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Abstract

This paper studies whether a sequence of myopic blockings leads to
a stable matching in the roommate problem. We prove that if a stable
matching exists and preferences are strict, then for any unstable match-
ing, there exists a finite sequence of successive myopic blockings leading
to a stable matching. This implies that, starting from any unstable
matching, the process of allowing a randomly chosen blocking pair to
form converges to a stable matching with probability one. This result
generalizes those of Roth and Vande Vate (1990) and Chung (2000)
under strict preferences.
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1 Introduction

This paper studies whether a decentralized process of successive myopic block-

ings leads to the core in the roommate problem. Knuth (1976) addresses the

issue for the marriage problem and provides an example in which a sequence

of blockings generates a cycle. That is, he constructs a cycle of matchings such

that each matching is generated from the previous one by letting a blocking

pair form.

On the other hand, Roth and Vande Vate (1990) answer the question in the

affirmative for the marriage problem by showing that the process does converge

to a stable matching if the blocking pairs are chosen appropriately at each step

of the process. That is, they show that for any unstable matching, there exists

a finite sequence of successive blockings leading to a stable matching. This

result is interesting since it implies that if a blocking pair is chosen randomly

and every blocking pair is chosen with a positive probability, then the random

process converges to a stable matching with probability one.

Chung (2000) generalizes the result of Roth and Vande Vate (1990) to the

roommate problem. Chung identifies a condition, called the “no odd rings”

condition, that is sufficient for the existence of a stable matching when pref-

erences are not necessarily strict.1 Moreover, he shows that, under the same

condition, the core convergence of Roth and Vande Vate extends to the room-

mate problem. Chung’s result generalizes Roth and Vande Vate’s since the

“no odd rings” condition holds always in the marriage problem.

When preferences are strict, the “no odd rings” condition says that there

exists no ordered subset of agents (i1, . . . , iK) such that K ≥ 3 is odd and

(subscript modulo K) ik+1 Âik ik−1Âik ik for all k ∈ {1, . . . , K}. The follow-

1For the roommate problem, Gale and Shapley (1962) show that there exists a preference
profile for which a stable matching does not exist. Tan (1991) identifies a necessary and
sufficient condition for the existence of a stable roommate matching when preferences are
strict.
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ing four-agent example, taken from Chung (2000), shows that the “no odd

rings” condition is not necessary for either the non-emptiness of the core or

convergence to the core.

2Â1 1Â1 · · ·
1Â2 3Â2 4Â2 2

4Â3 2Â3 3Â3 1

2Â4 3Â4 4Â4 1

While an odd ring exists, i.e., (2, 3, 4), there exists a stable roommate matching,

µ = [{1, 2}, {3, 4}]. Moreover, it is easy to see that starting from any other

matching, there exists a sequence of blocking pairs leading to µ. Indeed, 1 and

2 are each other’s top choices and they would block any matching that has

them apart. Once pair {1, 2} is formed, 3 and 4 will also get together (if not

already) since they prefer it to being alone.

We show that in the roommate problem, when a stable matching exists

and preferences are strict, the process of myopic blockings leads to a stable

matching whether or not the “no odd rings” condition is satisfied. This result

generalizes that of Chung (2000) (and Roth and Vande Vate (1990)) under the

assumption of strict preferences, since the “no odd rings” condition is suffi-

cient but not necessary for the existence of a stable matching. On the other

hand, while our result requires strict preferences, Chung’s holds with weak

preferences as long as the “no odd rings” condition is satisfied. It should be

noted that our result does not generalize to the roommate problem with indif-

ferences. Indeed, Chung (2000) shows that convergence does not necessarily

occur in the roommate problem when preferences are not strict and there exists

an odd ring.

The convergence result does not easily extend to the case in which coalitions

of any sizes can form, even when preferences are strict and satisfy reasonable

restrictions. Counter-examples are given in Section 3.

There are a few papers that study the same issue in more abstract settings.

Green (1974) and Feldman (1974) obtain convergence results for certain sub-

classes of NTU games, but their results do not apply to the roommate problem.

Sengupta and Sengupta (1996) show that a similar convergence result holds

for any TU game with non-empty core.
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2 Main Result

We consider a roommate problem (Gale and Shapley, 1962), which is a list

(N, (<i)i∈N) where N is a finite set of agents and, for each i ∈ N , <i is a

complete and transitive preference relation defined over N . The strict prefer-

ence associated with <i is denoted by Âi. We limit ourselves to a roommate

problem in which preferences are strict, i.e., k <i j and j <i k only if k = j.

Thus, k <i j means that either k Âi j or k = j.

A matching is a function µ : N → N such that for all i, j ∈ N , if µ(i) = j,

then µ(j) = i. Here, µ(i) denotes the agent with whom agent i is matched. We

allow µ(i) = i, which means that agent i is alone. We sometimes write µÂi µ
′,

which means µ(i)Âi µ′(i). A marriage problem (Gale and Shapley, 1962) is a

roommate problem (N, (<i)i∈N) such that N is the union of two disjoint sets

M and W , and each agent in M (respectively W ) prefers being alone to being

matched with any other agent in M (respectively W ).

A matching µ is blocked by a pair {i, j} ⊆ N (possibly i = j) if

j Âi µ(i) and i Âj µ(j). (1)

That is, i and j both prefer each other to their mates at µ. We allow i = j, in

which case (1) means that iÂi µ(i), i.e., i prefers being alone to being matched

with µ(i). When (1) holds, we call {i, j} a blocking pair of µ. A matching is

stable if there exists no blocking pair.

Given a blocking pair {i, j} of a matching µ, another matching µ′ is ob-

tained from µ by satisfying the pair if µ′(i) = j and for all k ∈ N \ {i, j},

µ′(k) =

{
k if µ(k) ∈ {i, j},
µ(k) otherwise.

That is, once i and j are matched, their mates (if any) at µ are alone in µ′,
and the other agents are matched as in µ.

The following is our main result.

Theorem 1. Consider any roommate problem in which preferences are

strict and a stable matching exists. Then for any unstable matching µ, there

exists a finite sequence of matchings (µ = µ1, µ2, . . . , µK) such that for any
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k ∈ {1, 2, . . . , K − 1}, µk+1 is obtained from µk by satisfying a blocking pair of

µk and µK is stable.

Proof. Let µ′ be a stable matching. Given any unstable matching µ, let

n(µ) denote the number of pairs that are common to both µ and µ′. It suffices

to show the following.

Claim. For any unstable matching µ, there exists a finite sequence of

matchings (µ = µ1, µ2, . . . , µL) such that for each ` ∈ {1, 2, . . . , L− 1}, µ`+1 is

obtained from µ` by satisfying a blocking pair of µ` and that n(µL) ≥ n(µ)+1.

This implies that, starting from any unstable matching µ, a finite number of

myopic blockings can lead to a stable matching, although the stable matching

is not necessarily µ′ itself. The above claim is trivial if µ is blocked by {i, j}
(possibly i = j) such that µ′(i) = j, since then satisfying the pair induces a

matching µ2 for which n(µ2) ≥ n(µ) + 1. Thus, in what follows, we fix an

unstable matching µ that satisfies the following.

D1. There exists no pair {i, j} ⊆ N (possibly i = j) such that µ′(i) = j,

µ′ Âi µ, and µ′ Âj µ.

Since µ′ is stable, it is not blocked by a pair that is matched under µ. Thus

the following holds.

D2. There exists no pair {i, j} ⊆ N (possibly i = j) such that µ(i) = j,

µÂi µ′, and µÂj µ′.

The symmetry between D1 and D2 simplifies the argument that follows.

We define a function f : N → N by

f(i) =

{
µ(i) if µ Âi µ′,

µ′(i) otherwise.

That is, f(i) is whomever agent i prefers between µ(i) and µ′(i). Note that

since preferences are strict, if agent i is indifferent between µ(i) and µ′(i), then

µ(i) = µ′(i) = f(i).

We now let each agent i “point” to f(i). Since the number of agents is

finite, there exists at least one “cycle.” A cycle is an ordered set of distinct

agents c = (i1, i2, . . . , im) such that i1 points to i2, i2 points to i3, . . . , and im

5



points to i1. It is easy to see that if µ(i) = µ′(i) = i, then i alone forms a cycle

of size 1. If µ(i) = µ′(i) = j 6= i, then {i, j} forms a cycle of size 2.

Step 1. For all i ∈ N ,

f(i) = i ⇐⇒ µ(i) = µ′(i) = i.

The “⇐=” part is mentioned above. To see the converse, suppose f(i) = i.

If µ Âi µ′, then i is alone in µ and prefers µ, in violation of D2. Similarly,

if µ′ Âi µ, then i is alone in µ′ and prefers µ′, in violation of D1. Thus

µ(i) = µ′(i) = i.

Step 2. For all i ∈ N , if f(i) = j 6= i, then

f(i) = µ(i) =⇒ f(j) = µ′(j)

f(i) = µ′(i) =⇒ f(j) = µ(j).

To show the first part, suppose, by way of contradiction, that f(j) = µ(j) 6=
µ′(j). This implies µ Âj µ′. Furthermore, since µ′(j) 6= µ(j) = i, we have

µ(i) 6= µ′(i). This and f(i) = µ(i) imply µ Âi µ′. But then D2 is violated

since i and j are matched under µ. The second part follows from a similar

argument that leads to a violation of D1.

This step trivially implies that for all i ∈ N ,

µ Âi µ′ =⇒ µ′ Âf(i) µ

µ′ Âi µ =⇒ µ Âf(i) µ′.

Step 3. For all i ∈ N ,

f(f(i)) = i ⇐⇒ µ(i) = µ′(i).

If f(i) = i, then this follows from Step 1. So, suppose that f(i) = j 6= i.

The “⇐=” part is mentioned prior to Step 1. To show the converse, assume,

without loss of generality, that j = µ(i). Then, Step 2 implies f(j) = µ′(j).
Since f(j) = i, it follows that i and j are matched with each other in both µ

and µ′.
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Step 4. For all i ∈ N , there exists M ∈ {1, 2, . . . } such that fM(i) =

i.2 To see this, take any i ∈ N and consider the sequence of agents σi =

(i, f 1(i), f 2(i), . . . ). Since the number of agents is finite, some agents appear

more than once in this sequence. Let M be the minimum number for which

fM(i) = fm(i) for some m < M . We show that fM(i) = i. Suppose, by way

of contradiction, that fM(i) 6= i. Then the sequence looks like

σi = (i, i1, i2, . . . , im−1, im, im+1, . . . , iM−1, im, im+1, . . . )

where im 6= i. Note that agent im is matched with each of {im−1, im+1, iM−1}
in either µ or µ′; i.e., {µ(im), µ′(im)} = {im−1, im+1, iM−1}. Then at least two

agents in {im−1, im+1, iM−1} are identical. By the definitions of M and m,

we have im−1 6= im+1 and im−1 6= iM−1. Hence, the only possibility is that

im+1 = iM−1, which occurs when either M = m + 2 or M = m + 1. Then the

sequence looks like either

σi = (i, i1, i2, . . . , im−1, im, im+1, im, im+1, . . . ) or

σi = (i, i1, i2, . . . , im−1, im, im, im, . . . ).

In either case, Steps 1 and 3 imply that µ(im) = µ′(im) ∈ {im, im+1}. But then

im−1 is not matched with im in either matching, a contradiction.

This step shows that each agent belongs to a unique cycle. Thus, we let

ci denote the cycle that i belongs to and let Si ⊆ N denote the set of agents

who belong to the cycle. Since ci is a cycle, it follows that for all i, j ∈ N , if

j ∈ Si, then Sj = Si. Thus {Si}i∈N generates a partition of N .

Step 5. For all i ∈ N , if µ(i) 6= µ′(i), then |Si| ≥ 4. To see this, let us

denote ci = (i1, i2, . . . , im) where i1 = i. Suppose, by way of contradiction,

that m ≤ 3. If m = 1, then Step 1 implies µ(i) = µ′(i), a contradiction.

Similarly, if m = 2, then Step 3 implies µ(i) = µ′(i), a contradiction. Thus,

suppose m = 3. Assume, without loss of generality, that

i2 = µ(i). (2)

2Here, fk+1(i) = f(fk(i)) for all k ∈ {1, 2, . . . } and f1(i) = f(i).
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Then by Step 2, i3 = µ′(i2). If we apply Step 2 again, we obtain i = µ(i3), in

contradiction with (2).

Step 6.3 For all i ∈ N , if µ(i) 6= µ′(i), then |Si| is even. To see this, denote

ci = (i = i1, i2, . . . , im) and assume i2 = µ(i). Then by Step 2, i`+1 = µ(i`) for

all odd ` ≤ m. Thus, if m is odd, then i = µ(im), which is not possible since

µ(i) = i2 and i2 6= im.

Step 7. To complete the proof, let {i, j} ⊆ N (possibly i = j) be a blocking

pair of µ. We first note that µ′ Âh µ for some h ∈ {i, j}. Indeed, if µ <h µ′

for all h ∈ {i, j}, then {i, j} also blocks µ′, in contradiction with the stability

of µ′. Thus we assume, without loss of generality, that agent i = 1 prefers µ′

to µ, and that c1 = (1, 2, 3, . . . , m). By Steps 5 and 6, m ≥ 4 and m is even.

Since agent 1 prefers µ′ to µ, Step 2 implies that i + 1 = µ′(i) if i is odd, and

i + 1 = µ(i) if i is even. Matchings µ and µ′ look like

µ′ = [{1, 2}, {3, 4}, . . . , {m− 3,m− 2}, {m− 1,m}, . . .]
µ = [{2, 3}, {4, 5}, . . . , {m− 2,m− 1}, {m, 1}, . . .].

Let µ2 denote the matching that is obtained from µ1 ≡ µ by satisfying {1, j}.
Note that j 6= 2 since f(2) = µ(2) = 3 and so 2 prefers 3 to 1. Then

n(µ2) =

{
n(µ) if µ(j) 6= µ′(j)

n(µ)− 1 if µ(j) = µ′(j).

The second case follows from the fact that if µ(j) = µ′(j), then the blocking

of {1, j} breaks pair {j, µ′(j)}.
Under µ2, agent m is alone. Since µ′ is stable, it is individually ratio-

nal, which implies that m prefers being matched with m − 1 to being alone.

3Suppose that, in Steps 1–6, µ is also a stable matching. Then both D1 and D2 are
satisfied; hence, Steps 1–6 apply to any pair µ, µ′ of stable matchings. An implication of
these steps is that if µ and µ′ are stable and agent i prefers µ′ to µ, then both µ′(i) and µ(i)
prefer µ to µ′. This is a generalization of the decomposition lemma of Knuth (1976) (see
also Roth and Sotomayor (1990)) to the roommate problem. In fact, there are similarities
between our proof of Step 4 and Knuth’s proof of his decomposition lemma for the marriage
problem. A corollary of the lemma is that the set of agents who are single is the same in all
stable matchings.
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Moveover, since f(m − 1) = m, agent m − 1 prefers m to m − 2. Hence,

{m− 1,m} blocks µ2 provided that m− 1 6= j. We thus distinguish two cases.

Case 1. m− 1 6= j. Then, {m− 1,m} blocks µ2 as we just noted. Let µ3

denote the matching obtained by satisfying this blocking pair. Then n(µ3) =

n(µ2) + 1. If µ(j) 6= µ′(j), then n(µ3) = n(µ) + 1 as desired.

So, suppose µ(j) = µ′(j), which implies j /∈ {1, . . . ,m}. Then n(µ3) = n(µ)

and µ3 looks like

µ3 = [{2, 3}, {4, 5}, . . . , {m− 2}, {m− 1,m}, {1, j}, . . . , {µ′(j)}, . . .].

In this matching, m − 2 is alone. It suffices to show that this matching is

blocked by {m − 3,m − 2}. This is easy to see if m ≥ 6 since m − 2 prefers

being matched with m− 3 to being alone and m− 3 prefers m− 2 to m− 4.

Thus, suppose m = 4, i.e., c1 = (1, 2, 3, 4). Then

µ′ = [{1, 2}, {3, 4}, . . . , {j, µ′(j)}, . . .]
µ = [{2, 3}, {4, 1}, . . . , {j, µ′(j)}, . . .]

µ2 = [{2, 3}, {4}, {1, j}, . . . , {µ′(j)}, . . .]
µ3 = [{2}, {3, 4}, {1, j}, . . . , {µ′(j)}, . . .].

Since µ′ is stable, it is not blocked by {1, j}. Since {1, j} blocks µ, agent j

prefers 1 to µ(j) = µ′(j). Thus, agent 1 prefers µ′(1) = 2 to j, which

implies that {1, 2} blocks µ3. This blocking generates a matching µ4 =

[{1, 2}, {3, 4}, . . . , {j}, {µ′(j)}, . . .] and n(µ4) = n(µ) + 1, as desired.

Case 2. m − 1 = j. Since ci is a cycle, we can use the above argument

letting agent m−1 play the role of agent 1.4 We then conclude that the desired

result follows if m− 3 6= 1. That is, if m ≥ 6, then {m− 2,m− 3} blocks µ2

inducing a matching µ3 such that k(µ3) = k(µ) + 1.

Thus, we are left with the case in which m = 4. That is, c1 = (1, 2, 3, 4)

4Note that, by Step 2, agent m− 1 also prefers µ′ to µ.
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and {i, j} = {1, 3}. Then

µ′ = [{1, 2}, {3, 4}, . . .]
µ = [{2, 3}, {4, 1}, . . .]

µ2 = [{1, 3}, {2}, {4}, . . .].

Since µ′ is stable, it is not blocked by {1, 3}. Thus we can assume, without

loss of generality, that agent 1 prefers µ′(1) = 2 to 3. Since 2 is alone in

µ2, it follows that {1, 2} blocks µ2. This blocking generates a matching µ3 =

[{1, 2}, {3}, {4}, . . .] and n(µ3) = n(µ) + 1.

Theorem 1 differs from the result of Chung (2000, Lemma 1) in two re-

spects. First, when preferences are strict, Chung’s result holds under the “no

odd rings” condition, while our result holds as long as a stable matching exists.

As mentioned in the introduction, the “no odd rings” condition is sufficient

but not necessary for the existence of a stable matching.

Second, Chung’s result holds with weak preferences provided that the “no

odd rings” condition is satisfied, while we consider only strict preferences.

In fact, our result cannot be generalized to the roommate problem with in-

differences. Indeed, if preferences are not strict and an odd ring exists, then

convergence does not hold necessarily. This is shown by Chung (2000) through

the following four-agent example:

2∼1 1Â1 · · ·
1Â2 3Â2 4Â2 2

4Â3 2Â3 3Â3 1

2Â4 3Â4 4Â4 1

Note that agent 1 is indifferent between being matched with 2 and being alone.

In this example, (2, 3, 4) is an odd ring and there exists a unique stable match-

ing, µ = [{1, 2}, {3, 4}]. It can be easily checked that, starting with any

matching where 1 is alone, no sequence of myopic blockings leads to µ since

being alone is a top choice for 1.

Recall that the class of roommate problems subsumes marriage problems

and that a stable matching exists for any marriage problem (Gale and Shapley,
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1962). Thus we obtain the following corollary.

Corollary 1. Consider any marriage problem with strict preferences. Then

for any unstable matching µ, there exists a finite sequence of matchings (µ =

µ1, µ2, . . . , µK) such that for any k ∈ {1, 2, . . . , K − 1}, µk+1 is obtained from

µk by satisfying a blocking pair of µk and µK is stable.

This result has been obtained by Roth and Vande Vate (1990). Their result

holds even when preferences are not strict. On the other hand, they consider

the marriage problem only.5

It should also be noted that our result as well as those of Roth and Vande

Vate (1990) and Chung (2000) say that myopic blockings can lead to some

stable matching. It is not the case that myopic blockings can lead to any

stable matching, as the following 3× 3 marriage example shows.

w1 Âm1 w2 Âm1 m1 Âm1 w3 m2 Âw1 m1 Âw1 w1 Âw1 m3

w2 Âm2 w1 Âm2 m2 Âm2 w3 m1 Âw2 m2 Âw2 w2 Âw2 m3

w3 Âm3 m3 · · · m3 Âw3 w3 · · ·

There exist only two stable matchings: µ1 = [{m1, w1}, {m2, w2}, {m3, w3}]
and µ2 = [{m1, w2}, {m2, w1}, {m3, w3}]. It is easy to see that, starting

from µ = [{m1, w1}, {m2, w2}, {m3}, {w3}], there exists no sequence of my-

opic blockings leading to µ2. The only blocking pair of µ is {m3, w3} and

satisfying this pair leads to µ1.

3 General Coalition Formation

Our result does not easily extend to the case in which coalitions of any sizes

can form. To see this, we consider “hedonic games” (Banerjee et al., 2001;

Bogomolnaia and Jackson, 2002), where arbitrary coalitions can form and each

agent has preferences over coalitions he belongs to. Consider the following

5The result of Roth and Vande Vate (1990) is used by Jackson and Watts (2001) to
show that, for a random process of myopic blockings with trembles, the support of the
long-run stationary distribution coincides with the set of stable marriage matchings. It
would be interesting to study whether the result of Jackson and Watts (2001) extends to
the roommate problem.
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example with N = {1, 2, 3}, taken from Bogomolnaia and Jackson (2002):

{1, 2} Â1 N Â1 {1, 3} Â1 {1}
{2, 3} Â2 N Â2 {1, 2} Â2 {2}
{1, 3} Â3 N Â3 {2, 3} Â3 {3}

This preference profile satisfies a condition of ordinal balancedness in Bogomol-

naia and Jackson (2002). The core is a singleton and consists of the partition

in which the grand coalition forms. Myopic blockings generate the following

cycle: [{1, 2}, {3}] → [{2, 3}, {1}] → [{1, 3}, {2}] → [{1, 2}, {3}]. Moreover,

for each partition in the cycle, there exists only one blocking coalition. Hence

there exists no path coming out of the cycle.

Separable preferences do not guarantee convergence either.6 Consider the

following example with N = {1, 2, 3, 4}.

{1, 2, 3} Â1 N Â1 {1, 2} Â1 {1, 2, 4} Â1 {1, 3} Â1 {1, 3, 4} Â1 {1} Â1 {1, 4}
{2, 3, 4} Â2 N Â2 {2, 3} Â2 {1, 2, 3} Â2 {2, 4} Â2 {1, 2, 4} Â2 {2} Â2 {1, 2}
{1, 3, 4} Â3 N Â3 {3, 4} Â3 {2, 3, 4} Â3 {1, 3} Â3 {1, 2, 3} Â3 {3} Â3 {2, 3}
{1, 2, 4} Â4 N Â4 {1, 4} Â4 {1, 3, 4} Â4 {2, 4} Â4 {2, 3, 4} Â4 {4} Â4 {3, 4}

The core is a singleton consisting of the partition in which the grand coali-

tion forms. Myopic blockings generate the following cycle: [{1, 2, 3}, {4}] →
[{2, 3, 4}, {1}] → [{1, 3, 4}, {2}] → [{1, 2, 4}, {3}] → [{1, 2, 3}, {4}]. Again, for

every partition in the cycle, there exists only one blocking coalition.

It is also easy to construct examples that satisfy the weak top coalition

property of Banerjee et al. (2001) where myopic blockings do not lead to the

core.

6Agent i’s antisymmetric preferences <i defined over {S ⊆ N : i ∈ S} are separable if for
all S ⊆ N such that i ∈ S and for all j ∈ N \ S, S ∪ {j} Âi S if and only if {i, j} Âi {i}.
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