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No specific vaccine for West Nile virus (WNV) is currently available for human use. In the present study, we
describe the generation of WNV-like particles (WNV-LPs) in insect cells by use of recombinant baculoviruses
expressing the WNV structural proteins prME or CprME. BALB/c mice immunized with purified WNV-LPs
developed WNV-specific antibodies that had potent neutralizing activities. Mice immunized with prME-like
particles (prME-LPs) showed no morbidity or mortality after challenge with WNV. Immunization with prME-
LPs can induce sterilizing immunity without producing any evidence of viremia or viral RNA in the spleen
or brain. These results suggest that WNV-LPs hold promise as a vaccine candidate for WNV infection.

There is an urgent need for an effective prophylactic

vaccine to prevent West Nile virus (WNV) transmission

and infection in domestic animals and humans. A

killed-virus equine vaccine is in use [1]; however, no

human vaccine has been approved. Although passive

immunotherapy has been shown to be effective in

mouse models [2, 3], its use has been limited in humans

[4]. Neither a treatment option nor a proven vaccine

for the prevention of WNV infection is available at the

present time. Several approaches to the development

of a WNV vaccine have demonstrated immunogenicity

and protective efficacy, including chimeric [5, 6], DNA

[7, 8], and live attenuated vaccines [9]. Virus-like par-

Received 24 March 2004; accepted 25 June 2004; electronically published 11
November 2004.

Financial support: National Institutes of Health (grant U54AI57158-Lipkin to
W.I.L., A.M., and K.B. and grant AI51292 to W.I.L., A.M., and G.P.); Ellison Medical
Foundation (to W.I.L.); New York State Department of Health (support to K.B.).

a Present affiliation: Infectious Diseases Division, Institute of Medical and
Veterinary Science, Adelaide, South Australia, Australia.

Reprints or correspondence: Dr. T. Jake Liang, Liver Diseases Section, NIDDK,
National Institutes of Health, 10 Center Dr., Bldg. 10, Rm. 9B16, Bethesda, MD
20892-1800 (jliang@nih.gov); or Dr. W. Ian Lipkin, Greene Infectious Disease
Laboratory, Mailman School of Public Health, Columbia University, 722 W. 168th
St., Rm. 1801, New York, NY 10032 (wil2001@columbia.edu).

The Journal of Infectious Diseases 2004; 190:2104–8
� 2004 by the Infectious Diseases Society of America. All rights reserved.
0022-1899/2004/19012-0007$15.00

ticles (VLPs) synthesized in various expression systems

have been used to prevent infection with papilloma-

viruses [10] and rotaviruses [11]. Such an approach has

also been successfully extended to other important hu-

man pathogens, such as flaviviruses [12–14]. In the

present study, we report the production of WNV-like

particles (WNV-LPs) containing the WNV structural

proteins, prME and CprME, by use of a recombinant

baculovirus in insect cells, and we evaluate the use of

WNV-LPs as a vaccine in a mouse model.

MATERIALS AND METHODS

Recombinant baculovirus expressing WNV prME and

CprME was generated by use of the Bac-to-Bac bac-

ulovirus expression system (Invitrogen), as described

elsewhere [15]. cDNA (GenBank accession number

AF202541) for prME (nt 335–2427) and CprME (nt 1–

2636) was generated from WNV strain HNY1999–in-

fected Vero cells by polymerase chase reaction (PCR)

with the following 2 primer sets: for prME, 5′-CTATCA-

ATCGGCGGAGCTC-3′ and 5′-ACCCAGTGTCAGCG-

TGCA-3′, and for CprME, 5′-GCGGGATCCTAATAC-

GACTCACTATAGGGAGTAGTTCGCCTGTGTGAG-

CTG-3′ and 5′-GCTTCCCACATTTGRTGYTC-3′. These
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PCR-generated fragments were then cloned into the pGEM-T

Easy vector (Promega). pFASTBac-prME and pFASTBac-CprME

were generated by subcloning an EcoR1 and SpeI fragment into

the pFASTBac-1 vector (Invitrogen). The correct recombinant

baculoviruses were identified by immunofluorescence and im-

munoblotting with a rabbit anti-E antibody. The procedure for

the production and purification of WNV-LPs was similar to that

for hepatitis C virus–like particles (HCV-LPs) [15], with some

modifications (see the Appendix in the electronic edition). The

WNV recombinant proteins prM, E, and NS1 were produced,

and rabbit antibodies against them were generated, as described

in the Appendix in the electronic edition.

Four groups of 6 BALB/c mice (6–8-week-old females; Jack-

son Laboratories) were immunized 4 times at 3-week intervals.

Mice received injections of 20 mg of WNV-LPs into each quad-

riceps muscle in 100 mL of PBS, on the basis of the previously

described immunization protocol for HCV-LPs [14]. One

group received prME-like particles (prME-LPs) alone; a second

group received prME-LPs plus AS01B (50 mL); a third group

received CprME-like particles (CprME-LPs) alone; and a final

group received AS01B (50 mL) alone. The adjuvant AS01B,

which contains monophosphoryl lipid A and QS21, was pro-

vided by GlaxoSmithKline. Serum samples were collected be-

fore immunization and 2 weeks after each immunization and

were analyzed for anti-M, -E, or -NS1 antibodies by both ELISA

and virus neutralization assay (see the Appendix in the elec-

tronic edition).

Mice were housed in biosafety level–3 conditions and were

given food and water ad libitum. Mice were acclimatized for

at least 1 week before challenge. Immunized mice and 6 age-

matched, female BALB/c mice were inoculated intraperitoneally

with 104 pfu of WNV that had been derived from an infectious

clone [16]. A group of 6 age-matched, female BALB/c mice

were inoculated with diluent alone (PBS, 1% fetal bovine se-

rum). Mice were weighed and were scored daily for clinical

signs of disease, including ruffled fur, hunching, and paresis.

Morbidity was defined as exhibition of 110% weight loss and/

or clinical signs for �2 days. Mice that exhibited severe disease

were killed. Surviving mice were killed 31 days after inoculation.

Mice were bled on day 3 after inoculation. Spleens and brains

were harvested from mice at death or on the day of killing,

and blood was also harvested from mice that were killed. Brains

were divided sagitally at the midline. One-half of each brain

was processed for RNA extraction, as described elsewhere [17].

The RNA from serum, spleens, and brains were analyzed for

WNV in the envelope gene by real-time reverse-transcription

PCR (RT-PCR) with primers, as described elsewhere [17]. RNA

copies were quantified by use of a standard curve of 50–

copies of RNA per reaction and are reported as the55 � 10

number of copies per milliliter of serum or per gram of tissue.

The thresholds of detection for serum, spleen, and brain as-

says were copies/mL, copies/g, and3 4 35 � 10 1.5 � 10 7.5 � 10

copies/g, respectively. Virus was titered by use of Vero cells [17].

Fixed brains were sectioned, stained with hematoxylin-eosin

(HE), and blindly assessed for abnormalities by light microscopy.

RESULTS AND DISCUSSION

Recombinant baculoviruses bvWNVprME and bvWNVCprME

(figure 1A), which contain the coding sequences for prM and

E and for core, prM, and E, respectively, were shown to direct

the production of WNV-LPs in insect cells. By use of a modified

method described elsewhere for HCV-LPs [15], WNV-LPs were

harvested and purified by iodixanol gradient centrifugation (see

the Appendix in the electronic edition). WNV E protein was

detected by ELISA (figure 1B). The peak of E reactivity cor-

responds to the peak total protein concentration and to buoyant

densities of 1.12–1.14 g/mL. Western blot analysis (figure 1C)

revealed that these fractions contained a 50-kDa E protein band

and a 20-kDa prM protein band in both the prME-LP and

CprME-LP preparations. The mature form of M protein was

not detected, probably because the furin required for the proper

cleavage of prM to M is not expressed efficiently in Sf9 insect

cells [18]. A core protein band was also detected at 12 kDa in

the CprME-LP preparation (data not shown). Examination by

cryoelectron microscopy revealed that WNV-LPs are polymor-

phic in appearance and have a diameter of 40–60 nm (figure

1D). The typical yield of WNV-LPs from the procedure is ∼1–

2 mg/100 mL of culture, which is substantially greater than the

reported yields of other flavivirus-like particles generated in

mammalian cells [12, 19].

Groups of BALB/c mice ( ) were immunized withn p 6

prME-LPs alone, CprME-LPs alone, prME-LPs plus AS01B, or

AS01B alone, with 4 injections given at 3-week intervals. Al-

though all of the mice immunized with prME-LPs (with or

without the AS01B adjuvant) developed anti-E antibodies after

the fourth immunization, AS01B enhanced the anti-E antibody

response significantly, from 317 to 8128, and also enhanced the

anti-M antibody response, from 50 to 142 (table 1). CprME-

LPs induced weaker antibody responses to the M and E pro-

teins. One mouse in the AS01B group died of unknown causes

after the first immunization.

The pooled serum samples collected from each group at 2

weeks after the fourth immunization were assayed for titers of

neutralizing antibodies (table 1). Titers were determined to be

37 in the prME-LP group and 75 in the prME-LP plus AS01B

group. The CprME-LP group did not develop detectable titers

of neutralizing antibody. None of the serum samples from the

AS01B group had any detectable antibodies to the E and M

proteins or neutralizing antibodies to WNV.

Immunized mice were challenged with 104 pfu of WNV. This

dose is 1100 times the ID50 identified in a previous study in

6-month-old BALB/c mice (data not shown), and it was chosen
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Figure 1. Construction and production of West Nile virus–like particles (WNV-LPs) in insect cells. A, Map depicting segments of the WNV genome
in the recombinant baculovirus expression vector; the bvWNVprME construct (top) contains the coding sequences for prM and E, and the bvWNVCprME
construct (bottom) contains the coding sequences for core, prM, and E. pPolh, baculovirus polyhedrin promoter; SV40pA, simian virus 40 polyadenylation
sequence. B, Characterization of WNV-LPs. WNV-LPs were purified from Sf9 insect cells by iodixanol gradient centrifugation. Ten fractions collected
from the top of the gradient were analyzed for total protein content and the titer of WNV E protein by ELISA. C, Western blot analysis of purified
prME-like particles (prME-LPs) and CprME-like particles (CprME-LPs) with rabbit anti-E or -M antibodies. Uninfected Vero cells and hepatitis C virus–
like particles (HCV-LPs) were used as negative controls, and WNV-infected Vero cells were used as a positive control. D, Cryoelectron micrograph
(CM) of purified prME-LPs. Bar, 100 nm.

to enhance the probability of discriminating differences in mor-

bidity among groups. Mice were challenged 2 months after the

fourth immunization (table 2). Two groups of unimmunized

mice (6 mice each) of similar age were included as control mice

in this challenge experiment. One group was challenged with

the same dose of WNV as were the immunized groups, and

the other group was not challenged. Morbidity and mortality

in the unimmunized/challenged group were 50% and 17%,

respectively. There was no morbidity or mortality in either the

prME-LP group or the prME-LP plus AS01B group. In contrast,

67% morbidity was observed in the CprME-LP group. The

presence of high titers of anti-E antibodies before challenge

correlated with protective immunity, and all mice had a further

increase in titers of anti-E antibodies after challenge, a result

consistent with the presence of an anamnestic response directed

toward the VLPs, of which the E protein is the major immu-

nogenic component. All of the surviving mice were examined

for pathologic abnormalities in the brain at the time of killing

on day 31 after challenge. HE-stained brain sections showed

no significant neuropathologic damage.

Viral replication was analyzed after challenge, to determine

whether immunization with WNV-LPs induced sterilizing pro-

tective immunity. Viremia was assayed during the peak viremic

phase on day 3 after challenge (table 2 and, in the electronic

edition, figure 2). Because it is possible that the immunized

mice had neutralizing antibodies by day 3, viremia was mea-

sured by both plaque-forming assay and RT-PCR. Postchallenge

viremia (infectious virus or viral RNA) was detected in all 6

of the mice in the unimmunized/challenged group, in 5 (83%)

of the 6 mice in the CprME-LP group, and in 4 (67%) of the

6 mice in the prME-LP group; however, 0 of the 6 mice in the

prME-LP plus AS01B group had circulating infectious virus or

viral RNA in serum after challenge. Although 4 of the 6 mice

in the prME-LP group had viral nucleic acid (as detected by

RT-PCR), only 2 had infectious virus (as detected by plaque-

forming assay). In addition, the geometric mean viral titer of



WNV-LPs Protect against WNV Infection • JID 2004:190 (15 December) • 2107

Table 1. Antibody response in mice immunized with West Nile virus–like particles (WNV-LPs).

Mouse group

ELISA

NS1 seroconversion,
proportion of mice

Neutralization assayAnti-WNV E protein Anti-WNV M protein

Before
challenge

After
challenge

Before
challenge

After
challenge

Before
challenge

After
challenge

Unimmunized/unchallenged ND !50 ND !50 0/6 ND 0
Unimmunized/challenged ND 2432 ND !50 4/5 ND 15
AS01B !50 3200 !50 !50 4/4 0 37
prME-LPs 317 5689 !50 89 3/6 37 62
prME-LPs plus AS01B 8128 45,709 112 355 1/6 75 75
CprME-LPs 86 7217 !50 !50 5/6 0 57

NOTE. Serum antibody titers were determined after the last of 4 immunizations. For each group, the geometric mean of antibody titers was
calculated. The titer for a mouse with a negative ELISA value at a serum dilution of 50 was arbitrarily set at 50 for the calculation of the geometric
mean. The results of statistical analyses were as follows (by Mann-Whitney U test or Fisher’s exact test). Anti-WNV E titer before challenge:

, for prME-like particles (prME-LPs) vs. AS01B; , for prME-LPs plus AS01B vs. AS01B; and , for prME-LPs vs. prME-P p .018 P p .0009 P p .026
LPs plus AS01B. NS1 seroconversion: , for prME-LPs vs. AS01B, and , for prME-LPs plus AS01B vs. AS01B. Neutralization titerP p .024 P p .001
before challenge: , for prME-LPs vs. AS01B, and , for prME-LPs plus AS01B vs. AS01B. CprME-LPs, CprME-like particles; ND,P p .0007 P p .0003
not done.

Table 2. Protection of mice immunized with West Nile virus–like particles (WNV-LPs) from challenge
with WNV.

Mouse group Virus Morbidity Mortality

WNV detected in

Seruma Serumb Spleenc Brainc

Unimmunized/unchallenged Mock (diluent) 0/6 0/6 0/6 0/6 0/6 0/6
Unimmunized/challenged WNV 3/6 1/6 5/6 6/6 6/6 3/6
AS01B WNV 2/5 1/5 4/5 4/5 5/5 2/5
prME-LPs WNV 0/6 0/6 2/6 4/6 2/6 0/6
prME-LPs plus AS01B WNV 0/6 0/6 0/6 0/6 0/6 0/6
CprME-LPs WNV 4/6 0/6 5/6 5/6 5/6 3/6

NOTE. Data are proportion of mice. Two months after the last of 4 immunizations, mice were challenged intraperitoneally
with 104 pfu of WNV. The results of statistical analyses are as follows (by Fisher’s exact test; control combines the results from
the unimmunized/challenged and AS01B groups). Morbidity: , for prME-like particles (prME-LPs) vs. control, andP p .03 P p

, for prME-LPs plus AS01B vs. control. WNV detected in serum by plaque-forming assay: , for prME-LPs vs. control,.03 P p .04
and , for prME-LPs plus AS01B vs. control. WNV detected in serum by reverse-transcription polymerase chain reactionP p .0016
(RT-PCR): , for prME-LPs plus AS01B vs. control, and , for prME-LPs vs. prME-LPs plus AS01B. WNV detectedP p .0002 P p .01
in spleen: , for prME-LPs vs. control, and , for prME-LPs plus AS01B vs. control. WNV detected in brain:P p .007 P p .0005

, for prME-LPs vs. control, and , for prME-LPs plus AS01B vs. control. CprME-LPs, CprME-like particles.P p 0.003 P p .003
a Positive for infectious WNV by plaque-forming assay on day 3 after challenge.
b Positive for viral RNA by RT-PCR on day 3 after challenge.
c Positive for viral RNA on day of death or killing.

the prME-LP group ( copies/mL) was more than an41.58 � 10

order of magnitude lower than that of the unimmunized/chal-

lenged group ( copies/mL) ( ).52 � 10 P p .027

As an additional measure of postchallenge viral replication,

the presence of viral RNA in the spleen and brain was deter-

mined at the time of death or at killing (day 31 after challenge).

Viral RNA was detected in the brains of ∼50% of the mice in

the unimmunized/challenged, AS01B, and CprME-LP groups

(table 2). In contrast, none of the mice that received either

prME-LPs alone or prME-LPs plus AS01B had detectable viral

RNA in the brain, suggesting that these mice were protected

from neuroinvasion. Viral RNA was detected in the spleens of

all of the mice in the unimmunized/challenged and AS01B

groups, providing evidence for active replication in these con-

trol groups. Viral RNA was detected in 2 of the 6 and 5 of the

6 mice in the prME-LP and CprME-LP groups, respectively,

but in 0 of the mice in the prME-LP plus AS01B group. Thus,

viral replication was partially inhibited in the mice immunized

with prME-LPs alone and was completely inhibited in the mice

immunized with prME-LPs plus AS01B.

Seroconversion to the WNV nonstructural protein NS1 was

assayed after viral challenge. Eight of the 9 mice in the un-

immunized/challenged and AS01B groups and 5 of the 6 mice

in the CprME-LP group developed an anti-NS1 antibody re-

sponse after challenge with WNV (table 2). In contrast, only

3 of the 6 mice in the prME-LP group and 1 of the 6 mice in

the prME-LP plus AS01B group seroconverted to anti-NS1 an-

tibody, indicating that immunization with prME-LPs (espe-
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cially in the presence of adjuvant) prevented productive infec-

tion and, therefore, exposure to NS1 after challenge with WNV.

These results, together with the lack of detectable viremia and

viral RNA in the spleens, suggest that sterilizing immunity

might be achieved in mice immunized with prME-LPs.

It is not apparent why the CprME particles, differing from

the prME particles only in the addition of core protein, are less

immunogenic. One explanation could be that the CprME prep-

aration is less pure, resulting in lower immunogenicity. It is

also possible that the particles formed by the CprME construct

are less immunogenic because of the subtle structural differ-

ence. Alternatively, the core protein may somehow diminish

the immune response to the VLPs.

It is interesting to note that the neutralization titer in the

mice immunized with prME-LPs plus AS01B did not increase

after challenge, probably because the preexisting neutralization

titer was sufficient to protect the mice from infection. It is

conceivable that cell-mediated immunity induced by immu-

nization with VLPs might contribute to the observed sterilizing

immunity [14]. The relative contribution of humoral versus

cellular components in the protective immunity observed here

awaits future study.

Several published studies have described promising ap-

proaches to vaccine development for WNV. Chimeric or at-

tenuated flaviviruses that are closely related to WNV have been

shown to successfully protect animals from WNV infection [5,

6, 9]. DNA immunization by use of plasmid-expressing WNV

proteins [7] and Kunjin virus [8] have also been applied suc-

cessfully in the animal model. Despite the promise of these

vaccine candidates, safety concerns will always be an issue.

However, VLP-based vaccines are noninfectious and are easily

controlled for quality and safety. The recent successful devel-

opment of a human papillomavirus vaccine based on VLP tech-

nology [10] lends credence to the promise of this approach in

the development of an effective WNV vaccine.
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