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Abstract 

In the mechanism design literature, collusion is often modelled as agents signing side 
contracts. This modelling approach is in turn implicitly justified by some unspecified 
repeated-interaction story. In this paper, we first second-guess what kind of repeated-
interaction story these side-contract theorists (would admit that they) are having in 
mind. We then show that , within this repeated-interaction story, there is a big differ-
ence between communicative and tacit collusion. While communicative collusion hurts 
the mechanism designer, tacit collusion is exploitable 

*We are very grateful to Yeon-Koo Che, Jeffrey Ely, and Larry Samulson, whose many probing questions 
have forced us to rethink our original intuition. All errors are ours. 
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Introduction 

In the mechanism design literature, collusion is often modelled as agents signing side 
contracts. A typical paper of this kind usually starts with a side-contract model, followed 
immediately by an apology, admitting that collusive side contracts are probably not enforce
able in most economies, and hence the side-contract approach is at best a modelling shortcut 
of some repeated-interaction story.1 However, exactly what kind of repeated-interaction story 
these sidecontract theorists are having in mind is never specified. This is not a minor omis 
sion, because there are numerous perceivable ways to set up a repeated-interaction model, 
and many of them would not share the same implications of the side-contract approach. 
Should we assume that agents' private types being drawn anew every period? Or should we 
assume that these types are persistent over time? Should we assume that the mechanism 
designer can commit to long-term contracts? Or should we assume that the mechanism 
designer has to design a new mechanism every period? 

In this paper, we shall try to second-guess what kind of repeated-interaction story these 
side-contract theorists (would admit that they) are having in mind. By elimination, and 
for lack of better imagination, we will settle at the following repeated-interaction story: the 
mechanism designer can only have one single chance to choose a grand mechanism, and 
after then agents will play the same grand mechanism again and again, with their private 
types drawn anew every period. The mechanism design question is then: foreseeing that 
agents can collude and coordinate on their favorite equilibrium in any induced repeated 
game, which grand mechanism should the mechanism designer choose in the first place in 
order to maximize her objective function? 

We then show that , within this repeated-interaction story, there is a big difference be
tween communicative and tacit collusion. While communicative collusion hurts the mech
anism designer, tacit collusion is exploitable. We shall illustrate this difference with the 
example of auction design. 

1.1 Related Literature 

There are many studies on communicative collusion. If the communication channel is 
rich enough, pre-play communication can be modelled as a message game. Depending on 
whether the outcomes of the message game are to be enforced by side contracts or by 
repeated interaction, the literature can be divided into two corresponding categories. For 
example, Graham and Marshall (1987), McAfee and McMillan (1992), and Marshall and 
Marx (2002) belong to the sidecontract category; whereas Aoyagi (2002) belongs to the 
repeated-interaction category. All these papers restrict their attention to fixed (subsets of) 
grand mechanisms. 

A relatively smaller literature touches upon tacit collusion. How the mechanism designer 
manages to forbid agents from talking to each other before playing the grand mechanism 

^ e e for example, McAfee and McMillan (1992) and Laffont and Martimort (1997, 2000) 



is usually not modelled. But the assumption that she somehow manages to do so is not 
unrealistic. Cramton (1995) documents probably the most entertaining example of tacit 
collusion in auction history, where bidders of the first FCC auction used the last few digits 
of their bids to communicate their preferences to each other. The fact that bidders needed 
to communicate their preferences during the auction can be viewed as an evidence that 
the auction designer (the FCC in this example) somehow managed to forbid bidders from 
communicating before the auction. 

It seems that unless the grand mechanism in question has multiple equilibria (in which 
case we can label some equilibria as more "collusive"), it is difficult to talk about tacit col 
lusion without setting up a model of repeated interaction. Examples of repeated-interaction 
model of tacit collusion include Athey, Bagwell, Sanchirico (2000), Blume and Heidhues 
(2001), and Skrzypacz and Hopenhayn (2001). All these papers restrict their attention to 
fixed (subsets of) grand mechanisms. 

Athey and Bagwell (2001) look at both communicative and tacit collusion in a repeated-
interaction model, but the differences between them are not dramatic. This is because they 
also restrict their attention to a fixed grand mechanism. As we will see in this paper, when 
the mechanism designer is allowed to optimize over grand mechanisms, the two kinds of 
collusion have very different implications. 

Laffont and Martimort (1997, 2000) deal with mechanism design with communicative 
collusion. This paper is parallel to their papers, and deals with mechanism design with tacit 
collusion. Another difference is that they employ the side-contract approach as a modelling 
shortcut, but does not specify what that approach is a modelling shortcut of 

The paper that is closest in spirit to ours is Che and Yoo (2001), which we will say more 
about in ection 4. 

1.2 hat is the Side-Contract Approach odelling Shortcut 
of? 

We shall first outline our model (but defer the formal exposition to Section 2), and then 
explain why some other arguably more natural (and possibly even more realistic) competing 
models are nevertheless incompatible with the side-contract approach. 

More specifically, we study the special case of auction design. The repeated-interaction 
model we shall use is as follows. The auctioneer can only have one single chance to choose an 
auction game, and after then bidders will play the same auction game again and again, with 
their private valuations drawn anew every period. In the case of communicative collusion, 
bidders talk before playing the auction game in any particular period. In the case of tacit 
collusion, bidders do not talk, and go directly to play the auction game in any particular 
period. 

Hence any auction game chosen by the auctioneer would induce a repeated game, which in 
turn would have infinitely many sequential equilibria. In this model, collusion is modelled as 
an equilibrium selection rule. pecifically, we model collusion by simply picking the bidders' 



favorite sequential equilibrium. The problem of "mechanism design with collusion" can be 
stated as the following: foreseeing that bidders can collude and coordinate on their favorite 
equilibrium in any induced repeated game, which auction game should the auctioneer choose 
in the first place in order to maximize her expected profit? 

In this model, bidders' valuations are assumed to be drawn anew every period (i.e., IID-
repetition). There is no a priori reason why IID-repetition is a more realistic assumption, 
nor that it is the only assumption that is compatible with the side-contract approach. We 
make this assumption partly because it is routinely assumed by almost all previous authors,2 

and partly because it drives the biggest wedge between communicative collusion and tacit 
collusion. To see how it works, notice that IID-repetition (by pooling individual rationality 
constraints) generates the opportunity for the auctioneer to extract more surplus than if 
the auction game were not repeated. However, the auctioneer would not be able to take 
advantage of this opportunity until she could exploit tacit collusion. The contrast between 
the one-buyer and multi-bidder cases will nicely illustrate this last point. We will show in 
Section 3 that, in the onebuyer case, the auctioneer cannot take advantage of the opportu
nity generated by IID-repetition. The one-buyer case is reminiscent to collusion with perfect 
communication which, in contrast to tacit collusion, is the kind of collusion the auctioneer 
cannot harness. We suspect that a similar wedge, albeit less dramatic, exists between com
municative collusion and tacit collusion when bidders' private valuations are more persistent 
over time. 

We perceive that there are two main competing models against the one we outlined above, 
but neither of them would be compatible with the side-contract approach. In both of these 
competing models, the auctioneer can choose different auctions in different periods. In the 
first competing model, the auctioneer can sign long term contracts with the bidders. Notice 
that if the auctioneer can commit to long term contracts, then her future choices of auction 
game can depend on bidders' past behavior (instead of being memoryless) 

The reason why this competing model is incompatible with the side-contract approach is 
that full surplus extraction is immediate in such a model. The intuition is simple: suppose 
there is only one buyer and his private valuations are IID over time, then the auctioneer can 
simply sell the whole future surplus to him in the first period, and give the object to him 
for free in all future periods if and only if he pays in the first period. Since the buyer has no 
informational advantage over his future valuations, the auctioneer can extract all the future 
surplus. This intuition applies to the mult ibidder case as well, on which we provide a formal 
treatment in Appendix A. Although we only deal with tacit collusion and IID-repetition 
in Appendix A, it is easy to verify that this fullsurplusextraction result continues to hold 
with communicative collusion, and Kremer and Skrzypacz (2002) also argue that this result 
does not rely on the assumption of IID-repetition. 

The fact that full surplus extraction is possible regardless of the extent of collusion pretty 
much turns the problem of "mechanism design with collusion" into a non-problem. We 
suspect that most sidecontract theorists would vehemently deny that this is the repeated-

See, for example, Athey, Bagwell, and Sanchirico (2000), Athey and Bagwell (2001) Blume and Heidhues 
(2001) Skrzypacz and Hopenhayn (2001) and Aoyagi (2002) 



nteracton s o r y they are having in mind. 

In the second competing model, the auctioneer has no commitment power over future 
choices of auction game at all. Hence she herself is one of the players in the following larger 
repeated game: in any particular period, the auctioneer first announces the auction-game-
ofthe-day, and then bidders play this announced auction game. Once again, there will be 
infinitely many sequential equilibria in this repeated game. If we continue to model collu
sion as an equilibrium selection rule, and proceed to pick the bidders' favorite sequential 
equilibrium, we will run into a second kind of problem. In the bidders' favorite sequential 
equilibrium, the auctioneer earns zero profit. We provide a formal treatment of this result 
in Appendix B. Once again, although we only deal with tacit collusion and IID-repetition 
in Appendix B, it is easy to verify that this zero-profit result continues to hold with com
municative collusion and non-IID-repetition. 

The fact that the auctioneer will be completely crushed by collusion, be it communica
tive or tacit, once again turns the problem of "mechanism design with collusion" into a 
non-problem, albeit for a different reason. Once again, we suspect that most side-contract 
theorists would vehemently deny that this is the repeated-interaction story they are having 
in mind. 

By elimination, and for lack of better imagination, we hence postulate that our repeated-
interaction story (as outlined above and formally described in the next section) is probably 
what many sidecontract theorists are having in mind. In the rest of this paper, we shall 
proceed to analyze such a story, and verify our earlier claim that tacit collusion differs from 
communicative collusion in being exploitable. 

The rest of this paper is organized as follows. Section 2 formally describes the model 
Section 3 contains the one-buyer benchmark. The main result is formally stated and proved 
in ection 4. ection discusses several extensions. 

The odel 

There are one auctioneer and a set N of n > 2 symmetric bidders. The auctioneer has 
one (perishable) object to sell every period. The object is indivisible, and is worth nothing 
to the auctioneer. Each bidder i has a private valuation v^ G [0,1] over the object being 
sold in period t, where v^ is IID across i and t. For any i and t, v^ follows the probability 
distribution function F, which has a strictly positive density function / over [01] 

There are infinitely many periods (i.e., t = 1, 2 , . . . ) . Before the beginning of period 
(say in period 0), the auctioneer has one single chance to choose an auction game. Then, in 
each period i, bidders first learn their private valuations, and then play the auction game 
chosen in period 

It is important for the reader to distinguish two kinds of game here: (i) the auction game 
which is played period by period, and (i) the repeated game which has infinite horizon. 
Formally, an auction game is a selling mechanism (Sp, q M a), where: 



S := xieNSi is a vector of message spaces; each S, is a set of possible messages bidder 
i can send to the auctioneer, with the restriction that Si = { } U Si, where , is the 
"non-participation" message;3 

p : S —> {(xi,... xn) G [0,1]" | ^ieNXi < 1} is an allocation function that specifies 
the probabilities with which each bidder will get the object, with the restriction that 

i pi(- • • 0 • • •) = (non-participating bidders never get the object); 

q : S —> W is a payment function that specifies the amount each bidder has to pay the 
auctioneer, with the restriction that i &(••• 0 •••) = (non-participating bidders 
never pay the auctioneer); 

M := xieNMi is a vector of message spaces; each Mi is a set of possible messages the 
auctioneer can send to bidder i; and 

a : S —> A(M) is an announcement function that specifies what information the 
auctioneer would disclose to each bidder after the auction. 

The above definition of an auction game is standard except for the announcement func
tion. The specification of the announcement function is not important in any one-shot 
auction game, as it will not affect bidders' incentives. It becomes important when we study 
repeated auctions, as it now affects bidders' ability to collude. In the definition above, a 
(the projection of a onto A(Mj)) specifies the (potentially random) message the auctioneer 
tells bidder i after the auction, and these messages can be correlated across bidders.4 

All players are risk neutral: the auctioneer's period-t payoff ut is simply her revenue in 
period t; and each bidder i's period-t payoff ua is equal to PiVit — qt, where Pi is his probability 
of obtaining the object in period t, and <?, is the amount he pays the auctioneer in period t 
Notice that if a bidder does not participate in the period-t auciton game, his period-^ payof 
will be zero. 

All players have common discount factor 5.5 We follow the convention in the repeated-
game literature and normalize a player's discounted sum of payoffs by the factor (1 — 8). For 
example, if bidder i's period-i payoffs are ua, t = 1 , 2 , then his normalized dicounted 
sum of payoffs will be ( — 5) YltL Ui 

3It is not clear that we can appeal to the Revelation Principle and restrict our attention to direct revelation 
mechanisms (i.e Si = [0,1]). As is well known in the implementation literature, if agents can defy any wish 
of the mechanism designer and instead choose to play their own favorite equilibrium, it is then with loss of 
generality for the mechanism designer to restrict her attention to direct revelation mechanisms. 

4 More generally, we should allow the announcement function to depend on the realization of the winner 
when the winner is being picked randomly. This can easily be done with extra notations. 

5That the auctioneer has the same discount factor bidders have is both important and unimportant. It 
is important because otherwise infinite surplus can be generated out of thin air by simply having players 
trade intertemporally. It is however not important for our main result that the auctioneer can turn bidders' 
ability to collude into her advantage and capture almost all the expected gain of trade. See also Footnote 
10 



Once the auctioneer has chosen an auction game in period 0, the bidders are playing 
an induced repeated game. Typically, this repeated game will have multiple sequential 
equilibria. Our way of modelling tacit collusion is to focus on the sequential equilibrium 
that maximizes bidders' total payoff (hereafter the bidderoptimal equilibrium). In other 
words, we model collusive bidding by assuming that bidders can coordinate on their favorite 
sequential equilibrium. If there are more than one sequential equilibrium that maximizes 
bidders' total payoff, we focus our attention to the one that maximizes the auctioneer' 
payoff. 

Finally, the following definitions will prove useful in subsequent sections. We shall use W* 
to denote each period's expected social surplus; i.e., W* := E max{w l t,..., vnt} = fQ vdF(v)n 

(after normalization W* is also the discounted sum of social surplus). We shall use w* to 
denote each period's perbidder expected social surplus; ie . w* := W*/n. 

When we mention the "Myerson auction," we mean the direct revelation mechanism 
that implements Myerson's (1981) optimal auction, and the auctioneer discloses everything 
to every bidder after the auction. Although the Myerson auction is well understood in 
the literature, it may still be worthwhile to remind the reader two of its major properties. 
First, the Myerson auction is strategyproof, meaning that it is a dominant strategy for 
every bidder to honestly report his true valuation. Second, although truth-telling is not the 
only dominant strategy, all dominant strategy equilibria are outcome-equivalent.6 When a 
bidder's true valuation is v, we shall use D(y) to denote the set of all his dominantstrategy 
reports. Strategyproofness means that v G D(v). We say a bidder with true valuation v 
bids sincerely if his report b is in D{v). Let ir denote the auctioneer's expected revenue in 
a one-shot Myerson auction when bidders bid sincerely. 

When we mention the "CGK auction," we mean the following auction: all participating 
bidders submit sealed bids, the good is transferred to the highest bidder, and each partici 
pating bidder i pays 6j — |g|

L_1 ^2^jeB bj, where B is the set of participating bidders, and the 
auctioneer discloses everything to every bidder after the auction. Notice that, in the CGK 
auction, bidder's total payment to the auctioneer is always zero. On top of this property, 
Cramton, Gibbons, and Klemperer (1987) prove that the CGK auction also has an efficient 
equilibrium. In this efficient equilibrium, even a bidder with the lowest type (i.e., a bidder 
with valuation 0) will receive strictly positive expected payoff. Let w_ > 0 denote this strictly 
positive expected payoff a bidder with the lowest type will receive in the CGK auction' 
efficient equilibrium. Define W_ = nw_ 

For any probability distribution function F, the three numbers (W*, ir*, and W_) are 
always ranked as follows: 

> IT* > W_ 

For example, if n = , and F is the uniform distribution on [01], then W* = | ir* = ^ 
and W f 

6For example, if the probability that a bidder gets the object is 1/10 whenever his reported valuation is 
between 1/3 and 2/3, then it is a dominant strategy for this bidder to report anything between 1/3 and 2/3 
(and not necessarily his true valuation) as long as his true valuation is also between 1/3 and 2/3. However 
this kind of misreport is immaterial in the Myerson auction. 



When we mention the null auction, we mean the seller simply refuses to tansact; ie . 
i St = { } . 

The ne-Buyer Benchmark 

Fix any auction game (Sp,q M, a). In any period t, the buyer's problem is 

max — S)((s)vt — (s)) + ^(CONTINUATION PAYOFF) 

Since neither the distribution of the buyer's future valuations nor the auction games he will 
face in the future depend on the past history (including the currentperiod message he is 
sending to the auctioneer), the second term is a constant. So the buyer reacts to any auction 
game as if it is not repeated. So the auctioneer's optimal auction design problem is the same 
as if the auction game is not repeated. 

In the static problem, we know that the optimal selling mechanism is for the seller to 
post the monopoly price. Notice that, when the auctioneer posts the monopoly price, she 
earns the monopoly profit, which is bounded away from the expected gain of trade. In other 
words, although IID-repetition (by pooling individual rationality constraints) generates the 
opportunity for the auctioneer to extract full surplus, the auctioneer is not able to take 
advantage of this opportunity. 

The ain Result 

We shall now demonstrate how the auctioneer can exploit tacit collusion and capture 
almost all the expected gain of trade when n > 2. To understand the intuition, it would be 
helpful to recall a closely related paper by Che and Yoo (2001; hereafter CY), who design an 
optimal multiagent incentive contract in a similar repeated-interaction setting. Although 
CY and we study different kinds of problem (CY's problem is a moral harzard one, whereas 
ours is an adverse selection one), both of our designs share the same property of creating 
positive externalities among agents. Notice that in both of our problems, when there is 
no repeated interaction, the optimal design is to create negative externalities among agents 
("relative performance evaluation" in CY's problem, "Myerson auction" in our problem) 
But when agents collude in a repeated-interaction setting, playing agents against each other 
becomes ineffective. Instead, the optimal design should try to exploit tacit collusion by 
creating positive externalities among agents. CY's trick of creating positive externalities is 
to use "joint performance evaluation" in place of "relative performance evaluation," whereas 
our trick is to use a public good provision game in place of more traditional auction games. 
Although the tricks are different, the idea is the same. We believe that this same idea would 
have other applications as well 



Consider the following auction, which takes the form of a public good provision game:7 

Bidders simultaneously decide whether or not to contribute to a public good (say, 
building a temporary auction house) 

If every bidder contributes, the auctioneer runs the CGK auction. 

If at least one bidder refuses to contribute, the auctioneer runs the null auction. 

The amount of contribution is = ( — 5)w_ + 5w 

The auctioneer discloses everything to every bidder after the auction. 

Once the auctioneer has chosen this auction game in period 0, bidders will find themselves 
playing a repeated game. A typical approach to analyze such a repeated game would be 
to use the APS machinery (Abreu, Pearce, and Stacchetti (1990)) to characterize the set of 
equilibrium payoffs, and then identify the one that maximizes bidders' total payoff. However, 
since this repeated game is deliberately designed to have certain properties, we can actually 
derive the bidder's optimal sequential equilibrium by brute force without ever using of the 
AP machinery. 

Let's ignore incentives for a moment and ask what the most efficient outcome (from 
bidders' point of view) is. We shall then show that this efficient outcome can be supported 
as a sequential equilibrium outcome. Finally, we shall show that, in that bidderoptimal 
equilibrium, the auctioneer's payoff is 

-8)W + 5W 

Since W is the upper bound of the auctioneer's payoff, the auction described above is hence 
almost optimal when 5 is close to 8 

Ignore incentives for a moment. Suppose a social planner can mandate some behavorial 
rule for each bidder, and aims at maximizing the sum of bidders' payoffs. What should such 
a social planner mandate each bidder to do? Since the auction game will remain the same 
in the next period regardless of what the planner mandates the bidders to do in the current 
period, the planner's problem can be collapsed into a single-period problem. If the CGK 
auction is ever played, the social planner should tell each bidder to use the same strictly 
increasing bidding function. This would guarantee that the winner of the CGK auction is 
the highestvaluation bidder, and hence maximize bidders' total payoff. The social planner 
still has to decide when the bidders should contribute, which amounts to trading-off the 
benefit of running the CGK auction against the cost of paying the contribution. ince each 

7Notice the slight abuse of terminology below: both the CGK and the null auctions" are actually parts 
of the auction we are constructing, and hence strictly speaking do not by themselves qualify as real auctions 
(as defined in Section 2). However, we believe there should be no confusion. 

8 Actually the upper bound W* is not achievable. As we saw in Appendix A, even when the auctioneer can 
sign long term contracts with the bidders, at most she can only achieve an expected payoff of (1 — S)ir*+5W* 
which is strictly smaller than W* (but still larger than (1 - 5)W_ + 6W*) 



bidder's contribution decision can only be measurable with respect to his own valuation but 
not the others', the optimal contribution decision should take the form of a threshold rule, 
such that a bidder contributes if and only if his valuation is above a certain threshold. 

Let a := (a a„) be a vector of thresholds, and 

W(a) := ] T - F(ai))() + f ••• f m a x j ^ v}dF(vn) • • • dF(V 
j j J v \ v n 

is the corresponding sum of bidders' payoffs. We shall first prove that the optimal thresholds 
must be symmetric (ie., a\ = • • • = an). Suppose a is not symmetric. Without loss of 
generality assume a± < . Let b E ( o i , ) be such that 

F(b) = F{a) + F{a2), 

and define a' = (6 an). It suffices to prove that W(a!) > W(a). Let 

/ -
vs 

) : m a x { v } d F ( n ) F ( 

10 



and notice that ( ) is a symmetric function. Then, using the definition of b, we have 

W(a) = ^ - F ( a i ) ) ( ) + f [ (v)dF(v)dF(V 

j J v i b v 2 b 

5>-F(a?))( 
N 

/ (v)dF{v)dF{v) + {v)dF{v)dF(V 
b 

+ / (v)dF(v)dF{v)- / iv^dFivJdFf 
J v \ b V2b J v i V 2 

2 

W(a)+ tvJdFivJdFiv)- ^ ^ d F ^ d F f 
J b b J 

2 2 

W(&)+ / MvJdFivJdFiv 
J v \ b V2b 

+ / (v)dF{v)dF(V)- / ivJdFiv^dFf 
J v i V 2 b J v \ V 2 

W(&)+ / MvJdFivJdFiv 
J v \ b V 2 b 

+ / MvtydFivJdFf) - / (b)dF(v)dF(V 
J v i V 2 b J v i V 2 

2 2 

W(&)+ / fJdFivJdFiv 
J v \ b V 2 b 

+ f {v b)(F{a) - F(b))dF(V) - f (6 ){F{b) - F(a))dF(v 

W{&)+ / (v)dF(v)dF(V) 
J v \ b V 2 b 

W(a) 

which verifies our claim. 

Prom now on we can restrict our attention to symmetric thresholds, and we shall slightly 
abuse notation and write W(a) instead of W(aa). We want to prove that W(a) is 
maximized at a = 

For any a G [01], let 

Zn{a) •• • • • / max-{> v}dF(vn) • • • d F ( v ) > 0 
v\ vn=a 

and notice that Zn() = W*. Define Z„ 1 ( a ) similarly. Also notice that a G (01) 

{a) = -f(a)nZn(a)0 

11 



Zn(a) is monotone decreasing in a. imilarly (a) is monotone decreasing in a as well9 

We can now rewrite W(a) as 

W(a) = Zn(a) - n - F(a)) 

and notice that a G ( 0 1 ) 

(a) = f(a)[-nZn(a)} 

Since Zn_i(a) is monotone decreasing in a, [ng — nZn_±(a)] is monotone increasing in a, 
and hence VF(a) is quasiconvex. W(a), being a quasiconvex function, is maximized either 
at a = or a = ince 

VT(0) = W - n = (-5){W-W)> = W{ 

W(a) is maximized at a = 0 

In summary, the social planner should tell the bidders to always contribute, and then 
play the efficient equilibrium in the CGK auction. 

Can this planner's ideal outcome be supported as a sequential equilibrium outcome? The 
answer is affirmative, and the proof is constructive. Consider the following strategy: 

. In the first period, contribute regardless of the period- valuation, and if the CGK 
auction is run, play the efficient equilibrium. 

. In any subsequent period, 

(a) if there exists at least one bidder who once refused to contribute in the past, do 
not contribute regardless of the currentperiod valuation; 

(b) otherwise, contribute regardless of the currentperiod valuation, and if the CGK 
auction is run, play the efficient equilibrium. 

We claim that it is a sequential equilibrium for every bidder to follow the above strategy. 
First notice that it is a sequential equilibrium for every bidder not to contribute in any 
period regardless of his valuation. So the strategy described above is essentially a grim-
trigger strategy. Then, by the onestage deviation principle, it suffices to check the following 
two kinds of one-stage deviations: 

. A bidder cannot benefit from, not contributing when he should. This follows from the 
facts that (i) if he does not contribute, his currentperiod and continuation payoffs will 
both be zero, whereas (ii) if he contributes, his current-period payoff will be at least 
(1 — S)(w_ q), his continuation payoff will be 5(w ) , and these two sum up to at 
least (( - S)w + Sw) -

This is true even when n — 2 

12 



. When a CGK auction is run, a bidder cannot benefit from not playing the efficient 
equilibrium bidding strategy. This follows from the facts that (i) his opponents' future 
behavior will not depend on how he bids in the current-period CGK auction, and 
(ii) the efficientequilibrium bidding strategy is the best response to his opponent' 
currentperiod bidding strategies. 

When bidders play the above mentioned strategies, they contribute every period. So the 
auctioneer's expected payoff is ( — 5)W_+ SW, which is arbitrarily close to the upper bound 
W when 5 is arbitrarily close to 1 (i.e., when bidders are patient). This concludes that the 
auction described above is almost optimal when bidders are patient. 

Theorem 1 When there are two or more bidders, and when bidders are patient, an almos 
optimal auction takes the form of a ublic good provision game (as described above), and the 
auctioneer catures almost all the exected gain of trade 

It is illuminating to compare our auction with the Myerson auction. In the extreme case 
when 6 = 0, bidders are completely impatient and hence cannot tacitly collude at all. In that 
case, the Myerson auction is the optimal auction, whereas our auction reduces to the Vickrey 
auction. Apparently our auction is not even remotely optimal (not to mention "almost") in 
this case. 

However, as 5 increases from 0 to 1, our auction will catch up and finally surpass the 
Myerson auction. To see this, notice that for any e > 0, our auction will give the auctioneer 
a payoff within the eneighborhood of the upper bound W for § big enough. Whereas the 
auctioneer's payoff in the Myerson auction is uniformly bounded away from W regardless of 
8. This bound can be computed as follows. First notice that honest bidding is a stage-game 
equilibrium for the Myerson auction, and hence bidding honestly every period is a sequential 
equilibrium in the repeated game where bidders play the Myerson auction repeatedly. Let 
W be the sum of bidders' payoffs in this sequential equilibrium, and by construction W does 
not depend on 5. Now, the bidderoptimal sequential equilibrium (which depends on 5) may 
give bidders an even higher total payoff: W(5) > W. Therefore, for any 5, the auctioneer' 
payoff cannot be bigger than W* — W(5), which in turn is no bigger than W* — W. 
W* — W is a uniform bound for the auctioneer's payoff regardless of 5. 

This argument is actually more general than it looked. Not only that it continues to 
apply even if we modify our definition of the Myerson auction so that the auctioneer discloses 
nothing to any bidder after the auction, it also applies to any other standard auctions that 

10This is a good place to go back to our earlier claim that it is the bidders' (not the auctioneers) patience 
that drives this result. (See Footnote 5.) Suppose the auctioneer has a different discount factor that is far 
away from 1. Suppose intertemporal trade contracts are not enforceable and hence we do not need to worry 
about the infinite surplus that can potentially be generated from players having different discount factors 
If the auctioneer uses our auction, she will still collect the same contributions every period, and hence 
her normalized discounted sum of expected payoff-normalized and discounted by her own faraway-from-1 
discount factor-will still be (1 — S)W_+ 5W* and is arbitrarily close to the total gain of trade W* as bidders' 
discount factor 5 goes to 1 
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have a Bayesian Nash equilibrium (regardless of the disclosure policies). For any such an 
auction and any such a Bayesian Nash equilibirum, it is a sequential equilibrium for bidders 
to play that equilibrium every period in the corresponding repeated game. Let W be the 
sum of bidders' payoffs in that sequential equilibirum. Then W* — W will be a uniform 
bound for the auctioneer's payoff regardless of 5. Hence any fixed auction will perform worse 
than our auction when 5 is big enough. 

This argument does not apply to our auction, because our auction is not a fixed auction. 
It explicitly incorporates 5, which was originally a primitive parameter of the environment, 
into the formula of the non-refundable contribution. So its rule actually changes when the 
environment changes. When the environment is such that bidders are patient, it takes a 
form that outperforms the Myerson auction as well as any other standard auctions. 

Discussions 

5.1 Renegotiation-Proofness 

One apparent problem with our auction is that the bidder-optimal sequential equilibrium 
is not renegotiation-proof. Once a bidder deviates and refuses to contribute in a particular 
period, every bidder will receive zero payoff in the continuation equilibrium. This gives 
rise to the possibility of renegotiation among bidders after such a deviation. However, this 
problem can be fixed with some modification to our auction when n > 3. The idea is 
to allow any (n — l)coalition to punish the remaining bidder by excluding him from the 
auction. If we can make the total expected payoff collected by this (n — l)coalition the same 
as the total expected payoff collected by the grand coalition along the equilibrium path, 
then we can say that the planner's ideal outcome (i.e., to have all bidders contribute in every 
period regardless of their valuations) can be supported as a renegotiation-proof sequential 
equilibrium outcome. 

Let z be the per-bidder expected payoff in an (n — 1)-CGK auction (i.e., a CGK auction 
among a group of (n — 1) bidders), and z_ be the expected payoff a bidder with the lowest 
type will receive in an (n — 1)CGK auction. Recall that in our original auction, bidders' 
total expected payoff along the equilibrium path is n(w* — *). Let be implicitly defined 
by 

( n - ) { z ) = n(w 

Roughly speaking, q would be the amount we should ask each member of a punishing coalition 
to contribute in order to maintain renegotiation-proofness. But q may be too large, and 
a member of a punishing coalition may not be willing to contribute this much when his 
valuation is low. So we need to adjust it a little bit. Let q be the amount of per-bidder 
contribution if we were to apply our original auction to a group of (n — 1) bidders; ie . 
q := (l — 5)z_ + 5z*. Let A := mm{0,q — q}. Now the adjusted amount of contribution, q — A 
would be small enough for any member of a punishing coalition to swallow. To maintain 



enegotation-proofness, we need to adjus as well. Let be implicitly defined by 

( n - ) [ - ( = n [ - ( ] 

Now we can describe our modified auction: 

Bidders simultaneously decide whether or not to contribute to a public good. 

If bidder i chooses to contribute, he has to report a pair (& Xj) G M+ x N; ie . , he has 
to report a bid, and name a fellow bidder to punish. 

If at least two bidders refuse to contribute, then every contributing bidder pays a 
contribution of ( ), and the auctioneer runs the null auction. 

If exactly one bidder (say j) refuses to contribute, 

if Vi 7̂  j , Xj = j , then every contributing bidder pays a contribution of (q A), 
and the auctioneer runs the (n — ) C G K auction among the contributing bidders; 

otherwise, every particpating bidders pays a contribution of (*— *), and the 
auctioneer runs the null auction. 

If every bidders contributes, 

if there exists j such that Vi ^ j , x, = j , then every bidder (except j) pays a 
contribution of (q A), and the auctioneer runs the (n — 1 ) C G K auction among 
the (n — 1) bidders other than j ( ie. , the auctioneer in effect treats j as not 
contributing); 

if\/i,Xj = i, then every bidder pays a contribution of (*— *), and the auctioneer 
runs the CGK auction; 

otherwise, every bidder pays a contribution of ( ), and the auctioneer runs 
the null auction. 

The auctioneer discloses everything to every bidder after the auction. 

Using exactly the same argument as in Section 4, and using the definitions of (q A) and 
(q*— A*), we can continue to argue that one of the social planner's ideal outcomes is to have 
all bidders contribute in every period regardless of their valuations. A renegotiation-proof 
sequential equilibrium that supports this planner's ideal outcome is as follows: 

In any period that belongs to the normal state (to be specified below), every bidder i 
contributes regardless of his valuation, and reports Xi = i 

In any period that belongs to the ipunishment state (to be specified below), i does not 
contribute, and every bidder j ^ i contributes regardless of his valuation, and reports 
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The firt period belongs to the normal sa te . 

If in any period there exists i who deviates, then the next period belongs to the i 
punishment state. 

The proof that the above strategy profile is indeed a sequential equilibrium is largely 
the same as that in Section 4. On the equilibrium path, bidders contribute in every period 
regardless of their valuations. Ex post efficiency is achieved. Bidders' total expected payof 
is at most (n — l)(z*—q) = (l — 5)(n — l)(z* — z) ~ 0. So the auctioneer continues to capture 
almost all the expected gain of trade with this modified auction. 

5.2 Entry and Exit 

It seems to us that any auction that explicitly exploits the cooperation (rather than 
competition) among bidders is bounded to be too inflexible to handle unanticipated entry 
and exit of bidders. Nevertheless, there exists certain situations where our original auction 
can be modified to accommodate entry and exit. 

Imagine that there is a large number of potential bidders in any period, but only n of 
them are serious. The identities of these serious bidders may change over time, and individual 
bidders need not know the identities of these serious bidders in any particular period. In this 
situation, our original auction can be modified such that as long as the auctioneer manages 
to collect n contributions, she will run the CGK auction among those who contribute. The 
modified sequential equilibrium is that each bidder contributes if and only if (i) he is serious, 
and (ii) there was a CGK auction in the last period. 

Alternatively, imagine that there is a pool of n bidders. But every once a while some 
bidders will die and being replaced by new comers. If bidders have constant probability of 
dying, then the above modification will also work. 

5.3 Other Issues 

As we mentioned at the end of Section 4, our auction is performing well only when 
bidders are patient enough. This prompts the questions of whether or not tacit collusion is 
still exploitable when 5 is in the intermediate range, and if yes, how? This optimal auction 
design problem is highly non-trivial because the auctioneer may want to choose an auction 
that does not disclose information regarding bids, identity of winners, etc., to the bidders 
at the end of each auction game. Such a non-disclosure policy has natural appeal to the 
auctioneer because it can potentially inhibit collusion (as deviations will be more difficult to 
detect). So solving the optimal auction design problem inevitably requires analyzing how well 
bidders can do when they play auctions with this kind of non- or partialdisclosure policies 
repeatedly, which in turn requires analyzing repeated games with private monitoring-an area 
of repeated games theory that we still do not know much.11 Notice how we circumvented the 

11 See for example Ely and Valimaki (2002) and Matsushima (2001) for the stateofthe-art in this area 



problem of private monitoring by always having the auctioneer discloses everything to every 
bidder after every auction. This did not hurt our case because we looked at cases where 5 is 
large. But the same is unlikely to be true once we move beyond cases of large 5. 
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Appendix A: Competing Model—Full Commitment 
In this appendix, we shall look at the competing model where the auctioneer can sign long 

term contracts with the bidders. Implicitly, such a model requires that the auctioneer has 
full commitment power over her future choices of auctions contingent on the bidding history. 
In other words, the auctioneer can commit to a contingent plan specifying which auction 
game will be announced in which period after which bidding history. Once the auctioneer 
has committed to any such contingent plan, the bidders will be playing a dynamic game with 
infinite horizon. This dynamic game may have multiple equilibria. Once again, we focus 
our attention on the bidder-optimal sequential equilibrium (and if there is more than one 
we focus our attention on the one that maximizes the auctioneer's expected payoff). The 
auctioneer's problem is: foreseeing that bidders can coordinate on their favorite sequential 
equilibrium in any dynamic game, which contingent plan should the auctioneer choose? 

Not surprisingly, full surplus extraction is immediate in such a model. The reason why 
the following otherwise standard proof may look longer than one would anticipate is that it 
needs to handle the possibility of tacit collusion among bidders. 

First observe that, if there were only one period, then the Myerson auction would have 
been optimal. Let IT* denote the expected revenue from a oneshot Myerson auction. Second 
observe that , by the first time when bidders have a chance to move, they have already 
learned their period-1 valuations, but not yet their valuations in subsequent periods. Hence 
the auctioneer has to honor the interim individual rationality contraints in the first period, 
but not necessarily those in subsequent periods. This suggests that (1 — 5)TT* + 5W* is an 
upper bound of the auctioneer's expected payoff. Since this upper bound can be achieved 
by the following contingent plan, the following plan must be optimal for the auctioneer: 

In the first period, announce the following modified version of the Myerson auction: 

. Bidders simultaneously submit two numbers (&*,ej), where fej € [0,1] is i's bid in 
the Myerson auction, and $ G { 0 1 } is i's willingness to pay a contribution of 

s 
~s 

. The object is allocated as in the Myerson auction. 

. Bidders first pay the Myerson-auction payments. On top of that , if [ , e$ = 1] 
then every bidder also needs to pay a contribution of JZJJW*. 

4. The auctioneer discloses everything to every bidder after the auction. 

If [Vi, &i = 1] in the first period, announce the CGK auction from the second period 
onward; 

If [3i, e, = 0] in the first period, announce the null auction from the second period 
onward. 
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In other words, in the first period, the auctioneer announces the Myerson auction plus the 
following public good provision game:2 if every bidder agrees to contribute, the auctioneer 
will give away the object for free from the second period onward; and if at least one bidder 
refuses to contribute, the auctioneer will refuse to transact from the second period onward. 
Facing such a contingent plan, bidders in effect find themselves playing a dynamic game. 
There are multiple equilibria in this dynamic game. But we shall show that in any sequential 
equilibrium that does not involve dominated strategies, bidders will bid sincerely in the 
period- Myerson auction. 

Let a be any sequential equilibrium of this dynamic game. For each bidder i, the sequen
tial equilibrium a (together with the distribution function F) induces a joint probability 
distribution Hi over Vi, 6j, and e$ (i.e., i's period-1 valuation,3 bid, and willingness to con
tribute) on the equilibrium path. Define i7_j and HN similarly, and notice that these are 
product measures. Let Vi C [01] be the set of i's period- valuation such that i contributes 
with positive probability; ie . 

Vi := {Vi e [01] Hifa = vt) > 

Pick any {JJ e VJ, and any 6j in the support of the conditional probability H^bi | v^ e* = 1) 
When bidder i has valuation v^ he must find that submitting the pair (&j,e» = 1) is at 
least as good as submitting the pair (6j,ej = 0). The difference between these two pairs is 
that, if bidder i submits the pair (6j,ej = 1), on top of the same Myerson-allocation and 
Myerson-payment, with probability i7_j(e_j = 1), he will also pay the contribution of -[z^w* 
in exchange for the chance of playing the CGK auction from the second period onward. This 
is profitable only if 

H_i(-i = )w Wi(bib-i)H-i(db-iv-he-i = )H-i(-i = v-i)H_i(dv-I 
V-i (1 

where Wi(bi, 6_j) is i's continuation payoff conditional on the bidding history (6j, b-i) and the 
event that every bidder contributes in the first period. Multiplying both sides with i?,(e, = 
l|i>i), and integrating over 6j with respect to the conditional probability Hi(bivi e* = ), we 
can rewrite the above inequality as 

H_i(-i = Hi( vi)Hi{dbivh e Hi( 

Wi(bN)HN(dbNvNeN = )HN(N = vN)H_i(dv-i) 

12 More precisely, it is a game of public good provision with refund, and is different from the game o lic 
good provision without refund that we will use in the main text of this paper 

We s s t e t m e s t f r s m p y a d w r e V{ i a d of v 
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Integrating over Vi, and using the fact that [vt ^ V* == -H^ vi) , we can rewrite 
the above inequality as 

HN(N = )w / Wi(bN)HN(dbNvNeN = )HN(N = vN)HN(dvN) 

umming over i, and using the fact that 

fbN Y wi(bN) <W = nw 

we can rewrite the above inequality as 

HN{N = )W < f HN(dbNvNeN = )HN(N = vN)HN(dvN) = HN(N = )W 

(2 
Apparently the above weak inequalities hold as equalities. Since inequality (2) comes from 
integrating and summing a bunch of inequalities (1), we must have for all i, for all Vi G Vi, and 
for Hi(bi\vi, e* = l ) a lmos t all &,, inequality (1) holds as an equality-bidder i is indifferent 
between submitting the pair (6j,ej = 1) and submitting the pair (6i; ê  = 0) when his 
valuation is v^. If fej € D(vi), then submitted the pair (6j,ej = 0) will be dominated, a 
contradiction. So we have 6j G D(vi). The same domination argument holds for any 6 
that is in the support of the conditional probability Hi(bivj e, = ) as well. Hence we have 
bi G D(vi) for all fej in the support of H^b^Vi) 

Finally, consider any Vi $. V^. Using the same domination argument again, we have 
bi G D(vj) for all bi in the support of Hi(bi\vi). This completes our proof that in any 
sequential equilibrium that does not involve dominated strategies, bidders bid sincerely in 
the period- Myerson auction. 

The above proof also shows that bidders are indifferent among all the sequential equilibria 
(because the contributions exactly cancel out their expected continuation payoffs on the 
equilibrium path of any sequential equilibrium) modulo those involve dominated strategies 
which we ignore for practical reason. So all these sequential equilibria are trivially bidder 
optimal. According to our equilibrium selection criteria, when there are more than one 
bidderoptimal sequential equilibrium, we shall select the one that maximizes the auctioneer' 
payoff. It is easy to see which sequential equilibrium will maximize the auctioneer's payoff-
the one that bidders agrees to pay the contributions regardless of their period- valuations: 

every bidder bids sincerely in the period- Myeron auction; 

every bidder submits e, 1 and pays the c o n t b u t o n of -^ egardless of hi 
valuation in the first period; and 

in each of the CGK auctions from the second period onward, bidders play the CGK 
auction's efficient equilibrium. 
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It is straightforward to check that this is indeed a sequential equilibrium. In this sequen
tial equilibrium, the auctioneer's expected payoff is 

- 5){i + n - ^ 

-5)i + 6W 

which achieves the upper bound as we claimed earlier. 

Appendix B: Competing Model—No Commitment 
In the last appendix we saw that when the auctioneer has full commitment power and 

can sign long term contracts with the bidders, full surplus extraction is immediate. In this 
appendix we shall analyze another competing model of repeated interaction, namely that the 
auctioneer has no commitment power whatsoever on her future choices of auctions.14 Such 
a model in effect turns the whole game into a repeated game, with the auctioneer one of the 
players. In every stage game of this repeated game, the auctioneer moves first, announces 
an auction, and then bidders play this auction game. This repeated game has multiple 
sequential equilibria. Once again, we focus our attention to the bidder-optimal sequential 
equilibrium. We shall show that the implication of such a model is exactly the opposite of 
that in the long-term-contract model: when bidders are patient enough, the sum of bidders' 
payoffs can achieve the upper bound of W in the bidderoptimal sequential equilibirum. 
This means the auctioneer's payoff is driven down to zero. 

The proof that, if the auctioneer is herself a player of a bigger repeated game, her profit 
would be driven down to zero in the bidderoptimal sequential equilibrium is contructive. 
Consider the following strategy profile: 

In the first period, the auctioneer announces the CGK auction. 

In any period, unless it is in the punishment phase (to be specified below), the auc
tioneer announces the CGK auction. 

In any period, if it is in the punishment phase, the auctioneer announces the null 
auction. 

In any period, every bidder refuses to participate if the auctioneer announces any auc
tion different from the CGK auction, and plays the CGK auction's efficient equilibrium 
if the auctioneer announces the CGK auction.15 

1 This is different from saying that the auctioneer cannot commit to the auction game she announces. We 
maintain the assumption that, within any given period, the auctioneer's commitment power is complete. In 
other words, even if the announced auction is not ex post efficient she can stick to her gun and insist not to 
transact anymore within that period. 

15 Notice that bidders' strategies do not depend on whether the current period belongs to the normal state 
or the punishment phase, and hence bidders do not need to know what other bidders have done in the past 
in order to follow these strategies. In particular, bidders can follow the prescribed strategies regardless of 
the disclosure policy employed by the auctioneer 
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The t r a n s o n a l dynamics between the normal s a t e and the pun ihment phase is as 
follows: 

. The first period belongs to the normal state. 

. In any normals ta te period, 

(a) if the auctionner announces the CGK auction, the next period will belongs 
to the normal state; 

(b) if the auctioneer announces an auction different from the CGK auction, 

i. if no bidders participate, then the next period belongs to the normal state; 

ii. if two or more bidders participate, then the next period belongs to the 

normal state; 
iii. if exactly one bidder participates, then the next period becomes the first 

period of an m-period-long punishment phase, where ra is any large but 
finite integer that satisfies 

5w > (-5) + Sm 

. In any period during a punishment phase, 

(a) if the auctioneer announces the CGK auction, then the next period belongs 
to the normal state; 

(b) if the auctioneer announces an auction different from either the CGK auction 
or the null auction, 

i. if no bidders participate, then the next period belongs to the normal state; 

ii. if two or more bidders participate, then the next period belongs to the 

normal state; 

iii. if exactly one bidder participates, then the next period becomes the first 

period of an m-period-long punishment phase. 

(c) if the auctioneer announces the null auction, and if it is the ra-th consecutive 
period in the current punishment phase, where r ra, then the next period 
remains in the punishment phase; 

(d) if the auctioneer announces the null auction, and if it is the ra-th consecutive 
period in the current punishment phase, where r > ra, then the next period 
belongs to the normal state. 

Notice that inequality (3) will be satisfied by some m if bidders are patient enough; i e . 
if 5 is large enough such that 5w* > — 5. 

If players follow this strategy profile, then the auctioneer will announce the CGK auction 
every period and get zero payoff, whereas each bidder will get an expected payoff of w*. To 
see that this strategy profile is indeed a sequential equilibrium, all we need is to invoke the 
onestage deviation principle and check all possible onestage deviations. 

. If the auctioneer announces the CGK auction, bidder i knows that (i) his fellow bidders 
will play the CGK auction's efficient equilibrium strategies, and (ii) the next period 
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will belong to the normal state. So it does not pay to deviate from also playing the 
CGK auction's efficient equilibrium strategy. 

. If the auctioneer announces the null auction, bidder i has no ways to deviate anyway. 

. If the auctioneer announces an auction different from either the CGK auction or the 
null auction, bidder i knows that his fellow bidders will not participate. If he does not 
participate, the next period will belong to the normal state, and hence his continuation 
payoff will be 5w. If he participates, his current-period payoff is at most 1, but he has 
to endure an m-period-long punishment phase. So his (normalized) payoff is at most 
(1 — 5)1 + 5w*, which by inequality ( ) is no bigger than Sw*. So it does not pay 
to deviate from not participating. 

4. In any period, the auctioneer is indifferent between announcing the CGK auction and 
announcing the null auction. Deviating from announcing either of these will not make 
any difference as bidders will not participate anyway. 

This exhausts all possible one-stage deviations and verifies that the above strategy profile 
is indeed a sequential equilibrium. 


