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PHOEBUS J. DHRYMES

Columbia University
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Abstract

This paper deals with the problem of testing for the presence of au-
tocorrelation in a system of general linear models (Seemingly Unrelated
Regressions, SUR) when the model is formulated as a vector autoregres-
sion (VAR) with exogenous variables. The solution presented in this
paper is a generalization of the h-statistic for the single equation single
parameter case given in Durbin (1970).
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1 Introduction

Consider the model
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yt· = yt−1·A + xt·B + ut·, t = 1, 2, 3, . . . , T, (1)

where yt· is an m -element row vector of dependent, and xt· is a k -element vec-

tor of independent variables, respectively; ut·, t = 1, 2, . . . , T is the structural

error vector. We assume

i. {ut· : t = 1, 2, 3, . . . , T} is a sequence of independent identically distrib-

uted (i.i.d.) random vectors with

E ut· = 0, Cov(ut·) = Σ > 0, (2)

defined on some probability space ( Ω , A , P ).

ii. It is further assumed that

plim
T→∞

X ′X

T
= Mxx > 0, (3)

and that the elements in X and U are mutually independent.

iii. The system of Eq. (1) is stable, i.e. the characteristic roots of A are less

than one in absolute value.

Regarding the errors, the alternative hypothesis we entertain is

ut· = ut−1·R + εt·. (4)

We require, for stationarity, the following assumptions:

1. The matrix R is non-singular and stable, i.e. its characteristic roots are

less than one in absolute value;

2. With little loss of generality, and certainly no loss of relevance, we further

assume that the matrix R is diagonalizable, i.e. it has the representation

R = PΛP−1 , where Λ is the (diagonal) matrix of its characteristic roots.

This problem, for the case m = 1 , (and R a scalar) was dealt with by Durbin

(1970). A search of widely used econometrics textbooks such as Greene (1999)

and Davidson and MacKinnon (1993) discloses no mention of its generalization

to VARs.
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Remark 1. If one were to write down a VAR one would normally not be

concerned about the behavior of the “error”, since by definition the errors in

such a system are assumed to be i.i.d. If not, one simply specifies a VAR of

a higher order, in empirical applications. Notwithstanding this observation, in

many applied contexts the logic of the economic model requires the presence of

a specific number of lagged endogenous variables. In such a case, the problem

we are examining here may arise.

Remark 2. When the structural error, ut· , is a first order autoregression,

the OLS estimators for the parameters of the model in Eq. (1) are inconsis-

tent because of the presence of lagged endogenous variables, which are

therefore correlated with the structural error.

Thus, if we suspect that the form given in Eq. (4) may be appropriate, we may

wish to test the hypothesis

H0 : R = 0 ,

as against the alternative

H1 : R 6= 0 ,

when least squares (OLS) is used to estimate the unknown parameters of Eq.

(1).

2 Derivation of the Test Statistic

Writing the sample as

Y = Y−1A + XB + U = ZC + U, Z = (Y−1, X), C = (A′, B′)′, (5)

the OLS estimator of C is given by

C̃ = (Z ′Z)−1Z ′Y = C + (Z ′Z)−1Z ′U. (6)

Assuming that a central limit theorem (CLT), such as the Lindeberg CLT, see

Dhrymes (1989), pp. 271 ff, we may write the limiting distribution of the OLS
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estimator as √
T (c̃ − c)

d→ N(0, Σ ⊗ M−1
zz ), (7)

where c = vec(C) and Mzz = plimT→∞[Z ′Z/T ] .

From this it is easily verified that

√
T (ã − a)

d→ N(0, Σ ⊗ S11), where M−1
zz =

[
S11 S12

S21 S22

]
, (8)

and S11 is the (principal) submatrix of M−1
zz , consisting of its first m rows

and columns.

Let

Ũ = Y − ZC̃ = U − Y−1(Ã − A) − X(B̃ − B), (9)

be the matrix of OLS residuals and consider the estimator of R

R̃ = (Ũ ′
−1Ũ−1)

−1Ũ ′
−1Ũ (10)

Using Eq. (10), and omitting terms that converge to zero in probability, we

may write, see Dhrymes (1989), pp 161 ff.1

√
T (R̃ − R) ∼ (Ũ ′

−1Ũ−1)
−1 1√

T

(
U ′
−1U − U ′

−1Y−1(Ã − A)
)

, (11)

either because Z ′Z/T converges, or because C̃ is consistent and has a well

defined limiting distribution, or both. Moreover, using the result again, and

bearing in mind that
1

T
U ′
−1Y−1

P→ Σ

we finally obtain

√
T (R̃ − R) ∼ Σ−1 1√

T
U ′
−1U −

√
T (Ã − A). (12)

Let

M−1
zz =

[
S11 S12

S21 S22

]
=

[
S1

S2

]
,

1The notation X ∼ W below means X has the same limiting distribution as W .
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and note that √
T (Ã − A) ∼ S1

1√
T

Z ′U.

Vectorizing, we have the expression

√
Tvec(R̃ − R) ∼ 1√

T

(
(Im ⊗ [Σ−1U ′

−1 − S1Z
′]
)

u, u = vec(U), (13)

which obeys the conditions of the Lindeberg CLT, see Dhrymes (1989), pp. 271

ff. Let

At = σ(us·, s ≤ t), (14)

i.e. it is the σ -algebra generated by the u’s up to t . To evaluate the covariance

matrix of the limiting distribution of the left member of Eq. (13), we need to

find the expectation of terms like (Im ⊗K)uu′(Im ⊗K) . We shall do so by first

conditioning with respect to At−1 . Thus we need to evaluate

EAt−1E
(
[Im ⊗ (Σ−1U ′

−1 − S1Z
′)]uu′[Im ⊗ (U−1Σ

−1 − ZS ′
1)]|At−1

)

=EAt−1

(
Σ ⊗ [Σ−1U ′

−1U−1Σ
−1 − Σ−1U ′

−1ZS ′
1 − S1Z

′U−1Σ
−1 + S1Z

′ZS ′
1]
)

=Σ ⊗ [Σ−1ΣΣ−1 − Σ−1(Σ, 0)S ′
1 − S1(Σ, 0)′Σ−1 + S11]

=Σ ⊗ (Σ−1 − S11). (15)

Hence,

H2 = Tvec(R̃)′[Σ̃−1 ⊗ (Σ̃−1 − S̃11)
−1]vec(R̃)

d→ χ2
m2 . (16)

Remark 3. Evidently if, in a given application, the estimated matrix Σ̃−1−S̃11

is not at least positive semi-definite, the test fails. If the matrix itself (not

only the estimated one) is positive semi-definite but not positive definite, the

distribution is still asymptotically χ2 , but with degrees of freedom equal to the

rank Σ−1 − S11 .

Remark 4. Note that in the case m = 1 , and consequently R̃ = ρ̃ , the test

statistic of Eq. (16) reduces to

Tvec(R̃)′[Σ̃−1 ⊗ (Σ̃−1S̃11)
−1]vec(R̃) =

T ρ̃2

1 − AVar(ã11)
, (17)
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where Avar( ã11) is the variance of the limiting distribution of the OLS es-

timated coefficient of the lagged dependent variable. Thus, the H2 statistic

reduces to the square of the h -statistic, as given by Durbin (1970), because

basically Σ ⊗ Σ−1 reduces to unity in the case m = 1 . Thus, the case where

Σ−1 − S11 is not at least positive semi-definite corresponds to the case

where the asymptotic variance in question is equal to or greater than 1. When

this is so one should employ an alternative procedure to be derived below.

3 An Alternative Test when the H2 Test Fails

When the H2 statistic yields inadmissible results we may employ the following

procedure.

Write the model in Eq. (1) as

Y = U−1R+ZC+E = WD+E, E = (εt·), W = (U−1, Y−1, X), D = (R′, C ′)′,

(18)

where we have merely made use of the alternative specification in Eq. (4). If

we could observe U−1 we would simply estimate R by OLS and then carry out

a test on R as we would with any other OLS-estimated parameter. Since we

do not, we shall use the OLS residuals from the regression of Y on Z . The

estimator thus obtained is

D̃ = (W̃ ′W̃ )−1W̃ ′Y = (W̃ ′W̃ )−1W̃ ′WD+(W̃ ′W̃ )−1W̃ ′E, W̃ = (Ũ−1, Z). (19)

Noting that, under the null, W − W̃ = [Z(C̃ − C), 0] , we find

(W̃ ′W̃ )−1W̃ ′W = I + (W̃ ′W̃ )−1W̃ ′[Z(C̃ − C), 0]
P→ I.

Specifically, note that W − W̃ = (Z(C̃ − C), 0) , so that

(W̃ ′W̃ )−1W̃ ′[W − W̃ ]D = 0,

because under the null R = 0 . Consequently, under the null,

D̃
P→D, and, moreover
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√
T (D̃ − D) ∼

(
W̃ ′W̃

T

)−1
W̃ ′E√

T
. (20)

so that D is estimated consistently and has a well defined limiting distribution.

Concentrate now on the estimator of R , viz.

√
TR̃ = S̃∗

1

1√
T

T∑

t=1

w̃′
t·εt·,

(
W̃ ′W̃

T

)−1

= S̃∗ =

[
S̃∗

11 S̃∗
12

S̃∗
21 S̃∗

22

]
=

[
S̃∗

1

S̃∗
2

]
. (21)

Letting S∗
ij represent the corresponding blocks in the probability limit of S̃∗ ,

and vectorizing the expression in Eq. (21) we find

√
T vec(R̃) =

√
T r̃ ∼ (Im ⊗ S∗

1)
T∑

t=2

(Im ⊗ w̃′
t·)ε

′
t·. (22)

Since this model too obeys the condition of the Lindeberg theorem, we therefore

conclude √
T r̃

d→ N(0, Σ ⊗ S∗
11). (23)

Consequently, we may test

H0 : R = 0

as against the alternative

H1 : R 6= 0

by means of the statistic

H∗2 = T r̃′(Σ̃ ⊗ S̃∗
11)

−1r̃
d→ χ2

m2 . (24)

4 Diagonal R

When the autoregression matrix R is diagonal, the situation is more complex

than that of the simple Durbin context, unless

Cov(εt·) = diag(σ11, σ22, . . . , σmm), (25)
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in which case we are reduced to doing m h -tests seriatim.

We now examine the case where Σ is unrestricted, i.e. we produce the

analogue of the H2 -statistic when R is diagonal but the elements of ut· are

cross correlated. Specifically, the alternative dealt with is

ut· = ut−1·R + εt·, R = diag(r11, r22, . . . , rmm), Cov(εt·) = Σ (26)

where

Σ = (σij), σij 6= 0, for i 6= j .

If the u ’s could be observed, we would write the model as

u = V r + e, u = vec(U), V = diag(v·1, v·2, . . . , v·m), , (27)

where v·i is the i th column of U−1, r = (r11, r22, . . . , rmm)′ , and estimate

r̂ = [V ′(Σ−1 ⊗ IT )V ]−1V ′(Σ−1 ⊗ IT )u; (28)

the limiting distribution of the entity above is given by

√
T r̂

d→ N(0, Ω−1
∗ ), Ω∗ = (σijσij). (29)

Since they are not known, we may substitute the corresponding OLS residuals,

instead of U and U−1 . When we do so we have, under the null,

√
T r̃ = [Ṽ ′(Σ̃−1 ⊗ IT )Ṽ ]−1Ṽ ′(Σ̃−1 ⊗ IT )ũ ∼ Ω−1

∗
1√
T

[
m∑

j=1

σij ṽ′
·iũ·j]. (30)

But,

1√
T

ṽ′
·iũ·j ∼

1√
T

(v′
·iu·j) −

(
1

T
v′
·iY−1

)√
T (â·j − a·j) ∼

1√
T

(v·i − ZS ′
1σ·i)

′
u·j.

(31)

Defining the matrix

V ∗ = diag(v·1 − ZS ′
1σ·1, v·1 − ZS ′

1σ·2, . . . , v·m − ZS ′
1σ·m), (32)

we may finally write

√
T r̃ ∼ Ω−1

∗
1√
T

V ∗′(Σ−1 ⊗ IT )u
d→ N(0, Φ), Φ = Ω−1

∗ [σij(σij − σ′
·iS11σ·j)]Ω

−1
∗ .

(33)
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Remark 5. The matrix Ω∗ is non-singular as the following demonstration

easily shows. Let e·i be an m -element column vector all of hose elements are

zero, except the i th which is one. Then note that

Ω∗ = H ′(Σ−1 ⊗ Σ)H, H = diag(e·1, e·2, . . . , e·m).

The non-singularity of Ω∗ follows from the non-singularity of Σ and the fact

that H is evidently of rank m . Since the generalized inverse of H and H ′ are

given respectively by

Hg = H ′, H ′
g = H, because HH ′ = Im

it follows that

Ω∗
g = Hg(Σ ⊗ Σ−1)H ′

g = H ′(Σ ⊗ Σ−1)H,

which is non-singular and, thus, it is the inverse of Ω∗ .

If the matrix

Ω1 = [σijσij − σijσ′
·iS11σ·j]

is at least positive semi-definite, we may carry out a test of the null by means

of the test statistic

H2
D = T r̃′Φ̃−1r̃

d→ χ2
m, or, more generally, H2

D
d→ χ2

rank(Ω1). (34)

Remark 6. Notice that in the case m = 1 , H2
D reduces to the square of the

h -statistic because Ω∗ = 1 and Ω1 = 1 − Avar(â11) , as in Durbin (1970).

If the matrix Ω1 is indefinite, or negative definite, the test above is in-

operable and an alternative test may be undertaken as follows. Write (the

observations on) the equations of the model as

y·i = riiv·i + Zc·i + ε·i, i = 1, 2, 3, . . . , m, (35)

and stack them so that the observations on the entire model may be written as

y = V r+(Im⊗Z)c+e, r = (r11, r22, r33, . . . , rmm)′, V = diag(v·1, v·2, v·3, . . . , v·m).

(36)
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Since V is not observable we use instead the columns of the OLS residuals

Ũ−1 , i.e.

Ṽ = diag(ṽ·1, ṽ·2, ṽ·3, . . . , ṽ·m), (37)

to estimate

d̃ = [(W̃ ′(Σ̃−1⊗IT )W̃ ]−1W̃ ′(Σ̃−1⊗IT )y, W̃ = [Ṽ , (Im⊗Z)], d = (r′, c′)′. (38)

As in the discussion above, we can show that, under the null,

(W − W̃ )d = 0,

so the estimator of d , and hence of r , is consistent. Moreover, under the null,

√
T (d̃ − d) ∼ Φ

1√
T

W ′(Σ−1 ⊗ Im)e
d→ N(0, Φ), (39)

where

Φ−1 = plim
T→∞

1

T
W ′(Σ−1 ⊗ IT )W. (40)

It follows then, that under the null,

√
T r̃

d→ N(0, Φ11), (41)

where Φ11 is the m × m principal submatrix of Φ . Consequently, to test the

null that r = 0 we may use the test statistic

H∗2
D = T r̃′Φ̃−1

11 r̃
d→ χ2

m, (42)

where

Φ̃−1
11 =

1

T

(
Ṽ ′(Σ̃−1 ⊗ IT )Ṽ − Ṽ ′(Σ̃−1 ⊗ Z(Z ′Z)−1Z ′)Ṽ

)
, (43)

and Σ̃ = Ũ ′Ũ/T .

If an estimator for r is obtainable, the matrix of Eq. (41) will be positive

definite and hence it is always operational in practice.
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