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Abstract

Time series parametric models generally cater to a particular objective,

such as forecasting, and it is therefore desirable to judge such models solely

on the basis of their performance in the full�llment of that objective. We

propose a speci�cation testing procedure which concentrates power on the

parametric model's ability to estimate a set of characteristics of the �nite di-

mensional distributions of the process. It is based on the comparison between

a nonparametric estimate of the said characteristic and its parametric boot-

strap analogue. Applications of this principle are proposed for the assessment

of recursive dynamic models in the estimation of conditional means and con-

ditional quantiles for mixing processes and for the estimation of dependence

in long memory processes.

1 Introduction

The various speci�cation testing procedures for likelihood models uni�ed under the

m-test framework of Newey (1985) and Tauchen (1985), such as the Lagrange mul-

tiplier speci�cation test, the Hausman test, Cox's test of non-nested hypotheses,

Newey's conditional moments test and White's information matrix test, are para-

metric in nature, and can fail to have power against certain departures from the null

hypothesis of correct speci�cation.

1The authors would like to thank Xiaohong Chen, Frank Diebold, Christian Gouri�eroux, Peter

M. Robinson, Frank Schorfheide, Jean-Michel Zako��an and seminar participants at CORE, LSE and

UPenn for helpful discussions. This research was carried out while the �rst author was visiting UCL,

and �nancial support from the latter institution is gratefully acknowledged. The second author

also acknowledges �nancial support from SSTC grant PAI number P4/01. Part of this research was

carried out while he was visiting THEMA. The usual disclaimer applies. Correspondance address:

marc.henry@columbia.edu
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This is remedied by the use of testing principles based on distances between non-

parametric and parametric counterparts and inspired by the Kolmogorov-Smirnov

and Cram�er-von Mises tests. Some relevant cases are Eubank and Spiegelman

(1990), Wooldridge (1992), Haerdle and Mammen (1993), Gozalo (1993), and Zheng

(1996). This \nonparametric" approach was mainly developped within the frame-

work of independently and identically distributed random variables to assess the

choice of functional form for regressions or the choice of parametric conditional den-

sity models. In the former case, parametric and nonparametric estimates of the

conditional mean are compared; in the latter, parametric density estimates are com-

pared to nonparametric ones. Stintchcombe and White (1998) show that these tests

and other consistent tests for arbitrary misspeci�cation, such as Bierens's (Bierens

(1990)), based on the nuisance parameter approach, and Robinson's entroby-based

testing procedure (Robinson (1991)), are all derived from estimates of distances with

the relevant choice of topology.

Here we consider a related procedure designed to test the speci�cation of time

series models designed to achieve a particular objective (such as forecasting through

conditional means or conditional medians) for which consistent estimation of only

a �nite number of characteristics of the probability model (such as conditional mo-

ments, conditional distribution quantiles, local properties of the spectral density,

etc...) is relevant. We therefore propose to concentrate the power of the test on

the estimation of such characteristics by evaluating a distance between some non-

parametric estimate of the said characteristic and a commensurate estimate of its

parametric bootstrap analogue. This can be easily achieved (however complicated

the model, but particularly in case the speci�ed model is Markovian) by a compar-

ison between the nonparametric estimate based on the originial data, and the same

nonparametric estimate based on a parametric bootstrap of the original data.

The procedure is inspired by the encompassing principle applied to non nested

hypotheses testing (see Mizon and Richard (1986), Gouri�eroux and Monfort (1995)

and Dhaene, Gouri�eroux, and Scaillet (1998)) and the simulation based indirect

inference method developed in Gouri�eroux, Monfort, and Renault (1993). This

procedure departs from the above in that it does not require the speci�cation of a

rival parametric model, but only requires a consistent parametric estimate of the

true or some \pseudo-true" parameter value under the null (in the terminology of

White (1982) and Gouri�eroux, Monfort, and Trognon (1984)), and the availability

of a suitable nonparametric estimate of the relevant feature, from which the power

properties of the test are derived.

The paper is organised as follows. In Section 2 we decribe the speci�cation

testing principle in general terms, whereas section 3 considers a specialization of

the principle to the assessment of the adequacy of a recursive dynamic model to

estimating characteristics of the conditional distribution, such as conditional mean

and quantiles. In particular we examine joint tests of conditional moments and
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conditional quantiles. This is for example relevant for testing the restriction that

conditional mean equal conditional median induced by symmetric innovations in

nonlinear parametric regression models. Section 4 considers a specialization of the

principle to the use of parametric models of the spectral density function of long

range dependent processes. This is particularly relevant for the estimation of de-

pendence in the form of the long memory parameter. Proofs and mathematical

developments are gathered in an appendix.

2 Nonparametric speci�cation testing

Consider a stochastic process fYt; t 2 IZg on a probability space (
;F ; P0) and assume

our data set consists in a realization Y = (Y1; : : : ; YT )
0 from that process. Let G(:)

be an IRd-valued characteristic of the �nite-dimensional distributions of the process,

with unknown true value G0 = G(P0). We wish to assess the suitability of a particular

class of models M = f��; � 2 � � IRqg for the estimation of G0, and we de�ne the

parameters of interest by a mapping V : M ! �. Let �0 be the true value of the

parameter vector under correct speci�cation of the model class, i.e. P0 2 M , in

which case �0 = V(P0).

Consider a sequence �̂T , which may be a sequence of extremum estimates2, and

converges in probability to a value �0 2 int(�) which satis�es �0 = V(P0) if P0 2M .

The null hypothesis to be tested is therefore

H0 : G0 = G(��0) (1)

against the alternative

Ha : G0 6= G(��0): (2)

We are therefore not concerned with the \true" speci�cation, and for our purposes,

the true probability measure P0 for the stochastic process may be outside the class

M of models for its set of �nite dimensional distributions, as long as the value for

G(�) implied by the use of M is correct.

Suppose in addition that under H0,
p
T (�̂T � �0) = Op(1); (3)

2If model classM is a family generating likelihoods and �̂ is a direct or indirect pseudo maximum

likelihood estimator sequence, or if model class M is a family generated by moment functions, and

�̂ is a GMM estimator (see White (1987) for de�nitions), then Domowitz and White (1982) and

Gouri�eroux, Monfort, and Trognon (1984) give very general conditions under which �̂T converges

a.s.-P0 to a sequence �
�

T
, but the latter may not converge. In the iid case, Huber (1967) and White

(1982) give conditions under which a pseudo maximum likelihood estimator sequence converges

at rate
p
T to a limit �0, which is the set of parameters that maximize the Kullback-Leibler

Information Criterion.
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and consider a C1 nonparametric estimator for G, denoted ~G(Y ) such that

p
Th( ~G(Y ) �G0)!d N(0; V0) (4)

where h is generically called the bandwidth and satis�es

h + (Th)�1 ! 0 as T !1: (5)

Our speci�cation testing procedure is based on the following principle: under

H0, the nonparametric estimator will have the same asymptotic properties whether

it is based on the sample of real data or on a sample simulated from the estimated

model �
�̂
for the �nite dimensional distributions of the process. Call Y (�) a sample

simulated from ��, we have, under the same regularity conditions as for (4):

p
Th( ~G(Y (�))�G(��))!d N(0; V�) (6)

With N conditionnally independent samples Y s(�̂), s = 1 to N , simulated from

�
�̂
, we can form the Wald vector !̂ = ~G(Y )� 1

N

PN

s=1
~G(Y s(�̂T )) and the test statis-

tic � = Th!̂
0�̂y!̂ is asymptotically X 2 distributed under H0, if �̂

y is a consistent

estimator of the inverse of the asymptotic variance of !̂.

In the general case, one may forego the estimation of �y whose principle may

di�er for di�erent choices of criterion G, through the use of the asymptotic in N

using the following result:

Proposition 1:

Putting N = N(T ) and supposing that N(T ) ! 1 when T ! 1, we have,

under (3) and (4): Th!̂0 ~V y
!̂ !a X 2

d ; where
~V y is a consistent estimate of V �1

0 .

Consider local alternatives of the form GT = G(��0) + �T . Under such local

alternatives,

p
Th!̂ =

p
Th( ~G(Y )� GT ) +

p
Th

N

NX
s=1

( ~G(Y s(�̂))� G(��0)) +
p
Th�T ;

so that the test is sensitive to all deviations from the hypothesis of order (Th)�
1

2 .

Therefore, under additional regularity conditions, the procedure can have power

against alternatives approaching the null at a rate arbitrarily close to T�
1

2 with the

use of a kernel of suitably high order.

Of course the Monte Carlo approximation of the parametric bootstrap �nite di-

mensional distributions is particularly suitable in the assessment of recursive models,

from which it is easy to draw simulated data samples. This particular case will be

considered in the next section. However, simulating samples from non recursive
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models such as models for long range dependent time series may be quite arduous

and introduce additional errors. To circumvent this, a frequency domain strategy

is proposed for estimates based on functions of periodogram ordinates: the test is

the based on the comparison between ~G(Y ) and its \parametric analogue" where

periodogram ordinates are replaced by ordinates of the parametrically estimated

spectral density.

Note that in case of misspeci�cation of model class M , �0 may still be de�ned,

as the probability limit of the sequence �̂T , supposed convergent, so that H0 may

still hold, and the testing procedure we consider is a joint test of the suitability of

both model class M and the parametric method employed to compute �̂T for the

estimation of G0.

3 Conditional expectations and quantiles

In this �rst instance, we wish to analyse the following recursive model for a strictly

stationary time series:

Yt = r(Xt; �t; �); � 2 � � IRq
; (7)

where r is a known function, Xt = (Yt�1; :::; Yt�p)
0, and f�tg is a sequence of i.i.d.

innovations with known distribution. Since �t has a known distribution it is in

principle possible to derive the conditional p.d.f. of Yt givenXt denoted by f(yjx; �),
as the p.d.f. of the image of the distribution of �t by r(Xt; �; �). Hence Equation (7)

implicitly de�ned a parametrized family of density functions f(yjx; �). No matter

how complicated f(yjx; �), it is easy to draw from it, because of the recursive form

of the model.

In the following we assume that we are provided an estimator �̂ of the parameter

�, satisfying condition (3),3 and we may simulate N paths of length T : fY s
t (�̂); t =

1; :::; T ; s = 1; :::; Ng using Equation (7).

As explained in the previous section, we do not intend to verify whether the

true conditional distribution belongs to the model implied from (7). We are only

interested in weaker constraints induced by Equation (7) on the data generating

process. These constraints concern conditional characteristics of the data.

Let us take a positive integer n, and let 0 < �1 < ::: < �n be integers, so that

we de�ne Zt = (Yt��1; :::; Yt��n)
0. In particular we may take n = p, �1 = 1; �n = p,

which gives : Zt = Xt. We denote by f0(y; z), F0(y; z), the marginal p.d.f. and c.d.f.

of (Yt; Z
0
t)
0, while the conditional p.d.f. and c.d.f. are written f0(yjz), and F0(yjz),

3This estimator may correspond either to a direct estimator obtained by a pseudo maximum

likelihood method or an indirect estimator obtained by a simulation based method. In the former

�0 is called a pseudo-true value while in the latter it is called an indirect pseudo-true value (see

Gouri�eroux and Monfort (1997)).
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respectively. The corresponding p.d.f. and c.d.f. implied from (7) will have � as

argument instead of being subscripted by 0.

Choosing z as a conditioning point of interest, the testing hypothesis (1) can

be re�ned to testing for equality between the conditional expectation of Y under

f0(yjz) and f(yjz; �0) in the form:

H0 : E0 [g(Y )jz] = E�0 [g(Y )jz] ;
or similarly for conditional quantiles, in the form:

H0 : inf
y2IR

fy : F0(yjz) � pg = inf
y2IR

fy : F (yjz; �0) � pg

We now need to estimate conditional moments and conditional quantiles of the

distribution of Yt nonparametrically.

For conditional moments, we look at the quantities

G(�i)f(�i) � E(g(Yt)jZt = �i)f(�i) (8)

at distinct points �i 2 IRn, i = 1; : : : ; d, the pdf of Zt is supposed to exist and is

denoted f , and g is a Borel function on IR such that Ejg(Yt)j <1.

For a quantile of order p 2 (0; 1), we assume that the cumulative distribution

function F (:j�i) of Yt given Zt at distinct points �i is such that the equation F (yj�i) =
p admits a unique solution for each of the �i denoted Q(�i; p).

Let kij(u) be a real bounded and symmetric function on IR such thatZ
kij(u)du = 1; i = 1; : : : ; d; j = 1; : : : ; n;

and

Ki(u;h
(i)) = �n

j=1kij(uj=hij); i = 1; : : : ; d;

where h(i) is the diagonal matrix with diagonal elements (hij)
n
j=1 and the bandwidths

hij are positive functions of T such that

jh(i)j+ (T jh(i)j)�1 ! 0 when T !1:

In addition, let l and h or li and hi, i = 1; : : : ; d, satisfy the same conditions as

any of the kij and hij.

The conditional expectation estimator will be based on the following estimate of

(8):

[g; �i] = (T jh(i)j)�1
TX

t=1+�n

g(Yt)Ki(�i � Zt;h
(i)):
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The pdf of (Zt) at (�i), denoted f(�i), will be estimated by

[1; �i] = (T jh(i)j)�1
TX

t=1+�n

Ki(�i � Zt;h
(i));

so that the conditional expectation of g(Yt) given Zt = �i is estimated by

Ĝ(�i) = [g; �i]=[1; �i]:

The pdf of (Yt; Zt) at (�i; �j), denoted f(�i; �j), will be estimated by

[1; �i; �j] = (Thijh(j)j)�1
TX

t=1+�n

li(h
�1
i (�i � Yt))Kj(�j � Zt;h

(j)):

Finally, the conditional cumulative distribution of Yt given Zt = �j will be esti-

mated at distinct points �i, i = 1; : : : ; d, by

F̂ (�ij�j) =
Z �i

�1

[1;u; �j]du=[1; �j] � �̂(�i; �j)=[1; �j ];

(calling �(�i; �j) =
R �i

�1
f(u; �j)du) and the conditional quantile Q(�j; pi) will be

estimated by

Q̂(�j; pi) = inf
y2IR

n
y : F̂ (yj�j) � pi

o
:

In addition, call f(�j�i) and f̂(�j�i) the �rst derivatives with respect to � of

F (�j�i) and F̂ (�j�i).

3.1 Strong mixing conditions

Let Mb
a be the �-�eld of events generated by Yt, a � t � b, and introduce the

Rosenblatt strong-mixing coe�cients

�j = sup
A2Mt

�1

;B2M1

t+j

jP (A \B)� P (A)P (B)j; j > 0:

We assume that there exists some � > 2 such that

Ejg(Yt)j� <1 and

1X
j=N

�
1�2=�
j = O(N�1); N !1
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3.2 Conditions on densities and kernels

(i) For all i = 1; : : : ; d we have f(�i) > 0.

(ii) Continuous second order partial derivatives for the pdf of (Yt; Zt) in neigh-

bourhoods of all the pairs (�i; �j) where estimation is performed.

(iii) Bandwidths satisfying jh(i)jjjh(i)jj4T ! 0.

(iv) jkij(u)j � C(1 + juj)�(1+!i=n), and jjh(i)jjn+!i�2 � Cjh(i)j; !i > 2.

(v) The pdf of (Zt; Zt+s) exists and is bounded in a neighbourhood of all pairs

(�i; �j), i; j = 1; : : : ; d, uniformely in s > 1.

3.3 Theorem 1: Asymptotic normality of the conditional

expectation estimator

Let S be the d dimensional vector with components Si=V̂i with:

Si = (T jh(i)j)1=2
n
Ĝ(�i)�G(�i)

o

V̂
2
i =

Z
�n
j=1k

2
ij(u)duj

[1; �i]2

�
[g2; �i]� [g; �i]

2

[1; �i]

�

Under the strong mixing conditions, the conditions on densities and kernels above

and the additional conditions that G is twice continuously di�erentiable at all �i, that

E(g2(Yt)jZt = z) is continuous at all �i and that for some  > �, E(jg(Yt)jjZt = z)

is bounded in the neighbourhood of each of the �i, i = 1; : : : ; d, S converges in

distribution to a vector of independent standard normal random variables.

3.4 Theorem 2: Asymptotic normality of the conditional

quantile estimator

Consider a single level p for the quantile. Let S be the d dimensional vector with

components Si=V̂i with:

Si = (T jh(i)j)1=2
n
Q̂(�i; p)�Q(�i; p)

o

V̂
2
i =

p(1 � p)

[1; �i]

n
f̂(Q̂(�i; p)j�i)

o�2 Z
�n
j=1k

2
ij(u)duj

Theorem

Under the additional condition that for each �i, f(Q(�i; p)j�i) > 0, S converges

in distribution to a vector of independent standard normal random variables.
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3.5 Theorem 3: Speci�cation test statistic

Consider N independent simulated samples from the estimated distribution f(yjz; �̂)
and denote by Q̂s(�i; p) the analogue of the nonparametric estimator of, say, the con-

ditional quantile of level p at point �i based on sample Y s(�̂). Under the conditions

of Theorem 2, calling !0 is the vector with components

!i = inf
y2IR

fy : F0(yj�i) � pg � inf
y2IR

fy : F (yj�i; �0) � pg ;

and V0 and V (�) the diagonal matrices with diagonal elements, respectively

V
2
i0 =

p(1 � p)

f0(�i)
ff0(Q(�i; p)j�i)g�2

Z
�n
j=1k

2
ij(u)duj

and

V
2
i (�) =

p(1 � p)

f(�i; �)
ff(Q(�i; p; �)j�i; �)g�2

Z
�n
j=1k

2
ij(u)duj

the Wald vector ! with components

!̂i = Q̂(�i; p)� 1

N

NX
s=1

Q̂
s(�i; p)

has the following asymptotic distributions:

� Under H0: (TH)1=2!̂ !d N(0;�)

� Under Ha: (TH)1=2 (!̂ � !0)!d N(0;�),

with � =
�
V0 +

1
N
V (�0)

��1
, H is the diagonal matrix with diagonal elements jh(i)j,

from which we can derive the properties of the test statistic �̂ = TH!̂
0�̂!̂, with �̂

a consistent estimate of �, and establish consistency and local power of the testing

procedure4.

4 Valid local spectral density estimation with mis-

speci�ed models

In this section, we consider the estimation of the spectral density matrix of a bi-

variate process in a preselected band of frequencies of interest. The focus on the

4The diagonal matrix with diagonal elements
�
V̂

2

i
+ 1

N
V
2(�̂)

�
�1

is a candidate.
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bivariate does not entail any real loss of generality but greatly simpli�es notation.

Consider Yt to be a bivariate generalized linear process

Yt � �Y =

1X
j=0

�j"t�j;

1X
j=0

jj�jjj2 <1; (9)

where �Y is the mean of the process, jj:jj is a matricial norm and "t is a bivariate

matringale di�erence process.

let fY (�), � 2 [0; �), be the spectral density matrix of the process Yt. The process

is supposed to be covariance stationary, but unlike in section 3, we do not assume

weak dependence via mixing conditions. Instead, we allow the process to have

long memory (resp. seasonal/cyclical long memory) characterized by the existence

of hyperbolic singularities in the spectral density at zero frequency (resp. some

nonzero frequency).

In certain contexts, one may choose to investigate the dynamics of such series in

a band of frequencies bounded away from potential singularities, using misspeci�ed

Markov models either because they are structural, or because they are simpler to

implement.

In such a setting, mild local regularity conditions on the spectral density matrix

in addition to integrability (imposed by covariance stationarity) would consitute

the nonparametric framework to serve as a benchmark for the local speci�cation

analysis.

We therefore consider two nested speci�cations, one of which we call \nonpara-

metric speci�cation," for which we have an asymptotically normal estimator of the

spectral density matrix at all regularity points of the spectrum, and one which we

call \parametric speci�cation" which could typically be a stationary vector autore-

gression with normally and identically distributed innovations.

We de�ne the \nonparametric speci�cation" with the following set of assump-

tions:

� N1: fY (�) is twice continuously di�erentiable on [�1; �2], for some 0 < �1 <

�2 < �.

� N2: (9) holds such that the innovations have �nite fourth moments, �xed

conditional second moments and fourth cummulants satisfying

max
u
j�u(�; �; ; �)j <1 for all �; �; ; � = 1; 2:

� N3: The diagonal elements of the autocovariance function aj , a = 1; 2 satisfy


a
j = O(j2�a�1); �a <

1

2
; a = 1; 2:

10



The nonparametric speci�cation covers speci�c models such as fractional Autore-

gressive moving average (ARFIMA), cyclical and seasonal models such as cyclical

ARFIMA and Gegenbauer ARMA (as in Gray, Zhang, and Woodward (1989)).

Letting

dY (�) =
1p
2�T

TX
t=1

(Yt � �Yt)e
�it�

be the discrete Fourier transform, and IY (�) = dY (�)d
�
Y (�) be the periodogram of

the process, the smoothed periodogram estimator

f̂Y (�) =

Z �

��

mW (m(�� !))IY (!)d!;

is consistent and asymptotically normal for fY (�) for any � 2 [�1; �2] under the

nonparametric speci�cation and the following assumptions on the spectral window

W and the bandwidth m (see for instance Hidalgo (1996)):

� B1: Tm�5 +m
3
T
�1 log2 T ! 0; as T !1.

� W1: W is even, positive and twice continuously di�erentiable and satis�esZ
W (x)dx = 1 and

Z
x
2
W (x)dx <1:

The validation procedure presented in this paper is particularly suited to this context

as the use of a misspeci�ed structural stationary vector autoregressive representa-

tion to investigate the dynamics of the process on the [�1; �2] frequency range may

produce inconsistent estimates of the spectral density matrix, but such inconsistency

would be picked up by the validation test. In the same way as the test in section 3

was adapted to a collection of conditional mean and quantiles, we can now check

whether the chosen markovian misspeci�ed model produces consistent estimates of

coherence, phase, frequency response and other functionals of the spectral density

matrix of the bivariate process5.

If one is interested, for instance, in phase and coherence estimation at a collection

of frequencies !1; : : : ; !d such that �1 < !i < �2, i = 1; : : : ; d, one may naturally

5It should be noted that Diebold, Onahan, and Berkowitz (1998) propose an empirical test of

second order adequacy between model and data which is in some way the dual of our procedure as

they compare the model spectral density with Bonferroni con�dence tunnels based on bootstrap

replications of the data spectral density.
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base the validation Wald test statistic on the following corrolary to Theorem 2.1 in

Hidalgo (1996):

Theorem 4:

Under the \nonparametric speci�cation," the estimators for coherence C(�) and

phase �(�) de�ned by

Ĉ(�) =
jf̂12

Y jq
f̂
11
Y f̂

22
Y

and �̂(�) = tan�1
Im(f̂12

Y )

Re(f̂12
Y )

; jC(�)j 6= 0

and Ĉ = (Ĉ(!1); : : : ; Ĉ(!d)), �̂ = (�̂(!1); : : : ; �̂(!d)), satisfy

m
�1=2

T
1=2(Ĉ � C) ! N(0;diag(1 � jC(!i)j2)di=1)

m
�1=2

T
1=2(�̂� �) ! N(0;diag(jC(!i)j�2 � 1)di=1);

and the asymptotic variances can be replaced by sample analogues in the usual way.
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A Appendix

A.1 Proof of Proposition 1:

We can write:

p
Th

 
~G(Y ) � 1

N

NX
s=1

~G(Y s(�̂))

!
=

p
Th

�
~G(Y )� G0

�

�
p
Th

N

NX
s=1

�
~G(Y s(�0))� G0

�

+

p
Th

N

NX
s=1

�
~G(Y s(�0))� ~G(Y s(�̂))

�

The third term is Op(
p
h) by virtue of (3). Under H0, the �rst two terms are Op(1)

by (4). By construction, the summands of the second term are independent among

themselves and independent of the �rst term, so that

E

�����
NX
s=1

�
~G(Y s(�0))� G0

������
2

= O(N�1) = o(1);

and (4) su�ces to conclude.

A.2 Proof of Theorem 1:

The proof follows as a corollary from Theorems 5.3 and 5.4 of Robinson (1983).
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A.3 Proof of Theorem 2:

This is a generalization of a result stated in Berlinet, Gannoun, and Matzner-Lober

(1998). Let Vi be a compact subset of IR whose interior contains Q(�i; p), and

such that condition (ii) applies, and f(Q(�i; p)j�i) > 0 on Vi. In view of Lemma 1,

Lemma 2 and the continuous di�erentiability of F̂ (:j�i), the Mean Value Theorem

can be applied in the compact Vi between Q̂(�i; p) and Q(�i; p), yielding:

Q̂(�i; p)�Q(�i; p) =
F (Q(�i; p)j�i)� F̂ (Q(�i; p)j�i)

f( ~Q(�i; p)j�i)

where j ~Q(�i; p)j�i)�Q(�i; p)j�i)j � jQ̂(�i; p)j�i)�Q(�i; p)j�i)j. The result then follows
from Lemmas 3-5.

Lemma 1:

Under the conditions of the above theorem, Q̂(�i; p) converges in probability to

Q(�i; p) for all i = 1; : : : ; d.

Proof of Lemma 1:

The result follows from the fact that, for all i = 1; : : : ; d F (:j�i) admits a unique

quantile at level p, so that for all " > 0, there exists some � > 0 such that

P (jQ̂(�i; p) �Q(�i; p)j > ") � P (jF (Q̂(�i; p)j�i)� F (Q(�i; p)j�i)j > �)

� P ( sup
y2IR

jF̂ (yj�i)� F (yj�i)j > �)

The result follows from Lemma 2 below.

Lemma 2

Let � be in Vi.
F̂ (�j�i) (resp. f̂(�j�i)) converges in probability to F (�j�i), (resp. f(�j�i)), uni-

formly on Vi.
Proof of Lemma 2

jF̂ (�j�i)� F (�j�i)j �
n
j�̂(�; �i)� E�̂(�; �i)j+ jE�̂(�; �i)� �(�; �i)j

+ j[1; �i]�E[1; �i]j+ jE[1; �i]� f(�i)jg =[1; �i]

The bias terms are o(1) from the proof of lemma 3, and the third term is op(1)

as an immediate corollary to Theorem 4.1 of Robinson (1983).
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As to the �rst term (denoted �), call

at =

Z �

�1

(Thjh(i)j)�1l(h�1(u� Yt))Ki(�i � Zt;h
(i)) du

� E

Z �

�1

(Thjh(i)j)�1l(h�1(u� Yt))Ki(�i � Zt;h
(i)) du:

For some p > 2, we have:

Ejatjp � 2E

����
Z �

�1

(Thjh(i)j)�1l(h�1(u� Yt))Ki(�i � Zt;h
(i))j du

����
p

= O(T�pjh(i)j1�p):
Therefore,

E�2 = E(

TX
t=1+�n

at)
2 = O

 
T (T�pjh(i)j1�p)

TX
t=1

�
1=r
t

!
= o(1):

using Davydov's inequality with 2=p = 1� 1=r and Assumption 3.1.

The convergence in probability of f̂(�j�i) to f(�j�i) is a corollary of Theorem 6.1

of Robinson (1983).

By construction, F̂ (�j�i) is continuously di�erentiable with respect to �, so that

both F̂ and f̂ are continuous on the compact Vi and therefore uniformly continuous.

The result follows.

Lemma 3

F (Q(�i; p)j�i)� E(F̂ (Q(�i; p)j�i)) = o((T jh(i)j)�1=2), all i = 1; : : : ; d.

Proof of Lemma 3

Take �i and � 2 Vi.
We have:

E�̂(�; �i) =

Z
IR

n+1

Z �

�1

(hjh(i)j)�1l(h�1(u� !))Ki(�i � �;h(i)) f(!; �) du d� d!

=

Z
IRn+1

Z �

�1

l(!)Ki(�; 1)f(u � h!; �i � (h(i)�)) du d� d!

= �(�; �i) +

Z �

�1

�
h
2

2
f
(��)(u; �i)

Z
IR
!
2
l(!) d!

+

nX
j=1

h
2
ij

2
f
(��)

jj (u; �i)

Z
IR
!
2
kij(!) d!

)
du+ o(h2 +max

j
(h2ij))

= �(�; �i) +O(h2 +max
j
(h2ij)):
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In the same way,

E[1; �i] = f(�i) +

nX
j=1

h
2
ij

2
f
(��)

jj (�i)

Z
IR
!
2
kij(!) d! + o(max

j
(h2ij)):

Now,

F (�j�i)� E(F̂ (�j�i)) =
�(�; �i)� E�̂(�; �i)

f(�i)
� (f(�i)� E[1; �i])

�(�; �i)

f2(�i)

+ O((�(�; �i)� E�̂(�; �i))(f(�i)�E[1; �i]))

Therefore,

F (�j�i)�E(F̂ (�j�i)) = O(h2 +max(h2ij)) = O(jjh(i)jj2) = o((T jh(i)j)�1=2)
which proves the result.

Lemma 4

The d dimensional vector with elements�
T jh(i)j[1; �i]

p(1 � p)
R
�n
j=1k

2
ij(u)duj

�1=2 n
F (Q(�i; p)j�i)� F̂ (Q(�i; p)j�i)

o
converges in distribution to a vector of independent standard normal variables.

Proof of Lemma 4

Using a �rst order expansion of the linear operator (x1; x2)! x2=x1 and Lemma5,

we can write

�̂(�; �i)

[1; �i]
� E�̂(�; �i)

E[1; �i]
=

 
� E�̂(�; �i)

(E[1; �i])2
1

E[1; �i]

! 0
BB@

[1; �i]� E[1; �i]

�̂(�; �i)� E�̂(�; �i)

1
CCA

+ op

�
(T jh(i)j)� 1

2

�
From Lemma 5 below, the �rst term on the right hand side, normalized by�

T jh(i)jR
�n
j=1k

2
ij(u)duj

�1=2

;

converges to a normal random variable with variance

�
��(�; �i)

f(�i)2
1

f(�i)

� 0
BB@

f(�i) �(�; �i)

�(�; �i) �(�; �i)

1
CCA

0
BB@
��(�;�i)

f(�i)
2

1
f(�i)

1
CCA
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which, taking � equal to Q(�i; p), is p(1 � p)=f(�i).

The result follows from the observation that

�̂(�; �i)

[1; �i]
=

�̂(�; �i)

E[1; �i]

 
1

1 � E[1;�i]�[1;�i]

E[1;�i]

!
=

�̂(�; �i)

E[1; �i]
+ op

�
(T jh(i)j)� 1

2

�

Taking expectations, this allows to replace E
�̂(�;�i)

[1;�i]
by

E�̂(�;�i)

E[1;�i]
above.

Lemma 5

�
T jh(i)jR

�n
j=1k

2
ij(u)duj

�1=2

0
BB@

[1; �i]� E[1; �i]

�̂(�; �i)� E�̂(�; �i)

1
CCA! N

0
BB@0;

0
BB@

f(�i) �(�; �i)

�(�; �i) �(�; �i)

1
CCA
1
CCA

Proof of Lemma 5

Let �1 and �2 be two real numbers. Call

Vit = �1

�
Ki(�i � Zt;h

(i))� EKi(�i � Zt;h
(i))
�

+ �2

�
Ki(�i � Zt;h

(i))

Z �

�1

l(h�1(u� Yt))du

� EKi(�i � Zt;h
(i))

Z
�

�1

l(h�1(u� Yt))du

�
We will prove the following propositions:

EjVitVi;t+sj � Cjh(i)j2; all s > 0; (10)

for some �xed positive constant C, and

lim
T!1

EjVitj2
jh(i)j =

�
�
2
2�(�; �i) + �

2
1f(�i) + 2�1�2�(�; �i)

� Z
�n
j=1k

2
ij(u)duj (11)

Because the kernels are bounded, the result follows from Lemma 7.1 of Robinson

(1983).

For the proof of (11), let's consider for example the term in �
2
2:

jh(i)j�1EjKi(�i � Zt;h
(i))

Z �

�1

l(h�1(u� Yt))duj2

=

Z
IR

n+1
jh(i)j�1

�
Ki(�i � �;h(i))

Z �

�1

l(h�1(u� !))du

�2

f(!; �) d� d!

=

Z
IR

n

(Ki(�))
2
d�

Z �Z �

�1

l(h�1(u� !))du

�2

f(!; �i) d! +O(jh(i)j)

!
Z

�n
j=1k

2
ij(u)duj

Z
IIf!��g f(!; �i) d! = �(�; �i)

Z
�n
j=1k

2
ij(u)duj;
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and the remaining terms are treated in the same way. Finally, Lemma 8.3 of Robin-

son (1983) is used for the proof of (10).

A.4 Proof of Theorem 3:

The proof follows as a corollary from Theorem 2.
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