Correspondingly, we then have that x = (7 — u) = %

Finally, suppose {z,u,} implements u in an optimal hybrid equilibrium and
that 1 = p(1 + ¢k). Using (6.1), we see that u is then independent of wu,, when
(2.2) binds. Using (6.1), the corresponding payoff is u = p+ pS[gku+u]. By (6.3),
when 1 =p(1+q¢k), u=u. &

To see the intuition, suppose that 1 < p(1+¢k). If we increase the punishment
that follows an event in which no income is reported (i.e., if u, = v, is lowered),
then the players can be motivated to transfer a greater income (i.e., x = y can
be raised). The benefit of an increase in the size of the transfer is measured
by gk — 1 and happens with probability p. On the other hand, the players then
suffer a greater punishment when, in fact, neither player has income. This cost
is experienced with probability 1 — 2p. Thus, the net gain is positive if 1 — 2p <
p(gk — 1), or equivalently, if 1 < p(gk + 1).

We now confirm that an optimal hybrid equilibrium exists.

Proposition 6.3. There exists an optimal hybrid equilibrium. If 1 < p(1 + ¢k),
then x = 1 and u, = @ — 1/ implement the optimal hybrid equilibrium, and the
corresponding equilibrium utility is given in (6.2). If 1 > p(1+qk), then x = %
and u, = u implement the optimal hybrid equilibrium, and the corresponding
equilibrium utility is given by u. If 1 = p(1 + ¢k), in all implementations of
optimal hybrid equilibria, the corresponding equilibrium utility is given by u.

Proof: Suppose 1 < p(1 + gk). The proposed implementation satisfies all con-
straints, provided that u, =7 — 1/ € [ugut, u], where u is given in (6.2). To this
end, we observe that u, =7 — 1/8 > u > U4, where the weak inequalities are
strict if § > 8*. Next, u, =u—1/8 <T—1/(6+5") = U < u. When 1 > p(1+¢k),
we may implement u by using x = T and u, = u, as explained in the proof of
Lemma 6.1. W

6.2. Comparisons

We next compare the payoffs in optimal hybrid equilibria with those in HSSGL’s
and optimal SSE. As above, we use uy., to represent the payoff that a player
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expects at the beginning of the game, when players use an optimal SSE. Similarly,
if players begin the game by implementing the symmetric utility pair on a HSSGL,
then U = (u + u)/2 represents a player’s payoff. Finally, if players implement an
optimal hybrid equilibrium, we let uy represent the corresponding payoff that a
player expects at the beginning of the game.

We first compare optimal hybrid equilibria and HSSGL’s. Using Proposition
6.3, we have the following corollary:

Corollary 6.4. If 1 < p(1 + gk), then the optimal hybrid equilibrium offers a
strictly higher total payoff than does any HSSGL, and thus uy > u. If 1 >
p(1 + gk), then all optimal hybrid equilibria offer the same total payoff as does
any HSSGL, and thus ug = .

This finding follows directly from Proposition 6.3. When 1 < p(1 + ¢k), we
may use (6.2), (3.21), (3.16) and (3.15) to compute the explicit expression for the
payoft difference:

}

ug —u = {[plgk+1) =1 +p+ (1 —p)u+ Bpu} — {u+

_ p(A+gk) —1]5" 50

B+5
As discussed above, the key point is that, when 1 < p(1 + ¢k), players can benefit
by using the threat of a symmetric punishment to enforce an initial “honeymoon”
period in which the level of trust is very high. Provided that some player receives
and transfers income in the first period, the players then use a sophisticated EM
relationship (i.e., move along a HSSGL) in all future periods.

If 1 < p(gk + 1), we may easily verify that © > uy > u > u. Thus, as
Corollary 6.4 indicates, when a honeymoon period is included, the players earn
a higher symmetric payoff at the start of the game (uy > u). One perspective
on this result is that the first period is a special period, since players are not
encumbered by obligations that are derived from past favors; hence, they may set
x =y = 1 and exhibit full trust in the first period. We observe as well that the
player that made a period-one transfer emerges as the favored player in period two
and in fact then enjoys a higher continuation value than at the start of the game
(@ > upy). Correspondingly, the player that enters period two as the disfavored
player experiences a reduced continuation value (u < ug).

We next compare optimal hybrid equilibria and optimal SSE. We focus on re-
gion I, where 1 < p(1+4q¢k). We provide two results. First, recall from Proposition

1
B+
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5.2 that the optimal SSE generates the autarky payoff, w4, in the subset of region
I5 in which ¢ < % and § < m. In Figure 2, members of this subset satisfy
q < % and rest below the ps, = p curve, where p,

7 Using Proposition 5.2
and Corollary 6.4, we may thus conclude that:

= __1
— B(l4qk

Corollary 6.5. If ¢ < 1 and 1 < p(1 + ¢k) < 1/, then the optimal hybrid
equilibrium offers a strictly higher total payoff than does the optimal SSE and

any HSSGL. In fact, under these conditions, ug > U > Umax = Ugut-

We have thus identified a subset of region 5 in which the optimal hybrid equilib-
rium offers a strict improvement over HSSGL’s and optimal SSE.

To develop our second result, we recall Proposition 5.1. As indicated there,
when p is sufficiently close to %, players can achieve a higher total payoff in the
optimal SSE than in any HSSGL: #.x > u. We now confirm that, under similar
circumstances, the optimal SSE also improves upon the optimal hybrid equilib-
rium: uma, > ug. Interestingly, this ranking obtains even though the optimal
hybrid equilibrium also employs symmetric punishments after neutral states.

Following Proposition 5.1, we focus on the subset of region 5 for which % <
p(1+qk), or equivalently p, < p. As established previously and depicted in Figure
2, ps < % when ¢ = 1. The subset thus exists. Over this subset, we have from
Proposition 5.1 that tyay = Ugu + p(qﬁ%lﬁ)_l. Next, since 1 < % < p(1+ qk), we
may use (6.2) and write

p(gk+1)—1
1-7 '
After further manipulations, we find that sign{umax —ug} = sign{p —p*}, where

P = pr—

UH — Umax = [p(qk+1> - 1] +p+6(1 _p)ﬂ—i_ﬂpg_uaut_

Simple calculations reveal that 1 < p*(¢k + 1), %—f < 0 and lin}kp* = 1/2. Using
q—1
these facts, we may draw the following conclusion: For all ¢ € (%,
pr(q) satisfying max{ps,p*} < pr(q) < % and such that, for all p € (pr(q), %),
Umax > Upr. 0
We may now summarize as follows:

1), there exists

10For higher values of g, it is possible that the relevant constraint is that p > 1 — % In Figure
1, this inequality corresponds to the positively sloped line that separates regions I and I3. It is
thus possible that max{ps, p*} < pr(q).
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Corollary 6.6. There exists a subset of region I, for which the optimal SSE offers
a strictly higher total payoff than does the optimal hybrid equilibrium, and thus
U < Umax-

Finally, we note that the payoffs may also be easily compared in region /;. In
this region, the optimal SSE yields autarkic payoffs: umax = taw- Throughout this
region, the optimal hybrid equilibrium corresponds to a HSSGL and thus yields
the higher payoff uy = U > Upax = Ugut-

7. Conclusion

Using a repeated game model with self-interested and privately informed players,
we develop an equilibrium theory of trust and reciprocity. In our main analysis,
players are willing to exhibit trust and thereby facilitate cooperative gains only if
such behavior is regarded as a favor that must be reciprocated, either immediately
or in the future. Private information is a fundamental ingredient in our theory.
A player with the ability to provide a favor must have the incentive to reveal this
capability, and this incentive is provided by an equilibrium construction in which
favors are reciprocated.

Our study offers new predictions with respect to the social interactions of
calculating, self-interested individuals. It may thus provide partial insight into
the underlying sources of any instinctive preference for reciprocity and trust. We
also offer an interpretation of an important category of human relationships, which
Fiske (1992) refers to as equality-matching relationships. In such relationships,
individuals exchange favors and keep track of the balance of favors so that equality
may be achieved. In addition, we offer the novel prediction that the size of a favor
owed may decline over time, as neutral phases of the relationship are experienced.

We compare our featured favor-exchange relationship with other benchmarks.
We show it offers a higher total payoff than does a simple favor-exchange relation-
ship. We also describe specific circumstances in which a relationship founded on
favor exchange may be inferior to a relationship in which an infrequent and sym-
metric punishment (e.g., a risk of temporary or permanent autarky) keeps players
honest. Finally, we show that a hybrid relationship, in which players begin with
a honeymoon period and then either proceed to a favor-exchange relationship or
suffer a symmetric punishment, can also offer scope for improvement.

Much work remains. First, we hope that some of our predictions can be tested
in the lab. In part for this reason, we use the popular trust model. Second, future

43



work might consider whether other behavioral regularities might be interpreted
using the theory of repeated games with private information.
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9. Appendix

9.1. Proof of Proposition 3.15

Consider the widest HSSGL. Let A be the set of points on this HSSGL for which
there exist multiple implementations. Suppose to the contrary that A\ # (). Then
it is straightforward to show that A is convex and symmetric around the 45-degree
line; therefore, A contains (u,w), the middle point of this HSSGL. We will show
that (u,u) is uniquely implemented, which then establishes that A\ = ().

Consider a point (u,v) on the widest HSSGL and an implementation of it,
i ={x,y,7, S, Ui, Vig, Uo, U, }. Following the proof of Lemma 3.9, given any imple-
mentation, we can find an alternative implementation such that (2.4) and (2.5)
bind, r = s = 0 and u;g = u;; = wu;, with all other variables remaining the
same. For such an implementation, suppose that (2.2) is slack; that is, suppose
B(ug — u,) > x > 0. Then, for small € > 0, if we decrease u, by ¢, increase u,
by ﬁé‘, and change nothing else, the resulting implementation is feasible and
implements (u, v). The same argument applies to a slack (2.3) as well. Therefore,
given any implementation, we can find another implementation with the same
values for = and y and with (2.2) and (2.3) binding.

We know that i = {Z = § = 525, 7 = 5 = 0, lUap = Upp = T, lpg = Vap = Uy Ty =
U, = u} implements (u, ).

We now argue that (u,u) is uniquely implemented. Suppose to the contrary
that there exists another implementation i = {x, y, 7, s, u, Vig, Uo, Vo } Of (U, ). As
established above, we can focus on an implementation 7 such that (2.4), (2.5),(2.2)
and (2.3) bind, r = s = 0, and u;y = wu;; = wu;. Define the following: Ax =
=T, Ay = y—7, Aty = Uy —Uy, Avy = v, — 0y for m € {a,b,0}. Then Az = —Ay,
sincex +y =17 +7y. N

First, suppose that  # z. As (2.2) and (2.3) bind under both i and i, we have
that Az = B(Au, — Au,) and Ay = B(Av, — Av,) = —f(Auy — Au,). Further,
the promise-keeping constraint, (2.6), must hold under both 7 and i. Thus,

0 = —pAz+ pgkAy+ BlpAu, + pAuy + (1 — 2p) Ay,
= —pAz + pgkAy + Blp(Au, — Au,) + p(Auy — Au,) + Auy),

which implies

Au, — p(qkﬁ— 1)

Since Az # 0 and % > 0, Au, and Ax have the same sign. Recall that
Ugp = U = T. Thus, Au, < 0. Now, if Az = (Au, — Au,) > 0, then Au, < 0,

Ax.
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which is a contradiction. So, Az < 0 must hold. Using a similar argument, we
can show that Ay < 0 must hold as well. Then Ay = —Ax implies Az > 0, so
that Ax = Ay = 0.

Second, suppose that Au, # 0 and Az = Ay = 0. As (2.2) and (2.3) bind
under both 7 and 7, we have that Au, = Au, and Au, = Au,. As just argued,
Au, < 0. Similarly, with uyg = u, = u, Aup > 0. Thus, it must be that Awu, = 0.

We conclude that (w, ) is uniquely implemented. Thus, A = (). That is, every
point (u,v) on the widest HSSGL is implemented uniquely. B

9.2. Strongly Symmetric Equilibria (SSE)

We provide here proofs concerning strongly symmetric equilibria (SSE).Given any
Wy = [Ugut, ul, following APS, define
B*(¢,) ={v: 3z €0,1], r € [0, kx], v,,v19,v11 € ¥, such that
IC, : 1 — x4 q(r + pvir) + (1 — q)Bvig > 1+ So,
1Cy : kx — r + Pvyp > kx + Poqg
PK :v=p[l —x+q(r+ pvn) + (1 — q)Bvio)
+ plg(kx — r + Bvr) + (1 — q)Buyo)
+ (1= 2p)Bv, }
Let 1F = [Ugut, Umax] De the maximal fixed point of B**. That is, if [u;, up] is a
fixed point of B**, then [u;, up] C [Uaut, Umax]-

Refer a pair (¢,p) as an information structure. Consider the set I = {(q,p) :
qe (%, 1], p € (0, %]}, which is the set of all feasible information structures.

9.3. Solving for

Start with a very large u'. Given u", by slightly abusing the notation, define u"**
as follows:

u"™ = B¥(u™) = max v =p[l — x + q(r + fvny) + (1 — q)Bvy]
+ plg(kx — r + Bvir) + (1 — q)Bvro)

+ (1 - QP)B'UO
=p[1 + (¢k — )x + 26(qun1 + (1 — q)vio)]
+ (1 - ZP)BUO
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subject to
x € [0,1], r € [0, kx|, v,,v10,v11 € [Ugut, u"]
IC, : 1 — 2 +q(r + Bow) + (1 — q)Bvie > 1+ B,
I1Cy : kx — r + Pvy; > kx + By

We will employ APS to solve for tpa,. Accordingly, if u! > .y, then B (u") <
u” and M u" = Upmax = B**(Umay). Let uer; = 225 be the average utility of the

1-8
n—oo
first best solution, i.e. investing x = 1 every period when some agent receives

positive income. Then upmax < ucss; therefore, it would suffice to start with
ul = gy,
Proposition: For any u > ., IC, and I1Cy bind at the solution of B**(u).
Proof:
The proof proceeds via three claims.
Claim 1: v;; = u.
Proof: If v;; < u, then increasing v;; increases the objective without violating
I1C, and ICy. Contradiction.[
Claim 2: I(j is binding.
Proof: Suppose in contrary that ICy is slack. Then u —wvy9 > % >0,1i.e. u> vg.
Now increase v1g by € > 0. IC, becomes slack, [Cy continues to hold if € is small
enough. The objective increases. Contradiction.[]
Claim 3: IC, is binding.
Proof: Suppose in contrary that IC, is slack. Then v, = v and z = 1. To see
this, check the following: If v, < u, then increase v, by € > 0. IC, is not violated if
¢ is small enough; ICj is not affected; and the objective increases. Contradiction.
If x < 1, then increase x by € > 0. IC), is not violated if € is small enough; ICy is
not affected; and the objective increases since gk > 1. Contradiction.
Substituting v, = u and z = 1, IC,, becomes q(r + fu) + (1 — q) fvio > 1+ Su,
equivalently gr > 1+ (1 — q)5(u — vyp). Binding ICj yields r = 5(u — vyp). These
together imply (2¢—1)r > 1. Thus, a contradiction is immediate unless 2¢g—1 > 0.
In that event, r > T1—1 > 0, and so u > v19. We can thus increase vy by € > 0,
and decrease r by (e, and ICy continues to hold. Then the total change on
the left hand side of IC, can be computed as (1 — 2¢q)fe. Since IC, is slack by
supposition, IC, continues to hold if € is small. The total change in the objective
can be computed as 2p(1 — ¢)fBe > 0, so the objective increases. Contradiction.[
This completes the proof of the proposition.

Now, binding /C, and binding ICy imply v, = 2qu + (1 — 2¢)vip — % Substi-
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tuting v1; = u, v, = 2qu + (1 — 2q)vyg — 5. and r = B(u — vyg) yields

B¥(u) = max p+2¢(1 —p)Bu+ (p(gk +1) — 1)z + (1 — 2¢(1 — p))Bvio

subject to

x
V10, Vo = 2qu + (1 — 2q)v19 — E € [waut, U] (9.1)

0<a<1 (9.2)
Blu—wvy) < kx

The following three curves will be crucial in characterizing the optimal strongly
symmetric equilibrium:

1
I:p= pr equivalently p(gk +1) —1=10

Il:p= q2q equivalently 1 —2¢(1 —p) =0

kE(2¢g—1)—1
qk — 1

IIT:p=

Curve [ is convex and decreasing in q. Curves /] and I11 are both concave and
increasing in ¢. Furthermore, all three curves intersect at ¢* = “—W € (%, 1).
For ¢ < ¢* , curve [ lies above /1, which lies above I11. For q > ¢*, curve II1 lies
above I, which lies above I. The three curves partition the set of information
structures into six subsets. See Figure 3. We drop the superscipt of «" to simplify
the notation.

Region 1: p(gk+1)—1<0,1—2¢(1—p) 20,p—% >0

The coefficient of x and vy are nonpositive and nonnegative, respectively, in
the objective of B**(u). Therefore, the objective function is nonincreasing in x
and nondecreasing in vyg. Setting x = 0, vy9 = u, check that v, = v and r =0
so that all the constraints are satisfied. This implies B*(u) = p + Su for all wu.

Then B*(u) < u as long as u > ugy. Therefore, u® = lim u" = wugy,. Hence,
n—oo

Umax = Ugye 1N this region.

Region 2 and 3: p(gk+1)—1>0,1—-2¢9(1—p) >0
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The coefficient of = is positive and the coefficient of vy is nonnegative in the
objective of B*(u). Check whether x = 1 and vy9 = u is a solution for B**(u).
Substituting z = 1 and v19 = u , we obtain B*(u|x = 1,v19 = u) = p+Su+p(gk+
1) — 1. Also, B**(ulx = 1,v19 = u) < u if and only if u > wusu + % =y
Therefore, starting with u' = u.ss > vy, we obtain a decreasing sequence of {u"}
with ©* = lim u" = 7.

Now check feasibility of the solution # = 1 in the limit: v, = u>® — % > Uyt if
and only if 5 > Since p(gk +1) — 1 > 0 i.e. p(k—1+1)

Plgk+1) k:+1 < 1 in these regions,
there exists [ > Then, for all © > .y, all the constraints are satisfied

k+1
when x = 1, v19 = u. Therefore, Umax = Ugur + M Furthermore, check that

im vy = lim u
pil/? max e T
To address the pos&bility raised in Proposition 5.2, we now further suppose

that ¢ <1/2 and < qk+1 Suppose that both z < 1 and V19 < Umax 18 satisfied

in the solution of Bss(umax) Then, we may increase viy by € and increase z by
(1 —2q)Pe. If € > 0 is small enough, z < 1 and v1p < Umax continue to hold.
Furthermore, v, remains the same as defined by (9.1). Thus, all constraints hold
and the objective of B**(upa.x) increases, which is a contradiction. As a result,
either x = 1 or v1g = Umay In the solution of B (uyay). Suppose x = 1. Given
q < 1/2, we may use (9.1) to find that

1 1 1
Vo = 2qumax —i— (1 - 2(])1}10 - B S 2quma.x —i' (1 - 2q>umax - E = Umax — B
Arguing as in the previous paragraph, we may now use < (qk =y and conclude

that it is not possible that x = 1 in the solution of B**(uyay). Thus, it can only
be that © < 1 and vjp = Umax hold in the solution of B**(umax). Note that (9.1)
is the only constraint that causes © < 1. Therefore, (9.1) is binding from below in
the solution of B*(umax). This yields v, = 2qumax + (1 — 2¢)Umax — 5 = Uqut, SO
that © = B(Umax — Uaut). Substituting v1g = Umax and z = B(Umax — Uaye) into the
objective of B**(upayx), we obtain

Umax = Bss(umax) =p + ﬁumax + (p(qk + 1) - 1)B(umax - uaut)-

Simplifying and using § < we obtain Uyax = Ugys-

k+1)’

Regions 4,5,6: 1 —2¢(1 —p) <0
The coefficient of vy is negative in the objective function. Also 1—2¢(1—p) <0
implies ¢ > ﬁ > 1. 50 the coefficient of vig in (9.1) is negative as well.
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Regions 5,6: p(¢k+1)—1<0ie p< qu

The coefficient of = is negative in the objective function. ¢ varies between %
and 1. We will consider the following three subregions:

Subregion 1: ¢ < HE & 2¢— 1 <1

This subregion contams a part of Region 6. Note that 2¢ — ¢ € (0,1). So,
(2¢ — Du+ (1 = 2¢ + 2)vi0 € [tau, u] if vip € [Uque, u]. Also, if (9.3) binds,
Vo = (2 — £)u+ (1 — 2q + £)v1o. Now, suppose that (9.3) is slack at the optimal
solution. Then decrease x so that (9.3) binds. Then v, € [ugy, u] holds because of
the previous argument, and the objective increases. A contradiction. Therefore,
(9.3) is binding at the optimal solution.

Now consider x > 0, v19 < u, and a decrease in x by € > 0. In order to satisfy
B(u—w19) = kx, increase Svig by ke. This changes the objective by A = —(p(qk +
1)—1)e+(1—2¢g(1—p))ke. Check that A > 0 < p > (25—12 The last inequality
holds in Region 6. Therefore, check x = 0 and vy = u. All the constraints are
satisfied when x = 0 and vi9g = u. So, ¢ = 0 and v = u hold at the optimal
solution for all u > tmax. Then B*(u) = p + fu, and B*(u) < u < u > Ugyt, SO
that we have Umay = Ugus-

Subregion 2: £ < g < ¢*

Parts of Reglon 5 and Region 6 are included.

Suppose that (9.3) binds at the optimal solution. Then v, = (2¢ — £)u + (1 —
2q+ Jv1g is (weakly) decreasing in vy, and v, = u when vy = u. Suppose 5 k“ <q.
Then v, < u implies that v1g = v, = u, which implies x = 0. Alternatively, suppose
% = q. Then v, = u for all vyy. If z > 0 and vy < u, we can follow the argument
above (for subregion 1), and decrease x by ¢ > 0 and increase Svig by ke. We
then satisfy (9.3) and induce A > 0, since p > % = 0. Thus, vip = v, = u
and x = 0 again follows. So, in either case, B¥(u) = p + Su.

Now suppose that (9.3) is slack. If v, = 2qu + (1 — 2q)vio — 5 < u, we
can increase the objective by decreasing x. So, v, = uw must hold. Then z =
B(2q—1)(u—wv1p). Substituting x in B**(u), and taking its partial derivative with
respect to v1p, we obtain an = pB[-2kq¢* + gk + 1] > 0 since ¢ < ¢*. Also
check that vy = w implies x = 0 and v, = w. That is, all the constraints are
satisfied. Therefore, v10 = v, = w and x = 0 hold in the solution of B**(u).
Again, B*(u) = p + Su.

We obtain B*(u) = p + fu in both cases. Hence, by taking the limit, we
obtain Upyax = Ugye in this subregion.

Subregion 3: q > ¢*

Only a part of Region 5 is included.
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Suppose that (9.3) binds at the optimal solution of B**(umay). The same
argument in Subregion 2 applies: v, = (2¢ — £)u + (1 — 2¢ + 1)vio is decreasing
in v10, and v, = u when v1g = u. Then v, < u implies that v;g = v, = u, which
implies x = 0. S0, B** (tumax) = P + Blmax, Which yields tmayx = tgys- We will rule
out this possibility next.

Now suppose that (9.3) is slack. Then, by the same reasoning in Subregion
2, v, = u and x = (29 — 1)(u — v1g). Substituting these in B*(u), we obtain
62:10 = pB[—2kq* + qk + 1] < 0 since ¢ > ¢*. Therefore choose, v, = u, * =
B(2q — 1)(u — v19), and vyo as small as possible subject to x < 1 and v1g > Ugys-
Check that (u — vy9) < ka is equivalent to ¢ > L% which is satisfied in this
subregion. So, elther (i) v10 = Ugwe and = 5(2g — 1)(u — Ugye) < 1, or (ii) x =1
and vig = u — m > Ugy holds in the solution. As we start with a large wu,
x = [(2q — 1)(u — ugu) Will exceed 1, therefore case (ii) will hold for large u.

Now check if case (ii) holds in the limit. In case (ii), we have

1
B*(u) = p+2q(1 —p)Bu+ (p(gk + 1) — 1) + (1 = 2¢(1 — p))B(u - m)
=p+PutA
where A = (p(¢gk +1) — 1) — 17;3(7117”) = 3= 1(2/’{:(] —qk — 1) > 0 since q > ¢*.
In the limit, we obtain u™ = gy + = ﬁ So, v1g = u>® — Elerm) _1) > Ugut is
equivalent to § > B =——1 _ _ So, for > B, we obtain Umax = Ugut + 7

1+p(2k®—qk—1) ,B
and llziir%umax = (lliir%ue ¢ This also rules out binding (9.3). Note that 5 < 1 < ¢ >
q*

Region 4: p > qu

In this region, the coefficients of x and vy in the objective of B**(u) are
nonnegative and negative, respectively. So, the objective function is nonincreasing
in x and decreasing in vyg.

Obviously, all the constraints cannot be slack at the optimal solution. Consider
x < 1 and vig > Ugy. Decrease vig by € and increase x by (2 — 1)e. Then v,
remains unchanged. The left hand side of (9.3) increases by (e. The right hand
side of (9.3) increases by k(2q — 1)3z. Note that ¢ > L% ie. k(2¢ —1) > 1 in
this region. Therefore, (9.3) becomes slack and the obJectlve increases. So (9.3)
is slack in the optimal solution.

The same argument also implies that (i) if x < 1 then vy = w4, and (ii) if
V10 > Uqye then z = 1. Otherwise it would be possible to increase the objective as
above.
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In case (i), z < 1 would also imply v, = u4,. Otherwise, a small increase in x
would increase the objective without violating any constraint. Similarly, in case
(i), v10 > Ugur Would also imply v, = u. Otherwise, a small decrease in vy would
increase the objective without violating any constraint, since (9.3) is slack.

In case (i), solving z from v, = 2qu—|—(1—2q)vlo—%, we obtain x = 2¢8(u—tgy:)-
Then = < 1 is equivalent to © — gy < ﬁ‘ In case (ii), solving vy from v, =

2qu + (1 — 2q)vip — % € [Uqut, u], we obtain vig = u — —5(2;71)

1 a1, 1
1) %5 = B U et = 53

cannot hold simultaneously. For large u, u— g, > Elerm)] holds.

m, we obtain

B*(u) = p+Pu+ A and u™ = uaut—i—ﬁ as above. Also, v1g = u® — m > Ugut

is equivalent to § > B as above. So, for § > B , we obtain Umay = Ugur + ﬁ and

limumax = limuesr. W
q—1 q—1

. Then vig > Ugus

is equivalent to u — ugu > Since and

U Uaut > B
Therefore, for large u, by setting x = 1, v, = v and vy = u —
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Figure 1: The Partition of the Information Structure
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Figure2

p=1/B(gk+1)
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Figure 3: Regions
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