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Abstrac t 

This paper first shows that , when colleges' preferences are substitutable, there does not exist any stable matching mechanism that 
makes truthful revelation of preferences a dominant strategy for every 
student. It introduces student types and captures colleges' prefer­
ences towards affirmative action via type specific quotas: A college 
always prefers a set of students that respects its type specific quo­
tas to another set that violates them. Then it shows that a stable 
mechanism that makes truthful revelation of preferences a dominant 
strategy for every student exists if and only if each college's preferences 
satisfy responsiveness over acceptable sets of students that respect its 
type specific quotas. These results have direct policy implications in 
several entry-level labor markets (Roth 1991). Furthermore, the al­
gorithm and the related incentive theory developed here is applied to 
controlled choice in the context of public school choice by Abdulka­
diroglu and Sonmez (2003). 

1 Introduction 

In several real-life applications of college admissions problems, colleges' preferences over sets of students are determined by gender, racial and ethnic 

*I am grateful to Al Roth for his valuable feedback. I would also like to thank Ron 
Jones, Bahar Leventoglu, Paul Milgrom, Tayfun Sonmez and William Thomson for their 
helpful comments. 
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composition of sets. Roth (1991) makes the following observation in an entry-
level labor market in United Kingdom: A doctor in UK can become eligible 
for full registration with the General Medical Council only if that doctor 
completes 12 months in a preregistration position, typically six months in 
a medical position and six months in a surgical position under consultants. 
The entry-level labor markets for unregistered doctors are cleared via cen­
tralized matching mechanisms. In the Edinburgh case, some consultants may 
specify that they will not employ more than one female doctor in any six-
month period. In some other applications, preferences are determined by 
the composition of professional specialities of students. Roth and Peranson 
(1999) point out the following in the American resident matching market 
that is cleared via a centralized resident matching procedure: For particular 
residency programs, if some positions remain unfilled, then these positions 
may revert to other programs (see also Roth 2002, Milgrom 2003). 

A similar case arises in public school choice in the United States (Abdulkadiroglu and Sonmez 2003): Public school choice gives parents the op­
portunity to choose the public school their child will attend. Intra-district 
choice allows parents to select schools throughout the district where they 
live, and inter-district choice allows them to send their children to public 
schools in areas outside their resident districts. However, in some states, 
choice is limited by court-ordered desegregation guidelines. In Missouri, for 
example, St. Louis and Kansas City must observe strict racial guidelines for 
the placement of students in city schools. Donald Hirch (1994, page 120) 
points out similar constraints in UK: City Technology Colleges are required 
to admit a group of students from across the ability range and their student 
body should be representative of the community in the catchment area. 

Lee C. Bollinger, the former president of the University of Michigan and 
the current president of Columbia University, argues that "admissions is not 
and should not be a linear process of lining up applicants to their grades and 
test scores and then drawing a line through the list. It shows the importance 
of seeing racial and ethnic diversity in a broader context of diversity, which is 
geographic and international and socio-economic and athletic and all various 
forms of differences, complementary differences, that we draw on to compose 
classes year after year" (Alkan and Gale 2001). 

In fact, we find the following in a standard application form for Columbia 
University:1 "Columbia attempts to draw students from diverse ethnic and 

1 T h e form can be downloded from the following addres: 
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racial backgrounds. We ask you to assist us in this effort by describing your­
self as a member of one of the following groups. Please add more specific 
information where relevant (such as tribal affiliation or country of origin)." 
Students can select one of the following in the form: African American/Black, 
Asian/Asian American/Pacific Islander, Biracial/Multiracial, Caucasian, Chicano/Mexican American, Dominican, Hawaiian Native/Alaskan Native, His­
panic/Latino, Native American/American Indian, Puerto Rican, South Asian, 
Southeast Asian, Other. 

In each of these examples, preferences of hospitals/schools/colleges are 
quite different than a simple ordering of individual students. In this paper, 
we characterize a class of preferences for colleges that, we believe, capture 
preferences towards gender or racial and ethnic compositions, which we refer 
as preferences towards affirmative action. 

A college admissions problem is a many-to-one two-sided matching prob­
lem, in which there is a finite set of students and a finite set of colleges. Each 
college has a finite capacity to enroll students. Preference relation of each 
student over colleges is a linear order of colleges, where as preference relation 
of each college over sets of students is a linear order of sets of students. A 
matching matches each student with a college or with herself, and each col­
lege with a set of students that are no more than the capacity of that college. 
A student blocks a matching if she prefers to remain unmatched rather than 
being matched to a college under that matching. A college blocks a match­
ing if it rather prefers a strict subset of the students that it is matched. A 
student-college pair blocks a matching if the student prefers that college to 
her match and the college rather prefers her with a subset of its match. A 
matching is stable if no student, no college and no student-college pair block 
the matching. 

Faced with a set S of students, a college c can determine which subset of 
S it most prefers. We refer this subset as c's choice among S. A college c has 
substitutable preferences when its preferences over sets of students satisfy 
the following condition for every set S of students: When a student s is in c's 
choice among S, s is in c's choice among S — s' for any other student s' ^ s. 
That is, the college continues to prefer to admit a student even if some of 
the other students in its choice set become unavailable. It regards students 
as substitutes not as complements. When colleges have substitutable prefer­
ences, the set of stable matchings is non-empty (Kelso and Crawford 1982, 

http://www.studentafFairs.columbia.edu/admissions/applications/pdf/firstyear.pdf 
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Roth 1991, Alkan and Gale 2001, Milgrom 2003).5 Furthermore, there exists 
an algorithm, namely a deferred acceptance algorithm with students propos­
ing, that selects a stable matching for every preference profile, such that 
every student likes this matching as well as any other stable matching (The­
orem 6.8, Roth and Sotomayor 1990). Similarly, there exists an algorithm, 
namely a deferred acceptance algorithm with colleges proposing, that selects 
a stable matching for every preference profile, such that every colleges likes 
this matching as well as any other stable matching (Theorem 6.7, Roth and 
Sotomayor 1990). For later reference, let us give the deferred acceptance 
algorithm with students proposing: 
Step 1: Each student proposes to her most preferred college. Each college 
rejects all but those in its choice among its proposers.6 

In general, at 
Step k: Each student who was rejected in the previous step proposes to her 
next preferred college. Each college considers the students it has been holding 
together with its new proposers. It rejects all but those in its choice among 
these students. 

The algorithm terminates when no student proposal is rejected. Then 
each student is matched with the college that she proposes last and not 
rejected by. We refer this algorithm as the Gale-Shapley student optimal 
algorithm. 

A (direct) stable mechanism is a preference revelation game in which 
students and colleges report their preferences and a matching that is stable 
with respected to the stated preferences is produced. Roth (1982) shows that 
there is no stable mechanism that makes truthful revelation of preferences a 
dominant strategy for all agent. 

A college c's preferences over sets of students induce an ordering of in­
dividual students, which we refer as c's preferences over individual students. 
A student s is ranked higher than s' in that ordering if, when c is faced with 
options of "enrolling s only" and "enrolling s' only", c prefers to enroll s 
only, s is ranked below c if c prefers to keep all positions unfilled rather than 
enroll s only. We say that c's preferences over sets of students are responsive 

2 In fact, Proposition 3 of Roth (1990) proves existence of stable matchings in a more 
general many-to-two matching environment with substi tutable preferences. 

3 Roth (1991) gives an algorithm for the case where colleges may have indeferences 
among different sets of students. This simplified version of Roth 's algorithm works in our 
case since we assume linear preferences. Note tha t we follow Milgrom (2003) 's terminology 
in defining the algorithm. 
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to its preferences over individual students if the following holds: For any two 
sets S and S' of students such that S' = (S — s) U x for some s G S and 
x G {S — s) U c : The college c prefers 5 to S" if and only if s is ranked higher 
than x in c's preferences over individual students. When c's preferences are 
responsive and it has qc position to fill, the choice of c among a set S is 
the qc highest ranked students among those that are ranked above c in c's 
preference relation over individual students. Hence, responsive preferences 
are also substitutable but not vice versa. 

When colleges' preferences are responsive, a stable mechanism that is 
coupled with the Gale-Shapley student optimal algorithm makes truthful 
revelation of preferences a dominant strategy for all students (Dubins and 
Freedman 1981, Roth 1982). However, Milgrom (2003) shows that this mech­
anism fails to make truthful revelation of preferences a dominant strategy for 
all students, when colleges have substitutable preferences. Our first theorem 
strengthens this negative result as follows: When colleges' preferences are 
substitutable, there does not exist any stable mechanism that makes truth­
ful revelation of preferences a dominant strategy for all students (Theorem 

Next we capture preferences towards affirmative action via type specific 
quotas as follows: There exists a finite type space, such as {African Ameri­
can/Black, Asian/Asian American/Pacific Islander, Biracial/Multiracial, Cau­
casian, Chicano/Mexican American, Dominican, Hawaiian Native/Alaskan 
Native, Hispanic/Latino, Native American/American Indian, Puerto Rican, 
South Asian, Southeast Asian, Other} in case of Columbia University. Each 
student is of one of these types. In addition to its capacity, each college has 
a type specific quota. We assume for each college that, facing two sets of 
students, one respecting its type specific quotas, the other violating them, 
the college prefers the former to the latter. In this case, we say that the 
former set respects affirmative action constraints at that college. We refer to 
this assumption as AA (resembling "Affirmative Action"). 

Furthermore, we impose responsiveness on a college's preferences only 
over sets of students that satisfy AA and that the college would prefer to 
enroll: For any two sets S and S' of students such that both S and S' 
respect affirmative action constraints at c, c prefers both S and S' to leaving 
all positions unfilled, S' = (S — s) U x for some s G S and x G (S — s) U c : 
The college c prefers S to S' if and only if s is ranked higher than x in 
c's preferences over individual students. We refer this assumption as RP 
(resembling "Responsive Preferences"). 
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Roth (1991) makes similar assumptions in a many-to-two matching mar­
ket when the type space contains two types, namely {female, male}, in his 
Proposition 6. Our assumptions AA and RP are generalizations of Roth's 
assumption in a many-to-one matching market with possibly more than two 
types. We refer to these problems as college admissions with affirmative 
action problems. 

When colleges' preferences satisfy AA and RP, they are substitutable 
(Lemma 1), so that the set of stable matchings is non-empty (Theorem 2). 
Furthermore, the Gale-Shapley student optimal algorithm given above pro­
duces a stable matching that every student likes as well as any other stable 
matching (Theorem 3). Once we have substitutability, Theorem 2 and Theo­
rem 3 are straightforward implications of the existing results in the literature. 

When colleges' preferences satisfy AA and RP, the direct mechanism that 
is coupled with the Gale-Shapley student optimal algorithm makes truthful 
revelation of preferences a dominant strategy for all students (Theorem 4). 
We will refer this mechanism as the Gale-Shapley student optimal mecha­
nism. Theorem 4 provides a positive dominant strategy result as opposed to 
Milgrom's negative result and our even stronger result in Theorem 1. Also, 
the positive dominant strategy result with responsive preferences that is due 
to Dubins and Freedman 1981 and Roth 1982 becomes a corollary of our 
theorem with a singleton type space. 

Once we impose AA, RP becomes tight in the following sense: When 
colleges' preferences satisfy AA, there is a stable mechanism that makes 
truthful revelation of preferences a dominant strategy for all students if and 
only if colleges' preferences satisfy RP (Theorem 5). 

Next we apply our theory to public school choice. Abdulkadiroglu and 
Sonmez (2003) introduces a controlled choice problem in the context of public 
school choice in the US. A controlled choice problem is essentially a college 
admissions with affirmative action problem with one distinction: In college 
admissions, colleges themselves are agents which have preferences over stu­
dents, whereas in school choice, schools are objects to be consumed by the 
students and the ranking of students at each school does not represent pref­
erences of that school over individual students but a priority ordering of 
students imposed by state or local laws. While stability is key in a col­
lege admissions problem, it is fairness that plays a crucial role in controlled 
choice: An assignment of schools to students is fair if the following is sat­
isfied: If there is an unmatched student-school pair (s, c) where student s 
prefers school c to her assignment and she has higher priority than some 
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other student s' who is assigned a seat at school c then (i) students s and 
s' are of different types, and (ii) the quota for the type of student s is met 
at school c. It is easy to show that an assignment in controlled choice prob­
lem is fair if and only if it is stable in the corresponding college admissions 
with affirmative problem (Theorem 6).7 Then our Theorems 3 and 4 imply 
that the Gale-Shapley student optimal mechanism produces a fair assignment 
that every student likes as well as any other fair assignment. Furthermore, it 
makes truthful revelation of preferences a dominant strategy for all students 
(Theorem 7). Since schools are not strategic agents, this immediately implies 
that this mechanism is strategy-proof. 

We introduce our model and give our results in Section 2. We devote 
Section 3 to the proofs of our results. In Section 4, we apply our theory in 
controlled choice in the context of public school choice in the US. We discuss 
further theoretical and practical issues in Section 5. We conclude in Section 
6. 

2 The Model and the Results 

2.1 College Admissions 

A college admissions problem consists of: 

1. a finite set of students S = {si,..., sn}; 

2. a finite set of colleges C = {c\,..., cm}, 

3. a capacity vector q = (qCl,..., qCp) where qc is the capacity of college 

4. a list of strict preference profile Ps = (PSl, • • •, PSq), where Ps is the 
strict preference relation of student s G S over C U {s}, 

5. a strict preference profile Pc = (PCl, • • • ,PCp), where Pc is the strict 
preference relation of college c G C over subsets of S. 

The original observation that connects stability in two sided matching problem to 
fairness in a one sided matching problem is made by Balinski and Sonmez (1999) in the 
context of Turkish college admissions. 
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Each preference relation is assumed to be complete and transitive. The 
first four items are common in every paper on college admissions. We will 
comment on the fifth item after giving the building blocks. From now on, 
small letters will represent individual agents and singleton sets of individuals, 
whereas capital letter will represent non-singleton sets agents. 

A matching fi is a function from the set of C U S to the set of all subsets 
of C U S such that 

i. |/i(s)| = 1 for every student s, and /i(s) = s if /i(s) ^ C; 

ii. |/i(c)| < qc for every college c; 

iii. /i(s) = c if and only if s G /i(c). 

/i(s) denotes the college that student s is enrolled in; //(c) denotes the set 
of students college c enrolls. 

Let Chc(S') denote the most preferred subset of S' C S for college c, i.e. 
Chc{S') C S' and for any other S C S", C/ic(S")PcS. We will refer Chc(S') 
as c's choice among S'. 

A matching fi is blocked by a student s if s prefers to stay unmatched 
rather than be matched to /i(s), i.e. sPsfi(s); it is blocked by a college c if 
c prefers a strict subset of //(c) to //(c), i.e. //(c) 7̂  C/ic(/i(c)); it is blocked 
by a student-col lege pair (s, c) if s and c are not matched by /i but would 
both prefer if s was enrolled in c, i.e. /i(s) / c, cPsfi(s) and s G C7ic(/i(c) Us). 

A matching /i is s table if it is not blocked by any individual agent or any 
student-college pair. 

A college c has subst i tutable preferences if for any S' C S, s' G 
S', s" G S — s', when s' is in Chc(S'), s' is in Chc(S' — s") as well. The 
set of stable matchings is non-empty when every college has substitutable 
preferences (Roth 1991, Alkan and Gale 2001, Milgrom 2003). 

Furthermore, consider the following deferred acceptance algorithm with 
students proposing: 

Step 1: Each student proposes to her most preferred college. Each college 
rejects all but those in its choice among its proposers. 

In general, at 
Step k: Each student who was rejected in the previous step proposes to her 
next preferred college. Each college considers the students it has been holding 

; 



together with its new proposers. It rejects all but those in its choice among 
these students. 

The algorithm terminates when no student proposal is rejected. Then 
each student is matched with the college that she proposes last and not 
rejected by. 

When all the colleges have substitutable preferences, this algorithm pro­
duces a stable matching that every student likes as well as any other stable 
matching (Theorem 6.8, Roth and Sotomayor 1990, p. 176). Henceforth we 
refer this algorithm as the Gale-Shapley student optimal stable algo­
rithm (GSS). 

A (direct) mechanism requires agents to reveal their preferences and 
selects a matching based on these submitted preferences according to a pre­
determined algorithm. A mechanism is (dominant strategy) incentive com­
patible for an agent if reporting her true preferences is a dominant strategy 
of that agent in the preference revelation game induced by that mechanism. 
A stable mechanism is a direct mechanism that selects a matching that is 
stable with respect to the stated preference profile. 

It is well known that there does not exist any stable mechanism that 
is incentive compatible for every agent (Theorem 3, Roth 1982). However, 
there exist restrictions on preferences that is sufficient for the existence of 
a stable mechanism that is incentive compatible for every student. Before 
discussing these restrictions, we need to introduce some definitions. 

Each Pc induces a preference relation for c over 5 U c , i.e. singletons of 
students and c. In that representation, c is interpreted as leaving all positions 
at c unfilled. Then, when the alternatives c faces are only singletons and 
leaving all the positions unfilled, sPcs'PccPcs" is read as follows: College 
c prefers to enroll s rather than s'; c prefers to enroll s' rather than leave 
positions unfilled; and c prefers to leave positions unfilled rather than enroll 
s". We refer to this preference relation as c's preferences over individual 
students. 

Now consider a standard college admissions problem, in which the 
fifth item of a college admissions problem is replaced by a list of strict prefer­
ence relations for colleges over individual students. Then a simple assumption 
of responsiveness is used to connect colleges' preferences over groups of stu­
dents to their preferences over individual students: c's preference relation 
over groups of students is responsive (to its preferences over individual stu­
dents) if, for any S', S" C S, s' e S', s" e S - S', (i) whenever S" = S'- s', c 
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prefers S' to S" if and only if c prefers to enroll s' rather than leave positions 
unfilled with respect to its preferences over individual students; (ii) whenever 
S" = (S" — s') U s", c prefers S' to S" if and only if c prefers to enroll s' rather 
than s" with respect to its preferences over individual students. In this case, 
we say that c has responsive preferences. If c has responsive preferences, 
then Chc(S') is the smaller of the following two sets: (i) the first qc highest 
ranked students in c's preference ordering of individual students; (ii) all the 
students c prefers to enroll rather than leave positions unfilled. 

A responsive preference relation is substitutable. Therefore, the above 
claims about GSS are valid in a standard college admission problem as well5. 
Furthermore, the direct mechanism coupled with GSS, which we refer as GSS 

mechanism, is incentive compatible for every student when all colleges have 
responsive preferences (Theorem 5.16, Roth and Sotomayor 1990). However, 
Milgrom (2003) shows that this result does not generalize to substitutable 
preferences. We strengthen this negative results as follows: 

Theorem 1: When colleges can admit any substitutable preferences, there 
does not exist any stable mechanism that is incentive compatible for every 
student. 

Proof: The proof is via a counterexample. There are three students S = 
{si, s2, S3} and two colleges C = {c\, c2} with capacities qCl = 2 and qC2 = 1. 
Consider the following preference profile P: 

PS1 

C\ 

c2 

S i 

Ps2 

c2 

C\ 

s2 

Pss 
c2 

C\ 

S.3 

PC1 

S3 

{s i ,s2 } 
Si 

s2 

0 

Pc2 

S i 

s2 

S3 

0 

Note that both PCl and PC2 are substitutable. There is a unique stable 
matching /i for P: /i(ci) = S3, /i(c2) = s± and /i(s2) = s2, i.e. s2 remains 
unmatched. 

Now consider the preference profile P' = (P_S2,PS'2) where P'S2 reverses 
the ranking of colleges, i.e. ciP'S2c2P'S2S2- There are two stable matchings 

°When colleges' preferences are responsive to their preferences over individual students, 
one does not need to assume strict preferences over sets of students. Strict preferences 
over individual students suffices. For further discussion, see Roth and Sotomayor (1990) 
page 129. 
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fi[ = fi and //2 for S ' : //2(ci) = {vi, v2} and ^2{c2)
 = v3-

Next consider the preference profile S" = (SLS ,S" ) where S's' ranks 
c\ as "unacceptable," i.e. c2S" v$S" c\. There is a unique stable matching 
H" = fi'2. 

Suppose in contrary that there is a stable matching mechanism p that 
is inventive compatible for every student. If p(S ' ) = fi[, then when the true 
preference profile is S', v3 is better off by from misrepresent her preferences 
as S", since then p must pick the unique stable matching // ' under S", 
i.e. p(S") = fi", and fi"(v3) = c2S'S Ci = fi[(v3). This is a contradiction. If 
p(S ' ) = fi2, then when the true preference profile is S , v2 is better off by 
misrepresenting her preferences as S'S2, since p must pick the unique stable 
matching under S , i.e. p ( S ) = /i, and /4(v2) = c\SS2v2 = A*(v2)- This is a 
contradiction. 

To complete the proof, let us show why we need at least three students and 
at least two colleges one with capacity of at least two in that counterexample: 
(i) If there is one single college, there is no room for beneficial misrepresen­
tation of preferences by students. Because, stability implies that the college 
will be matched with its choice among those who prefer that college. 
(ii) If there is one single students, there is no room for beneficial misrepre­
sentation of preferences by that student. Because, stability implies that the 
student has to be matched with her most preferred one among those that 
prefer to enroll her. 

Yet, these are not interesting in case of matching, so we exclude them. 
(iii) When there are two students {v, v'} and at least two colleges, we will 
show that there is no room for beneficial misrepresentation of preferences 
by any student. Consider a stable mechanism. Fix colleges' preferences at 
Sc- Suppose that this mechanism produces the matching /i when preferences 
are given by S = (Ss,Ss>,Sc)- For notational simplicity, let /i(v) = c and 
/i(v') = d. Also suppose in contrary that v can benefit by misrepresenting his 
preferences as Ss. Let fi be the matching that the stable mechanism produces 
under S = (SS,SS',SC). Then fi{v)Ssc. Then fi(v) / c. If fi(v) = c" / c', 
then (v,c") blocks /i under S . So fl(v) = d. Also, dSs>[i(v'). Otherwise: (a) 
If ft(v') = /i(v') = d, stability of p, under S implies that {v,v'}S>v'. Then 
(v,d) blocks /i under S . (b) If (l(v')Ss>d and p(v') / c, then (v',fl(v')) blocks 
/i under S . (c) If fl(v')Ss>fi(v') and ft(v') = c, then stability of /i under S 
implies that vSc{v, v'}. Since cSd, (v, c) blocks ft under S . This proves that 
dSsiji(v'), which in turn implies that /t(v') 7̂  d. Stability of fi under S 
implies that v'S>v. But then, (v',d) blocks ft under S . So, v cannot benefit 
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from misrepresentation. This proves our claim that there is no room for 
beneficial misrepresentation of preferences by any student when there are 
two students. 
(iv) When every college has a capacity of one, colleges' preferences are nec­
essarily responsive, so GSS is incentive compatible. 

This completes the proof. • 

Under P', the students prefer //2 to //x. Milgrom (2003) uses P and P' 
to show that GSS is not incentive compatible when colleges can admit any 
substitutable preferences. Following the discussion of (i), (ii) and (iii), we 
will assume that there are at least three students and at least two colleges one 
with capacity of at least two in any problem. This is a costless assumption 
from a practical point of view, since it is going to be satisfied by all the 
relevant real-life applications of college admissions problems. 

Note that even if we assume responsive preferences, there does not exist 
a stable mechanism that is incentive compatible for every college (Theorem 
5.15, Roth and Sotomayor 1990). 

Then, our negative result brings up the following question: Is there a non-
trivial subclass of substitutable preferences that capture preferences towards 
affirmative action, and at the same time allows for existence of a stable 
mechanism that is incentive compatible for every student? In the next section 
we characterize such a subclass of preferences. 

2.2 College Admissions with Affirmative Action 

In addition to the five items in a college admissions problem, a college 
admissions with affirmative action problem consists of 

6. a type space T = {r\, ...,Tk} 

7. a type function r : S —>• T; T(S) is the type of student s 

8. for each college c, a vector of type specific quotas q^ = (q^1,..., qT
c
k) 

such that qT
c < qc for each c, each r; and J2T€T qT

c > qc- Sometimes, we 
will refer to these quotas as affirmative action constraints. 

Each student has a type. We use type specific quotas to capture colleges' 
preferences towards affirmative action. We interpret qT

c as the maximum 
number of slots that college c would like to allocate to type r students. 
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To be precise, let us give our assumptions on the class of preferences more 
formally. 

A list of students S' C S respects affirmative action constraints at 
college c if 

i. S' respects the capacity limit at c, that is \S'\ < qc; 

ii. S' respects type specific quotas at c, that is \{s G S' : T(S) = T}\ < qT
c 

for each r G T. 

The following assumption will give us the restriction on preferences im­
posed by affirmative action constraints. 

Assumption AA: (Affirmative Action) For any S', S" C S such that S' 
respects affirmative action constraints and S" does not respect affirmative 
action constraints, S'PCS". 

Next we impose responsiveness on "acceptable" sets of students that re­
spect affirmative action constraints. 

Assumption RP: (Responsive preferences) For any S', S" C S such 
that S'Pc0, S"Pc0, and both S' and S" respect affirmative action constraints, 

(RP1) if S" = S' — s' for some s' G S', then for each c G C 

S'PCS" if and only if s'Pcc; 

(RP2) if S" = (S' - s') U s" for some s' G S', s" G S - S'. Then, for each ceC 

S'PCS" if and only if s'Pcs". 

RP reduces to Martinez et al. (2000)'s g^-responsiveness property when 
the type space is a singleton. Note that this assumption does not imply the 
responsiveness property. To see this, consider the following example. 

Example: There are two female students { / I , / 2 } and two male students 
{mi,m2}. A college c has two seats, qc = 2; and it prefers to enroll at 
most one student of each gender, i.e. q[ = 1 and q™ = 1. Otherwise, its 
preference relation over groups of students is responsive to the following 
ranking: f1Pcf2Pcm1Pcm2Pcc. Then {/i,m2}Pc{/i,/2} but f2Pcm2. So, c's 
preferences are not responsive although it satisfies RP. 
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However, assumptions AA and RP imply substitutability. Roth (1991) 
obtains a similar result in a many-to-two matching model, when students 
can be one of two types {male, female} and colleges may specify that they 
will employ no more than one female students. Then college preferences 
satisfying this constraint but otherwise responsive to a simple rank-ordering 
are substitutable (Proposition 6, Roth 1991). We generalize this observation 
in a many-to-one matching framework when student types may be more than 
two: 

Lemma 1: If c's preference relation Pc satisfies AA and RP, then Pc is 
substitutable. 

Proof: Suppose that Pc satisfies AA and RP. Take any S' C S, s' G S', 
s" G S — s'. Suppose that s' is in Chc(S'). Since 0 satisfies AA and it 
is feasible to choose, AA implies that Chc(S') respects affirmative action 
constraints, so does Chc(S') — s". Furthermore, since s' is in Chc(S'), RP 
implies that s'Pcs for any other s G S' — Chc(S') such that (Chc(S

f) — s') U s 
respects affirmative action constraints. Then RP implies that s' should be in 
Chc(S' - s") C {Chc(S') - s"). Hence, Pc is substitutable. • 

Then we have the following result: 

Theorem 2: Set of stable matchings is non-empty when colleges' preferences 
satisfy AA and RP. 

Substitutability is sufficient for the existence of a stable matching (Roth 
1991, Alkan and Gale 2001, Milgrom 2003)9. So the proof of Theorem 1 
follows directly from Lemma 1. 

The following result follows from Theorem 6.8 of Roth and Sotomayor 
(1990). 

Theorem 3: When colleges' preferences satisfy AA and RP, GSS produces a 
stable matching that every student likes as well as any other stable matching. 

Later, we will construct the GSS algorithm for our environment. Then, 
we will give direct proofs of these results. The proofs will enhance our un­
derstanding of the algorithm that will be helpful in the proof of the following 
result. 

Theorem 4: When colleges' preferences satisfy AA and RP, the GSS mech­
anism is incentive compatible for every student. 

6 Also see Roth and Sotomayor (1990), Proposition 5.22. 
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Thhorhm 8149 oi Roth dnd Sotomdyor +4993, ehcomhs d corolldry oi our 
Thhorhm 4 whhn thh typh spdch conslsts oi onh typh only1 Wh dhvoth thh 
nhxt shctlon to thh proois oi thhsh rhsults1 Bhiorh glvlng our proois, wh wlll 
glvh d chdrdcthrlzdtlon rhsult: Onch wh d ssumh thdt thh collhghs' prhihrhnchs 
sdtlsiy AA, RP ls not only sufficlhnt to gudrdnthh thh h xlsthnch oi d stdelh 
mhchdnlsm thdt ls lnchntlvh compdtlelh i or hvhry studhnt, lt ls dlso nhchssdry1 

Wh wlll mdkh thh i ollowlng mlld dssumptlon to oetdln thls rhsult: Ln 
hvhry proelhm wh study, thhrh h xlsts d typh such thdt thhrh d rh d t lhdst thrhh 
studhnts oi thdt typh, two collhghs, onh wlth d quotd oi d t lhdst two, thh 
othhr wlth d posltlvh quotd ior thdt typh1 Noth thdt hdch oi thhsh collhghs 
mdy hdvh posltlvh quotds ior othhr typhs ds whll1 Thls dssumptlon ls llkhly 
to eh sdtlsfihd ln dll rhlhvdnt rhdl-lih d ppllcdtlons oi collhgh d dmlsslons, slnch 
thh numehr oi collhghs, thh numehr oi posltlons dnd thh numehr oi studhnts 
drh ldrgh l n such dppllcdtlons1 Shh Roth dnd Phrdnson +4999, i or ddtd on 
thh Amhrlcdn Ndtlondl Rhsldhnt Mdtch Progrdm, shh Rhhs +5333, i or ddtd 
on school cholch ln thh US1 

Theorem 5: Assumh thdt collhghs' prhihrhnchs sdtlsiy AA1 For d glvhn sht oi 
studhnts, collhghs, cdpdcltlhs dnd dffirmdtlvh d ctlon constrdlnts, thhrh h xlsts 
d stdelh mhchdnlsm thdt ls lnchntlvh compdtlelh i or hvhry studhnt li dnd only 
li collhghs' prhihrhnchs sdtlsiy RP1 

Proof: Li collhghs' prhihrhnchs sdtlsiy RP, thhn GSS ls lnchntlvh compdtlelh 
ior hvhry studhnt ey Thhorhm 41 Wh nhhd to provh thh rhvhrsh dlrhctlon: 
Li thhrh h xlsts d stdelh mhchdnlsm thdt ls lnchntlvh compdtlelh i or hvhry 
studhnt, thhn collhghs' prhihrhnchs sdtlsiy RP1 

For dny glvhn sht oi studhnts, collhghs, cdpdcltlhs dnd dffirmdtlvh d ctlon 
constrdlnts, choosh d typh r, dnd thrhh studhnts Si, s2, s3 oi thdt typh, dnd 
two collhghs ci, c2, onh wlth d quotd oi d t lhdst two ior thdt typh, l1h1 qT

ri > 2, 
thh othhr wlth d posltlvh quotd, l1h1 qT > 1, thhn thh counthrhxdmplh l n thh 
prooi oi Thhorhm 4 cdn eh modlfihd to provh thh rhvhrsh dlrhctlon ds iollows: 

For hvhry collhgh c e C\{c1,c2}, li S' C S ls such thdt S"fl{si, s2, s3} / 0 , 
thhn 0PcS'; ior hvhry s G S\{si, s2, s3}, li c G {c1; c2}, thhn sPsc; ior hvhry 
collhgh c G {ci,c2}, li S' C S ls such thdt S' ^ {si ,s2 ,s3}, thhn 0PcS', 
dnd c's prhihrhnchs ovhr {s±, s2, S3} drh glvhn ds ln thh counthrhxdmplh ln thh 
prooi oi Thhorhm 4; ior hvhry s G {si, s2, S3}, li c ^ {c\, c2}, thhn sPsc, dnd 
s's prhihrhnchs ovhr {c1; c2} drh glvhn ds ln thh counthrhxdmplh ln thh prooi 
oi Thhorhm 41 
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Then, clearly PCl violates RP although it satisfies AA. Furthermore, the 
nonexistence of a stable mechanism that is incentive compatible for every 
student prevails in this modified example. This proves the reverse direction, 
hence completes the proof. • 

We devote the next section to the proofs of Theorems 2, 3 and 4. 

3 Proofs 

First, let us give the following definitions: 
If cPss, we say that c is a c c e p t a b l e to s, i.e. s prefers to be matched 

to c rather than be unmatched. If sPsc, then c is unacceptable to s, i.e. s 
prefers to be unmatched rather than be matched to c. s is acceptable to s. 
Similarly, if sPcc, s is a c c e p t a b l e to c. If cPcs, s is unacceptable to c. c is 
acceptable to c. We can easily generalize this definition for sets of students. 

A matching /i r e s p e c t s aff i rmat ive act ion constraints if for each 
c G C, /i(c) respects affirmative action constraints at c. T h e quota for 
t y p e r at college c is met under / / i f \{s G //(c) and T(S) = r}\ = qT

c. A 
matching fi is individually rational if (i) for each s G S, fi(s) is acceptable 
to s; (ii) for each c <E C, //(c) respects affirmative action constraints, and 
/i(c) = Chc(fi(c)). 

By Assumptions AA and RP, we can give the following equivalent stability 
definition: 

Definition: A matching ji is stable if 

i. it is individually rational; 

ii. there do not exist s,s' G S, c G C such that 

(a) /i(s') = c 

(b) CPS/J,(S), 

(c) (/i(c) — s') U s respects affirmative action constraints at c, 

(d) sPcs'. 

Now consider the following equivalent variant of GSS : 

Step 1: Each student proposes to her most preferred college among acceptable 
ones. Each college c orders the individual students that propose to c with 
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respect to Pc. Then, c tentatively admits one acceptable student at a time in 
this order such that c does not exceed its capacity and c respects type specific 
quotas. If the type specific quota for type r is met at c, all the remaining type 
r students are rejected by c. If the capacity is met at c, all the remaining 
students are rejected by c.7 If no student that proposes to some college is 
rejected, then GSS terminates, and the matches are finalized. Otherwise, 
GSS proceeds to step 2. 

In general at 
Step k > 1 : Each student, who has been rejected at step k — 1, proposes to 
her most preferred college among acceptable ones by which she has not been 
rejected yet. Each college c orders, with respect to Pc, the students that c 
has tentatively admitted at step k — 1 and the students that propose to c at 
step k. Then, c tentatively admits one acceptable student at a time in this 
order such that c does not exceed its capacity and c respects type specific 
quotas. If the type specific quota for type r is met at c, all the remaining type 
r students are rejected by c. If the capacity is met at c, all the remaining 
students are rejected by c. If no student that proposes to some college is 
rejected, then GSS terminates, and the matches are finalized. Otherwise, 
GSS proceeds to step k + 1. 

Let P = (PS,PC) be given, and GSS(P) denote both the procedure and 
the matching that GSS produces under P. We will drop the argument when 
it will not cause any confusion. 

3.1 Existence 

We will give the proofs of Theorem 2 and Theorem 3 below for the sake 
of completeness, although, as mentioned in the previous section, they are 
straightforward implications of the previous results in the literature. 

First, the following observations about GSS will be helpful later: Take 
two students s and s', and a college c. 

Observation 1. Suppose that s and s' are of the same type. Let c prefer s to s'. If s is 
rejected by c at some step k, then s' is not tentatively matched to c at 
step k or later. 

7This is equivalent to finding the choice set among proposers under the assumptions 
AA and RP. 
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Observation 2. If s is rejected by c at step k, then one of the following is true: 

(a) The type specific quota for s's type at c is not met at the end of 
this step, i.e. the number of students who are of the same type 
as s and tentatively matched to c at this step is less than the 
quota for s's type. Then, c prefers s less than each student who 
is tentatively matched to c at step k or later. 

(b) Or, the type specific quota for s's type at c is met, i.e. the number 
of such students is equal to the quota for s's type. Then c prefers 
s less than any student of type T(S) that is tentatively admitted 
by c at step k or later. . 

Proposition 1: /i = GSS(P) is stable with respect to P. 

Proof: First, if a student is rejected at some step, she proposes to a less 
preferred college or does not propose to any college at the next step. By 
finiteness of agents, this guarantees that GSS terminates at finite steps. Next, 
each student proposes only to acceptable colleges and each college admits only 
its choice among proposers. So, GSS(P) is individually rational. Finally, 
suppose in contrary that GSS(P) is not stable. Then there exists s, s' G S, 
s ^ s' such that 

1. C = / i (s') 

2. cPsfi(s), 

3. (/i(c) — s') U s respects affirmative action constraints at c, 

4. sPcs'. 

Once s is rejected by c at step k of GSS(P), by Observation 1, all other 
students of type T(S) that are assigned a slot at c at step k or later are 
preferred to s by c. So, (4) implies that r(s') / T(S). Then, the quota for 
type T(S) at c is not met under //, by (3) above. Let step k! of GSS(P) be 
the first step after step k — 1 at which the quota for type T(S) at c is not 
met. Any type T(S) student who is rejected at this step, and s as well, will 
be preferred by c less than any other student who is tentatively matched to 
c at this step or later, by Observation 2a. So s' can be matched to c only if 
s'Pcs. This contradicts with (3) above. So, the proof is completed. • 

Theorem 1 is an immediate implication of this result. 
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Our proofs resemble the original proofs in the Roth (1982) with one distinc­
tion: In the literature, the main results are obtained first in marriage models 
(one-to-one matching problems). Then by responsiveness assumption, these 
results easily generalize to college admissions (many-to-one matchings). In 
our setting, we cannot reduce our problem to a standard marriage problem. 
Because, the possibility of X^-GT 1C > Qc precludes a fixed and well defined 
preference relation in a corresponding marriage market. To see this, consider 
the following example. 

Example: c has two seats. There are two types: black and white, c prefers 
to allocate at most one seat for each type. Consider two female students 
/ i and j 2 and two male students mi and m2. Suppose that c ranks female 
students above male students. Now, let us try to construct a corresponding 
marriage market by dividing c into two separate colleges, cx and c2, each with 
one slot. In a standard college admissions problem, the preference relation 
of each Q coincides with the preference relation of c. In our problem, c2 will 
prefer a female student to a male if c\ admits a male student. Otherwise, 
the quota for female students is met, so c2 prefers the other male student to 
females. 

Hence, we have to derive all the results in our model directly from our 
model. 

Define the available set of colleges for s as follows: A(s) = ic e CUs : 3/i, 
/i is stable, /i(s) = c}. Let c(s) denote the best alternative in A(s) with respect 
to s's preference ordering. 

Proposition 2: GSS matches each s to c(s), i.e. GSS produces a stable 
matching that every student likes as well as any other stable matching. 

Proof: Let fik be the tentative matching produced by GSS(P) at the end 
of step k. We will show the following: If a student s is rejected by a college 
at some step of GSS, this college is not in s's available set A(s). In contrary, 
suppose that there exists some student who is rejected by some college in 
his available set. Let k be the first step of GSS such that some student s is 
rejected by some c at step k, and there exists a stable matching v such that 
v{s) = c. (Note that a student is never rejected by himself, if he proposes to 
himself.) 

Our choice of k implies that fik(s')Rs>v(s') for each s' ^ s. Because, if 
v(s')Psif-t

k(s') for some s', then s' should have been rejected by v(s') at a step 
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before step k, then this would contradict with the choice of k. In particular, 
for each s' with /i(s') = c, either v(s') = c or fik(s') = cPsiv(s'). There are 
two possible cases: 
1) The quota for type T(S) at c is not met under / / . Then, (i) the capacity 
limit at c, qc, is met under fik; and (ii) c prefers s less than each student who 
is tentatively matched to c at step k, i.e. for every s' G /Ufc(c), we have s'Pcs. 
But then, for each s' with fik(s') = cPs>v(s'), the quota for type r(s ' ) at c 
should be met under v. Otherwise, (sf, c) would block v since (i) [y{c) — s) Us' 
respects affirmative action constraints at c since the quota for T(S') at c is 
not met under u, (ii) cPs/z/(s'), and (iii) s'Pcs. This contradicts with stability 
of v. Then, this implies that if fik(s') = cPsiv{s') then 

\{s" : T{S") = T(S') and fik{s") = c} \ < \{s" : T{S") = r (s ' ) and u{s") = c}\ = 

for each such student. That is for any s' such that fik(s') = c but v(s') ^ c, 
removing s' from fik(c) while switching from fik to v does not free up a 
slot at c. For other students s' G /Ufc(c), we have that v(s') = c. Moreover, 
remember that the capacity limit at c, qc, is met under fik in this case. These 
imply that the capacity limit at c, qc, is met under v. Since fik(s) ^ c and 
v(s) = c and the capacity limit at c is met under both fik and v, there 
exists some s' such that fik(s') = c and v(s') ^ c. If T(S') = r(s), then (i) 
(z/(c) — s) U s' respects affirmative action constraints at c, (ii) cPs/z/(s'), and 
(iii) sPcs'. This contradicts with stability of v. If r(s') / T ( S ) , removing any 
such s' from //fc(c) while switching from fik to z/ does not free up a slot at c 
by the above observation. So i/(s) = c implies that the number of students 
in u(c) would exceed qc. Contradiction. 
2) The quota for type r(s) at c is met under fik. Then for each s' G ^k{c) 
with r(s ' ) = r ( s ) , we have that s'Pcs. Among such students, there should 
exist some s' such that v(s') / c. Otherwise, u(s) / c. Because (i) the 
quota for type T(S) at c is met under / / , and (ii) if for each s' G / / ( c ) with 
r (s ' ) = T(S) we have ^(s') = c, then i/(s) = c would imply that the quota for 
type T(S) at c is exceeded under u, contradiction. But then, we should have 
u(s')Psic for such s'. Otherwise, (s',c) would block v since (i) cPs/z/(s/), (ii) 
[y[c) — s) U s' respects affirmative action constraints at c, and (iii) sPcs'. In 
this case, u(s')Ps'C = fik(s') implies that s' has been rejected by v(s') at a 
step k! < k. This contradicts with the choice of k. 

So, if a student s is rejected by a college at some step of GSS, this college 
is not in s's available set A(s). Since each student proposes to successively 
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less desirable alternative, GSS matches each s to c(s), i.e. GSS always selects 
the student optimal stable matching. This completes the proof. • 

Theorem 3 follows immediately. 

3.3 Incentive Compatibility 

Our proofs follow the footsteps of Roth (1982). Again, we have to derive all 
the results directly for problems of college admissions with affirmative action. 

Let P_j denote the preference relations of all agents except agent i G SuC. 
Let / / be the matching produced by GSS(Pv,P_v). Let Qv be such that 
fJ-'(s)Qvc for all c ^ fJ-'(s). We will refer to Qv as a simple misrepresenta­
tion. 

Lemma 2: If Qv is a simple misrepresentation, then GSS(Qv, P_v) = GSS(Pv, P_v). 

Proof: /i is stable under (Pv', P_v), so /i is stable under (Qv, P_v). Moreover, 
c(s') = /i(s') for all s ' e S 1 under (<5v, P_v). Therefore, GSS(Qv, P_v) produces 
/i, as well, since GSS always selects the student optimal stable matching. • 

So, for any misrepresentation, there is a simple misrepresentation that 
works as well. Let /i = GSS(Pv, P_v) when Pv is the true preference relation 
of s. Then, 

Lemma 3: If a simple misrepresentation by s leaves s at least as well off as 
/i, then no student will suffer. 

Proof: Let Qv be a simple misrepresentation and v = GSS(Qv,P_v). Also 
assume that either u(s)Pvfi(s) or u(s) = /i(s). Suppose, on contrary, that for 
some s', /i(s')Pv/i/(s'). Since s' ^ s, s' states the same preferences, so that s' 
should be rejected by /i(s') at some step of GSS(Qv, P_v). Let k be the first 
step of GSS(Qv, P-v) at which some student, say s', is rejected by /i(s'). Since 
<5v is a simple misrepresentation, Qv ranks u(s) the first. So, s is tentatively 
assigned to u(s) at step 1 of GSS(Qv,P_v), and remains at i/(s) thereafter. 
Define S' = {s" e S : s" did not propose to /i(s') in (^^(P v , P_v)}. Then, 
for any s" G S", fi(s")Pv»fi(s'). If any s" G S" proposes to /i(s') at step fc of 
GSS(Qv, P-v), then s" should have been removed from /i(s") at some earlier 
step fc' < fc. This contradicts with the choice of k. So, no s" G S" points to 
/i(s') at step fc of GSS(Qv,P-v). Then, s' is rejected by /i(s') at step fc of 
GSS(Qv,P_v) in favor of s. Therefore, /i(s') = v(s) and /i(s') prefers s to s', 
i.e. sPM(s/)s'. 
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There are two possibilities: 
(1) T(S') = T(S). In this case, s blocks /i if/i(s') = v(s)Pvf-t(s), since sP^v>)s'. 
So, if T(S ' ) = T(S) then z/(s) = /i(s). Remember that s is tentatively assigned 
to i/(s) at step 1 of GSS(Qv, P_v) , and remains at i/(s) thereafter. So, in this 
case, under GSS(Qv,P-v), each school receives either the same proposals as 
under GSS(Pv, P-v), or a subset of these proposals. Therefore, each student is 
at least better off under GSS(Qv, P-v). This contradicts with the supposition 
that fi(s')Pv>u(s'). 
(2) T(S') ^ T(S). Then /i(s') = v(s) ^ /i(s) implies that the quota for type 
T(S) at /i(s') = v(s) should be met under /i, since sP^ys' and /i(s') = 
v(s)Pvfi(s). Furthermore, for every s" such that /i(s") = /-t(s') and r(s") = 
r ( s ) , we have s"P^v>)S. Then some of these students should not propose 
to /i(s') = ^(s) at step fc of GSS(Qv,P-v). Otherwise, s would be rejected 
by /i(s') = ^(s) at step k of GSS(Qv,P_v), a contradiction. Then, there 
should exist some s" G S" who proposes to /i(s') at step fc of GSS(Qv,P_v), 
otherwise s' would not be rejected by /i(s') even if the quota for type T(S) at 
/i(s') = ^(s) were met at step k of GSS(Qv, P-v). Then s" should have been 
rejected by /i(s") at a step fc' < fc. This contradicts with the choice of k. So, 
u(s) = /i(s), then we obtain the same contradiction as above. 

This completes the proof. • 

Propos i t ion 3: Let Qv be a simple misrepresentation that leaves s at least 
as well off as /i. Let v = GSS(Qv, P_v) . Then, for each C G C : | ^ (C) | = |A*(C)| . 

Proof: By the Proposition 2, if a student does not propose to a college c 
in GSS(Pv, P-v), then she does not propose to c in GSS(Qv, P_v) either. We 
will refer to this result as Argument* . Moreover, the number of students 
that are tentatively assigned to a college never decreases from one step to the 
next one in GSS. So, \v(c)\ < |/i(c)| for each c G C. Again, by the proposition 
above, S \u(c)\ ^ S IMC)I > since the number of unmatched students under 

cec cec 
v will be less than or equal to the number of unmatched students under /i. 
So, for each cE C \v(c)\ = |/i(c)| . • 

Propos i t ion 4: No student can successfully misrepresent his preferences, 
i.e. reporting the true preferences is a dominant strategy for each student 
under GSS. 

Proof: We do not need to check unsuccessful misrepresentations. Let 
Qv be a simple misrepresentation. Suppose that JJL = GSS(Pv,P-v), v = 
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GSS(QS,P-S), and either v(s)Psf-t(s) or u(s) = /i(s). We will show that 
v(s)Psf-t(s) is not possible. 

For any s', we say that s' makes a match at step k of GSS(PS, P_s) if s' 
proposes to /i(s') at step fc. 

Let t be the final step of GSS(PS, P_s). Consider a student s' who makes 
a match at step t. Then, if a student is rejected by /i(s') at some step in 
GSS(PS,P-S), this is due to the quota limit for the type of this student, 
since there will always be some empty slots in /i(s') before step t. Otherwise, 
in order to match s' to /i(s'), some other student would be rejected at step t, 
then t would not be the final step of GSS(PS, P-s), contradiction. Moreover, 
no type r(s') student would be rejected by /i(s') in GSS(PS, P_s). Because, if 
a type r(s') student is rejected by /i(s') in GSS(PS, P_s), this should be due 
to the quota limit for the type r(s'), because of the same reason. However, 
then some type r(s') student would be rejected in favor of s' at step t. Then 
step t would not be the final step of GSS(PS, P_s). Contradiction. 

Let us summarize the scenario at step t : There is some empty slot avail­
able for s' at the beginning of step t. No other type r(s') student is rejected 
by /i(s') in GSS(PS,P-S). If some student is rejected by /i(s') at some step 
in GSS(PS, P-s), this is due to the quota limit for the type of this student. 

Now, we will show that /i(s') = v(s'). Suppose that /i(s') ^ v(s'). Then 
|i/(/i(s'))| < |/i(/i(s'))|. Because: 
• By Argument*, no type r(s') student who did not propose to /i(s') in 
GSs(Pa,P-a) proposes to fi(s') in GSs(Qa,P-a). 
• All type T(S') students who propose to /i(s') in GSS(PS,P_S) are assigned 
to /i(s'). 
• So, they will be assigned to /i(s') in GSS(QS, P_.s) if they propose. 
• All other type r students, who are rejected by /i(s') in GSS(PS,P-S), are 
rejected because of the quota limit for type r . 
• So, no other type student who is rejected by /i(s') in GSS(PS, P_s) will fill 
the slot that s' empties at /i(s') in GSS(QS,P_S). 
• Therefore, the slot emptied by s' at /i(s') in GSS(QS, P_s) will not be filled 
in GSs(Qs,P-s) (i-e. under z/). 

So, |i/(/i(s'))| < |/i(/i(s'))|. But, this contradicts with Proposition 4. 
Therefore, /i(s') = v(s') for any s' that makes his match at the final step 
ofGSs{Pa,P_a). 

The same conclusion holds for a group of students S' who are matched 
to c by GSS(PS, P-s) such that students in S' are the only ones who propose 
to c in GSS(PS, P-s)- If s makes a match at t or s is included in such a S", 
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then u(s) = /i(s). 
Suppose that s makes a match at step k < t of GSS(PS,P-S). Let r be 

such that k < r < t. Assume that /i(s') = v(s') for any s' who makes his 
match at step r + 1 or at a later step of GSS(PS, P-s). We have just showed 
that this is true for r = t — 1. Next we will show that /i(s') = v(s') for any s' 
who makes his match at step r, as well. In turn, this will prove by induction 
that /i(s') = v{s') for any s' who makes his match at step k or later. 

Consider a student s' who makes his match at step r. Suppose /i(s') 7̂  
z/(s'). Then v(s')Psifj,(s') by Argument*. Consider the slot at /i(s') that s' 
empties under v. By Proposition 4, this slot will be filled under v by a student 
s" such that i/(s") = /i(s') 7̂  fJ>(s"). Then by Argument*, /i(s')Ps«/i(s") so 
that s" is rejected by /i(s') in GSS(PS,P-S). Let s" is the student that is 
most preferred by /i(s') among all students who are rejected by /i(s') in 
GSS(PS,P_S). There are two possibilities: 
(1) (/i(/i(s')) — s') U s" respects affirmative action constraints. 
• Then s" will be matched to /i(s') prior to step r in GSS(PS, P-s). 
• In turn, s" will be rejected by /i(s') at step r in GSS(PS,P-S) in favor of 
s', and she will make her match at step r + 1 or later. 
• So, /i(s") = u(s") by the induction hypothesis. 
• Since s" will be rejected by /i(s'), we also have /i(s") 7̂  /^(s')-
• On the other hand, consider GSS(QS,P-S). 
• Note that (i) s" is the student that is most preferred by /i(s') among all 
students who are rejected by /i(s') in GSS(PS,P-S), (ii) s' does not propose 
to /i(s') in GSS(QS, P-s), (iii) (/i(/i(s')) — s') U s" respects affirmative action 
constraints, s" will not be rejected by /i(s') in GSS(QS,P_S), and (iv) by 
Argument*, if a student does not propose to a college /i(s') in GSS(PS, P-s), 
then she does not propose to /i(s') in GSS(QS, P-s) either. 
• Then s" will not be rejected by /i(s') in GSS(QS, P-s), so that i/(s") = /i(s'), 
which contradicts with u(s") = /i(s") 7̂  A*(s')-
(2) So, (/i(/i(s')) — s') U s" does not respect affirmative action constraints. 
Then repeat the arguments in (1) with the student that is most preferred by 
/i(s') among all students who were rejected by /i(s') in GSS(PS,P-S) except 
s". Obtain the same contradiction. Whenever such a contradiction is arrived, 
repeat the same arguments with a similar student that is preferred next. By 
finiteness of students, we arrive a final contradiction. 

So no s" such that u(s") = fJ-(s') 7̂  /i(s") exists. But then \v(c)\ < |yu(c)|, 
which contradicts with the result of Proposition 4. 

Thus, /i(s') = v(s') for any s' who makes his match at step r. Then, the 
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induction proves that /i(s') = v(s') f°r a n y s ' w n o makes his match at step 
k or later, in particular for s. Thus, s cannot successfully manipulate GS by 
misrepresenting his preferences. Therefore, reporting the true preferences is 
a dominant strategy for each student under GSS. This completes the proof. 
• 

Theorem 4 follows immediately. 

4 Application: Controled Choice in Public 
Schools 

Abdulkadiroglu and Sonmez (2003) introduce a new class of problems, namely 
controlled choice problems, in the context of public school choice. A con­
trolled choice problem consists of the following: 

1. a finite set of students S = {s±,..., sn}; 

2. a finite set of schools C = {c i , . . . , cm}, 

3. a capacity vector q = (qCl,..., qCp) where qc is the capacity of school 

4. a list of strict preference profile Ps = (PSl, • • •, PSn), where Ps is the 
strict preference relation of student s G S over C U {s}, 

5. a strict priority profile Pc = (P C l , . . . , PCp), where Pc is the strict 
priority ordering of students at c G C. sPcs' means that s has a higher 
priority at c than s'. 

6. a type space T = {TI, ...,Tk} 

7. a type function r : S —• T; r(s) is the type of student s 

8. for each school c, a vector of type specific quotas q^ = (q^1, •••,qT
c
k) such 

that ~^2reT qT
c > 9c- We refer these constraints as controlled choice 

constraints. 

Here, priorities do not represent school preferences. They are imposed 
by state or local laws. For example, in the Boston Public School Choice 
Program, for each school a priority ordering is determined according to the 
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i roorwlnj hlhrdrchy: Studhnts wh r hdvh sleolnjs dorhddy d t thnd ln j d schrro 
dnd olv ln j w l th ln thh wdok zrnh r i thdt schrro crnst l tuth thh first p r l r r l t y 
j r r u p dt thdt schrro. Studhnts wh r r noy hdvh sleolnjs dorhddy d t thnd ln j 
thdt schrro crnst l tuth thh shcrnd p r l r r l t y j r r u p . Studhnts wh r r noy olvh 
w l th ln thh wdok zrnh r i thdt schrro crnst l tuth thh th l rd p r l r r l t y j r r u p . Aoo 
thh r thhr studhnts crnst l tuth thh i r r t h p r l r r l t y j r r u p . Studhnts ln thh sdmh 
p r l r r l t y j r r u p drh r rdhrhd edshd r n d prhvlrusoy dnnrunchd ortthry. 

Crntroohd chrlch d t thmpts t r prrv ldh chrlch t r studhnts whloh mdlntdln­
l n j thh rdcldo d nd hthnlc edodnch d t schrros. Ln srmh stdths/ chrlch l s olmlthd 
ey crur t - r rdhrhd dhsh j rh jd t l rn juldholnhs/ whloh thhsh j uldholnhs drh d drpthd 
vrountdrloy ln srmh schrros dlstrlcts. Crntrroohd chrlch crnstrdlnts rhflhct thh 
rhstr lct lrns lmprshd ey thhsh dhshj rh jd t l rn juldholnhs. Fr r hxdmpoh/ln M ln ­
nhdpolis/ thh dlstrlct ls doorwhd t r j r der vh r r ehorw thh dlstr lct-wldh d vhrdjh 
hnroomhnt rdths ey up t r 15 phrchnt pr ln ts ln dhthrmln ln j thh rdcldo qurtds. 
Sr crnsldhr d schrro dlstrlct ln Mlnnhdprols/ whhrh thh d vhrdjh h nroomhnt 
rdths r i md j r r l t y studhnts vhrsus m ln r r l t y studhnts drh 9 3 ( / 7 3 ( rhsphc­
tlvhoy/d nd crnsldhr d schrro w l t h 133 shdts. Rdcldo qurtds i r r thls schrro d rh 
75 i r r md j r r l t y studhnts/d nd 55 i r r m ln r r l t y studhnts. 

Ln d schrro chrlch p r r j r d m / h d ch studhnt shruod eh dssljnhd d shdt dt rnh 
r i thh schrros. A n ass ignment ls d mdtch ln j r i studhnts dnd schrros. Thh 
findo d ssljnmhnt shruod rhsphct cdpdclty crnstrdlnts dnd crntrroohd chrlch 
crnstrdlnts. Fu r thh rmr rh / wh lntr rduch thh iroor w l n j id l rnhss rhqulrhmhnt: 

D e f i n i t i o n : A n dssljnmhnt fi ls f a i r l n d crntrroohd chrlch prreohm l i 

l . / i ls ihdsleoh/l .h. hvhry studhnt ls dssljnhd d schr ro /d nd thh ol st r i 
studhnts dt hdch schrro rhsphcts crntroohd chrlch crnstrdlnts; 

l l . thhrh d r n r t hxlst studhnts s, s' G S, dnd d schrro c G C such thdt 

(d) s' ls dssljnhd t r c, l.h. /i(s') = c 

(e) s prhihrs c t r hls dssl jnmhnt/ l .h . cPsfi(s), 

(c) Li s' ls rhpodchd ey s dt c, thh rhsuotlnj ol st r i studhnts/ (/i(c) —s')Us, 
rhsphcts crntrroohd chrlch crnstrdlnts dt c, 

(d) s hds d h l jhhr p r l r r l t y dt c thdn s'/l.h. sPcs'. 

Ln croohjh d dmlss l rns / croohjhs thhmshovhs drh d jh nts whlch hdvh prhihr­
hnchs rvhr studhnts/ whhrhds ln schrro ch r l ch / schrros drh r e jhcts t r eh crn­
sumhd ey thh studhnts. Dhsplth thls lmpr r tdn t dlffhrhnch ehtwhhn thh t w r 
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models, school preferences and school priorities are similar mathematical ob­
jects: They both rank students. Hence there is a close connection between 
stability in college admissions and fairness in school choice: For any given 
controlled choice problem, write a corresponding college admissions with af­
firmative action problem as follows: The same set of students; the same set 
of schools renamed as colleges; the same preference profile for students; each 
college's preferences over individual students are given by the priority order­
ing of students at that college in the original controlled choice problem; each 
college's preferences satisfy AA and RP. Then, 

Theorem 6: An assignment in a controlled choice problem is fair if and only 
if it is stable in the corresponding college admissions with affirmative action 
problem. 

The proof of this result follows from a simple comparison of the definitions 
of stability and fairness. The original observation that connects fairness 
in a one sided matching problem to stability in a corresponding two sided 
matching problem is made by Balinski and Sonmez (1999) in the context of 
Turkish college admissions, where they study a college admissions problem 
with responsive preferences. 

Consider the following version of GSS in controlled choice: 

Step 1: Each student proposes to her first choice. Each school tentatively 
assigns its seats to its proposers one at a time following their priority order. 
If the quota of a type fills, the remaining proposers of that type are rejected 
and the tentative assignment proceeds with the students of the other types. 
Any remaining proposers are rejected. 

In general, at 
Step k: Each student who was rejected in the previous step proposes to her 
next choice. Each school considers the students it has been holding together 
with its new proposers and tentatively assigns its seats to these students 
one at a time following their priority order. If the quota of a type fills, the 
remaining proposers of that type are rejected and the tentative assignment 
proceeds with the students of the other types. Any remaining proposers are 
rejected.8 

8 One can give equivalent version of this mechanism, among which we have the following: 
1. For each school set a capacity counter at its capacity, and set a type counter at its type 
specific quota limit for each type. 2. Take an arbitrary student s and assign s a tentative 
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It is easy to see that this mechanism satisfies the following equivalent 
version of the fairness requirement (Abdulkadiroglu and Sonmez, 2003) : If 
there is an unmatched student-school pair (s, c) where student s prefers school 
c to her assignment and she has higher priority than some other student s' 
who is assigned a seat at school c then (i) students s and s' are of different 
types, and (ii) the quota for the type of student s is met at school c. 

Furthermore, our previous results with Theorem 4 imply the following: 

Theorem 7: In the class of controlled choice problems, GSS produces a 
fair assignment that every student likes as well as any other fair assignment. 
Furthermore, it is dominant strategy incentive compatible. 

The incentive compatibility result is rewritten in Abdulkadiroglu and Son­
mez (2003).9 

5 Further Discussion 

We have assumed that the type of each student is a one dimensional variable. 
However, a college might have preferences towards affirmative action along 
various dimensions. For example, a college might prefer a class that is racially 
balanced as well as balanced in terms of gender. In case of multi-dimensional 
type space, assumptions AA and RP are no longer sufficient to guarantee 
substitutability. To see this, consider the following example. 
Example: There are four students, S = {bm,bf,wm,wf}. A student xy 
is of the race "x" and the gender "y". College c has a capacity of two and 

slot at her most preferred school among the ones that have a slot available for her type. 
Reduce the capacity counter and corresponding type counter of this school by one. 3. In 
general, given a tentative matching for some students, take an arbitrary student s': (i) 
Assign s' a tentative slot at her most preferred school c if c has a slot available for her 
type. Reduce the capacity counter and corresponding type counter of this school by one. 
(ii) Otherwise, if there is another student s" that is of the same type as s' and ranked 
lower than s' with respect to c's preferences over individual students, find such s" with 
the lowest rank, then remove s" and assign s' a tentative slot at c. (iii) If s' cannot be 
assigned a tentative slot, repeat i and ii with the next preferred school of s'. (iv) If s' 
cannot be assigned a seat, keep her unmatched. 4. Stop when no more students can be 
assigned a tentative slot. Then each student is assigned her final tentative slot. 

The meaning of priorities of students is open to interpretation. The above fairness 
notion eliminates all envy that can be justifiable among students. Abdulkadiroglu and 
Sonmez (2003) provides an alternative interpretation for priority orderings and also offers 
a variant of top trading cycles algorithm, which is Pareto efficient and strategy proof, for 
that alternative interpretation. 
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prefers to enroll at most one student of each race and at most one student 
of each gender. Its preferences are given by 

Pc 
ibm,wf} 

bm 
ibf, wm} 

wf 
bf 

wm 
0 

Note that c's preference relation over sets of students is responsive to the fol­
lowing preference relation over individual students: bmPcwfPcbfPcwmPcc. 
Also check that Chc(S' = ibf,wm,wf}) = ibf,wm} whereas bf <£ Chc(S' — 
wm) = wf. So, although c's preferences satisfy AA and RP, they are not 
substitutable. 

So, existence of a stable matching in case of multidimensional type space 
does not follow from previous results, since we lose substitutability. However, 
the following example demonstrates that a stable matching may exist even 
when substitutability is violated. 
Example: There are four students, S = ibm, bf, wm, wf}, and two colleges, 
C = ic,c'}. Each college has a capacity of two and prefers to enroll at 
most one student of each race and at most one student of each gender. The 
preference profile is given as follows: 

S f 

iep> z i j 
ep 

ibf, wm} 
z i 
ei 

z p 
B 

Pc 
iep> z i j 

z i 
iei> z p j 

z p 
ei 
ep 
B 

The unique stable matching matches c with bm, s' with wf, leaving bf and 
wm unmatched, which can be obtained via GSS. 

Multidimensional type space and control along each dimension brings a 
different type of challenge in the context of controlled choice in public schools. 

S e i 

v 
s' 
ei 

S e p 

v 
s' 

ep 

S z i 

s' 
v 

z i 

S z p 

s' 
v 

z p 
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In a controlled choice problem, every student has to be assigned a seat in 
one of the schools. Consider the following controlled choice problem. 
Example: There are four students, S = ibm>bf>wm>wfj> and two schools, 
C = if> f'j. Each school has a capacity of two and can enroll at most one 
student of each race and at most one student of each gender. The preference 
profile of students and the priorities of students at schools are given as follows: 

S e i S e p S z i S S S ' 
s 
s' 

s 
s' 

s' 
s 

s' 
s 

bin 

bf 
wm 
wf 

wf 
wm 
bf 
bm 

There are two feasible assignments nx and a2 : /ix(f) = /i2(f') = ibm> wfj and 
/u1(f

/) = //2(f) = ibf>wmj. And both of these assignments are fair. However 
the standard Gale-Shapley algorithms fail to produce these assignments. 

One has to note that imposing type specific quotas alone does not guaran­
tee desegregation unless these quotas are chosen appropriately at each school 
by the district authority. Imposing minimum quotas solves this problem. 
However it comes with additional theoretical challenges. Abdulkadiroglu 
(2003) studies controlled choice in public schools with minimum quotas. 
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