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ABSTRACT 

 
Effective Dose Estimation for U.S. Army Soldiers Undergoing Multiple Computed 

Tomography Scans  
 

Robert Dean Prins 
 

Diagnosing the severity of blunt trauma injuries is difficult and involves the use of 

diagnostic radiological scanning.  The primary diagnostic radiology modality used for 

assessing these injuries is computed tomography (CT).  CT delivers more radiation dose 

than other diagnostic scanning modalities.  Trauma patients are at an increased risk of 

radiation induced cancer because of the cumulative dose effects from multiple scanning 

procedures.   Current methods for estimating effective dose, the quantity used to describe 

the whole body health detriment from radiation, involves the use of published conversion 

coefficients and procedure specific machine parameters such as dose-length-product based 

on computed tomography dose index and scan length.  Other methods include the use of 

Monte Carlo simulations based upon the specific machine geometry and radiation source.  

Unless the requisite machine information is known, the only means of estimating the 

effective dose is through the use of generic estimates that are published by scientific 

radiation committees and have a wide range of values.  This research addressed a 

knowledge gap in assigning effective doses from computed tomography when machine 

parameters knowledge is either unknown or incomplete. The research involved the 

development of a new method of estimating the effective dose from CT through the use of 

regression models incorporating the use of patient parameters as opposed to machine 

specific parameters. This new method was experimentally verified using two adult 

anthropomorphic phantoms and optically stimulated luminescent dosimeters.  The new 

method was then compared against a real patient population undergoing similar computed 



tomography scanning procedures.  Utilizing statistical procedures, the new method was 

tested for repeatability and bias against the current conversion coefficient method.  The 

analysis of the new method verifies that the estimation ability is similar to recent research 

indicating that the older conversion coefficient methods can underestimate the effective 

dose to the patient by up to 40%.  The new method can be used as a retrospective tool for 

effective dose estimation from CT trauma protocols for a patient population with physical 

characteristics similar to the U.S. Army Soldier population. 
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PREFACE 

Motivation for Research 

In 2004, one of my dear friends, deployed to Southern Iraq in order to build a children’s 

hospital, was severely wounded when the vehicle in which he was riding struck an 

improvised explosive device (IED).  The explosive force of the IED caused fatalities and 

numerous casualties among the Soldiers in this convoy.  The medical evacuation of my 

friend back to Walter Reed Army Medical Center (WRAMC) in Silver Spring, Maryland 

was relatively quick, occurring over a couple of days.  Fortunately, after at least a month in 

intensive care and subsequent long term rehabilitation, my friend has made a remarkable 

recovery.  While visiting my friend at WRAMC, he made the comment that doctors 

seemed to be constantly ordering new diagnostic scans in order to stay on top of his 

recovery.  At that time, most of my knowledge in cumulative dose centered on the radiation 

dose health effects of weapons of mass destruction and radioactive isotopes.  My friend and 

countless other heroes fighting for our Country have inspired me to learn more about the 

cumulative radiation dose from medical diagnostic scans.  I am extremely thankful and 

appreciative of the dedicated Army physicians, surgeons, and medical staff for their efforts 

in saving the lives of these heroes.   

 

Significance of Research 

Operation Iraqi Freedom (OIF) officially began 19 March 2003 with a theater of operations 

primarily in the nations surrounding the Persian Gulf.  Operation Enduring Freedom 

(OEF), 7 October 2001, included other nations in the Middle East and North Africa.  Both 



 

xi 

operations are part of a greater effort termed the Global War on Terror (GWOT) by Former 

President George W. Bush. Since 2001, more than 1.6 million military members have 

deployed in support of the Global War on Terror.  

 

Casualties and fatalities have been sustained by the service members supporting the 

operations. As of 7 February 2011, there have been a total of 29,136 casualties sustained in 

the U.S. Army [1]. Most of the fatalities on the battlefield are caused by total body 

disruption (blunt force trauma), severe brain injury, or hemorrhage [2]. Whereas little can 

be done on the battlefield when total body disruption or severe brain injury occurs, military 

medicine has made great strides in saving the lives of those of who have experienced 

hemorrhage [3]. Additionally, advances made addressing battlefield trauma have led to 

more Soldiers surviving traumatic wounds than in any of the previous wars [4].  

 

Soldiers in previous wars have not had the benefit of the rapid medical evacuation abilities 

seen today.  In Vietnam, evacuation of casualties back to a large medical center could take 

close to forty-five days.  Today, casualties arrive back to Germany within twelve to forty-

eight hours after injury and are back in the United States in four to five days. Medical 

advances can be inferred through the statistic that less than 5% of the casualties in Iraq die 

of their wounds after reaching a medical facility [5].  

 

Blast injuries and blunt traumas have increased as the use of improvised explosive devices 

targeting vehicle flow increased.  Victims of terrorist attacks tend to have higher injury 

severity scores, greater requirements for intensive care, more prolonged hospital stays, and 
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a higher rate of mortality than other trauma victims [6]. Managing patient information on 

the battlefield continues to be difficult as severely wounded personnel are evacuated from 

the point of injury through the support combat support hospital back to Germany where 

greater stability care is performed [3].  

 

Conducting medical maneuvers on the battlefield requires an extreme amount of flexibility, 

diligence, and competence. Medical professionals have to be capable of performing their 

specialty in austere conditions and still be able to ensure that all clinical medical 

information remains with the patient through the entire evacuation process (as needed). 

However, there has been a basic problem seen in the relative paucity of clinical patient 

information transferred with the patient to the succeeding next higher level of care.  

 

Early in the Global War on Terrorism, there were instances of narratives being written in 

marker on patients’ dressings to convey clinical information. In order to address this 

information gap, the Joint Patient Tracking Application was developed to allow users to get 

real-time information on the status of their injured troops [7]. However, the trauma record 

still doesn’t show how many radiographic procedures were performed in the trauma 

diagnosis.  Advances in diagnostic imaging have not made the management of patient 

imaging records easier.  One combat hospital switched from film radiography to digital 

radiography and then back to film radiography because of increased throughput during 

trauma situations and the inability of outside facilities to read the compact disks with the 

films saved on them [8].  
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When failure to transfer relevant understandable radiographic information along with the 

patient occurs, the patient often undergoes multiple repeat diagnostic procedures covering 

the same area of the body.  Additionally, as the level of integrated hospital care increases, 

the radiographic technology also increases resulting in multiple diagnostic procedures on 

the same area with different diagnostic modalities (standard radiographic x-ray, and 

computed tomography).   

 

Increasing numbers of radiographic procedures is not unique to military medicine.  Victims 

of trauma receive multiple diagnostic scans and thus are at an increased risk of detrimental 

health effects from cumulative radiation dose [9-11].  Previous methods for assigning 

computed tomography effective doses under these circumstances involve the use of 

generalized rules of thumb that are inadequate for retrospective dose analysis.  This 

research addressed a knowledge gap in assigning effective doses from computed 

tomography when machine parameters knowledge is either unknown or incomplete.   
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CHAPTER 1. Introduction 

 

United States Army Medical Care  

The United States Army Medical Department (AMEDD) is charged with providing 

seamless medical care to all members of the U.S. Army regardless of location.  In order to 

carry out this responsibility, the AMEDD has both field medical units which belong to the 

combatant commanders in order to coordinate the movement and control with the fighting 

forces, and fixed hospitals which are directly commanded by the leadership of the 

AMEDD.  Unique challenges occur with coordination and integration of assets throughout 

the AMEDD.   

 

Echelons of Medical Care in the U.S. Army 

As described in the AMEDD Combat Health Support doctrine, the wartime mission of the 

AMEDD is to: 1) save lives, 2) clear the battlefield of casualties, 3) provide state-of-the-art 

care, 4) return a soldier to duty as rapidly as possible or evacuate the soldier back to a 

higher echelon of care for more definitive treatment, and 5) provide the most benefit to the 

maximum number of personnel [12].  There are five echelons of medical care within the 

Army ranging from battlefield medical care to fixed hospital care [13]. 

 

Echelon I – first medical care a soldier receives when wounded [13].  This level of care is 

considered unit-level health care and includes treatment and evacuation from the point of 

injury or illness to the unit’s first aid station.  This echelon includes immediate lifesaving 
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measures.  Medical care is limited to self-aid, buddy aid, combat lifesaver, combat medics, 

and a treatment squad consisting of about ten medically trained personnel (similar to 

emergency medical technicians). The highest level of medical competence is usually 

performed by a general physician or physician’s assistant capable of providing advanced 

trauma management. 

 

Echelon II – supports Echelon I treatment and extends the treatment competence to include 

dental, laboratory, x-ray, and patient holding capabilities [13].  This level of treatment 

serves to examine the casualty and determine if further evacuation is needed or if the 

soldier can be returned to duty with the unit. 

 

Echelon III – expands the level of care to include surgical care [13].  The surgical care can 

be co-located with Echelon II care in the form of forward support surgical hospitals or 

remain in the main base operating area.  Evacuation hospitals are also found in Echelon III 

care. 

 

Echelon IV – highest level of care found close to a battlefield [13].  This echelon of care 

serves to further stabilize patients requiring evacuation to fixed hospitals within Europe 

(Landstuhl Army Medical Center) prior to evacuation to Walter Reed Army Medical 

Center.  Echelon IV facilities are staffed and equipped for general and specialized medical 

and surgical care. 
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Echelon V – definitive medical care [13].  Echelon V hospitals are fixed hospitals with 

extensive medical specialties providing all the necessary functions for the most definitive 

medical care. 

 

Phases of medical treatment include: first aid, medical care delivered by a trained combat 

medic (similar to an emergency medical technician), emergency medical treatment, initial 

resuscitative treatment, resuscitative surgery or care, definitive treatment, convalescent 

care, and restorative/rehabilitative treatment. 

 

Radiology on the Battlefield 

While not as robust as at a fixed hospital, radiology on the battlefield is still fully capable 

of the full range of diagnostic radiology from general purpose x-rays to CT.  Echelon II is 

the first echelon of medical care where deployed radiology units are staffed.  Increasingly, 

CT scanners are found at Echelon II facilities where they are used to assist in determining 

the internal damage to a casualty.  In deployed areas, combat support hospitals respond 

primarily to battle casualties suffered from improvised explosive devices, shrapnel, and 

gunshot wounds. 

 

The number of radiographic procedures performed annually by the military mimcs the 

same dramatic increase as in the United States-civilian medical establishment.  As a result, 

the annual effective dose per individual has increased as well, due primarily to the 

increased usage of computed tomography, interventional fluoroscopy, and nuclear 

medicine [14].  The National Council on Radiation Protection and Measurements (NCRP) 
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Report 160 states that 24% of the collective effective dose from medical scans can be 

attributed to computed tomography [CT] scans.  Since its inception in 1972, CT usage has 

steadily increased due to faster computer processing, advanced techniques (i.e. helical 

scanning), and better detector and geometric efficiencies.  Current CT machines are able to 

scan an entire body in under 30 seconds [14].    

 

Military medical standards of care include the use of computed tomography scanning in 

initial diagnosis of traumatic injuries.  For head traumas, CT scans are to be performed for 

any patient with a neurological score of less than 15 as assessed using the Glascow Coma 

Scale, prolonged loss of consciousness and/or focal neurological signs.  CT scans are also 

used for any core body area (whole body without extremities) where bony abnormalities 

are present or suspected [15].  As blunt trauma injuries in OIF and OEF have increased, use 

of CT scanning has also increased. 

 

Computed tomography can be used as an effective patient triage tool on the battlefield [16].  

Between June 2008 and May 2009, almost 87,000 radiographic procedures were performed 

by U.S. Army combat support hospitals in Iraq (Echelon II through Echelon IV).  However, 

prior to January 2009, the medical system in Iraq did not track radiographic procedures by 

modality.  Initial modality tracking showed that from January 2009 to May 2009, out of the 

33,000 procedures performed, 8,000 were CT scans [17].  At a combat support hospital in 

Afghanistan, more than 600 x-rays and 259 CT scans were conducted to assist with 57 

surgeries on 47 admitted patients who were in 39 trauma events, all in one 38-day period in 

2010 [18].   
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Justifying (ensuring that the benefit is greater than the risk) the use of a CT scan is 

important because the risk, albeit small, is measureable [19-20].  A single whole-body CT 

examination in a 45-year old adult would result in an estimated lifetime attributable cancer 

mortality risk of around 0.8% [21].  Another study performed in a hospital emergency 

department, determined that patients undergoing CT of the neck, chest, abdomen, or pelvis 

have high cumulative rates of multiple or repeat imaging.  The study also determined that 

these patients have a heightened risk of developing cancer from cumulative CT radiation 

exposure [11, 22].  Whereas the risk to the individual patient is small and can be readily 

balanced by the medical benefits, the problem becomes greater when trauma patients 

undergo multiple procedures for diagnostic assessment [23].    

 

Concerns are also noted that diagnostic procedures are repeated unnecessarily or when 

higher dose modalities are used instead of lower dose modalities without necessary 

justification [19].  These concerns have prompted the Food and Drug Administration to 

study whether or not tighter guidelines should be established seeking to limit the amount of 

radiation dose per diagnostic procedure [24]. 

 

Accurately recording all radiographic procedures is important to both assessing lifetime 

attributable risk to radiation induced cancer and in the physician’s justification process for 

determining whether or not a procedure is needed.  In a battlefield trauma situation, initial 

medical care seeks to stabilize and save life and limb.  Later, after the Soldier has been 

stabilized and during the rehabilitation period following the incident, assessment of the 
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lifetime attributable risk becomes even more important to helping in the physician 

justification process.  Different radiographic modalities provide varying degrees of 

diagnostic information. Trauma patients often require multiple imaging tests [9-11].  The 

diagnostic modality that is typically associated with high radiation dose rates is computed 

tomography.  

 

However, for a particular person, determination of whether a radiographic procedure 

caused an increased incidence of cancer is generally not possible.  Radiation induced 

tumors are not distinguishable from other types of tumors.  Epidemiologic studies can only 

present the carcinogenic effect of radiation through statistical excess [25]. A means of 

estimating the lifetime attributable risk of radiation-induced cancer to a wounded Soldier is 

by thoroughly capturing and recording the accumulated effective dose.  Effective dose 

provides an indicator of potential detriment from ionizing radiation [26].  As the long term 

survival rates go up, so does the risk of a radiation-induced cancer [27-28]. 

 

CTs have distinct advantages over other diagnostic imaging devices when imaging victims 

of severe trauma.  These advantages include rapid acquisition and processing of patient 

images.  Unlike magnetic resonance imaging, CT can acquire and process and image in less 

than a minute enabling rapid physician diagnosis based upon a tomographic reconstruction.  

Since the image can be acquired so quickly, patient movement, which reduces image 

quality, is significantly reduced.  This is one of the reasons why MRI is not used in imaging 

the thoracic region of the body.  The benefits (rapid diagnosis) of using CT greatly 

outweigh the risks (radiation induced deleterious effects in the body).    
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Uniqueness of Research 

This research is unique from published research in that it explores the development of a 

patient specific methodology using patient parameters (height and weight) for determining 

the effective dose from specific trauma CT protocols.  Current methods for determining the 

effective dose rely upon a priori knowledge of specific CT machine characteristics and a 

posteriori knowledge of dose-length product (DLP) based on machine output. The 

methodology of this work focuses on the use of patient parameters rather than machine 

specific values. Verification of the methodology was performed using in phantom 

dosimeters to measure radiation doses to specific organs.  Thermoluminescent dosimeters 

have been primarily used to measure dose within phantoms and there is no published 

research concerning the use of optically stimulated luminescent dosimeters within 

anthropomorphic phantoms for assessing radiation dose from CT trauma protocols, 

therefore this study represents a unique use of this dosimetric methodology.  The adult 

phantoms utilized in this study adhere to International Commission on Radiation Protection 

(ICRP) reference man and woman standards.  They have been specifically milled to study 

specifications and are representative of the U.S. Soldier population.  Finally, validation of 

the methodology was performed against information from a population of actual patient 

images collected under a Memorial Sloan-Kettering Cancer Center Institutional Review 

Board agreement granted for retrospective imaging studies. 

 

This research is expected to contribute to the Biological Effects of Ionizing Radiation 

(BEIR) Report VII established Research Need 8, Future Medical Radiation Studies [29].  
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This was identified as a need for future studies to include individual dose estimates to sites 

of interest along with evaluations of the uncertainty in dose estimation:   

 

“Of concern for radiological protection is the increasing use of computed tomography 

scans and diagnostic x-rays.  Epidemiologic studies of these exposures would be 

particularly useful if they are feasible, particularly the following:  follow-up studies of 

cohorts of persons receiving CT scans, especially children…The widespread use of 

interventional radiological procedures in the heart, lungs, abdomen, and many vascular 

beds, with extended fluoroscopic exposure times of patients and operators, emphasizes the 

need for recording of dose and later follow-up studies of potential radiation effects among 

these populations.  There is a need to organize worldwide consortia that would use similar 

methods in data collection and follow-up.  These consortia should record delivered doses 

and technical data from all x-ray or isotope-based imaging approaches including CT, 

positron emission tomography, and single photon emission computed tomography.” [29]  
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CHAPTER 2.  Preliminaries 

Ionizing Radiation Fundamentals 

Ionizing radiation, hereafter referred to as radiation, consists of neutral (neutrons, photons, 

neutrinos, etc.) and charged particles (electrons, positrons, protons, etc.) that carry 

sufficient energy to liberate electrons from atoms or molecules.  Use of radiation in 

medicine has been explored since the early Twentieth Century [28] and whereas the 

concern for dose to radiation occupationally exposed workers has a long history, the long 

term health effects of radiation were not well understood until cohort populations (Life 

Span Study (Hiroshima and Nagasaki bomb survivors), radiation workers, etc.) emerged 

[29].   

 

Absorbed Dose 

Radiation absorbed dose is defined by the amount of average energy absorbed per unit of 

mass at a point in matter [30].  The SI unit of absorbed dose is Gray (Gy), which is one 

Joule per kilogram.  The distribution of the absorbed dose within a tissue is not uniform 

and depends on the penetration and range of the radiation within the tissue.  The dosimetric 

quantities described below are based upon the average absorbed dose in a specified organ 

or tissue. 

 

Low Dose vs. High Dose 

As an ionizing charged particle travels through a medium, energy is lost.  The (unrestricted) 

linear energy transfer (LET) is defined as the average energy lost by a charged particle due 

to electronic interactions per unit length of its trajectory [29].  The amount of energy 
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transferred to the medium depends upon the atomic number of the medium and on the type 

of radiation in terms of the LET.  Typically, for low LET radiation low dose is considered 

less than 100 mGy.  In terms of background radiation, the dose equivalent from low-LET 

radiation is approximately 1 mSv per year and the average background exposure in the 

United States can range from approximately 3 mSv to 6 mSv per year [29]. 

 

Understanding that different ionizing charged particles interacting in a tissue results in 

different biological effects, the International Commission on Radiation Units and 

Measurements (ICRU) introduced the quality factor, Q, to weight the absorbed dose for the 

biological effectiveness of the particles producing the absorbed dose, D [31].  The quality 

factor is based on the type and energy of the radiation at a point in a specific tissue.  The 

product of the quality factor and the absorbed dose at a point in tissue is defined as the dose 

equivalent, and has units of Sievert (Sv).  The International Commission on Radiological 

Protection (ICRP) replaced the dose equivalent concept with the quantity, equivalent dose, 

in 1991 to account for absorbed dose in a tissue rather than at a specific point.  Equivalent 

dose is defined as the absorbed dose averaged over a tissue or organ and weighted for the 

radiation quality that is of interest [32].  The radiation weighting factor, wR, used in 

calculating equivalent dose is analogous to the quality factor used in calculating dose 

equivalent when considering radiation emitted by an internal source in the body, but for 

external radiation the radiation weighing factor is a function of the type of radiation 

incident on the body and doesn’t depend on the location in, or orientation of, the body [31].  

The radiation weighting factor accounts for the relative biological effectiveness of the 

different types of radiation [20].  Equivalent dose also has units of Sievert (Sv). 
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Effective Dose 

Effective dose is the mean low-LET absorbed dose from a uniform whole-body irradiation 

that results in the same total radiation detriment as from the non-uniform, partial-body 

irradiation in question [33].  The effective dose concept was introduced by the ICRP in 

1975 to represent the radiation detriment for the general population or the specific 

population of radiation workers and to assess compliance with dose limits.   

 

In 1991, the ICRP [32] recommended that the term effective dose be used to describe the 

relationship between the probability of stochastic effects and equivalent dose.  Effective 

dose is the multiplicative result of the equivalent dose and the individual tissue weighting 

factors.  Effective dose represents the total health detriment from uniform radiation to the 

whole body by summing all the tissues and organs in the body.  The mathematical 

representation of this concept is shown in equation 1. 

                   1                                                                      

The units for effective dose, E, are Sievert (Sv).  The dose factor,      , accounts for the 

dose in a particular tissue from a particular type of radiation.  The radiation weighting 

factor,    , accounts for the difference in energy imparted by each type of radiation.  The 

tissue weighting factor,    , helps to describe how each tissue or organ responds to the 

radiation insult.  The tissues or organs where the cells are rapidly dividing (gonad region) 

will be more affected by radiation than those tissues or organs where the cells are not 

dividing as frequently (brain) and will have a higher tissue weighting factor.  Each tissue 
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dose, radiation weighting factor, and tissue weighting factor is summed up to account for 

all tissues and organs involved.  

 

Medical Use of Radiation 

Purpose 

Radiation is involved in medical procedures for both imaging (diagnostic) and treatment 

(therapy).  The primary radiation used is photons.     

 

Diagnostic 

Medical imaging primarily uses x-rays to create an image of the patient’s internal structure.  

The x-rays are created via electron interaction with (typically) a high atomic number 

material.  This interaction occurs within an x-ray tube.  Electrons are accelerated from 

cathode to anode made up of a high atomic number material (typically Tungsten) via a 

large potential difference (i.e. 120 kVp).  The electrons interact with the material in the 

anode and produce Bremsstrahlung x-rays. Although the x-rays are emitted in an isotropic 

manner, the x-ray tube has a small window from which the x-rays are allowed to escape in 

a direction towards the patient.   

 

The x-rays emanating from the x-ray tube are described in terms of quantity, quality, and 

exposure.  The quantity of x-rays is the number of photons within the beam typically 

quantified in mAs.  As the mAs is increased, the resultant image is often better because 

more photons are being detected by the detector but more photons are also being absorbed 

so that the dose to the patient increases.  The quality of x-rays describes the energy 
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spectrum of the x-rays within the beam and can be characterized in terms of the half-value 

layer (HVL) which is related to the potential energy difference between the cathode and the 

anode.  The unit associated with the quality of x-rays is the electron-volt.  In diagnostic 

radiology, the typical beam quality for a given HVL is from 40 kVp up to 140 kVp and 

measures the tube potential or nominal energy of the x-ray beam.  The x-ray beam is a 

spectrum of energies.  Because of the photoelectric effect, the lower energies in the 

spectrum will tend to be absorbed within the body contributing to the overall radiation dose 

without contributing to the image because of the higher absorption cross section at the 

lower energies for the tissue medium.  Manufacturers use filters of various materials to 

remove lower energy x-rays from the x-ray beam but allow the higher energy x-rays to 

remain within the beam.  Depending upon what portion of the body is being imaged, the 

beam quality must be higher or lower.  For those portions of the body with high density 

tissues (e.g. bones), a higher quality (higher kVp) must be used to ensure that the x-rays 

have enough energy to pass through the patient without all being absorbed and thereby not 

contributing to the image.   

 

Exposure is nearly proportional to the energy fluence of the x-ray beam.  Together, 

quantity, quality, and exposure are determined by six major factors:  x-ray tube target 

material, voltage, current, exposure time, beam filtration, and generator waveform [34].  

 

When the x-rays interact with the patient, they are absorbed, scattered, or pass through the 

patient completely.  Therefore, diagnostic imaging contrast is a factor of the density of the 

material.  The areas of the body that have the greatest electron density (e.g. bone) will 
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absorb the most x-rays and appear lighter in color than those areas which do not have a 

high density of material (e.g. lung) which will result in a dark color.  The colors range from 

black (no absorption of photons) to white (total absorption of photons).  Therefore, 

radiographic images are often referred to as negative images.    

 

COMPUTED TOMOGRAPHY 

Computed tomography (CT) has been used to make medical diagnostic images since the 

early 1980s and is well described in literature [34].  Increasingly, CT has been used 

throughout hospitals in order to rapidly acquire images aiding in patient diagnosis.   

 

Design 

Computer algorithms are capable of transforming the information from thousands of 

detectors into an image.  The manufacture of the physical CT scanner is very important.  At 

the most basic level, a CT scanner is made up of an x-ray tube, rotating around a patient, 

and x-ray detectors capable of transforming the x-ray detection into a signal to be processed 

to create an image (Figure 1).  In most CT machines, the x-rays are emitted in the shape of 

a fan beam.  The x-rays then undergo interactions within the patient prior to being detected 

by the detector array.  The number of x-rays emitted by the x-ray tube is controlled by 

adjusting the current and the exposure time.  The energy of the x-rays is controlled by 

adjusting the potential difference (voltage) between the cathode and the anode. 
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Figure 1.  General design of a computed tomography scanning 

machine [35].  The x-ray tube, detector array, and data acquisition 

system rotates completely around the patient.  

CT scanner detectors are made of crystals which scintillate (emit light) when interacting 

with radiation.  Manufacturers seek to use those elements within the scintillation crystal to 

achieve a high degree of both absorption efficiency and scintillation efficiency precisely 

tuned to the spectrum of photon energies produced by the x-ray tube.  The x-ray tube is 

often compact in geometry.  A compact geometry (distance from the x-ray tube to the 

detector) yields a more efficient performance ratio of the scanner’s tube and generator.  

With all other variables being constant, a more compact geometry will use less photon 

current within an x-ray beam for a given study.    
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Tomography, meaning imaging by slices, utilizes the process of taking multiple x-ray 

projection images of a patient and summing their back-projections in order to create the 

individual slices for a three dimensional rendering of the patient over the patient scanning 

length [34].  Single transmission measurement through a patient made by a single detector 

is called a ray.  A series of rays is a projection.  Parallel beam geometry is a beam in which 

all the rays are parallel to each other.  Fan beam geometry (modern CT scanners) is a beam 

in which all the rays diverge from each other.  Acquisition of a single axial CT image 

(slice) may involve approximately 800 rays taken at 1,000 different projection angles for a 

total of 800,000 transmission measurements. Before the next slice, the table is moved 

(along the z-axis). 

 

Patient Dose 

Radiation dose is a result of many different CT machine parameters.  Some of these 

parameters can be adjusted by the CT technologist in accordance with the prescribed 

technique protocol for each individual scanning region of the body and other parameters 

are non-adjustable CT machine parameters. 

 

Non-adjustable CT machine parameters contributing to patient dose include x-ray tube 

filtration and focal spot size.  The x-ray tube filtration serves to filter (absorb) serves to 

remove low-energy x-rays from the beam spectrum.  These low-energy x-rays would 

otherwise have only contributed to the radiation dose and not the image.  A measure of the 

filtration is the Half-Value Layer (HVL), which together with the tube potential (kVp), 
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serves to describe the beam quality (penetrability of the beam through the patient).  The 

HVL increases as filtration increases for a given kVp.  Increasing the amount of filtration 

will reduce overall patient dose.  The filtration has a greater effect on the absolute organ 

dose but little effect on the relative patient dose [36].  The focal spot size is considered a 

non-adjustable parameter because it is typically set by the manufacturer or medical 

physicist in accordance with the type of scanning procedure.  Larger focal spot sizes are 

used for scanning when the region being scanned does not require a high degree of spatial 

resolution.  Smaller focal spot sizes are used when a high degree of spatial resolution is 

required [34].  Use of smaller focal spot sizes will result in higher patient doses than use of 

larger focal spot sizes.   

 

The adjustable parameters contributing to patient dose include the beam quality, beam 

quantity (mAs), slice thickness, gantry rotation speed, CT pitch, and perhaps most 

importantly patient size.  Beam quality is described by the HVL and the tube potential.  

The adjustable parameter within beam quality is the tube potential.  The tube potential is 

typically 120 kVp for all body regions.  Tube potential is directly related to patient dose but 

is inversely related to image contrast.  As tube potential is increased patient dose also 

increases [37] but image contrast is reduced due to the decreasing probability of the 

photoelectric effect. Beam quantity describes the number of photons resulting from the 

interaction of the electrons with the rotating anode.  This quantity is known as tube current 

measured in milli-Amperes (mA). The CT technologist will adjust the mA in accordance 

with the different regions of the body in order to obtain an image with the least amount of 

noise (signal-to-noise) which varies with the square root of the number of photons.  
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Scanning regions with greater tissue densities (bony structures) and greater patient 

thicknesses will require higher mA than other scanning regions.  Patient dose is directly 

related to the mAs.  As the mAs increases, the absorbed organ dose also increases [38].  

Slice thickness has a linear influence on the number of photons used to produce the image 

and thus have a direct relationship with patient dose.  Thicker slices require more photons 

to produce the same image quality.  However, fewer slices are needed to cover a scanning 

range as slice thickness is increased.  Using smaller slice thicknesses can lead to more areas 

of the body where the slices overlap.  Overlapping areas have higher doses than areas 

within the middle of the slice.  Gantry rotation speed (revolution time) can be varied to a 

certain extent by the technologist.  Faster rotation speeds are easier to achieve with CT 

machines having a smaller gantry diameter.  X-ray intensity varies as the square of the 

distance measured from the isocenter to the x-ray tube [39].  Adjusting the CT pitch, a 

measure of the length of body transcribed by one full revolution of the x-ray tube divided 

by the slice thickness, allows a CT technologist to decrease the scanning time and 

indirectly the patient dose.  However as the CT pitch increases, the image spatial resolution 

decreases [34].  Therefore most CT pitch values are near unity.  Patient size also has a 

direct relationship with radiation dose.  For a given x-ray technique, larger patients will 

attenuate more x-rays which reduces the number of x-rays being detected thereby reducing 

the image quality.  In order to adjust for this, a CT technologist will increase the mA which 

as described above, increases the dose. 

 

Current methods of determining the radiation dose to individual patients are largely patient 

generic.  Measuring the radiation dose to patients from CT scans is difficult and complex.  
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Generally, there are three main methods of performing the measurement.  The three 

methods are: 

1. Monte Carlo simulations using mathematical phantoms [40-51].   

2. Experimental measurements using physical phantoms (a tissue equivalent 

apparatus) and radiation detectors [52-61]. 

3. Calculation of organ and effective dose from CT doses index (CTDI) or dose-

length product (DLP) using conversion coefficients derived via the first two 

methods [62-75]. 

Often a combination of the three methods is used to assess dose from a procedure so that 

comparisons can be made.   

 

Method 1 

There are several popular Monte Carlo codes available on the public domain that have been 

used to model radiation dose.  Three of the more popular codes are Monte Carlo N-Particle 

(MCNP) [76], Monte Carlo N-Particle eXtended (MCNPX) [76], and Electron Gamma 

Shower (EGS) [77].  These codes will be explored in more detail as part of Specific Aim 1.   

Monte Carlo [MC] calculations employ random numbers to approach the solution to a 

problem.  MC methods can be used to look at radiation interactions because the interactions 

are governed by stochastic (random) events.  Therefore, MC can be applied to determine 

the established equivalence between the desired result and the expected behavior of the 

stochastic system [78].  The random numbers are used to simulate the known distribution 

of a variable about a given probability.  Large numbers of random events can be used to 

form an estimate about the true solution.  As more random events are used, the estimate of 
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the solution becomes more consistent and converges to the correct solution.  The behavior 

of the random variables adheres to the Central Limit Theorem which explains how the sum 

of a large number of independent random events is normally distributed as long as the 

expectations are finite with known variances.   

 

Generating random numbers have been widely studied over the years and falls into three 

categories [79]:  

1. Drawing samples from specially constructed tables, 

2. Monitoring the output of a physical device or process (i.e. radioactive decay 

of an isotope), and 

3. Calculation by a specified mathematical algorithm. 

The most common random number generation today is using the third category which has 

been classified as a deterministic production of random numbers (also called pseudo-

random). This category is limited by the period of the random number sequence.  The 

period of the sequence occurs when a certain number of distinct elements have been 

produced and starts to repeat itself.  This limitation can be overcome by ensuring that the 

period is sufficiently large through modeling a large number of random numbers. 

 

Mathematical/Voxelized Phantoms 

In order to assess the interactions of the photons in tissue and make a determination of 

dose, mathematical or voxelized phantoms serve as the “target of interest” within which the 

photons can interact.   
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The first mathematical phantoms replicated the human structure using a series of geometric 

elliptical cylinders and cones.  The different shapes modeled not only the overall shape of a 

human but also the organs contained within the human structure.  One of the initial 

assumptions was that all the tissue was homogeneous within an organ.  As modeling ability 

increased, more elaborate phantoms were created to account for tissue heterogeneity.  One 

of the first heterogeneous phantoms was created by the Medical Internal Radiation 

Dosimetry (MIRD) Committee of the Society of Nuclear Medicine [80].  This phantom 

(general dimensions of a 70 kg 170 cm reference man), commonly known as the MIRD5 

phantom, consisted of a skeleton, lungs, and soft tissue as the remainder.  Gradually, these 

phantoms were advanced to more complex geometric organ shapes and overall sizes.  Two 

of the more famous phantoms that have been used for many years were designed by Cristy 

and Eckerman et al [81] (Figure 2a) at Oak Ridge National Laboratory in 1980 and Kramer 

et al (Figure 2b) from the National Research Center for Environment and Health (GSF) in 

Germany [82].  These phantoms became known as the Cristy-Eckerman phantom and the 

ADAM and EVA phantoms. 

2a.  2b.  
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Figure 2.  (a) Cristy-Eckerman phantom commonly used for internal 

radiation dosimetry [80]. (b) ADAM and EVA phantom. 

The phantom models followed the guidance of the International Commission on 

Radiological Protection (ICRP) Report 23 and have been updated as appropriate according 

to ICRP Report 110 [83].  In ICRP Report 110, a Reference Man is defined as 176 cm tall 

with a mass of 73 kg.  A Reference Female is 163 cm tall with a mass of 60 kg.  A 

summary of the organs is presented below (Table 1). 

 

 Table 1.  Summary of organ masses from ICRP 110 [83]. 

Organ 
Mass of Organ (g) 

Male Female 

Adrenals 14 13 

Brain 1450 1300 

Breast 25 500 

Eyes 15 15 

Eye Lenses 0.4 0.4 

Gall Bladder 68 56 

Gastro-Intestinal Tract 150 140 

Heart 840 620 

Kidneys 310 275 

Liver 1800 1400 

Lungs 1200 950 

Esophagus 40 35 

Ovaries  11 

Pancreas 140 120 

Pituitary Gland 0.6 0.6 

Prostate 17  

Salivary Glands 85 70 

Spleen 150 130 

Testes 35  

Thymus 25 20 

Thyroid 20 17 
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Uterus  80 

 

Alternate uses of Monte Carlo programs include assessment of energy imparted to derive 

effective doses.  Absorbed doses can either be calculated directly to specific locations or 

can be derived using energy imparted formulism.   

 

Method 2 

Measuring radiation dose via Method 2 involves the use of both physical phantoms and 

radiation detectors. 

 

Physical Phantoms 

Physical phantoms are also designed in accordance with ICRP 110 guidance [83].  They 

are often used as the comparison benchmark for computational phantoms.  The physical 

phantoms are designed for insertion of radiation detectors and dosimeters.  Each organ in 

the phantom will have many different locations in which the detectors and dosimeters can 

be placed.  Because the tissue composition of the organ and surrounding areas is equivalent 

to a real human patient, measurements within the organ accurately reflect the radiation dose 

from a selected procedure.  The disadvantage of physical phantoms is that their structure is 

rigid. However, these phantoms are very useful and can also be used for image and 

dosimetric verification analysis.  Two of the more common developers of physical 

phantoms include Alderson Research Laboratories (Figure 3a) and Computerized Imaging 

Reference Systems (CIRS), Inc (Figure 3b). 
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3a.  3b.  

Figure 3.  a) Rando-Alderson dosimetry verification phantom.  b) 

CIRS dosimetry verification phantom. 

Radiation Detectors 

The most common types of radiation detectors used to measure dose within a physical 

phantom designed to assess computed tomography scans are thermoluminescent dosimeters 

(TLD), metal oxide field effect transistor (MOSFET), and radiochromic film.  A relatively 

new use for optically stimulated luminescent dosimeters (OSL) is in phantom organ dose 

assessment.  OSL dosimeters will be used in this research.    

 

TLD and OSL dosimeters operate under the same basic theory of ionizing radiation causing 

electrons to be trapped and when stimulated with energy recombining.  The amount of 

electrons trapped is proportional to the radiation dose.  The difference between TLDs and 

OSLs is primarily with the stimulation energy source.  Heat is used as the stimulation 

source in TLDs whereas light is used as the stimulation source in OSLs.  The stimulation 

sources are used to provide energy to the trapped electrons so that they can leave the traps.  
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As the electrons return to the ground state, the electrons release energy in the form of 

measureable luminescent light.  The amount of luminescent light that is measured is 

proportional to the number of electrons which were trapped and is therefore proportional to 

the dose.  MOSFET operates in accordance with semiconductor theory.  Ionizing radiation 

within the active detection chamber of a MOSFET causes electrons to be released.  The 

movement of electrons results in an electric charge being produced.  The amount of electric 

charge produced is proportional to the radiation dose.  Radiochromic film operates on an 

entirely different principle.  Radiochromic film responds to different energies by different 

degrees of darkening.  The amount of darkness relates to the amount of radiation absorbed.  

Radiochromic films work well in the measurement of small fields and at the edges of large 

fields of radiation due to its ability to measure a high dose gradient and sustain relatively 

high absorbed dose rates [84].   

 

Method 3 

Effective dose calculations are most often performed using CT machine produced 

quantitative factors derived from manufacturer listed machine values known as the 

computed tomography dose index (CTDI).  The CTDI quantity describes the radiation dose 

distribution from the CT machine.  The Food and Drug Administration defines the CTDI as 

the integral of the dose profile along a line perpendicular to the tomographic plane divided 

by the product of the nominal tomographic section thickness and the number of tomograms 

produced in a single scan (21CFR1020.33). CTDI is a quantity describing the average 

dose.  CTDI is measured using a PMMA acrylic phantom and a 100-mm pencil chamber 

detector (Figure 4).  In order to further describe how the radiation dose is distributed within 
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the body and on the surface of the body, the weighted CTDI (CTDIw) is measured.  The 

CTDIw is computed by summing up one-third of the CTDI measured dose inside the 

phantom and two-thirds of the measured CTDI value on the surface of the phantom.  When 

the CTDIw is divided by the pitch of the CT machine, the CTDI volume (CTDIvol) is 

computed.  CTDIvol is the quantity which the CT manufacturer provides in the dose report 

provided for each scan.  In order to convert the average dose to effective dose a new 

quantity is introduced called the dose length product (DLP).  The DLP is calculated by 

multiplying the CTDIvol by the total length of the CT scan. 

  

Figure 4.  CTDI acrylic phantom, pencil ionization chamber, and 

electrometer (www.acr.org). 

Use of the DLP value and conversion coefficients (different for each type of scan) is the 

current method of choice for determining the effective dose [72, 85].  In 2000, the 

European Commission published a report which developed a method to convert DLP to 

effective dose.  This method was based off of a study in which compared a wide range of 

effective dose values estimated from the DLP for a wide range of scanners and ICRP 

tissue-weighting coefficients for a series of anatomic regions (head, neck, chest, and 
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abdomen and pelvis).  The method derived a series of coefficients for the conversion of 

DLP to effective dose.  Many manufacturers of CT units now compute and display the DLP 

for each scanning procedure.  Many studies have been performed which assess the validity 

and accuracy [86-88].  Martin et al reports the inherent relative uncertainties in estimating 

effective dose (using organ doses) to a reference patient to be about +/- 40% and should not 

be used to assess an individual patient [89]. 

 

As mentioned above, DLP can be converted to an effective dose via conversion 

coefficients.  These conversion coefficients have been calculated from mathematical 

phantoms representing both adult and pediatric patients.  The below table (Table 2) shows 

the results of a study of patient dose from computed tomography within the United 

Kingdom [90]. 

 

Table 2.  DLP conversion coefficients. Child data normalized to CTDIw measured in the 

16-cm diameter CT dosimetry phantom.  Adult data for head and neck regions is 

normalized to CTDIw in the 16-cm diameter CT dosimetry phantom, with all other regions 

being normalized to a 32-cm diameter CT dosimetry phantom [90]. 

Region of Body 

Effective Dose per DLP (mSv mGy
-1

 cm
-1

) 

Children Adults 

0 years 1 year 5 years 10 years 

Head 0.011 0.0067 0.0040 0.0032 0.0021 

Neck 0.017 0.012 0.011 0.0079 0.0059 

Chest 0.039 0.026 0.018 0.013 0.014 

Abdomen/Pelvis 0.049 0.030 0.020 0.015 0.015 

 

A survey of how DLP conversion coefficients vary in literature is presented (Table 

3).  Use of DLP conversion coefficients to estimate effective dose should be 

restricted to the same CT machine model, scanning region, and x-ray parameters 

(quality and quantity).  
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Table 3.  DLP conversion coefficients from many different sources. 

Region 
Jessen (1999) 

[68] 

European 

Commission 

(2000) [91] 

EC Appendix 

B (2004) [91] 

EC Appendix 

C (2004) / 

NRPB-W67 

(2005) [91-92] 

Deak (2010) 

[75] 

Phantom Size 

(cm) 

Head 0.0021 0.0023 0.0023 0.0021 0.0019 16 

Head and 

Neck 

NA NA NA 0.0031 NA 16 

Neck 0.0048 0.0054 NA 0.0059 0.0051 16 

Chest 0.014 0.017 0.018 0.014 0.0145 32 

Abdomen 0.012 0.015 0.017 0.015 0.0153 32 

Pelvis 0.019 0.019 0.017 0.015 0.0129 32 

CAP NA NA NA 0.015 NA 32 

 

Retrospective Dosimetry 

Performing a retrospective dosimetry study on patients is difficult due to the many different 

variables involved and the rapid evolution of CTs over the past 20 years.  CT evolution has 

focused primarily on how the x-ray tube rotates around the body and image acquisition.  

Early CT machines used a step-and-shoot method which is commonly referred to as axial 

scanning.  This method involved the 360 degree rotation of the x-ray tube along an axial 

plane.  As technology advanced, helical scanning, with the table moving through the x-ray 

tube gantry as the x-ray tube rotates 360 degrees, has become much more prevalent 

resulting in a reduction of dose for the patient.  More recent advances have reduced doses 

even more as “smart” capability has been added to the CT machines.  Smart scanning 
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automatically adjusting the quantity of radiation (mA) based upon the anatomic features 

within the field of view; more dense areas like the pelvic region will have more mA 

whereas less dense areas of the body like the chest region or abdomen region will have less 

mA.  Current estimates of effective dose are listed (Table 4).  

 

Table 4.  CT effective dose estimates for given anatomical regions. 

 

Covered Anatomy Assigned Effective 

Dose per CT 

Examination (mSv) 

[11] 

Effective Dose 

per CT 

(mSv)[93] 

Effective 

Dose per CT 

(mSv) (Health 

Physics 

Society [94]) 

Yu [95] 

Head,Face 2.0 1.5 2.0 1-2 

Cervical Spine, 

Neck 

2.0 NA NA NA 

Chest, Pulmonary 

Embolus, Thoracic 

Spine 

8.0 5.8 7 5-7 

 

BMI and Effective Dose 

Several studies have explored the relationship of BMI and the signal-to-noise ratio.  As 

body size increases the noise present in an image increases [96].  Therefore, as patient size 

increases, machine parameters (i.e. tube current and tube potential) must also increase in 

order to achieve a diagnostic quality image.  Obese (BMI>30) patients can experience 

higher radiation doses than normal sized patients [72, 85, 97].   

 

Cumulative Dose 

Ultimately, the concern over radiation lies in the not in the production, interaction, or 

benefits, but in how radiation may cause cancer.  Biological Effects of Ionizing Radiation 
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(BEIR) VII predicts a baseline cancer incidence of 42% and a cancer mortality of 20% 

[29].  The current estimated threshold by which an increase in solid cancer incidence risk is 

seen is thought to be between 100 mSv and 150 mSv [98-99].  Although this threshold is 

much higher than any one diagnostic radiology scan, multiple recurrent scans can approach 

this threshold.  Patients who are imaged more frequently have a higher cumulative health 

risk than the typical patient.   

 

Higher radiation doses are definitely of concern when patients experience multiple 

computed tomography scans.  Broder et al [100] estimates that the average renal colic 

patient presenting to an emergency room will experience 2.5 computed tomography scans.  

In a similar study, Katz et al [101] found that 4% of patients with suspected renal colic will 

undergo 3-18 computed tomography scans over a six year observation period.   

 

The advent of computed tomography scanners in emergency rooms is a result of increased 

sensitivity of specific injuries [102].  Patients are undergoing more total body scans which 

are either used to supplement prior normal radiography scans or used as the primary 

diagnostic scanning medium [103].  Huda et al estimates that the average effective dose per 

trauma patient in a Level 1 trauma center emergency room can be as high as 40 mSv [104] 

per visit. Yet once the patient leaves the emergency room, the patient evaluation scanning 

continues. 

 

Kim et al [10] reported that at an urban Level I trauma center, severely injured blunt-

trauma patients (injury severity score greater than 30) accumulated a mean number of 70 
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plain radiographs, approximately 8 computed tomography scans, and almost 3 fluoroscopic 

studies over an average stay of more than 40 days in the surgical intensive care unit.  

Although the quantity of plain radiographs outnumbered the quantity of computed 

tomography scans, the computed tomography scans accounted for the greater portion of the 

overall radiation dose.  Kim estimated that cumulative dose per patient was more than 100 

mSv.  Also noted was the variation in the number of scans each physician ordered due to a 

lack of an institutional policy concerning daily scans for intubated patients.  Noted in the 

article was that dose estimation techniques did not account for variation among the patients 

weight. 

 

Tien et al [105] performed a study in which dosimeters were placed on a trauma patient 

upon presentation to at Level I trauma center in Toronto, Canada.  Study patients were 

separated by injury severity score so a wide variety of patient scores were represented in 

the study.  The mean number of CT scans per patient was approximately 5 and the mean 

number of plain film radiographs was approximately 14.  Tien suggests that approximating 

effective dose by counting radiological procedures underestimates the true dose.  Tien’s 

method of using dosimeters better accounts for the patient dose but the dosimeters were 

superficially located and thus approximations still had to take place to transform the surface 

dose to internal organ doses.  Tien estimated that whereas the cumulative effective dose per 

patient was approximately 23 mSv, the cumulative equivalent dose to the thyroid was over 

100 mSv.   
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Sodickson et al [11] performed a retrospective study at a New England hospital assessing 

the quantity of CTs performed over a 22 year period.  The cohort numbered over 31,000 

patients who underwent a diagnostic CT examination.  33% of the patients underwent more 

than five CT examinations, 5% underwent more than 22 examinations, and 1% underwent 

more than 38 examinations.  In terms of cumulative effective dose, 15% of the patients 

received more than 100 mSv, 4% received over 250 mSv, and 1% received over 399 mSv.  

Most of the recurrent CTs can be explained by the patient’s underlying disease and 

subsequent complications.  However, there were 350 patients with no malignant history.  In 

the sample medical detail provided of these patients, four patients had an abstracted 

medical history similar to a Soldier.  Three of the patients were female (age 49, 53, and 58) 

with recurrent pains in the abdominal and back region.  They experienced an average of 16 

CT exams each (max 18, low 13).  Average number of examinations by regions was 8.33 

for abdominal pelvis, 1 for chest, 1 for head, 4 for spine.  The lifetime attributable risk of 

radiation induced cancer for each of these patients was about 1.4% based upon BEIR VII 

methodologies.  The one male patient with an abstracted medical history similar to a 

Soldier was for alcoholism and frequent trauma.  This patient (53 years old) underwent a 

total of 36 CT examinations with the most frequent region scanned being the head (19) and 

abdomen-pelvis (6).   

 

Diagnostic scanning of Soldiers who have experienced severe trauma doesn’t necessarily 

end upon initial release of the Soldier from the hospital.  Other factors can contribute to 

cumulative doses, i.e. diagnostic scanning for long-term mild traumatic disorders which 

might lead to alcoholism.  Alcohol misuse has been documented among Soldiers returning 



33 

 

from OIF and OEF [106-110].  Also widely documented is the link between alcohol use 

following trauma experiences and alcohol use as an initiator of a traumatic experience 

[111-113]. If we use the above mentioned male patient with abstracted medical history of 

alcohol and trauma, the Soldier population is at an increased risk of experiencing recurrent 

CT examinations and thus higher cumulative effective doses.  Foreseeing increased CT 

examinations in the Soldier population is definitely arguable as Soldiers are deploying 

multiple times and have an increased incidence of post traumatic stress [111, 114-119]. 

 

As CT scans are increasingly being used in trauma diagnosis [120-122], our research is 

very appropriate for formulating an improved method that utilizes minimal available 

information, such as patient height and weight and the number and types of CT scans for 

estimating effective doses from different trauma scans.  Additionally, since no two patients 

have the same size and dimensions, patient variability must be considered in developing an 

effective dose paradigm.  In this manner, as individual organ sizes differ [123], better 

estimates of the effective dose can be calculated.   

 

Research Hypothesis 

A patient’s height and weight is correlated with the effective dose from computed 

tomography scans and such a correlation can be used to develop a model which will allow 

for estimating effective dose with minimal information and will result in increased 

accuracy of those estimates than current methods.  Use of current effective dose estimating 

methods (dose-length-product and conversion coefficients) will significantly underestimate 
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the accumulated radiation dose from multiple computed tomography diagnostic trauma 

scans. 

 

Overall layout of the thesis is to investigate five different specific aims.  Each specific aim 

will be a different chapter in the dissertation. Each specific aim chapter will address the 

methodology used to investigate the specific aim. Specific aims will address the evaluation 

of effective dose ranges by CT protocol, development of predictive model, verification of 

predictive model, validation of predictive model against real patient scans, and 

recommendation for the initiation of a systematic long-term Soldier study of multiple 

diagnostic scanning.  The five specific aims are: 

Specific Aim 1:  Evaluate the range of effective doses by CT protocols from literature and 

retrospective patient CT studies. 

Specific Aim 2:  Develop an improved model capable of predicting effective dose based 

upon a patient’s physical characteristics (height and weight). 

Specific Aim 3:  Verify effective dose models by measuring absorbed dose s in organs 

using optically stimulated luminescent dosimetry and anthropomorphic phantoms. 

Specific Aim 4:  Validate the effective dose models against current DLP methods for 

estimating effective doses using a pilot study of representative trauma patient CT scans. 

Specific Aim 5:  Recommend action points for the U.S. Army based upon this research. 

 

Developing an accurate predictive model will allow health professionals to better determine 

the cumulative individual patient dose for low-dose health effect research.  Studying 

cohorts (U.S. Army) that will routinely receive more than 100 mSv (cumulative dose) will 
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allow researchers to establish follow-up methods for future epidemiological studies 

evaluating how medical x-rays and future cancers may be linked.  This research is is 

urgently needed at this time, when the public’s awareness to radiation from computed 

tomography scans is heightened. 



36 

 

CHAPTER 3.  Specific Aim 1:  Evaluate the range of effective doses by CT protocols 

from literature and retrospective patient CT studies. 

Statement of the problem: 

Nearly 50% of all injuries to Soldiers in Operation Iraqi Freedom and Operation Enduring 

Freedom were to the head/neck, abdomen, and thorax region of the body [124-126].  There 

are six computed tomography (CT) trauma protocols commonly used to assess and 

diagnose Soldier injuries from blunt trauma.  These protocols are used to image the brain, 

cervical spine, chest, chest abdomen pelvis (whole body), thoracic spine, and lumbar spine.  

Each CT trauma protocol will be evaluated to estimate the effective dose per scan.  The 

effective dose resulting from a CT scan primarily depends upon the location of the scan, the 

scan length, and the x-ray tube current (mA).  Effective doses can vary widely from one 

procedure to the next as a result of differences in machine techniques, x-ray technician set-

up procedures for patient scanning, and variation in patient sizes.   

 

Table 5 lists generally accepted nominal effective doses for common diagnostic 

procedures.  The typical nominal effective dose per CT procedures ranges from 2 mSv (CT 

Head) up to 20 mSv (CT Abdomen and Pelvis) for an average patient (Table 5).  

 

Table 5.  Effective doses for common radiology procedures [127]. 

Radiology Procedure Effective Dose (mSv) Comparison to natural 

background radiation 

Abdominal Region 

  CT-Abdomen and Pelvis 10-20  3-6 yrs 

  CT body 10  3 yrs 

  CT colography 10 3 yrs 

  Intravenous Pylegram 3 1 yr 

  Radiography Lower GI 8 3 yrs 
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  Radiography Upper GI 6 2 yrs 

Bone  

  Radiography Spine 1.5 mSv 6 months 

  Radiography Extremity 0.001 mSv less than 1 day 

Central Nervous System 

  CT Head 2 mSv 8 months 

  CT Spine 6 mSv 2 yrs 

  Myelography 4 mSv 16 months 

Chest Region 

  CT Chest 7 mSv 2 yrs 

  Radiography Chest 0.1 mSv 10 days 

Children's Imaging  

  Voiding Cystourethrogram 5-10 yr old: 1.6 mSv 6 months 

  Infant: 0.8 mSv 3 months 

Face and Neck 

  CT sinuses 0.6 mSv 2 months 

Heart 

  Cardiac CT for Calcium    

  Scoring 

3 mSv 1 yr 

Men's Imaging  

  Bone Densitometry 0.001 mSv less than 1 day 

Women's Imaging  

  Bone Densitometry 0.001 mSv less than 1 day 

  Galactography 0.7 mSv 3 months 

  Hysterosalpingography 1 mSv 4 months 

  Mammography 0.7 mSv 3 months 

 

While nominal values are useful for comparing the expected effective doses between 

typical procedures, they are not specific to the patient.  A method other than the use of a 

look-up table is required to more accurately assess specific patient (or Soldier) effective 

doses (and associated risks) from CT procedures.  Chapter 3 will explore the use of Monte 

Carlo techniques in estimating effective doses, assess the functionality of four different 

Monte Carlo codes commonly used for such a purpose, and evaluate which codes are most 

appropriate for meeting the goals of this present research.  
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Monte Carlo Techniques 

Background 

Over the past forty years, the use of Monte Carlo radiation transport techniques in 

medicine, diagnostic radiology, and radiation therapy has become widespread.  The use of 

computers to model the interaction of photons and electrons with matter enables 

researchers to understand how energy is expected to be deposited in the human body under 

a wide variety of conditions.     

 

In order to identify the most appropriate Monte Carlo code to use for this research, I 

evaluated the historical usage of Monte Carlo codes in estimating radiation doses.  I 

performed this evaluation in a similar manner as that presented by D.W.O. Rogers in his 

review on the past 50 years of Monte Carlo simulations for medical physics [128], I 

performed a search of the Pubmed (http://www.ncbi.nlm.gov/pubmed) database to identify 

how many articles were published in journals since 1970 (Table 6) for the following search 

terms:  Monte Carlo, Therapy, Diagnostic, GEANT, PCXMC, PENELOPE, EGS, and 

MCNP in the Title or the Abstract.  I stratified the search dates into decades.    

 

Table 6.  Results of Pubmed article search related to the use of Monte Carlo techniques 

for radiation transport calculations. 

Decade Diagnostic Therapy GEANT PCXMC PENELOPE EGS/EGSnrc MCNP 

1970-

1979 

4 3 0 0 0 0 0 

1980-

1989 

33 21 0 0 0 0 0 

1990-

1999 

61 174 5 0 2 2 55 

2000-

present 

270 848 36 20 113 23 286 

 

http://www.ncbi.nlm.gov/pubmed
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Perhaps the easiest way to visualize the growth of the use of Monte Carlo techniques within 

the diagnostic and therapy radiation arenas is through the use of a graph (Figure 6).   

 
Figure 5. Graph of published articles concerning the use of Monte 

Carlo codes in medical physics in accordance with the above Pubmed 

database search terms. 

As computer technology has evolved and processing speed has increased, modeling large 

numbers of photon and particle interactions with matter has become easier.  We see that the 

number of articles written about Monte Carlo techniques and radiation therapy has greatly 

increased since the 1980s relating to the rise in radiation therapy for treating cancer.  Monte 

Carlo techniques have also been used to simulate radiation doses from diagnostic imaging 

procedures.   

 

Monte Carlo simulations use stochastic numbers to approximate a deterministic solution.  

This is performed by using random numbers within statistical models which are themselves 

applied to mathematical functions in order to model complex systems.  If enough random 

numbers are used, the functions will then begin to converge upon calculated results that can 

be validated with results obtained through physical experimentation.  Early Monte Carlo 

techniques were used to mimic well-defined problems and geometries.  As the techniques 
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improved, unknown deterministic systems were explored.  In this manner, deterministic 

problems were solved by finding a probabilistic analog [129].  This “modern” technique 

was widely used to model neutron propagation through mediums during the Manhattan 

Project.  Researchers use Monte Carlo computational experimentation to understand 

otherwise unfeasible or impractical realistic situations.  The computational time demand is 

high though and powerful computers are needed to not only process the huge amounts of 

information but also achieve faster computational speeds.  Monte Carlo coding is 

dependent upon user input information and models and should be validated when 

applicable to physical experimental results. 

 

Theory 

Most Monte Carlo software codes follow three basic steps: model a system as a probability 

density function, repeatedly sample from the probability density function, and finally, 

tally/compute the statistics of interest (i.e. energy deposition) [130].   In general, photons 

are emitted from a virtual point source into a solid angle defined by the field size and 

distance from the photon source to a mathematical phantom.  The photons are then 

followed as they interact within the phantom according to the probability distribution of the 

primary physical processes that the photons may undergo. At diagnostic energies less than 

150 keV, the primary physical processes are photo-electric absorption, coherent (Rayleigh) 

scattering, and Compton (incoherent) scattering.  The probability distribution which 

governs the interaction possibilities is a measure of the energy of the photon and the atomic 

number of the medium within the phantom.  Energy deposition at each interaction point is 

calculated and recorded.  Photons will continue to be tracked through the different 

interactions until the photon either exits the phantom or loses enough energy that the 
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energy of the photon is less than a lower threshold limit.  Radiation dose in an organ within 

the phantom is calculated as the mean value of all the energy depositions within that organ.  

Central to the Monte Carlo process is the use of random numbers.  The random numbers 

are used for sampling the initial photon direction, distance between interactions, type of 

interacting atom within the phantom, type of interaction (and subsequent energy loss), and 

scattering angle following an interaction.  As one can see, a simulation might involve many 

different probability density functions and summation of huge numbers of recorded events 

along a photon’s track (history) (Figure 6).   

 

Figure 6.  Monte Carlo flowchart for photon energies less than 150 keV.  Random 

numbers are used for sampling initial photon direction, distance between interactions, 

type of interacting atom within the phantom, type of interaction and scattering angle. 
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The relative differences in determining organ and tissue doses from CT scans generally 

result for one of five different areas; organ dimensions, exposure parameters (spectrum and 

geometry), organ distance from the primary beam field of view, limitations of the Monte 

Carlo code concerning the x-ray source and patient modeling characteristics, and how the 

codes deal with basic physics parameters (photon interactions resulting from linear 

attenuation coefficients and elemental compositions). 

 

All Purpose Codes 

I considered two extensively used two all purpose Monte Carlo codes currently being used 

in medical physics, EGS and MCNP.  These codes are extremely powerful and are fully 

capable of modeling particle interactions from very low energies to very high energies.   

 

EGS 

Background 

EGS (Electron Gamma Shower) is an open source Monte Carlo code distributed, updated, 

and managed by the National Research Council of Canada [131-132]. 

  

EGS is based on a version of the FORTRAN computing code called MORTRAN.  

Originally, developed at Stanford Linear Accelerator Center (SLAC) in the early 1970s, 

EGS was used to study the cascade effect of nuclear disintegrations caused by high-energy 

particles.  The original code accounted for bremsstrahlung, electron-electron scattering, 

ionization-loss, pair production, Compton scattering, and the photoelectric effect.  

Additionally, Coulombic scattering was considered.  However, the lower energy limit was 

0.25 MeV for photons and 1.5 MeV for electrons.  The code, EGS1, was tested and found 

to have good agreement with internal tests at SLAC.  More complex modeling geometries 
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stimulated the advancements of newer versions of EGS.  EGS soon became a program 

made up of many sub-programs and sub-routines.  Improvements were also made for the 

handling of multiple scoring planes in the multiple region structures. The use of EGS for 

medical physics applications emerged with the fourth version of EGS, EGS4.  This version 

of EGS added the capability of radiation transport in any element, compound, or mixture 

with the dynamic energy range being extended down to 1 keV.  Photons and charged 

particles were transported randomly through a medium while undergoing physical 

interactions in accordance with their probability of occurrence in that medium at their 

energy.   

 

Application 

EGSnrc (Electron Gamma Shower National Research Council) is the current version of 

EGS and has been used extensively in medical physics applications.  BEAMnrc, an EGS 

subroutine, has been used extensively to model medical linear accelerators for radiation 

therapy [133-142].  Another subroutine, DOSXYZnrc is used to model radiation internal 

dosimetry [143-144] and brachytherapy [145-148] sources.  The code has been used to 

benchmark treatment planning systems [149-151].  Modeling ionization chambers 

continues to be popular with researchers [152-160].  Most of the referenced applications 

have been associated with megavoltage radiation beams.  Very little research using EGS to 

model low energy radiation beams (diagnostic energies below 140 keV) has been 

performed although cone-beam computed tomography is seeing increased interest [56, 161-

166].   
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Comparisons/Benchmarking 

EGS has been widely compared with GEANT4, MCNP, and PENELOPE yielding good 

results [167-169].  EGS claims an advantage over other Monte Carlo codes in terms of 

computation times.  Computation times are a result of the differences between how the 

codes handle the transport of the charged particles.  Numerous studies have been performed 

in the development of EGS ensuring that physical processes are modeled efficiently and 

accurately [170-174].   

 

Computed Tomography Modeling 

Using EGS to model computed tomography beams and the resultant radiation dose is 

somewhat of a new research field.  Previously, EGS subroutines in DOSXYZnrc have been 

written to convert CT images into 3-dimensional voxelized phantoms [175].  This 

technique has proven valuable in understanding dose to specific locations within the body 

and has been used in treatment planning.  Validation of the modeled beam is often 

performed using detectors [176].  MOSFET detectors and thermoluminescent dosimeters 

are commonly used as the comparison base.  Once validated, the code allows for a better 

understanding of how scattered photons contribute to dose.  This can even be performed for 

deforming anatomy, i.e. lungs [161].    Future work in this field looks to develop tools for 

more accurate dose accumulation to a 3-dimensional organ integrated over time.  Modeling 

cone-beam CT units has seen increased research in the areas of pediatric [177] and adult 

imaging [162-163, 178].  In general though, EGS use with CT stems more in the ability of 

creating voxelized phantoms which are then used for input into treatment planning systems.  

Although some research has been performed utilizing EGS as a code for determining 
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radiation dose deposition from normal diagnostic CT procedures [179] more needs to be 

performed. 

 

MCNP 

Background 

Monte Carlo N-Particle (MCNP) transport code was developed by Los Alamos National 

Laboratory in order to develop solutions of radiation transport problems.  MCNP is capable 

of solving transport problems of neutrons, photons, or coupled neutron-photon systems.  

MCNP was originally designed for criticality safety, shielding design, design of nuclear 

instrumentation, calculation of material activations, radiological dose determination, 

spacecraft modeling, nuclear weapons design, and reactor design and analysis[180].   

Similar to other general purpose Monte Carlo codes, a user can supply/define a full input 

file of materials and surfaces for source terms to propagate radiation through.  As the 

radiation interacts with the various media, tallies are generated concerning the deposition of 

energy and histories are kept describing the total amount of energy deposited or transported 

through an area of interest.  The output results provide information concerning the behavior 

of the modeled system. 

 

Application 

Since the inception of MCNP in 1980, the code has been used to extensively in modeling 

medical applications.  The code is widely used in cancer therapy treatment planning, 

diagnostic imaging, and treatment beam optimization [181]. 
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Comparisons/Benchmarking 

MCNP has been compared with GEANT for the purposes of radiation detection efficiency 

[182-183] and low energy neutron transport, shielding, and dose calculations [184].  

Similarly, MCNP and FLUKA have also been used for detector efficiencies and radiation 

transport studies [185-189].  MCNP compares favorably, with less than a 10% statistical 

deviation of the results, with the other Monte Carlo codes. 

Computed Tomography Modeling 

MCNP has been used for many specific applications in computed tomography dose 

modeling.  Tzedakis et al [190-191] used MCNP to model patients of different ages and 

sizes using cylindrical polymethyl-methacrylate (PMMA) phantoms.  MCNP has also been 

used as the primary radiation transport simulation code for addressing absorbed doses from 

CT-SPECT and microCT/PET systems [192].  In comparison research on uterine absorbed 

doses in pregnant women from CT scans, MCNP simulations were validated against a 

deterministic simulation code (TORT 3.2) and achieved agreement within experimental 

uncertainty with the computed exposures found to be within 35% of measured values 

[193]. 

 

Limited Functionality 

Limited functionality or hybrid Monte Carlo programs (e.g. ImPACT and PCXMC) have 

been designed for explicit purposes.  They are highly capable and are based off of the same 

fundamental principles as EGS and MCNP.  However, the limitations generally arise as to 

the energy and type of particle that can be modeled.  In medical physics applications, the 

limitations also involve the phantom used and the most commonly used phantom is a 

mathematical phantom originally designed by Cristy [194].  Although these Monte Carlo 
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programs are not as fully functional as EGS and MCNP, if the researcher’s environment 

fits within the confines of the limitations, these programs can be very powerful.   

 

ImPACT 

Background 

ImPACT (Image Performance Assessement of CT scanners) is a widely used Monte Carlo 

based diagnostic radiology software program designed to simulate radiation doses from 

computed tomography machines.  The program was developed by the National Radiation 

Protection Board (NRPB) of England.  It has been used for estimating CT dose conversion 

coefficients [91, 195-198] for many general CT scanning procedures and widely used for 

effective dose estimation in the assessment of radiation dose health risk [67, 74, 101, 199-

203].  At present, ImPACT provides an accepted standard estimate on the effective dose for 

a standard phantom associated with CT scanning protocols. 

 

Purpose 

ImPACT has been designed to specifically simulate photons from CT scanners in order to 

assess the radiation dose to specific organs within a stylized human body for the express 

purpose of estimating the effective dose from the diagnostic radiology CT scan. 

 

Theory 

ImPACT simulates the radiation dose in a mathematical MIRD-style phantom (Figure 7) 

[204].  This “adult” hermaphrodite phantom represents the human body with a variety of 

geometrical shapes.  The different shapes approximate the various shapes and tissue 

densities of human organs and body structures.  Due to the crudeness of the model, the 

program is not intended to provide precise measurements of effective dose.  The program 
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allows the user to select the approximate scanning field of view for a desired CT imaging 

protocol.  In the figure (Figure 7), the red portion represents the scanning field of view 

ranging from a starting point of 72.5 up to an ending point of 89.     

 
Figure 7. Screen shot of the phantom used in the ImPACT software 

program.  The red portion represents the scanning field of view 

ranging from a starting point of 72.5 and having an ending point of 

89. 

User inputs (Figure 8) in the ImPACT program include scanner model information, 

acquisition parameters, and organ weighting scheme selection (ICRP 103 [20]).  Central to 

the program is the ability to match 23 previously coded and calculated Monte Carlo data 

tables (data sets) among the more than 50 different types of CT machines.  The data sets 

were calculated using Monte Carlo methods to model the original CT machines in the 

NRPB survey performed in 1993.  As new CT machines were manufactured an ImPACT 

factor was determined based upon the CTDI measured in air of the new machine compared 
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with the CTDI measured in air of the machines for the already existing data sets.  CTDI 

was used for the matching because it is a simple standardized means to measure the dose 

output from a CT scanner [205].  Therefore, comparisons can be made about the radiation 

dose from one machine to another.   

 

 

 
Figure 8.  Screen shot of the ImPACT software user input portion.  A 

GE LightSpeed 16 scanner used to perform a head scan (shown in 

red). 
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Based on user inputs, the program calculates the radiation dose to 32 different organs.  

Then, using the appropriate tissue weighting factors, the effective dose is calculated using 

the values from the calculated organ absorbed doses (Figure 9).  

 
Figure 9.  Screen shot of the ImPACT software dose calculation 

portion for the user defined inputs shown in Figure 7.  Remainder 

dose is the mean dose of the remainder organs. 

ImPACT’s simplified user interface combined with the ability to simulate many different 

types of CT machines has resulted in it being one of the primary tools for assessing CT 

effective dose among researchers in the diagnostic imaging field. A major limitation of the 

software is that all calculations are performed with the single mathematical phantom shown 

in Figure 8.   
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PCXMC 

Background 

PCXMC (PC-based program for X-ray Monte Carlo) is a Monte Carlo code originally 

written in 1997 at the Radiation and Nuclear Safety Authority, Finland [206-207].  The 

strengths of the software program are that is allows for computation of organ doses for a 

range of patient sizes and ages linearly interpolating organ sizes from 6 standard 

mathematical phantom representations (newborn, 1 year old, 5 year old, 10 year old, 15 

year old, and adult) of the 1987 Cristy and Eckerman phantom models (modifications were 

made to include extrathoracic airways, oral mucosa, prostate and salivary glands).  Organ 

doses are calculated from user input defining adjustable x-ray projections and examination 

conditions.   

 

Purpose 

The main purpose of the program is to derive the effective dose from projection 

radiography and fluoroscopic procedures.  The effective dose is calculated in accordance 

with ICRP 103 tissue weighting factors and formulism.  Organ doses are calculated relative 

to the incident air kerma at the point where the central axis of the x-ray beam enters the 

patient with the photon paths and interaction calculated using Monte Carlo methodologies.   

 

Theory 

Monte Carlo methodology is used to simulate photon transport and subsequent interactions 

between the photons and matter (Figure 6).  Primary interactions considered are 

photoelectric absorption, coherent (Rayleigh) scattering, and incoherent (Compton) 

scattering.  Photon information is collected at each interaction point as energy is deposited 
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and combined into histories.  The upper limit on the user defined energy of the x-ray beam 

is 150 keV.  Within this range of energies, the kerma in tissues is approximately equivalent 

to the absorbed dose within the same tissues, except at the interface between bone and soft 

tissue [207].  Secondary electrons are approximated to be absorbed at the site of the photon 

interaction within tissue due to the low energy of the secondary electrons and the small 

range.  Dose is calculated from the average values of the energy depositions, obtained from 

the photon histories, in the organs.  Energy spectra are assumed to be an integral of 

monochromatic photons of specific energies up to 150 keV.  The precision of the dose 

estimate increases and the statistical error decreases as the number of initial photons in the 

simulation increases.  Precision is also affected by the organ dose (to low will cause high 

errors) and/or size of the organ. 

 

PCXMC uses a hermaphrodite phantom to calculate the effective dose from a radiology 

procedure.  This differs from ICRP 103 methodology for effective dose in that ICRP 103 

defines the effective dose within separate reference male and female phantoms, where the 

equivalent organ dose is averaged and the effective dose is a weighted sum of the sex 

averaged organ doses [207].  Since PCXMC utilizes one hermaphrodite phantom, there is 

no need to perform sex averaging for the organ doses.  

 

PCXMC allows for the user to vary the shape of the mathematical phantoms by changing 

the height and weight.  The ability to change the shape of the mathematical phantom by 

changing the height and weight cannot be over-emphasized.  It is well known that as the 

human body grows from infancy through adulthood, organs also grow.  However, some 
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organ weights also change as an adult’s total body weight increases.  In an autopsy study 

performed measuring organ sizes and mass for bodies of different ages, heights, weights, 

and race, Young et al [208] determined that certain organs and their associated dimensions 

change as a person grows.  For example, the female kidneys will increase in mass as the 

total body weight increases up to 200 kg.  Similarly, the lung mass changes increases as the 

body weight increases up to 150 kg and the thyroid mass increases as the body weight 

increases up to 125 kg.  There are six standard phantoms which PCXMC uses as the base 

for the variation (Table 7). 

 

Table 7.  Primary dimensions of the mathematical phantoms within PCXMC. 

 Weight 
(kg) 

Total 
Height 
(cm) 

Trunk 
Height 
(cm) 

Trunk 
Thickness 
(cm) 

Trunk 
Width no 
arms 
(cm) 

Trunk 
Width 
w/arms 
(cm) 

Leg 
Length 
(cm) 

Newborn 3.40 50.90 21.60 9.80 10.94 12.70 16.80 
1 year old 9.20 74.40 30.70 13.00 15.12 17.60 26.50 
5 year old 19.00 109.10 40.80 15.00 19.64 22.90 48.00 
10 year old 32.40 139.80 50.80 16.80 23.84 27.80 66.00 
15 year old 56.30 168.10 63.10 19.60 29.66 34.50 78.00 
Adult 73.20 178.60 70.00 20.00 34.40 40.00 80.00 

 

As the user changes the height and weight of the phantom within PCXMC (Figure 10), the 

program calculates scaling factors in accordance with the primary phantom dimensions.  

All dimensions, including the organ sizes, are modified by the scaling factors. 
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Figure 10. Screen shot of the examination input window for PCXMC. The red box on the 

stylized phantom represents the scan field of view. 

Validation of Limited Functionality Codes 

Mathematical phantoms are used to provide flexibility in phantom design but may result in 

anatomical descriptions that are not very realistic.  Comparison of recent software 

programs that may utilize more representative human phantoms (anthropomorphic) has 

been performed and has shown good agreement with PCXMC [61, 209] and ImPACT [46, 

67, 210]. Such voxel image-based phantoms are more realistic anatomically but are limited 

in the flexibility of organ placement, shape, position, depth, and posture.  University of 

Florida is beginning to use computational phantoms that utilize the best characteristics of 

the mathematical and voxel phantoms.  This new class of phantoms is called a hybrid 

computational phantom [144, 211], but are not yet generally available to the research 

community.  Therefore, mathematical phantoms are currently still very much in use. 
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ImPACT has been validated against EGS for new voxel phantom based dose assessment 

[52, 77].  Comparisons to CT scans often used in trauma diagnosis offer good agreement 

between the mathematical phantom of ImPACT and voxel phantom calculations; between -

6 to 11% for chest scans, -22 to -1% for abdomen chest scans, and -4 to 11% for pelvis 

chest scans.   

 

Although PCXMC is primarily designed for projection radiography, it has been used to 

calculate effective doses from scan projection radiography and tomosynthesis procedures 

where radiographic examinations are taken on a patient from the posterior-anterior (PA) 

and left lateral (LLAT) sides [212]. It has also been used to compare CT and conventional 

radiography doses from assessment of patients with arthrodesis [213].  In addition, 

comparisons have also been performed in order to assess absorbed doses in cardiac 

angiography from C-Arm computed tomography machines.  Current literature shows that a 

CT rotation can be effectively modeled by using multiple projections per slice [36, 203, 

214-215].   

 

Software Decision 

There are many different CT machines being utilized in the Army (Table 8).  These 

machines are not only being used at fixed facilities but also in close proximity to the 

battlefield.  As a result, a Soldier that is scanned at different facilities might be scanned 

with a different machine each time.  Therefore, a predictive model seeking to estimate the 

radiation dose from a procedure should be capable of estimating the effective dose for each 

trauma scanning protocol for a wide variety of different CT machines.  The predictive 

model should also be capable of predicting the effective dose for a wide variety of patient 
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types.  For this reason, I chose to use limited functionality Monte Carlo programs in order 

to formulate the predictive model.  Use of EGS or MCNP would require knowledge of 

specific machine dimensions and proprietary information concerning the systems involved 

in the radiation delivery.  In addition, such models would be machine specific and would 

not be capable of predicting dose across the wide variety of machines in use by the Army.  

Therefore, in developing my effective dose predictive model, I will utilize PCXMC 

(allowing for varying patient heights and weights) with the results being compared against 

ImPACT and with direct measurements (see chapter 5).  

 

Table 8.  Survey sample of the different computed tomography machines in use at Army 

medical facilities. 

Manufacturer Type Different Army Locations 

GE 

LightSpeed 16 3 

LightSpeed VCT 64 Slice 1 

Discovery DST PET/CT 1 

LightSpeed VCT 1 (2 at this location) 

LightSpeed Plus 1 

LightSpeed RT 1 

Toshiba Aquilion 64 4  

Philips 

ACQSim 1 

Brilliance Big Bore 16 3 

Brilliance EXP 1 

MX8000 1 

Siemens 

Somatom Definition 1 

Symbia T6 SPECT-CT 1 

Biograph PET-CT 1 

Somatom Plus 1 

Picker 
PQ2000S 1 

PQ5000 1 

Other 
Portable CT Medtronic O-

arm 

1 

 

Protocol Specific Effective Dose 

In order to determine the effective dose for a given CT procedure, a retrospective study was 

conducted within the Memorial Sloan-Kettering Cancer Center patient archiving and 
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communication system (PACS) under an approved Institutional Review Board (Table 9). 

The purpose of the study was to collect real patient retrospective data (CTDIvol, DLP, 

machine type, and scan range) on at least 30 patients for input into the ImPACT software in 

order to provide an additional comparison for the PCXMC results. 

 

Table 9.  Summary of retrospective PACS study for determining appropriate inputs in 

ImPACT software. 

Procedure Number 

of Patients  

Machine 

Type (most 

commonly 

used) 

Age (Mean, 

Interquartile 

Range) 

CTDIvol 

(mGy) 

(Mean, 

Interquartile 

Range) 

DLP (mGy 

cm)  (Mean, 

Interquartile 

Range) 

Scan Range 

(cm) 

(Mean, 

Interquartile 

Range) 

Brain Scan 71 GE 

LightSpeed 

16 

53 (42-69) 43.32 

(41.15-

41.81) 

679.11 

(648.12-

710.84) 

15.67 

(15.75-

17.09) 

Cervical 

Spine Scan 

32 GE 

LightSpeed 

16 

59 (48-72) 26.17 

(22.48-

29.41) 

617.91 

(514.73-

680.34) 

23.35 

(20.64-

25.26) 

Chest-

Abdomen-

Pelvis 

Scan 

31 GE 

LightSpeed 

16 

69 (63-80) 15.06 

(12.91-

17.57) 

1015.90 

(848.80-

1218.00) 

67.21 

(63.92-

69.93) 

Chest Scan 32 GE 

LightSpeed 

16 

59 (52-67) 12.19 

(10.91-

13.19) 

470.70 

(406.30-

516.30) 

38.61 

(37.13-

40.95) 

Thoracic 

Spine Scan 

53  GE 

LightSpeed 

16 

58 (47-73) 27.87 

(23.11-

31.81) 

972.50 

(811.50-

1121.30) 

35.17 

(32.63-

37.11) 

Lumbar 

Spine Scan 

64 GE 

LightSpeed 

16 

62 (48-75) 28.13 

(23.69-

29.41) 

842.90 

(710.10-

970.20) 

30.28 

(25.73-

33.60) 

 

The PACS database patient information was randomly collected and filtered only by CT 

scan type.  The majority of the CT machines are manufactured by General Electric 

(General Electric Healthcare, Waukesha, Wisconsin) and the most common model being 

the GE LightSpeed 16.  This type is also the CT system on which the anthropomorphic 
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verification study (Specific Aim 3) will be performed.  Although there are some apparent 

differences (mean ages and amount of muscle mass per patient) between the MSKCC 

patient population and the U.S. Army Soldier population, the two populations can be 

compared against each other since CT scanning fields of view are set based upon 

anatomical landmarks [216].  The variation of patient height is seen in the variation of the 

patient scanning range (Table 9).  The scanning length with the least amount of variation 

between the 1
st
 and 3

rd
 quartile range is the brain scan (8.5%) and the most variation occurs 

with the lumbar scan (31%).  Arguably the most common CT scan for trauma protocols, 

Chest-Abdomen-Pelvis, only has a 9.4% variation (between the 1
st
 and 3

rd
 Quartile) in the 

scanning range.  However, this scan will also be affected the most by patient height when 

comparing the minimum range (18.38 cm) and the maximum range (90.33 cm) to other 

scanning lengths.   

 

As discussed previously in Chapter 2, CTDIvol is a machine specific parameter that can be 

used to evaluate the machine produced radiation dose characteristics in a quality assurance 

quality control phantom using a 100-mm detector.  This parameter allows for radiation 

dose comparisons to be made among different types of CT machines.   CTDIvol multiplied 

by the scanning length results in the dose-length-product (DLP).  The mean of the PACS 

reported DLP for each CT protocol is compared against the ImPACT calculated DLP when 

CTDI values and other user parameters are inputted (Table 11). 
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The inputs for ImPACT are listed below (Table 10).  These inputs were physician verified 

(Dr. Raymond Thornton, Department of Radiology, MSKCC) and compared with the 

patient images in PACS. 

 

Table 10.  ImPACT inputs based upon PACS data (most common CT model is the GE 

Lightspeed 16) and physician input.  

Procedure kV Scan 
Region 

Start 
Position 

End 
Position 

Tube 
Current 

Rotation 
time (s) 

Pitch Collimation 
(mm) 

CTDIvol nCTDIw DLP 

Brain  120 Head 78 94 155 2 1.375 10 43.3 19.2 693 
Cervical 
Spine  

120 Head 64 87 155 1 1.375 10 26.1 23.2 600 

CAP  120 Body 5 75 300 1 1.375 20 15.1 6.9 1054 
Chest  120 Body 33 72 270 1 1.375 20 12.2 6.2 475 
Thoracic 
Spine  

120 Body 37 72 270 1 1.375 20 27.9 14.2 976 

Lumbar 
Spine  

120 Body 17 48 270 1 1.375 20 28.1 14.3 870 

 

Representative scans are shown below comparing an actual patient scan with the scanning 

field of view inputted into ImPACT (Figure 11). 

a.   b.   

c.  d.  
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e.  f.     

g.  h.       

i.  j.   

k.  l.        
Figure 11.  Representative Scans.  Brain Scan (Figure 11a and Figure 

11b (ImPACT)). Cervical Spine Scan (Figure 11c and Figure 11d 

(ImPACT)).  Chest Abdomen Pelvis Scan (Figure 11e and Figure 11f 

(ImPACT)). Chest Scan (Figure 11g and Figure 11h (ImPACT)). 

Thoracic Spine Scan (Figure 11i and Figure 11j (ImPACT)). Lumbar 

Spine Scan (Figure 11k and Figure 11l (ImPACT)). 
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Table 11.  Comparison between ImPACT DLP values and the mean DLP values from the 

patient retrospective PACS study. 

Procedure ImPACT DLP value 

(mGy cm) 

Mean Study DLP 

value (mGy cm) 

Absolute Percent 

Difference between 

DLP values 

Brain Scan 693 679.11 2% 

Cervical Spine Scan 600 617.91 3% 

Chest Abdomen 

Pelvis Scan 
1054 1015.90 4% 

Chest Scan 475 470.70 1% 

Thoracic Spine Scan 976 972.50 0.4% 

Lumbar Spine Scan 870 842.90 3% 

 

Since the difference between the DLP values are so small, the effective dose calculation in 

ImPACT will adequately describe the effective dose for the patient retrospective PACS 

study and can be used as a representation of the expected effective dose for each of the six 

trauma protocols (Table 11).  Note that the effective doses are within the NRCP 160 range 

for the listed scans (Table 12).  Effective dose for the chest abdomen pelvis scan from 

ImPACT is slightly higher than the listed NCRP 160 effective dose for an abdomen/pelvis 

scan.  This is a result of the slightly longer scanning range (therefore more organs directly 

in the scanning field of view) of the chest abdomen pelvis scan than for the shorter 

scanning range of an abdomen pelvis scan. 

 

Table 12.  Effective dose per trauma protocol as calculated in ImPACT and reported in 

the NCRP Report 160 [14]. 

Procedure Effective Dose (mSv) Effective Dose (mSv) 

NCRP 160 [14] 

Brain Scan 1.7 0.9 – 4 Head Scan 

Cervical Spine Scan 2.4 Not listed 

Chest Abdomen Pelvis Scan 27 3 – 25 Abdomen/Pelvis 

Scan 
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Chest Scan 15 4 – 18 Chest Scan 

Thoracic Spine Scan 13 Not listed 

Lumbar Spine Scan 11 Not listed 

 

Conclusion 

Monte Carlo programs investigate the deposition of energy (dose) in the human body from 

radiative particles.  Many Monte Carlo programs are fully functional for modeling the 

transport of particles through a plethora of different mediums.  Some Monte Carlo 

programs while more limited in functionality, are still quite capable of investigating 

radiation dose albeit in a more limited environment.  Although EGS and MCNP are 

extremely powerful Monte Carlo programs, each CT machine type would have to be 

individually designed and modeled prior to full characterization and validation against a 

physical machine.  While this is certainly doable over a long period of research time (many 

years), this is impractical for the purposes of this research.  Therefore, due to the wide 

variety of CT machine types and manufacturers currently being used in the throughout the 

U.S. Army medical facilities, the decision was made to use a limited functionality Monte 

Carlo program specifically designed to assess only CT scans but capable of modeling the 

radiation dose from over 50 CT machines.  Since many conversion coefficients are based 

upon the ImPACT software, the ImPACT effective dose calculations are useful for 

comparing against my predictive model effective dose per trauma procedure results.  User 

inputs into the ImPACT software were determined based upon a retrospective CT study of 

patient scans and CT scanning parameters in the Memorial Sloan-Kettering Cancer Center 

patient archiving and communication system (Brain Scan, Cervical Spine Scan, Chest 

Abdomen Pelvis Scan, Chest Scan, Thoracic Spine Scan, and Lumbar Spine Scan).  When 
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the effective dose calculated by the software was compared against accepted values (NCRP 

160), all values were within acceptable ranges (Table 12).  Since the ImPACT software 

only models the effective dose based upon a single mathematical phantom in which patient 

dimensions (i.e. height and weight) cannot be varied, another Monte Carlo program 

(PCXMC) will be used to build a predictive model with which the effective dose from the 

six trauma scans can be determined based upon a patient’s height and weight at the time of 

the scan (Chapter 4).  
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CHAPTER 4.  Specific Aim 2:  Develop an improved model capable of predicting 

effective dose based upon a patient’s physical characteristics (height and weight). 

 

Introduction 

This chapter will address the development of effective dose estimation models to be used 

for the six different computed tomography (CT) trauma protocols discussed in the previous 

chapter (Chapter 3).  The models will be developed from Monte Carlo simulations 

performed with mathematical phantoms with physical parameters common with Soldiers. 

  

Current methods for determining the effective dose require knowledge of the CT machine’s 

output (dose-length-product, CTDIvol, etc.) [67, 86, 203].  The machine’s output is then 

converted to effective dose via use of a conversion coefficient developed for a specific 

scanning area.  However, computing the effective dose without knowledge of the CT 

machine output is difficult and radiation professionals will often utilize National Council 

on Radiation Protection and Measurements (NCRP) general estimates which have a wide 

range and only are applicable for a few specific procedures [14].  While useful for general 

comparisons, application of these effective doses do not allow for patient specificity 

required to track cumulative radiation doses from multiple procedures.  In order to track 

cumulative radiation from CT trauma protocols, a more patient specific methodology needs 

to be developed. 

 

The U.S. Army requires that each Soldier complete a physical fitness test twice a year.  The 

test measures upper body fitness (push-ups), lower body fitness (sit-ups), and lung stamina 

(two-mile run).  An additional component of the physical fitness test is determining 
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whether or not a Soldier meets certain body fat standards determined by measuring the 

Soldier’s height, weight, and age.  For Soldiers that do not meet the body fat number in 

accordance with their age, more advanced body fat measurements are performed beyond 

simple height/weight measurements.   The U.S. Army therefore is indirectly tracking, on a 

semi-annual basis, how a Soldier’s height and weight changes from the initial date of entry 

into military service.  U.S. Army Soldiers are generally within 18 – 45 years old and can be 

thought of as young, healthy, and physically fit [13, 217]. 

 

The development of the methodology for the six previously mentioned CT trauma 

protocols (Brain, Cervical Spine, Chest/Abdomen/Pelvis, Chest, Thoracic Spine, and 

Lumbar Spine) will be based upon a patient’s height and weight.  Therefore, patient 

parameters (height and weight) appropriate for a typical U.S. Army Soldier population will 

be used as inputs into the PCXMC Monte Carlo code for effective dose determination.  

Regression analysis will then be used to develop the mathematical model capable of 

estimating the effective dose to a patient by CT trauma protocol. 

 

Methodology 

BMI Considerations 

In order to ascertain the ranges of heights and weights for the typical U.S. Army Soldier 

population, research was conducted using Body Mass Index (BMI).  BMI is a common 

parameter used in epidemiology studies and is calculated according the below algorithm. 

     
  

    
           

            9 
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The Center for Disease Control (CDC) separates BMI into four separate categories and 

defines a generalized health indicator (Table 13). 

 

Table 13.  CDC Body Mass Indicator (BMI) table. 

BMI Definition 

< 18.5 Underweight 

18.5 – 24.9 Normal 

25.0 – 29.9 Overweight 

> 30.0 Obese 

 

BMI indirectly measures the overall size of the human body, thus individual organ sizes, 

and can be an effective indicator as to how much radiation dose a body organ will receive 

during a diagnostic imaging procedure [208, 218].  Even though BMI is limited by being 

unable to differentiate between the measures of fat content a person possesses as opposed 

to muscle mass.  BMI measures relative weight to height and will differ between race and 

gender.  BMI doesn’t however differentiate between a physically fit person with a high 

BMI (for example a Soldier that is very physically fit and muscular with a high body mass) 

and a person who is not physically fit but with the same BMI.  The U.S. Army population 

can be considered a physically fit population.  However, BMI has been used as a 

mechanism for determining radiation dose. 

 

BMI has been correlated to radiation dose for many radiology procedures [85, 219-227] 

and has been primarily used for cardiac procedures.  As the patient’s BMI increases, the x-

ray tube output must also increase in order to maintain an acceptable image noise level and 

compensate for the increased tissue thickness.  Since the tube output is a factor of the 

overall radiation dose, the radiation dose increases proportionally.  The size of a person 
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affects the x-ray tube output and thus has an overall effect on the amount of radiation 

absorbed in the body [219, 224].   

 

There is currently no known research on correlating BMI to the effective dose from CT 

trauma protocols.  This research will address this knowledge gap. 

 

U.S. Army Soldiers are primarily in the Normal and Overweight category.  One will 

initially think that a Soldier’s BMI will vary according to the job with active jobs (Infantry, 

Special Forces, etc.) having a BMI much less than a Soldier with more of administrative 

job.  However, across the spectrum of jobs (combat-related, combat support, or combat 

service support) the BMI is generally the same (Table 14).  This is a result of the younger 

more active Soldiers having a higher degree of muscle mass and less fat as opposed to an 

older Soldier, who is less active, more likely to be in an administrative position, having less 

muscle mass, more fat, and therefore a similar BMI.  For example, a study performed by 

Reynolds et al [228] looking into injuries and risk factors from a 100-mile road march 

found that 218 Soldiers (average age 21.4 years old) participating in the study, had a mean 

BMI of 24.5 +/- 2.6 (median = 24.1).  A similar unpublished study performed by the author 

looking into Soldier cholesterol levels with 62 Soldiers (average age 43.5 years old) at a 

major command headquarters, found a mean BMI of 26.1 +/- 3 (median = 26.1).  Another 

study showed that regardless of Army specialty, BMI is similar throughout the Army 

(Table 14) [229]. 
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Table 14.  Summary of studies showing how BMI is similar across the age groups in the 

Army regardless of job performed. 

Study Participant Type Number Age (std dev) BMI 

Reynolds, 1999 Infantry 218 21.4 24.5 (2.6) 

Prins (Unpublished) Administrative 62 43.5 (7.7) 26.1 (3.0) 

Reynolds, 2009 

Infantry 181 21.2 (1.4) 23.8 (2.5) 

Construction 

Engineers 
125 24.1 (5.5) 25.5 (2.6) 

Combat Artillery 188 26.6 (6.0) 25.5 (4.0) 

Special Forces 162 30.5 (6.0) 25.9 (2.8) 

 

There are many arguments against using BMI as a predictor of body fat.  BMI 

overestimates the body fat of members of a population who are athletes and/or body 

builders.  BMI can also underestimate the body fat of other members of a population who 

are elderly.  Therefore, my new research methodology, henceforth to be called the Ht/Wt 

model, used BMI as a means of determining the height and weight of the theoretical U.S. 

Army population.  The Ht/Wt methodology was based upon BMI’s ranging from 18 

(underweight) to 36 (obese).  Corresponding heights and weights were calculated from the 

BMI values.  One hundred hermaphrodite phantoms were developed for use in PCXMC 

simulating heights ranging from 5 feet 1 inch up to 6 feet 7 inches.  Phantom weights 

ranged from 95 pounds up to 317 pounds.  As can be observed in Table 15, the 

methodology for determining the number of phantoms of varying height and weight 

follows commonly used guidelines of ten observations for each predictor [230-231].  

Extreme values are rare in a typical U.S. Army Soldier population.  Table 15 shows the 

height/weight values for each of the 100 hermaphrodite phantoms and also shows how a 

single BMI can have a variety of heights and weights. 
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Table 15.  100 hermaphrodite phantoms based upon each BMI value. 

 Body Mass Index (kg/cm
2
)  

18 20 22 24 26 28 30 32 34 36 
H

ei
g
h
t 

(c
m

) 

155 43 48 53 58 62 67 72 77 82 86 

W
eig

h
t (k

g
) 

160 46 51 56 61 67 72 77 82 87 92 

165 49 54 60 65 71 76 82 87 93 98 

170 52 58 64 69 75 81 87 92 98 104 

175 55 61 67 74 80 86 92 98 104 110 

180 58 65 71 78 84 91 97 104 110 117 

185 62 68 75 82 89 96 103 110 116 123 

190 65 72 79 87 94 101 108 116 123 130 

195 68 76 84 91 99 106 114 122 129 137 

200 72 80 88 96 104 112 120 128 136 144 

 

Figure 12 depicts how the phantom population varies when height is plotted versus 

weight.  The phantoms were purposefully developed so that each BMI value is 

represented by 10 different phantom heights.  
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Figure 12.  Phantom patient parameters.  Vertical groups indicate 

single BMI values where height is held constant and weight varies. 

Based upon the inputted height and weight, PCXMC scales the hermaphrodite 

mathematical phantom with a linear scaling factor for height (equation 10) and width 

(equation 11) [232].  

   
 

  
                                                                  10 

and  

     
    

    
                                                              11 

M is the user inputted mass of the phantom.  All phantom dimensions are scaled according 

to the two above equations and organ masses are linearly changed as a result. Figure 13 

shows a typical size progression where the mathematical phantom depicts different 

dimensions with the red box indicating a 20-cm x 20-cm scanning field of view.  
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a.  b. c. d.  
Figure 13.  Varying phantom dimensions.  Figure 13a has dimensions of 175 cm and 40 

kg.  Figure 13b has dimensions of 175 cm and 60 kg.  Figure 13c has dimensions of 175 

cm and 80 kg. Figure 13d has dimensions of 175 cm and 110 kg. 

A radiologist (Raymond Thornton, MD, Memorial Sloan-Kettering Cancer Center) assisted 

with determining the scanning ranges (upper and lower anatomical limits) for each of the 

six trauma protocols.  This was compared against the field of view of real patient scans 

viewed in the PACS database.  The scanning field of view for six trauma protocols (brain 

scan, cervical spine scan, chest abdomen pelvis scan, chest scan, thoracic spine scan, and 

lumbar spine scan) were compared against the patient scans is shown in Figure 14.   

14a.  

14b.  
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14c.    

14d.  

14e.  

 14f.  
Figure 14.  Six trauma protocols ((14a) Brain Scan, (14b) Cervical 

Spine Scan, (14c) Chest Abdomen Pelvis Scan, (14d) Chest Scan, 

(14e) Thoracic Spine Scan, (14f) Lumbar Spine Scan) are presented 

with the left hand picture showing a representative patient scan, top 

right figure showing a depiction of the ImPACT phantom, and 
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bottom right two figures showing an anterior-posterior view and right 

lateral view of the PCXMC phantom.  

Four projections (anterior posterior (AP), posterior anterior (PA), right lateral (RLAT), 

and left lateral (LLAT)) simulating a 360 degree exposure were used to model a CT 

machine with PCXMC (Figure 15).  Each projection has the same slice thickness as the 

desired CT axial slice.  Although theoretically a researcher can use as many projections as 

they wish (for example 16 projections per slice), dose accumulation in that slice increases 

drastically.  In order to equate the total effective dose (as calculated by PCXMC) to the 

effective dose as calculated by our accepted standard (ImPACT), calibration factors are 

determined and applied for the specific phantoms (height, weight, and machine output 

parameters).  Calibration factors are a function of the number of projections.  The 

decision was made to use the four projections described above in keeping with other 

published literature [214].  

 

 

   
Figure 15.  Cross-sectional view of an axial slice made up of four 

radiographic projections. 
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The x-ray spectrum was modeled based upon the most common CT machine in use at 

Memorial Sloan-Kettering Cancer Center, the General Electric (GE) LightSpeed 16.  This 

same machine will be used to verify the code values.  The GE LightSpeed 16 scans all 

patients at a focus-to-skin distance (FSD) of 54.1 cm.  In accordance with appropriate 

protocols, all scans are performed at an x-ray tube energy potential of 120 kVp.  The half-

value layer of a scan about the body is 7.4-mm aluminum and the half-value layer of a scan 

about the head is 6.3-mm aluminum.  The anode target angle is 7-degrees.   

 

Entrance air kerma (air kerma measured at the surface of the phantom) values for each 

projection were obtained from the scans of an anthropomorphic phantom using detectors 

(Unfors PSD-4, SN; 162351, calibration date: 2010-01-11) placed at the center point of 

each scanning field-of-view at the anterior-posterior (AP), posterior-anterior (PA), left 

lateral (LLAT), and right lateral (RLAT) positions on the anthropomorphic phantom.  

Entrance air kerma values are listed in Table 16.  

 

Table 16.  Measured Entrance air kerma value (mGy) by scanning procedure for input 

into PCXMC. 

Entrance Air Kerma (mGy)  

Scanning 

Procedure 

Patient LLAT Patient PA Patient RLAT Patient PA 

Brain Scan 30.98 41.38 32.59 32.06 

Cervical Spine 19.90 22.95 27.92 22.25 

Ch/Ab/Pel 13.40 21.11 15.07 13.75 

Chest 13.10 29.52 16.70 19.73 

Thoracic Spine 6.22 6.75 6.83 7.88 
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Lumbar Spine 17.00 10.69 11.39 9.99 

 

 

Variation in the EAK value by location is expected since the x-ray tube is rotating prior 

to initiation and the exact location of the x-ray tube upon activation is unknown.  The 

variation in the EAK value is also a function of the x-ray tube current modulation 

adjusting for the various thicknesses of material (body, table, etc.) between the x-ray tube 

and the detectors.  Change in x-ray tube position also results in variation of the entrance 

radiation dose along the z-direction for contiguous axial and helical scans.  

Measurements of entrance dose will be subject to entrance, exit, and scattered radiation 

or a combination depending upon where the entrance point is measured and the angle of 

the x-ray tube relative to the entrance point of the radiation beam on the patient.  

Comparison of the effective dose from the methodology will need to be made with the 

accepted standard method which does allow for changes in pitch [48].   

 

The number of photons simulated by the Monte Carlo process is important.  As the 

number of photons is increased, the Monte Carlo results will begin to approach physical 

results.  However, there is a tradeoff between the number of photons and the increased 

computer time needed to perform the calculations. The goal is to balance the amount of 

photons with the computer time needed for calculations while minimizing the statistical 

error in the results.  Published research has shown that simulations of 20,000 photons per 

scanning projection within the PCXMC code is adequate for estimating absorbed dose to 

tissues and organs and achieves an accuracy in tube output of within ±4% [36].  

Increasing the number of photons results in an overall increase of computer time from 
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days to weeks for each simulation run with only a minimal gain in percent error in 

estimated accuracy.  The percent error was accounted for in the overall sensitivity study.     

 

Reference Specific Aim 1, ImPACT is used as the “accepted standard” to compare the 

PCXMC results against.  Calibration factors (Table 17) were calculated in order to 

correct for differences between using four projection methodology (AP, PA, LLAT, 

RLAT) and continuous axial scanning.  Each calibration factor was calculated based 

upon the comparison of reference phantom within ImPACT to the mean phantom results 

within PCXMC.  In general, good agreement without the calibration factor exists for the 

cervical spine scan (within 10%), chest abdomen pelvis scan (within 10%), and chest 

scan (within 30%).  The calculated calibration factor is then applied to each of the 100 

phantoms prior to regression analysis. 

 

Table 17.  Initial calculation of effective doses by accepted standard Monte Carlo 

program (ImPACT) and model methodology.  Correction factors are presented in order to 

account for differences in the way the effective doses are calculated for the axial scans. 

Scan Initial Model Mean 

Effective Dose (mSv) 

Accepted Standard 

Effective Dose (mSv) 

Calibration Factor 

Brain 0.809 1.7 2.1 

Cervical Spine 2.223 2.4 1.08 

CAP 27.57 27 0.98 

Chest 19.80 15 0.76 

Thoracic Spine 5.975 13 2.2 

Lumbar Spine 9.224 11 1.2 
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Regression analysis was conducted to describe the relationship between patient 

dimensions (height and weight) and radiation effective dose.  Linear regression is 

possible because effective dose (predicted outcome variable) is continuous.  R is very 

powerful and capable of performing all the necessary regression studies.  Regression 

analysis was performed using the open source statistical program R (www.r-project.org/).  

An R subcode, RExcel, was used to perform all R coding through Microsoft Excel.  A 

sample of the regression language is below.  

 

RegModel.1 <- lm(Effective.Dose..mSv.~Height..cm.+Weight..kg., 

data=Brain_Walkthrough_100k2) 

summary(RegModel.1) 

 

Microsoft Access was used to manage the PCXMC output and perform necessary 

database functions such as record consolidation and simple calculations prior to exporting 

data into Microsoft Excel for analysis by R. 

 

Overall size of the patient has an effect on the effective dose.  Perisinakis et al [46] used 

MCNP and ImPACT to study the effect of increasing BMI for contiguous axial CT exams 

and found that as the BMI increased, normalized effective dose values from contiguous 

axial CT exams decrease.  My mathematical models for determining the effective dose 

from trauma scans confirms the relationship between BMI and effective dose.  DeMarco et 

al [233] observed similar negative trends and attributed the negative trend to the protection 

nature of an increasing patient trunk size covering the radiosensitive tissues beneath for 

individuals with a high BMI.  The negative trend will hold true when machine technique 

factors are held constant between patients of varying BMI.  However, when the tube 
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current is allowed to modulate, the effective dose is directly related to an increase in the 

BMI.  This is due to the increasing tube current attempting to ensure that the image noise 

level remains constant for the same diagnostic quality.  Because the absorbed dose to an 

organ is also directly related to the tube current, as the tube current increases, so does the 

overall effective dose from the scan [233]. 

 

In order to account for uncertainties in the Ht/Wt model development, an analysis has been 

performed following previous published literature describing sensitivities in medical 

physics [198, 234-236].  The sensitivity tables presented in the results section of this 

chapter account for the sensitivity of each portion of the overall radiation absorbed by 

accounting for the error in the measurement (u) or the device output and determining the 

sensitivity coefficient of the error on the measurement (c).  This methodology as outlined 

for each component below is explicitly covered in an article by Gregory et al [236].  The 

methodology has subsequently been adapted for each individual trauma protocol.   

 

Initial sensitivity components involve characteristics of the CT scanner.  CT scanner 

sensitivities are published in the manufacturer documentation accompanying the machine.  

Very strict regulations govern the variance of the radiation output [237].   

a. Tube Current – typical variance by manufacturer specifications is +/- 

5%.  This error estimate is assumed to represent the true value within a 

95% confidence interval.  In this case, u = a/2.  So that u = 5/2.  Therefore 

+/- 5% is considered +/-2u so the uncertainty, u, is 2.5%.  The sensitivity 
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coefficient, c, is estimated at 1 since a change in the tube current will 

realize an equal change in the effective dose.  

b. Exposure Time – Manufacturer specifications states +/-5%.   Therefore, u 

= 2.5 and c=1 

c. Tube Voltage - Patient effective dose varies with the tube voltage as a 

power function,          .  According to the manufacturer’s 

specification, tube voltage can vary by +/- 3%.  Therefore, u = 1.5 and c = 

2.5, (the effective dose difference between 120 kVp and 123.6 kVp is 

approximately 8 % lower as the voltage is raised by 3%, therefore if the 

voltage is raised by 1%, then the effective dose difference will be 

approximately 2.5%. 

d. Slice Width/Table Movement - Manufacturer specifications are generally 

within +/- 2 mm.  GE LightSpeed 16 is +/- 1mm.  Therefore the u = 0.5.  

In accordance with CTDosimetry (ImPACT), a 0.5 mm shift will cause a 

change of less than 0.1%.  Therefore c = 0.1 

e. CTDIair displayed/tabulated – If the user does not specifically define 

the CTDIair, ImPACT uses preset tabular values.  These values are based 

upon reported measurements in a survey that was sent out by Shrimpton 

[90, 238].  As mentioned in Gregory  [198], the reported standard 

deviation was 12%.  Manufacturer specifications for the normalized 

weighted CT dose index state that scanners of a particular model should 

not differ by more than +/-20% [239]. 
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f. CTDIair measured – User measured values are considered to be a better 

estimate of the CTDIair.  Assuming that the measurement device is 

capable of measuring the CTDIair within +/- 5%, then u = 2.5%. 

 

The next group of sensitivity components accounts for the modeling of the x-ray 

production by the Monte Carlo codes. 

 

g. Monte Carlo Modeling – Monte Carlo modeling is widely used to assess 

absorbed dose in diagnostic imaging and radiation therapy.  In radiation 

therapy, Monte Carlo modeling is capable of predicting dose within 5% of 

the delivered value.  Even though radiation therapy energies are much 

higher than diagnostic energies, the same physical principles apply to 

diagnostic imaging where Monte Carlo calculations are not as accurate.  

Because of the widespread use of Monte Carlo codes, I went with the 

value listed in Gregory [198], u = 2%. 

h. Photon Spectrum Modeling – Gregory [198] states that photon 

spectrums in a comparison study have the greatest difference, 2%, with 

chest and abdominal studies and most other studies do not differ by more 

than 1%.  Therefore,for head and cervical spine studies, u = 1% and for all 

other studies in this research, u= 2%. 

i. Table Attenuation – For model development, the entrance air kerma 

(EAK) was measured for each trauma scan using an anthropomorphic 

phantom (Table 19).  Table attenuation is a factor in the variance of the 
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tube current and was measured in the entrance air kerma (EAK) study.  

Listed in the table below are the EAK values.  EAK was measured on the 

center point of the scanning range at four different locations (AP, PA, 

LATR, LATL). 

Table 18.  Measured EAK values. 

EAK Values (mGy) Patient 

LATL 

Patient 

PA 

Patient LATR Patient 

PA 

Average 

Brain Scan 30.98 41.38 32.59 32.06 34.76 +/- 13% 

Cervical Spine 19.90 22.95 27.92 22.25 23.62 +/- 13% 

Ch/Ab/Pel 13.40 21.11 15.07 13.75 16.44 +/- 20% 

Chest 13.10 29.52 16.70 19.73 21.65 +/- 30% 

Thoracic Spine 6.22 6.75 6.83 7.88 6.97 +/- 9% 

Lumbar Spine 17.00 10.69 11.39 9.99 12.90 +/- 23% 

 

j. HVL – There is +/- 10% in half-value-layer value among manufacturer’s.  

With the GE LightSpeed 16 model, the HVL is 7.4 mmAl for a body scan 

and 6.3 mmAl for a head scan (both scans at 120 kVp).  Gregory [198] 

assumes that the range in HVL among manufacturer’s represents 3 

standard deviations.  Therefore, u = 10/3=3.3.  He also sets the sensitivity 

coefficient, c, at 0.6. 

k. Anode Angle – Anode angles vary by manufacturer and are often 

proprietary information.  A sensitivity study was performed to determine 

how the anode angle affected the overall effective dose.  There was an 

overall 8% difference (greatest angle to smallest angle).  An inverse 

relationship was noted between the increasing anode angle and effective 
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dose.  Therefore, assuming that most anode angles are between 7 degrees 

and 16 degrees, then the uncertainty percentage, u, is 8/2 = 4 with a 

sensitivity coefficient, c, set at 1. 

 

Each Monte Carlo program requires the user to input an initial estimate of the incoming 

radiation.  Therefore, the next group of sensitivity components involves the dose input. 

 

l. EAK Matching – for Model development, entrance air kerma (EAK) 

(mGy) was used as the dose input value.  Uncertainty is % error / 2 (from 

the above table).  All values were measured by a Unfors PSD-4 detector 

which was calibrated by the manufacturer.  These devices adhere to the 

radiation device measurement specifications.  Therefore, u=2.5 and c = 1. 

 

In order to model the effective dose from a wide variety of CT machine types and 

manufacturers, ImPACT matches individual scanners to a data base so the sensitivity in 

the scanner matching must also be taken into consideration. 

 

m. CT Scanner Matching – ImPACT has 23 different data sets that are used 

depending upon the machine model/manufacturer chosen.  The chosen 

machine match to a data set via a calculated factor based upon CTDIair.  

Gregory [198] calculated the difference among the data sets to be +/-54% 

or 2.4% per data set.  Using the GUM method for an assumed rectangular 

variance, u = 2.4 / sqrt(3) = 1.4%. 
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The Monte Carlo codes have geometrically designed mathematical phantoms (explained 

in Specific Aim 1) which are used to collect the dose histories and calculate the absorbed 

dose to the individual organ.  The next sensitivity component deals with patient/phantom 

modeling. 

 

n. For ImPACT organ doses, 3% uncertainty is used.  Organ values are 

assumed to be within a 95% confidence interval of the true value.  

Therefore, u = 5%/2 = rounded up for greater conservatism, 3%. 

o. For Model organ doses, uncertainties are listed as calculated by the 

PCXMC model for all 100 phantoms and then weighted (for sensitivity 

coefficient) according to effective dose formulism such that only the 

organs listed make up the total effective dose.  Whereas this isn’t accurate 

according to strict formulism (many organs are not accounted for), this 

does allow for comparisons to be made among the final uncertainty values.   

 

Both the Ht/Wt model development and ImPACT involved simulating the effective dose 

from a CT scan by summing contiguous axial scans.  In practice however, all of the 

trauma protocols, vice Brain Scan, are helically scanned.  Therefore, error is introduced 

when simulating helical scans with axial scans and must be accounted for. 

 

p. CTDosimetry Helical Scanning – ImPACT CTDosimetry is not capable 

of performing helical scanning calculations.  However, adding an 
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additional axial scan on both ends of a scanning range (axial scans) will 

approximate the overscanning (thus additional effective dose) which takes 

place with helical scanning.  Axial scanning is used for Brain scans and 

Cervical Spine scans.  Helical scans are used for all other scanning 

protocols.  Gregory [198] assumed a standard of uncertainty of 10% for 10 

rotation scans and 5% for 20 rotation scans.  Modeling the uncertainty 

trend (exponential) using the standard uncertainties, the below 

uncertainties were calculated.  As more rotations are used, the uncertainty 

in the effective dose is lowered (Table 19). 

Table 19.  Number of rotations per scan protocol. 

Scans Rotations (1 cm slice) + 
2 rotations for helical 

scans 

Uncertainty (%) 

                         

ImPACT PCXMC ImPACT PCXMC 
Brain  16 9.5 7 9.3 

Cervical Spine 23 16 5 7 
Chest Abdomen Pelvis 37 54 2.7 1.25 

Chest 21 29 5.5 3.9 
Thoracic Spine 19 24 6.1 4.8 
Lumbar Spine 17 25 6.6 4.6 

 

The uncertainities are propagated and combined utilizing the method of quadrature.  In 

this method, the overall error in a theorectical measurement output, e, involving two 

measurements with error, m and n, is calculated as below. 

 

                                                                   13 
 

Therefore, the final values on the sensitivity tables show both the overall error using 

tabulated values and the overall error for using measured values.  The 95% confidence 

interval is also given. 
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q. Tabulated CTDIair – combination of Rows: 1-4,5,7-11,12-22,23-24, and 

25.                 
  

    

r. Measured CTDIair – combination of Rows: 1-4,6,7-11,12-22,23-24, and 

25.                
  

    

s. 95% Confidence Interval for ucomb (Row 28 – Row 29) 

i. Row 28, Tabulated 95% CI for ucomb – 2* Row 26 

ii. Row 29, Measured 95% CI for ucomb – 2*Row 27 

 

Results 

Multivariable regression is a powerful tool which helps to explain the relationship between 

predictors and the predicted value.  For multiple regression to be used though, there are 

certain assumptions which must be made:  1) existence – for each specific combination of 

values of the independent variables the dependent variable is a random variable with a 

certain probability distribution having finite mean and variance, 2) independence – the 

dependent variable observations are independent of one another, 3) linearity – the mean 

value of the dependent variable for each specific combination of the independent variables 

is a linear function, 4) homoscedasticity – the variance of the dependent variable is the 

same for any fixed combination of the independent variables, and 5) normality – for any 

fixed combination of independent variables the dependent variable is normally distributed 

[240].  In order to achieve a usable solution which can be widely employed, the two 

predictors used are height and weight either individually or within the BMI formulism.  

Until the capability exists to individually assess specific organ doses from a unique patient 

scan, these regression equations will serve to approximate the effective dose per trauma 

scan as derived from the phantom population explained above in the methodology.   
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Effective dose was modeled best by multivariable regression techniques (Table 18).  This 

approach was primarily suggested through experience and analysis of the coefficient of 

determination, R
2
, which was used as a measure of association between height/weight 

and effective dose.  For four of the scans (chest abdomen pelvis, chest, lumbar spine, and 

thoracic spine), more than 90% of the variation in the effective dose is explained by 

combinations of height and weight.  96% of the variation in the effective dose is 

explained by combinations of height and weight for chest scans while 76% of the 

variation in the effective dose is explained by height and weight for brain scans.  

However, only 65% of the variation in the effective dose is explained by height and 

weight for cervical spine scans.   

 

Table 20.  Ht/Wt mathematical models for calculating the effective dose, E (mSv), by 

trauma scanning region. The  input variables for are height (cm), height
2
 (cm

2
), weight 

(kg), and weight
2
 (kg

2
). 

Scan Protocol Ht/Wt Model Regression Equation R2 

Brain E = 3.35 – 0.00581*Height – 0.00722*Weight 0.76 

Cervical Spine E = 25.7 – 0.0257*Height + 0.000724*Height2 – 

0.00711*Weight 

0.65 

Ch/Ab/Pel E = 17.2 + 0.0628*Height – 0.102*Weight 0.96 

Chest E = 25.9 – 0.120*Height + 0.000456*Height2 – 

0.124*Weight + 0.000329*Weight2 

0.96 

Lumbar Spine E = 9.16 + 0.0418*Height – 0.0644*Weight 0.93 

Thoracic Spine E = 9.20 + 0.0477*Height – 0.0529*Weight 0.90 

   

From Table 20, we can see that for brain scans, the effective dose decreases by 0.00581 

mSv and 0.00722 mSv for each unit increase in the height (cm) and weight (kg), 
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respectively.  For the other scans, the effective dose varies with height, height
2
, weight,  or 

weight
2
.   

 

The estimate of the effective dose decreases as the height and the weight increases for brain 

scans, cervical spine scans, and chest scans (Figure 16).  The relationship between weight 

and the estimate of the effective dose appears to be similar for all three scans by visually 

inspecting the slope of the line.  Weight has a steep slope for the weight indicating that the 

weight has more of a strong negative association with the effective dose. However, the 

relationship between height and the estimate of the effective dose is not similar among the 

three scans.  Although there is still a negative association between the height and the 

estimate of the effective dose, the cervical spine scan and the chest scan are definitely more 

affected by the phantom weight than the phantom height. 
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16a.  
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16b.  
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16c.  
Figure 16.  Effects plot of the predictors plotted against effective dose. 95% confidence 

bands are also presented along with the fitted regression line.  (16a) Brain scan, (16b) 

Cervical Spine Scan, and (16c) Chest Scan. 

The phantom height has a positive effect on the estimate of the effective dose for chest 

abdomen pelvis scans, thoracic spine scans, and lumbar spine scans (Figure 17).  

Conversely, the phantom weight has a negative effect on the estimate of the effective dose 

for the three above scans, although the range in the effective dose estimate is less for the 

thoracic spine and lumbar spine scans than for the chest abdomen pelvis scans.  
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17a.  
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17b.  
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17c.  
Figure 17.  Effects plot of the predictors plotted against effective dose. 95% confidence 

bands are also presented along with the fitted regression line.  (17a) Chest Abdomen 

Pelvis Scan, (17b) Thoracic Spine Scan, and (17c) Lumbar Spine Scan. 

 

Uncertainties Involved in Estimating Effective Dose 

The absorbed dose to an organ is dependent upon many different factors.  In addition to the 

various machine parameters (mA, kVp, slice thickness, etc.) the depth (distance from 

surface) of the organ within the body and the size of the organ (including the density of the 

tissue) contributes to the absorbed dose quantity.  As the depth increases the absorbed dose 

will decrease (Figure 18) exponentially.  Assessing the overall absorbed dose to an organ is 
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also made more difficult since organs are neither shaped uniformly nor are all parts of the 

organ at a uniform depth.    

  
Figure 18.  Dose response according to increasing thickness of solid water slabs 

simulating organ depth.   

 
Sensitivity Tables 

Error analysis for independent values is primarily performed using the method of 

propagation as discussed in Gregory et al [235-236] for propagating medical measurement 

uncertainties.  A sensitivity table is presented for both ImPACT (Tables 21,23,25,27,29,31) 

and the regression model output (Tables 22,24,26,28,30,32). 

  

Table 21.  Sensitivity table for ImPACT brain scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

 
Detector Beam 

Quality 
Fit R2 

Ion Chamber 120 kVp Y=1.51e-0.141x 0.99 
MOSFET 120 kVp Y=1.50e-0.137x 0.96 
OSL Flat 
Orientation 

120 kVp Y=1.31e-0.127x 0.97 
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Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

0.5 0.1 20 2.5E-3 

CTDIair 

displayed/tabulated 

12 1 20 144 

CTDIair measured 2.5 1 20 6.25 

Modeling X-ray 

production 

Monte Carlo 

Modeling 

2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

CT Scanner 

Matching 

ImPACT Scanner 

Factor 

1.4 1 20 1.96 

Patient Modeling 

(error is not 

shown in 

software so 

assumption is 

that values are 

within 3%) 

Adrenals/Gall Bladder     

Brain 3 0.22 20 0.44 

Colon     

Esophagus 3 1.76E-3 20 2.79E-5 

Kidney     

Liver 3 1.59E-4 20 2.28E-7 

Lung 3 7.65E-4 20 5.27E-6 

Pancreas     

Thymus 3 1.76E-3 20 2.79E-5 

Thyroid 3 0.06 20 0.032 

Uterus     

Patient 

Positioning 

Vertical Positioning 7.4 0.3 15 4.92 

Lateral Positioning 8.4 0.18 15 2.29 

Modern Scanner 

Matching 

CTDosimetry helical 

Scanning (16 

rotations) 

7 1 20 49 

Total Uncertainty 

Combined (ucomb) 
Tabulated CTDIair,                

  
    

15 

Total Uncertainty 

Combined (ucomb) 
Measured CTDIair,                

  
    

10 

  Tabulated 95% CI for Ucomb 30 

 Measured 95% CI for Ucomb 20 

 

Table 22.  Sensitivity table for predictive Ht/Wt model brain scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair     
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displayed/tabulated 

CTDIair measured     

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 7 1 20 49 

HVL 3.3 0.6 20 3.92 

Anode Angle 4 1  16 

Dose Input EAK Matching 2.5 1  6.25 

Patient Modeling Adrenals/Gall 

Bladder* 

NA    

Brain 0.3 0.91  0.075 

Colon NA    

Esophagus 20 0.0054  0.012 

Kidney* NA    

Liver 15 6.76e-4  0.0001 

Lung 4 0.023  0.00085 

Pancreas* NA    

Thymus 50 0.0043  0.046 

Thyroid 12 0.057  0.47 

Uterus* NA    

Patient 

Positioning 

Vertical Positioning 10 .1  1 

Lateral Positioning     

Modern Scanner 

Matching 

PCXMC helical 

Scanning (9 rotations) 

9.5 1  90.25 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

14 

 95% CI for Ucomb 28 

 

Cervical Spine Scan Sensitivity Table 

Table 23.  Sensitivity table for ImPACT cervical spine scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

12 1 20 144 

CTDIair measured 2.5 1 20 6.25 

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 1 1 20 1 
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Modeling 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

CT Scanner 

Matching 

ImPACT Scanner 

Factor 

1.4 1 20 1.96 

Patient Modeling 

(error is not 

shown in 

software so 

assumption is 

that values are 

within 3%) 

Adrenals/Gall Bladder 3    

Brain 3 0.068  0.042 

Colon 3    

Esophagus 3 0.031  0.0086 

Kidney 3    

Liver 3 0.0018  2.92E-5 

Lung 3 0.12  0.13 

Pancreas 3    

Thymus 3 0.031  0.0086 

Thyroid 3 0.75  5 

Uterus 3    

Patient 

Positioning 

Vertical Positioning 7.4 0.3 15 4.92 

Lateral Positioning 8.4 0.18 15 2.29 

Modern Scanner 

Matching 

ImPACT helical 

Scanning (23 rotations) 

5 1 20 25 

Total 

Uncertainty 

Combined (ucomb) 

Tabulated CTDIair,                
  

    
15 

Total 

Uncertainty 

Combined (ucomb) 

Measured CTDIair,                
  

    
9 

  Tabulated 95% CI for Ucomb 30 

 Measured 95% CI for Ucomb 18 

 

Table 24.  Sensitivity table for predictive Ht/Wt model cervical spine scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

    

CTDIair measured     

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 
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 Anode Angle 4 1  16 

Dose Input EAK Matching 2.5 1  6.25 

Patient Modeling Adrenals/Gall Bladder*     

Brain 2.7 .078  .044 

Colon     

Esophagus 20 .014  .078 

Kidney*     

Liver 18 0.00064  .00013 

Lung 6.4 .026  .028 

Pancreas*     

Thymus 35 .0079  .076 

Thyroid 10 .86  73.96 

Uterus*     

Patient 

Positioning 

Vertical Positioning 10 .1  1 

Lateral Positioning     

Modern Scanner 

Matching 

PCXMC helical 

Scanning (16 rotations) 

7 1  49 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

13 

 95% CI for Ucomb 26 

 

Chest Abdomen Pelvis Scan Sensitivity Table 

Table 25.  Sensitivity table for ImPACT chest abdomen pelvis scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

12 1 20 144 

CTDIair measured 2.5 1 20 6.25 

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

CT Scanner 

Matching 

ImPACT Scanner 

Factor 

1.4 1 20 1.96 

Patient Modeling 

(error is not 

Adrenals/Gall Bladder 3 .054 20 .026 

Brain 3 .00049 20 2.2E-6 
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shown in 

software so 

assumption is 

that values are 

within 3%) 

Colon 3 .19 20 .32 

Esophagus 3 .089 20 .071 

Kidney 3 .054 20 .026 

Liver 3 .074 20 .049 

Lung 3 .24 20 .52 

Pancreas 3 .054 20 .026 

Thymus 3 .089 20 .071 

Thyroid 3 .10 20 .090 

Uterus 3 .054 20 .026 

Patient 

Positioning 

Vertical Positioning 7.4 0.3 15 4.92 

Lateral Positioning 8.4 0.18 15 2.29 

Modern Scanner 

Matching 

CTDosimetry helical 

Scanning (37 rotations) 

2.7 1 20 7.16 

Total 

Uncertainty 

Combined (ucomb) 

Tabulated CTDIair,                
  

    
14.00 

Total 

Uncertainty 

Combined (ucomb) 

Measured CTDIair,                
  

    
7.55 

  Tabulated 95% CI for Ucomb 28 

 Measured 95% CI for Ucomb 15 

 

Table 26.  Sensitivity table for predictive Ht/Wt model chest abdomen pelvis scan 

calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

    

CTDIair measured     

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

 Anode Angle 4 1  16 

Dose Input EAK Matching 2.5 1  6.25 

Patient Modeling Adrenals/Gall Bladder* 1 .06  .0036 

Brain 1 .0002  4E-8 

Colon 2 .2  .16 

Esophagus .3 .09  .00073 

Kidney* 1 .06  .0036 
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Liver .06 .09  2.9E-5 

Lung .09 .3  .00073 

Pancreas* 1 .06  .0036 

Thymus .6 .07  .0017 

Thyroid .5 .08  .0016 

Uterus* 1 .06  .0036 

Patient 

Positioning 

Vertical Positioning 10 .1  1 

Lateral Positioning     

Modern Scanner 

Matching 

PCXMC helical 

Scanning (54 rotations) 

1.25 1  1.55 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

14 

 95% CI for Ucomb 28 

 

Chest Scan Sensitivity Table 

Table 27.  Sensitivity table for ImPACT chest scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

12 1 20 144 

CTDIair measured 2.5 1 20 6.25 

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

CT Scanner 

Matching 

ImPACT Scanner 

Factor 

1.4 1 20 1.96 

Patient Modeling 

(error is not 

shown in 

software so 

assumption is 

that values are 

within 3%) 

Adrenals/Gall Bladder 3 .024  .0052 

Brain 3 0.00029  7.57E-7 

Colon 3 .0087  6.81E-4 

Esophagus 3 0.087  .068 

Kidney 3 .024  .0052 

Liver 3 0.055  .027 

Lung 3 .24  .52 

Pancreas 3 .024  .0052 

Thymus 3 .087  .068 

Thyroid 3 0.055  .027 

Uterus 3 .024  .0052 



101 

 

Patient 

Positioning 

Vertical Positioning 7.4 0.3 15 4.92 

Lateral Positioning 8.4 0.18 15 2.29 

Modern Scanner 

Matching 

CTDosimetry helical 

Scanning (21 rotations) 

5.5 1 20 31 

Total 

Uncertainty 

Combined (ucomb) 

Tabulated CTDIair,                
  

    
15 

Total 

Uncertainty 

Combined (ucomb) 

Measured CTDIair,                
  

    
9 

  Tabulated 95% CI for Ucomb 30 

 Measured 95% CI for Ucomb 18 

 

Table 28.  Sensitivity table for predictive Ht/Wt model chest scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

    

CTDIair measured     

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

 Anode Angle 4 1  16 

Dose Input EAK Matching 2.5 1  6.25 

Patient Modeling Adrenals/Gall 

Bladder* 

20 .042  .71 

Brain 23 .00028  .000041 

Colon 20 .0085  .029 

Esophagus 6 .10  .36 

Kidney* 1 .042  .0018 

Liver 3 .082  .061 

Lung 1.2 .49  .35 

Pancreas* 11 .042  .21 

Thymus 11 .13  2 

Thyroid 33 .028  .85 

Uterus* 67 .042  7.91 

Patient 

Positioning 

Vertical Positioning 10 .1  1 

Lateral Positioning     

Modern Scanner PCXMC helical 2.9 1  15.21 
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Matching Scanning (29 

rotations) 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

8 

 95% CI for Ucomb 16 

 

Thoracic Spine Sensitivity Table 

Table 29.  Sensitivity table for ImPACT thoracic spine scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

12 1 20 144 

CTDIair measured 2.5 1 20 6.25 

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

CT Scanner 

Matching 

ImPACT Scanner 

Factor 

1.4 1 20 1.96 

Patient Modeling 

(error is not 

shown in 

software so 

assumption is 

that values are 

within 3%) 

Adrenals/Gall Bladder 3 .029  .0076 

Brain 3 .00033  9.80E-7 

Colon 3 .0045  .0018 

Esophagus 3 .1  .09 

Kidney 3 .029  .0076 

Liver 3 .045  .018 

Lung 3 .27  .66 

Pancreas 3 .029  .0076 

Thymus 3 .1  .09 

Thyroid 3 .063  .036 

Uterus 3 .029  .0076 

Patient 

Positioning 

Vertical Positioning 7.4 0.3 15 4.92 

Lateral Positioning 8.4 0.18 15 2.29 

Modern Scanner 

Matching 

CTDosimetry helical 

Scanning (19 rotations) 

6.1 1 20 37 

Total 

Uncertainty 

Combined (ucomb) 

Tabulated CTDIair,                
  

    
15 
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Total 

Uncertainty 

Combined (ucomb) 

Measured CTDIair,                
  

    
9 

  Tabulated 95% CI for Ucomb 30 

 Measured 95% CI for Ucomb 18 

 

Table 30.  Sensitivity table for predictive Ht/Wt model thoracic spine scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

    

CTDIair measured     

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

 Anode Angle 4 1  16 

Dose Input EAK Matching 2.5 1  6.25 

Patient Modeling Adrenals/Gall Bladder* 20 .016  .10 

Brain 15 .0036  .0029 

Colon 17 .0038  .0042 

Esophagus 5.4 .10  .29 

Kidney* 1 .016  .00026 

Liver 2.8 .039  .012 

Lung 1.1 .58  .41 

Pancreas* 11 .016  .031 

Thymus 6.3 .18  1.29 

Thyroid 19 .033  .39 

Uterus* 67 .016  1.1 

Patient 

Positioning 

Vertical Positioning 10 .1  1 

Lateral Positioning     

Modern Scanner 

Matching 

PCXMC helical 

Scanning (24 rotations) 

4.8 1  23 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

8.5 

 95% CI for Ucomb 17 
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Lumbar Spine Sensitivity Table 

Table 31.  Sensitivity table for ImPACT lumbar spine scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

12 1 20 144 

CTDIair measured 2.5 1 20 6.25 

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

CT Scanner 

Matching 

CTDosimetry Scanner 

Factor 

1.4 1 20 1.96 

Patient Modeling 

(error is not 

shown in 

software so 

assumption is 

that values are 

within 3%) 

Adrenals/Gall Bladder 3 .072  .047 

Brain 3 .000014  1.76E-9 

Colon 3 .32  .92 

Esophagus 3 .0062  .00035 

Kidney 3 .072  .047 

Liver 3 .17  .26 

Lung 3 .20  .36 

Pancreas 3 .072  .047 

Thymus 3 .0062  .00035 

Thyroid 3 .00098  8.64E-6 

Uterus 3 .072  .047 

Patient 

Positioning 

Vertical Positioning 7.4 0.3 15 4.92 

Lateral Positioning 8.4 0.18 15 2.29 

Modern Scanner 

Matching 

ImPACT helical 

Scanning (17 rotations) 

6.6 1 20 43.6 

Total 

Uncertainty 

Combined (ucomb) 

Tabulated CTDIair,                
  

    
15 

Total 

Uncertainty 

Combined (ucomb) 

Measured CTDIair,                
  

    
10 

  Tabulated 95% CI for Ucomb 30 

 Measured 95% CI for Ucomb 20 
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Table 32.  Sensitivity table for predictive Ht/Wt model lumbar spine scan calculations. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

       

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

    

CTDIair measured     

Modeling X-ray 

production 

Monte Carlo Modeling 2 1 20 4 

Photon Spectrum 

Modeling 

1 1 20 1 

Table Attenuation 2 1 20 4 

HVL 3.3 0.6 20 3.92 

 Anode Angle 4 1  16 

Dose Input EAK Matching 2.5 1  6.25 

Patient Modeling Adrenals/Gall Bladder* 5.0 .085  .18 

Brain 37 1.3E-5  2.31E-7 

Colon 1.6 .25  .16 

Esophagus 5.7 .056  .10 

Kidney* 1.2 .085  .010 

Liver .81 .16  .017 

Lung 2.0 .19  .14 

Pancreas* 2.3 .085  .038 

Thymus .20 .0097  3.76E-6 

Thyroid 50 .00097  .0024 

Uterus* 8.6 .085  .53 

Patient 

Positioning 

Vertical Positioning 10 .1  1 

Lateral Positioning     

Modern Scanner 

Matching 

PCXMC helical 

Scanning (25 rotations) 

4.6 1  21 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

8.3 

 95% CI for Ucomb 17 

 

The greatest contribution to the overall uncertainty in the Ht/Wt model (up to 7%) came 

from the adaptation of axial scanning to helical scanning.  However, with ImPACT, the 

greatest contributor to the overall uncertainty came from using tabular values for the 
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CTDIair (up to 13%).  Since the Ht/Wt model uses direct measurement (entrance air 

kerma) values as initial inputs in Monte Carlo code, the Ht/Wt model did not have this 

large contributor.  Still, the Ht/Wt model sensitivities are within statistical agreement of the 

sensitivities calculated for ImPACT for all six trauma protocols.  

Conclusion 

Regression analysis was performed in order to show the relationship between height and 

weight and effective dose.  The goal of using height and weight as predictors is to obtain 

minimally confounded estimate of the effect of patient dimensions on effective dose from 

CT trauma protocols.  These predictors can be obtained from the semi-annual physical 

fitness tests that every Soldier in the U.S. Army completes.  Therefore, from an individual 

medical record, a clinician can review the results of a CT scan and by applying the patient 

values of height and weight, from a date near when the CT scans were performed, in the 

regression equation determine an estimate of the effective dose. 

 

The regression equations will be more widely used if they are straight-forward.  In this 

study only height and weight were used as predictors.  BMI alone does not adequately 

express the variance in effective doses in some models as well as using BMI in conjunction 

with the other two predictors, height and weight.  Specific machine characteristics were not 

assessed as predictors because this information is often not known for retrospective 

assessment of effective dose from CT scans.  The coefficient of determination, R
2
, was 

used to describe the variability in the calculated effective dose explained by the linear 

regression model.   
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The models explain the variability in the effective dose well for all scans except for the 

cervical spine scan (R
2
 = 0.65).  This lack of variability explanation is due to the cervical 

spine area not increasing as much by overall size as the phantoms height and weight are 

increased.  This corresponds with what was observed in the initial patient study scanning 

range presented in Specific Aim 1. In the patient study, the mean scanning range of 32 

patients was 23.35 cm with the 25% quartile being 20.64 cm and the 75% quartile being 

25.26 cm.   For all other scans, the regression equations represent the strong relationship 

between the effect of height and weight upon the effective dose.  

  

The effective dose for the chest scan is more affected by weight than by height.  This is 

explained by the location of the body which changes (increases or decreases in overall size) 

as a patient’s weight changes.  The circumference of the torso for most people will increase 

as a person increases in weight.  As a result, we see that effective dose decreases similar to 

previously published research with cardiac patients [199, 225, 241-244].  

 

Ht/Wt model verification (Specific Aim 3) will provide the confidence that both the 

PCXMC code is accurately describing the radiation dose to a patient from a CT scan and 

that the Ht/Wt modeling methodology can be used to describe the effective dose as patient 

dimensions change. 
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CHAPTER 5.  Specific Aim 3:  Verify effective dose models by measuring absorbed 

dose s in organs using optically stimulated luminescent dosimetry and 

anthropomorphic phantoms.  

 
Introduction 

This chapter will address the experimental verification of the estimate of the effective dose 

models developed in the Chapter 4.  Experimental verification will be conducted by 

comparing organ dose measurements from anthropomorphic phantoms with organ dose 

values calculated using the mathematical phantoms used in Chapter 4. 

Experimental dose assessments for CT scans in the diagnostic energy range are in practice 

typically measured with metal oxide semi-conductor field effect transistors (MOSFET) and 

thermoluminescent dosimeters (TLD).  Both detectors are used because of their favorable 

characteristics with energy response, linearity, and reproducibility of irradiation.  MOSFET 

is an electronic device which integrates radiation dose whereas TLDs incorporate a 

crystalline powder or chip to capture the ionizations occurring within the sensitive volume 

[245].  Both detectors have the key advantages of being small, good spatial resolution, and 

simple to use.  Compared to TLDs, MOSFETs have additional significant advantages: 

immediate readout capability, reuse, and permanent storage of dose.   

 

This specific aim is going to focus on the use of a more recent dosimeter, optically 

stimulated luminescent (OSL) material, which offers advantages similar to MOSFET 

detectors and is starting to achieve industry-wide use.  OSL has some distinct advantages 

over traditional detector systems such as radiochromic dye films, plastic scintillators, 

TLDs, diode detectors, or MOSFET detectors [246].  Many detectors require a separate 
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post-irradiation evaluation of the dosimeters because the readout system is not coupled 

directly to the detector.  OSL is not restricted by the single use disadvantage of film or the 

limited lifetime disadvantage of MOSFET.  MOSFET detectors accumulate dose and 

become saturated as they are used until they are unable to respond generally at accumulated 

doses over 200 Gy.  Additionally, MOSFET lifetime will be further decreased when used 

in different sensitivity modes which influence their response to irradiations [247].   

 

In order to verify that the modeled organ dose results are within expected ranges, the 

modeled dose results will be compared against experimental results.  Patient equivalent 

anthropomorphic phantoms obtained from Computerized Imaging Reference Systems Inc 

[248] will be used.  These anthropomorphic phantoms adhere to the requisite ICRP 

guidelines for reference man tissue equivalency [83].  These phantoms have been modified 

by the manufacturer based upon the requirements of this research so that internal 

dosimeters can be inserted into the various organ locations within the body.  The internal 

dosimeters to be used are OSL dosimeters (Figure 19) purchased from Landauer Inc[249].  

The active volume of the dosimeter is located within holders approximately 10-millimeters 

square.   

 

Figure 19.  Landauer Inc. nanoDot OSL dosimeter used in this research (Photo courtesy 

of Landauer Inc.). 
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Characterization of the OSL dosimeters for diagnostic energies required experiments to be 

performed in order to assess energy dependence, linearity, reproducibility, material 

characteristics, and lower limits of detection.  Material characteristics and composition 

were also experimentally assessed to determine if the geometry of the dosimeter compared 

to the x-ray beam direction plays a factor in absorbed dose.  These experiments were 

important to determine the inherent dosimeter shielding.  

 

Anthropomorphic phantoms provide realistic human equivalent dimensions and 

tissue/organ/muscle densities which provide realistic photon and electron scattering thus 

yielding realistic dose characterization [55, 250-251]. Using phantoms simulating different 

sexes and ages allows for a more accurate dose assessment based upon appropriate tissue 

simulation.  Experimental measurements were conducted using the CIRS anthropomorphic 

phantoms and a GE LightSpeed 16 CT machine for each of the six trauma protocols (brain, 

cervical spine, chest abdomen pelvis, chest, thoracic spine, and lumbar spine).  

Anthropomorphic phantoms were used as opposed to water phantoms to simulate non-

homogeneous tissue densities.  The phantoms account for different elements within human 

tissue (carbon, oxygen, hydrogen, nitrogen, calcium, phosphorus, magnesium, aluminum, 

and chlorine).  Tissue simulated in CIRS phantoms are average soft tissue, average bone 

tissue (eliminates the problem of air voids found in trabecular regions of natural bone), 

cartilage, spinal cord, spinal disks, lung, brain, sinus, trachea and bronchial cavities. The 

simulated bone tissue density matches the “age” of the phantom [248].      
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Theory 

Optically Stimulated Luminescent Dosimetry 

Use of OSL dosimeters is advantageous because:  they have the ability to be read many 

times without the need for annealing, they display very little fading over time, and they are 

small in size.  OSL dosimeters have been used for accident dosimetry, medical dosimetry, 

and natural dosimetry.  The primary physical structure of the dosimeter is that of a crystal.  

The crystal lattice provides semiconductor-like physics where ionizing radiation causes 

electron-hole pairs to separate and drift to their respective junctions (n- or p-junctions).  

The freed electrons are of primary concern because these electrons are captured by energy 

traps where they stay until enough stimulated energy is provided for the electron to escape 

and reach the junction.  This excess energy leaves the electron via luminescence as the 

electron drifts towards the junction.  The amount of luminescence directly relates to the 

amount of initial radiation caused the separation of the electron-hole pair (Figure 20).  The 

ideal dosimeter relates the trapped charge population linearly with the absorbed radiation 

dose in the absence of stimulation [252]. 

 

The primary distinction between OSL dosimetry and thermoluminescent (TL) dosimetry is 

the origin of the stimulated energy used to prompt a readable signal.  With TL the 

stimulated energy comes from heat.  As the TL dosimeter is heated up, the electrons in the 

traps absorb enough of the energy to leave the trap and as the electron drifts to the ground 

state, the excess energy provides the luminescence to be measured.  There is some TL 

though in an OSL dosimeter, but the OSL dosimeter is primarily concerned with 

luminescence originating from different traps.  As can be seen below (Figure 20), there are 
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many different trap levels from which to gain information about the initial radiation via 

OSL. 
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Figure 20. Physical processes of the optically stimulated dosimeter [252]. 

A distinct benefit of using OSL dosimetry is that the energy used to stimulate the electron 

in the trap can be tuned via different wavelengths.  There are three main types of energy 

stimulation.  The most common type is continuous wave OSL (CW-OSL). CW-OSL 

stimulates with a constant intensity and constant wavelength.  Constant intensity refers to a 

constant photon flux over time.  The wavelength is usually provided by a laser or more 

recently, a high intensity LED (light emitting diode).  CW-OSL is very dependent upon 

temperature (having to do with the thermal trap depth, generally describing the entropy 

change of the system).  At low temperatures, a reduced signal is observed due to 

competitive trapping of the released charge from a deeper trap to a shallower more stable 

trap which will not contribute to the luminescence.  At higher temperatures, the effect of 

the shallow traps is negligible and the OSL signal is much higher.  Intermediate 
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temperatures yield a shifted signal peak reflecting the trapping of the charge into the 

shallow traps and subsequent release providing the luminescence. An ideal CW-OSL signal 

will approximate a simple exponential decay curve which can be approximated by first 

order kinetics.  The signal will deviate from the exponential decay curve when re-trapping 

takes place into the shallow traps from deeper traps, and the presence of more than one 

recombination center.  Linear modulated OSL (LM-OSL) keeps the constant wavelength 

but varies the intensity of the stimulation source in a linear manner.  The OSL is monitored 

throughout the ramping up of the intensity.  This linear ramp has an advantage over CW of 

resolving the trap’s de-trapping rates (fast, medium, and slow).  The general shape of the 

signal shows a linearly increasing function in proportion to the linear increase in 

stimulation power which is then followed by a Gaussian decrease in OSL intensity as the 

traps depopulate.  The positioning of the signal peak reflects both the wavelength and the 

linear modulation rate.  The resolving advantage of LM over CW eliminates the signal 

superposition of different trap depth depletion.  Pulsed OSL (POSL) maintains the 

absorbed energy per pulse but varies the intensity and pulse time.  An inverse relationship 

is used between intensity and pulse time.  POSL keeps a constant wavelength throughout 

[246]. 

     

Scientists have found both natural-occurring crystals and have grown synthetic crystals for 

OSL.  One of the most common naturally-occurring crystals is feldspar (located in sand).  

Feldspar has been used to measure background radiation found in nature and has also been 

used to determine the amount of radiation given off in accidents (i.e. Chernobyl) [246].  

Common synthetic crystals include Al2O3:C, halides (KCl, KBr, NaCl, RbI, CaF2 doped 
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with Mn, BaF(Br, Cl, I) doped with Eu), Sulfates (MgSO4, CaSO4), Sulphides (MgS, SrS, 

CaS, BaS), and Oxides (BeO, fused quartz doped with Cu).  The most commonly used 

synthetic material is probably Al2O3:C [253-267].  This synthetic material is extremely 

sensitive (emitted luminescence photons per unit radiation dose) to both TL and OSL.  

Al2O3:C as a TL dosimeter has a disadvantage of being extremely sensitive to heat; higher 

sensitivity at lower temperatures as opposed to higher temperatures.  However, this 

temperature dependence is not of concern when used as an OSL material, and the 

characteristic of phototransfer of charge from deep states (traps) to shallower states is 

favorable.  The wavelength of light used to stimulate the luminescence for Al2O3:C is best 

between 475 and 500 nm, with the peak being about 480 nm [246].  Note though that the 

tunable wavelengths can be used to depopulate specific traps.  Environmental dosimetry is 

often concerned with the electrons in the shallower traps whereas medical dosimetry is 

concerned with the electrons in the deeper traps.  Providing the necessary stimulated energy 

to depopulate shallow traps will not affect the charge in the deep traps.  One of the ideal 

characteristics with OSL dosimetry is that the crystal can be read multiple times without 

depleting the electron traps.  Zeroing the crystal is also fairly easy by thermal annealing or 

bleaching with stimulation light [252]. 

 

The type of OSL system that will be used in the study will be the Landauer InLight
TM

 

personal dosimetry system.  This system is a continuous-wave OSL that uses bright LEDs 

(green wavelength) to stimulate the OSL utilizing the Al2O3:C crystal.  The LEDs provide 

longer read-out capabilities as compared to pulsed OSL and has very little signal depletion.  
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The operational dose range for this system is up to 10 Gy with photon energies greater than 

5 keV and electron energies greater than 150 keV [249, 268]. 

 

The below figure (Figure 21) illustrates the fundamental approach to reading the OSL 

dosimeter.  The light source is filtered to the desired wavelength most optimal for 

luminescence and then used to stimulate the dosimeter.  The luminescence within the 

dosimeter is then read by the photo multiplier tubes which amplify the luminescent light to 

be measured by the attached electronics.  

 

Figure 21.  Light stimulation diagram describing how the OSL signal 

is obtained [269]. 

OSL and radioluminescence responses of Al2O3:C fiber probes have been found to increase 

linearly with dose rate and the absorbed dose in the radiotherapy range (0.5 – 85 Gy) with 

uncertainties on the order of 0.7 to 3.2% [270].    
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Although Al2O3:C is becoming the standard crystal, other materials, KBr:Eu, have shown 

the desired characteristics for real-time dosimetry [271].  Additionally, studies [272] have 

shown that OSL can be used for in vivo dosimetry on patients using a buildup cap for 

entrance dose measurements.   

 

For this study, the reproducibility of the study dosimeters (Landauer Dots) was about 2.5% 

(within one standard deviation) with the stability of the system showing that a given batch 

of dosimeters can be used with a single calibration factor.  A single calibration factor can 

also be used for dose ranges 0.5 to 4 Gy as the response from the dosimeters is linear. 

 

OSL research is still a narrow field.  AAPM annual meetings have averaged only about 3-4 

presentations per year since 2005 [269].  OSL characteristics look to be promising for 

innovative therapy technologies such as proton therapy and heavy ion therapies but 

research hasn’t been conducted.  Additionally, OSL techniques applied to computed 

tomography, radio-diagnostics, fluoroscopy, and particle dosimetry are beginning to be 

developed. 

 

Anthropomorphic Phantoms 

Anthropomorphic phantoms have many uses in medical physics.  They are designed to 

approximate the shape and the different tissue densities which make up the human body.  

Radiation detectors can often be inserted into the phantom so that the readings approximate 

the radiation absorbed dose at that specific location.  There are many different types of 

anthropomorphic phantoms and some research entities even construct their own.   
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One of the most popular anthropomorphic phantoms used today is the Rando-Alderson 

phantom (Alderson Radiation Therapy Phantom, Radiology Support Devices, Inc., Long 

Beach, California) and has been in use for more than 30 years.  These phantoms are molded 

of tissue-equivalent material and follow ICRU-44 standards [273].  Typically, the 

phantoms are ordered and designed for use with TLD dosimeters.   

 

CIRS (Computerized Imaging Reference Systems, Norfolk, Virginia) also manufactures 

and designs anthropomorphic phantoms in accordance with ICRU 44 [273], ICRP 23 , and 

ICRP 89 specifications [248].  These phantoms can be ordered in a variety of sizes from 

adults down to pediatrics and have been in use since the late 1980s.  For this research, we 

ordered an adult male (height equals 173 cm, weight equals 73 kg, thorax dimensions equal 

23 cm x 32 cm) and an adult female (height equals 160 cm, weight equals 55 kg, thorax 

dimensions equal 20 cm x 25 cm).  We specifically asked the company to make 

modifications to the phantoms prior to shipment so that the phantoms would accommodate 

a 14-mm diameter plug designed for use with a Landauer, Inc. nanoDOT dosimeter.  

 

Researchers have regularly used anthropomorphic phantoms to experimentally verify 

mathematical estimates of effective dose.  Hurwitz et al [274] used a CIRS female phantom 

for MOSFET comparison against effective dose calculations using conversion coefficients 

and found that the use of conversion coefficients underestimate the effective dose by up to 

37%.   Salvado et al [275] experimentally verified the effective dose in voxelized Rando 

Alderson phantoms against EGS4 simulations of a HiSpeedLX/i (GE Medical Systems, 

Milwaukee, Wisconsin) CT system to good agreement.  Other researchers [276] have 
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further compared the Cristy mathematical phantoms used by ImPACT with voxelized 

anthropomorphic phantoms and have also found that geometrical phantoms (Cristy) will 

also underestimate the effective dose when compared against voxelized phantoms.  

Comparisons between physical phantoms and computer have shown that the difference in 

organ dose is the smallest when either organs that are small in volume and can be easily 

represented by an averaged point dose estimate, or for those large organs which receive a 

fairly uniform absorbed dose throughout its volume, or when the organ is large but receives 

a properly volume averaged absorbed dose gradient [250].   

 

OSL Characterization 

The dosimeters were characterized using a special reader (MicroStar
TM

 InLight
TM

 Reader, 

Landauer, Inc., Glenwood, Illinois) (Figure 22) with an 80 kVp calibration. The dosimeters 

were exposed to diagnostic x-rays (maximum energy of 140 kVp).  The dosimeters were 

then stimulated with a wavelength in the visible green spectrum which caused an emission 

of blue light which was quantified for dosimetric assessment.  The dosimeters were not 

manipulated upon receipt and still possessed the pre-determined manufacturer 

specifications on radiation sensitivity.  
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Figure 22.  InLight
TM

 MicroStar® System. 

Very low energy irradiations (22 kVp – 35 kVp) were performed using a standard 

mammography machine (General Electric Senographe Essential 2000D, General Electric 

Healthcare: Chalfont St. Giles, United Kingdom) and a PMMA (poly-methyl methacrylate) 

mammography phantom.  Low-energy irradiations (50 kVp – 140 kVp) were performed 

using a radiographic-fluoroscopic unit (Philips EasyDiagnost Eleva, Philips Healthcare, 

Andover Massachusetts) and a 20 cm x 20 cm x 20 cm Lucite phantom. 

 

Proper calibration procedures as listed by the manufacturer were followed prior to 

irradiating the dosimeters.  For the purposes of this study, the 80 kVp calibration set was 

used.  Following the initial irradiation, each dosimeter was subjected to 3 sets of 

measurements within 24 – 72 hours.   
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Dosimeters were evaluated for energy response both on-phantom and free-in-air with five 

dosimeters were each exposed to different energies of 22, 35, 50, 80, 120 and 140 kVp.  

The energy response was normalized to 80 kVp.  Dosimeter results were compared to 

results from a calibrated ion chamber (Model 10X6, Radcal Corporation, Monrovia, 

California) measured both on-phantom and free-in-air.  Each was exposed at 22, 35, 50, 80, 

120 and 140 kVp.  The angular response for horizontal rotation was determined by 

exposing 5 dosimeters each at varying incident angles (0, 45, 90, 135 and 180 degrees) 

using an 80 kVp x-ray beam.  Energy dependence of the dosimeter was compared against 

the calibrated ion chamber.  The ion chamber chosen is designed for low-level radiation 

measurements and has a 6 cm
3
 active volume with an energy dependence of plus or minus 

5% in the energy range from 33 keV to 1.33 MeV.  

 

Characterization Results  

Energy dependence was shown to be within plus or minus 15% when exposed free-in-air 

over the diagnostic energy range between 22 to 140 kVp.  The dosimeters when similarly 

compared with the ion chamber gave results within plus or minus 15% when exposed free-

in-air (Figure 23).  Energy dependence was also shown to be within plus or minus 17% 

when exposed on-phantom over the diagnostic energy range between 22 to 140 kVp.  The 

dosimeters were then compared with the ion chamber and the results agreed within plus or 

minus 17% when exposed on-phantom (Figure 24).   
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Figure 23.  Results of dosimeter to ion chamber comparison when 

placed free-in-air. 

 

Figure 24.  Results of dosimeter to ion chamber comparison when 

placed on a phantom. 
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Horizontal angular response differences at 45, 135, and 180 degrees were shown to be 

within 3% of the zero degree response.  A 15% reduction in response was identified when 

the dosimeter was exposed on-edge (90 degrees) (Figure 25).  As expected, the dosimeters 

were shown to have a linear response from 100 µGy through 20 Gy (See Figure 26) with a 

coefficient of determination value of 0.9997. 

 

Figure 25.  Ratio of dosimeter to ion chamber angular response. 
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Figure 26. Dosimeter linearity with a coefficient of determination 

(R
2
) value of 0.9997 between delivered dose and measured dose. 

Discussion   

The results of this study confirm the previous literature references which outlined the 

characterization of the dosimeters utilizing the radioisotope, 
137

Cs [268, 277].  The 

dosimeters are extremely proficient at measuring low-energy x-rays produced by basic 

radiographic machines as proven by these measurements and confirmed in the existing 

literature.  The unique low-profile dosimeters can be placed on equipment and personnel in 

radiation environments.  The angular response variation was expected due to the low 

photon energy and the minor self-shielding of the holder material.  The inherent 

construction of the dosimeter allows for appropriate skin dose monitoring [278].  The 

multiple readout, rapid analysis, and size advantages of OSL technology make the 

dosimeter a useful choice for passive dosimetry [279].   
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OSL Characterization Conclusion  

The results of the basic measurements in this study show that small OSL dosimeters are 

suitable for patient in the low energy range (22 kVp – 140 kVp).  Small size aluminum 

oxide OSL dosimeters and portable readers can be a convenient methodology for patient 

dosimetry applications across the diagnostic imaging energy range.  The dosimeters can be 

quickly read and analyzed.  OSL technology should prove extremely useful in assessing 

skin dose [280].  The dosimeters are linear over a large dose range and compare well with 

ion chamber results, having acceptable energy and angular dependence. 

 

OSL Depth Response  

In order to judge the response of the OSL with varying tissue thicknesses, a separate 

experiment was performed using solid water slabs to replicate varying thicknesses of tissue.  

Based off of the characterization experiment presented above, the OSL dosimeters were 

placed within a radiographic field next to both MOSFET detectors and an ion chamber 

(Figure 27).  Three different diagnostic energies were assessed (80 kVp, 100 kVp, and 120 

kVp) and the MOSFET detectors were calibrated to the beam quality HVL (7.4-mm Al) in 

a GE LightSpeed 16 CT machine (General Electric Medical Systems, Milwaukee, 

Wisconsin).  Solid water slabs of varying thicknesses were used to simulate tissue.  

Numerical analysis and graphing was performed using Microsoft Excel.      



125 

 

a.  b.  

Figure 27.  Experimental setup for assessing depth response. Figure 23a shows the 

detector set up without slabs of solid water.  Figure 23b shows the setup with the solid 

water slabs on top of the blue support cushions. 

OSL Depth Response Results 

As expected the response from all three detectors (OSL, MOSFET, and ion chamber) 

exponentially decreased as the solid water thickness increased (Figures 28-30).  

Interestingly, both detectors (OSL and MOSFET) have a similar response ratio (Figure 31) 

at depths up to approximately 4-cm solid water, although the OSL over-responds and the 

MOSFET under-responds when compared with the ion chamber.  However, at thicknesses 

greater than 5-cm solid water, the response ratios change.  Both detectors respond within 

+/- 20% of the calibrated ion chamber. 
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Figure 28. Detector response at varying depths of solid water at 80 

kVp. 

 

Figure 29. Detector response at varying depths of solid water at 100 

kVp. 
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Figure 30. Detector response at varying depths of solid water at 120 

kVp. 

 
Figure 31.  Ratio of OSL and MOSFET detectors with the ion 

chamber (IC).  Both detectors have a response ratio of within +/- 

20%. 

 
Table 33 presents the fitted exponential regression equations for the three detectors and the 

coefficient of determination, R
2
.  The high coefficient of determination indicates that there 
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is a strong relationship between the depth and the detector response and also indicates that 

the response of each detector would be linear when graphed on a log scale.  This is in 

keeping with the results shown in the OSL characterization section of this chapter. 

 

Table 33. Detector response and fitted exponential regression equations at the three 

experimentally assessed beam qualities. The predicted value, y, represents the detector 

response, and x, represents the depth (cm). 

Detector Beam Quality Regression Equation Correlation 

Coefficient, R
2
 

Ion Chamber 80 kVp y=0.2649e
-0.198x

 0.9971 

MOSFET 80 kVp y=0.2526e
-0.172x

 0.9665 

OSL Flat Orientation 80 kVp y=0.2967e
-0.195x

 0.9978 

OSL Edge Orientation 80 kVp y=0.2768e
-0.186x

 0.9978 

Ion Chamber 100 kVp y=0.4844e
-0.183x

 0.9970 

MOSFET 100 kVp y=0.4733e
-0.17x

 0.9728 

OSL Flat Orientation 100 kVp y=0.4821e
-0.18x

 0.9891 

OSL Edge Orientation 100 kVp y=0.4636e
-0.175x

 0.9965 

Ion Chamber 120 kVp y=1.5118e
-0.141x

 0.9862 

MOSFET 120 kVp y=1.4995e
-0.137x

 0.9556 

OSL Flat Orientation 120 kVp y=1.3109e
-0.127x

 0.9660 

 

The ratio of the response of each OSL orientation (Figure 32) was shown to be within +/- 

12% when the dosimeter was placed along the direction of the primary beam or orthogonal 

to the primary beam. 
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Figure 32.  Ratio of the OSL orientation (OSL Flat to OSL Edge) at varying thicknesses 

of solid water for both 80 kVp and 100 kVp. 

OSL Depth Response Discussion 

The OSL responds as expected to radiation at various depths simulated by increasing 

thicknesses of solid water slabs.  The dose response of the OSL is similar to the dose 

response of the more widely used MOSFET detectors.   Both dose responses are within +/- 

20% of the calibrated ion chamber.  When the OSL nanoDot is placed within the 

anthropomorphic phantom, care should be taken to ensure that the dosimeter is aligned in 

the anthropomorphic organ plugs in the same manner for every experimental run.  This will 

ensure that the dosimeter has a consistent response between experiments. 

  

Responses of the OSL tend to varying more at lower diagnostic energies.  For this reason, I 

assessed the responses of the OSL place on edge to the primary beam to the response of an 
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OSL placed flat (orthogonal) to the primary beam.  The primary energies assessed were 80 

kVp and 100 kVp.  The responses were within +/- 12%.   

 

OSL Depth Response Conclusion 

OSL dosimeters have a similar response to a calibrated ion chamber when placed under 

increasing thicknesses of solid water simulating tissue.  The overall response was 

exponentially decreasing as the thickness increased.  The OSL response was within +/- 20 

% of the ion chamber for all thicknesses of solid water.  Additionally, the response did not 

vary more than +/- 12% when the dosimeter was placed along the direction of the primary 

beam or orthogonal to the primary beam.  OSL can be used in an anthropomorphic 

phantom to assess radiation dose from a CT machine.  The orientation of the OSL to the 

primary beam will have no significant affect on how the OSL dosimeter responds which is 

important when measuring the overall absorbed dose to a specific location from both 

primary radiation and scatter radiation.  

 

Methodology 

In order to verify the model development, the six trauma CT scans (Tables 34 and 35) were 

conducted on the anthropomorphic female and male phantoms with OSL dosimeters placed 

in different organ locations.  The measured absorbed organ doses were compared against 

specifically modeled phantoms matching the height and weight in the PCXMC code.   
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Table 34.  General technique factors used for the experimental measurements of the male 

anthropomorphic phantom (Dude).  Scanning ranges are shown in Specific Aim 2. 

CT Scan Type Tube 

Potential 

Tube 

Current 

Slice 

Thickness 

Brain Axial 120 kVp 155 mA 5 mm 

Cervical 

Spine 
Helical 120 kVp 155 mA 2.5 mm 

Chest 

Abdomen 

Pelvis 

Helical 120 kVp 
Smart mA 

(220-380 mA) 
5 mm 

Chest Helical 120 kVp 
Smart mA 

(100-440 mA) 
5 mm 

Thoracic 

Spine 
Helical 120 kVp 

Smart mA 

(100-440 mA) 
5 mm 

Lumbar Spine Helical 120 kVp 
Smart mA 

(100-440 mA) 
2.5 mm 

 

Table 35. General technique factors used for the experimental measurements for the 

female anthropomorphic phantom (Daisy).  Scanning ranges are shown in Specific Aim 

2. 

CT Scan Type Tube 

Potential 

Tube 

Current 

Slice 

Thickness 

Brain Axial 120 kVp 155 mA 5 mm 

Cervical 

Spine 
Axial 120 kVp 155 mA 2.5 mm 

Chest 

Abdomen 

Pelvis 

Helical 120 kVp 
Smart mA 

(220-380 mA) 
5 mm 

Chest Helical 120 kVp 
Smart mA 

(100-440 mA) 
5 mm 

Thoracic 

Spine 
Helical 120 kVp 

Smart mA 

(100-440 mA) 
5 mm 

Lumbar Spine Helical 120 kVp 
Smart mA 

(100-440 mA) 
5 mm 

 

Phantom placement (Figure 33a) on the CT machine couch is the same as a typical human 

placement for CT scanning. Soft tissue plugs of appropriate density were inserted at 

various locations in the different slabs where organs of interest are located (Figure 33b).  

The anthropomorphic phantoms have been designed and manufactured in accordance with 
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ICRU 30 specifications for elemental composition of human tissues (Table 36) [248].  

Some organs are more easily identified by their location and general shape (note the lungs 

(pink) in Figure 33b) than others which will take on the same color (generally gray) as 

normal tissue.   

a.  b.  

Figure 33.  Representative photo of an anthropomorphic phantom on the CT scanning 

couch (Figure 33a) and a cross-section view of a 2.5-cm slab of the anthropomorphic 

phantom (Figure 33b). 

Table 36.  Material elemental composition for CIRS, Inc. adult anthropomorphic 

phantoms. 

Adult Phantom Material Elemental Composition 
Tissue C O H N Ca P Mg Cl Al Physical 

Density 
g/cc 

Electron 
Density 
g/cc 

Adult 
Bone 

0.3703 0.3566 0.0483 0.0097 0.1524 0.0290 0.0619 0.0005 0.0000 1.60 5.030E+23 

Soft 
Tissue 

0.5744 0.2459 0.0847 0.0165 0.0000 0.0000 0.0762 0.0019 0.0000 1.05 3.434E+23 

Spinal 
Cord 

0.5427 0.2659 0.0736 0.0217 0.0000 0.0000 0.0937 0.0022 0.0000 1.07 3.448E+23 

Spinal 
Disks 

0.4627 0.3082 0.0675 0.0188 0.0000 0.0000 0.1407 0.0020 0.0000 1.15 3.694E+23 

Lung 0.6336 0.2046 0.0832 0.0315 0.0000 0.0000 0.0000 0.0137 0.0000 0.21 6.820E+22 
Brain 0.5360 0.2649 0.0816 0.0153 0.0000 0.0000 0.0998 0.0019 0.0000 1.07 3.470E+23 

 

Determination of which organs to be measured was made by conducting a separate 

experiment assessing which organ doses contributed the most to the overall effective dose 

from each scan.  There is a difference in the overall number of organ locations assessed 

when comparing the female phantom (Daisy) (Table 37) to the male phantom (Dude) 
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(Table 38). This is due to limitations on the number of soft tissue plugs (representing 

different organ densities) on hand at the time during the scanning experiments.  When 

experimental scanning was conducted on Dude, more soft tissue plugs were obtained from 

the manufacturer and used. 

Table 37.  Table presenting the number of dosimeters and their locations in the female 

phantom (Daisy). 

Organ Number of Dosimeters 

Adrenals / Gall Bladder 1 

Bone 9 

Brain 6 

Colon 1 

Spinal Cord 1 

Esophagus 1 

Eye 3 (1 in eye socket, 2 surface) 

Kidney 1 (Right Kidney) 

Liver 1 

Lung 4 

Pancreas 1 

Thymus 1 

Thyroid 1 

Uterus 1 

Total Number of Plugs 32 

 

 

 



134 

 

Table 38.  Table presenting the number of dosimeters and their locations in the male 

phantom (Dude). 

Organ Number of Dosimeters 

Heart 1 

Mandible 2 

Brain 6 

Colon 2 

T/L Spine 1 

Esophagus 1 

Eye 4 

Kidney 2 

Liver 2 

Lung 8 

Pancreas 1 

Thymus 2 

Thyroid 4 

Prostate 2 

Adrenals / Gall Bladder 1 

Testes 2 

Total Number of Plugs 41 

 

All dosimeters were read in a dosimeter reader at least three times and then the readings 

were averaged.  The dosimeter reader was calibrated using the manufacturer’s 80 kVp, 

2.9-mm Al HVL calibration technique.  Final readings were adjusted to account for CT 

scanning (120 kVp) by multiplying each final reading by 115% based upon our energy 
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response curve (Figure 24).  The averaged dose to an individual organ is calculated 

according to the below equation (equation 13). 

 

   
 

 
                                       -      

                                  13                                                                   

 

The following tables present the absorbed dose from the experimental measurements 

compared against those calculated using the specific dimensions of the phantoms (height 

and weight) as input into PCXMC.  Some differences (experimental versus calculated) 

between the specific organ absorbed doses were expected based upon literature review 

[46, 59, 123, 190, 250, 281-282].  Overall, equivalent dose differences were expected to 

be within 30% for those organs within the primary range of the scan.  Absolute percent 

differences are calculated according to equation 14. 

 

                             
                   

                       
                            14 

 

Results 

Brain Scan   

Table 39 lists the organ doses (mGy) for both the experimentally measured quantity and 

the calculated quantity for Daisy and Dude.  Absorbed doses to the eyes is not able to be 

mathematically calculated with the PCXMC program primarily due to eyes not having an 

internationally agreed upon radiation sensitivity by which an equivalent dose can be 

calculated.   

 

Table 39.  Specific organ absorbed doses. 

Organ Daisy Dude 

Measured 

(Daisy) 

Calculated 

(Phantom)  

ABS % 

Difference 

Measured 

(Dude) 

Calculated 

(Phantom)  

ABS % 

Difference 
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Absorbed 

Dose 

(mGy) 

Absorbed 

Dose 

(mGy) 

Absorbed 

Dose 

(mGy) 

Absorbed 

Dose 

(mGy) 

 Eye 34 +/-3  

(each) 

NA  22.9 +/- 

0.7 

NA  

Brain 30 +/- 5 33.80 +/- 

.09 

12% 21 +/- 1 17 +/- 2 21% 

Thyroid 2.82 +/-

.05 

0.51 +/- 

.06  

139% 0.8 +/- 0.2 0.15 +/- 

0.03 

137% 

Lung 0.13 +/- 

.03 

0.072 +/- 

.003 

57% 0.2 +/- 0.1 .024 +/- 

0.001 

157% 

Thymus 1.31 +/- 

.05 

0.04 +/- 

.02 

188% 0.26 +/- 

0.01 

0.014 +/- 

0.008 

180% 

Esophagus 0.286 +/- 

.007 

0.05 +/- 

.01 

140% 0.680 +/- 

0.007 

0.015 +/- 

0.007 

191% 

Liver 0.054 +/- 

.002 

0.0062 +/- 

.0009 

159% 0.04 +/- 

0.02 

0.0021 +/- 

0.0007 

180% 

 

Table 40 lists the equivalent dose for each organ.  Equivalent dose is determined by 

multiplying the absorbed dose by the ICRP 103 tissue weighting factor.  Note that there is 

no ICRP 103 tissue weighting factor, therefore, the absorbed dose measured for the eyes 

is not a part of the summed equivalent dose (referred to as the modified effective dose). 

 

Table 40.  Modified effective dose per scan and the influence of the equivalent dose on 

the overall modified effective dose. 

Organ ICRP103 

Tissue 

Weighting 

Factor 

Measured 

Dose 

Equivalent 

(Daisy) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS % 

Diff 

Measured 

Dose 

Equivalent 

(Dude) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS % 

Diff 

Brain 0.01 0.30+/-

0.05 

0.338 +/- 

0.0009 

 0.21 +/- 

0.01 

0.17 +/- 

0.02 

 

Esophagus 0.04 0.011 +/- 

0.002 

0.0020 

+/- 

0.0004 

0.0272 

+/- 

0.0003 

0.0006 

+/- 

0.0003 

Liver 0.04 .00216 

+/- 

0.00008 

0.00025 

+/- 

0.00004 

0.0016 

+/- 

0.0008 

0.00008 

+/- 

0.00003 

Lung 0.12 0.016 +/- 0.0086 0.02 +/- 0.0029 
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0.004 +/- 
0.0004 

0.01 +/- 
0.0001 

Thymus 0.04 0.052 +/- 

0.002 

0.0016 

+/- 

0.0008 

0.0104 

+/- 

0.0004 

0.0006 

+/- 

0.0003 

Thyroid 0.04 0.113 +/- 

0.002 

0.021+/- 

0.002 

0.032 +/- 

0.008 

0.006 +/- 

0.001 

Modified Effective 

Dose (mSv) 

0.49 +/- 

0.05 

0.370 +/- 

0.002 

28% or 

12% 

w/brain 

alone 

0.30 +/- 

0.02 

0.18 +/- 

0.02 

50% or 

21% 

w/brain 

alone 

 

Cervical Spine Scan 

 

Table 41 lists the organ results for a cervical spine scan while Table 42 lists the 

equivalent doses and modified effective dose.  The organs directly within the scanning 

field of view are the thyroid and lower portion of the brain.  The esophagus is partially 

scanned.   

Table 41.  Cervical Spine specific organ absorbed dose. 

Organ Daisy Dude 

Measured 

(Daisy) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Measured 

(Dude) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

 Eye 34 +/- 2  

(each) 

NA  18.6 +/- 

0.7 

NA  

Brain 9 +/- 6 

(high SD 

due 

location of 

dosimeters) 

10.9 +/- 0.3 19% 7 +/- 4 6.5 +/- 0.2 7% 

Thyroid 44.5 +/-.05 30 +/- 3 39% 21 +/- 1 28 +/- 2 29% 

Lung 0.5 +/- 0.1 0.31 +/- 

0.02 

47% 4 +/- 3 0.83 +/- 

0.04 

131% 

Thymus 8.0 +/- 0.2 0.26 +/- 

0.09 

187% 14.2 +/- 

0.2 

0.7 +/- 0.2 181% 

Esophagus 1.83 +/- 

0.02 

0.5 +/- 0.1 114% 13.5 +/- 

0.2 

1.5 +/- 0.2 160% 

Liver 0.221 +/- 0.022 +/- 164% 0.6 +/- 0.046 +/- 171% 
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0.005 0.004 0.4 0.007 

 

Table 42.  Cervical Scan modified effective dose per scan and the influence of the 

equivalent dose on the overall modified effective dose. The absolute percent difference 

between the effective dose values is lower when only considering those organs within the 

field-of-view (FOV) of the CT scanning range. 

Organ ICRP103 

Tissue 

Weighting 

Factor 

Measured 

Dose 

Equivalent 

(Daisy) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% Diff 

Measured 

Dose 

Equivalent 

(Dude) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% Diff 

Brain 0.01 0.09+/-

0.06 

0.109 +/- 

0.003 

 0.07 +/- 

0.04 

0.065 +/- 

0.001 

 

Esophagus 0.04 0.0732 

+/- 

0.0008 

0.020 +/- 

0.004 

0.540 +/- 

0.008 

0.060 +/- 

0.008 

Liver 0.04 0.0088 

+/- 

0.0002 

0.0009 

+/- 

0.0002 

0.02 +/- 

0.02 

0.0018 

+/- 

0.0003 

Lung 0.12 0.06+/- 

0.01 

0.037 +/- 

0.002 

0.48 +/- 

0.4 

0.100 +/- 

0.005 

Thymus* 

(cause of 

high % 

diff) 

0.04 0.320 +/- 

0.008 

0.011 +/- 

0.004 

0.586 +/- 

0.008 

0.006 +/- 

0.002 

Thyroid 0.04 1.780 +/- 

0.002 

1.2 +/- 

0.1 

0.84 +/- 

0.04 

1.12 +/- 

0.08 

Modified Effective 

Dose (mSv) 

2.33 +/- 

0.06 

1.4 +/- 

0.1 

50% 

or 

37% 

for 

organs 

w/in 

FOV 

2.5 +/- 

0.4 

1.35 +/- 

0.04 

60% 

or 

15% 

for 

organs 

w/in 

FOV 

 

The percent difference in the different methods for the modified effective dose is 50% for 

Daisy and 60% for Dude.  When calculated using only those organs within the FOV, the 

percent difference is 35% for Daisy and 26% for Dude.  For only those organs that lie 

within the scanning FOV (Thyroid, Brain, and Esophagus), the percent difference for 
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Dude (Measured (1.45 mSv) and Calculated (1.25 mSv)) is 15%.  The percent difference 

for Daisy (Measured (1.94 mSv) and Calculated (1.33 mSv)) is 37%. 

Chest Abdomen Pelvis Scan 

Tables 43 and 44 list the absorbed doses and the modified effective dose for a chest 

abdomen pelvis scan.  All of the organs listed in the tables are included within the primary 

scanning field of view except the brain (and of course the eyes). 

 

Table 43.  Organ absorbed doses for a chest abdomen pelvis scan. 

Organ Daisy Dude 

Measured 

(Daisy) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Measured 

(Dude) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Adrenals/Gall 

Bladder 

26.90 +/- 

0.03 

35.9 +/- 

0.3 

29% 27.9 +/- 

0.4 

38 +/- 8 31% 

Brain 0.29 +/- 

0.02 

0.380 +/- 

0.004 

27% 0.7 +/- 

0.3 

0.05 +/- 

0.02 

173% 

Colon 22.3 +/- 

0.7 

27.5 +/- 

0.7 

21% 28 +/- 5 35 +/- 2 22% 

Esophagus 25 +/- 1 29.4 +/- 

0.1 

16% 22.1 +/- 

0.4 

25 +/- 4 12% 

Eye 0.495 +/- 

0.008  

NA  0.74 +/- 

0.08 

NA  

Kidney 24.2 +/- 

0.5 (each) 

42.17 +/- 

0.08 

14% 24.2 +/- 

0.8 (each) 

45 +/- 2  7% 

Liver 26.0 +/- 

0.2 

39.20 +/- 

0.03 

40% 26.3 +/- 

0.9 

47 +/- 1 56% 

Lung 27 +/- 1 

(each) 

45.13 +/- 

0.04 

18% 24 +/- 1 

(each) 

43 +/- 3 11% 

Pancreas 25.9 +/- 

0.4 

32.4 +/- 

0.1 

22% 28.5 +/- 

0.2 

25 +/- 4 13% 

Thymus 23.5 +/- 

0.3 

32.4 +/- 

0.2 

32% 27.0 +/- 

0.5 

33.3 +/- 

0.5 

21% 

Thyroid 12.3 +/- 

0.4 

37.7 +/- 

0.2 

102% 30.2 +/- 

0.8 

1.4 +/- 0.7 182% 

Uterus/Testes 25.6 +/- 

0.1 

27.0 +/- 

0.1 

5% 8 +/- 4 1.5 +/- 0.7 137% 
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Table 44. Modified effective dose for a chest abdomen pelvis scan. 

Organ ICRP103 

Tissue 

Weighting 

Factor 

Measured 

Dose 

Equivalent 

(Daisy) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% 

Diff 

Measured 

Dose 

Equivalent 

(Dude) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% 

Diff 

Brain 0.01 0.0029 +/-

0.0002 

0.00380 

+/- 

0.00004 

 0.007 +/- 

0.003 

0.0005 +/- 

0.0002 

 

Colon 0.12 2.68 +/- 

0.08 

3.30 +/- 

0.08 

3.4 +/- 0.6 4.2 +/- 0.2 

Esophagus 0.04 1.00 +/- 

0.04 

1.176 +/- 

0.004 

0.88 +/- 

0.02 

1.0 +/- 0.2 

Liver 0.04 1.040 +/- 

0.008 

1.568 +/- 

0.001 

1.05 +/- 

0.04 

1.88 +/- 

0.04 

Lung 0.12 6.48 +/- 

0.04 

5.4156 +/- 

0.005 

5.8 +/- 0.2 5.2 +/- 0.4 

Thymus 0.04 0.94 +/- 

0.01 

1.296 +/- 

0.008 

1.08 +/- 

0.02 

1.33 +/- 

0.02 

Thyroid 0.04 0.49 +/- 

0.02 

1.508 +/- 

0.008 

1.21 +/- 

0.03 

0.06 +/- 

0.03 

Pancreas 0.12* 3.08 +/- 

0.08 

4.12 +/- 

0.04 

3.4 +/- 0.1 3.3 +/- 0.3 

Uterus 0.12* 

Adrenals/Gall 

Bladder 

0.12* 

Kidney 0.12* 

Modified Effective Dose 

(mSv) 

15.7 +/- 

0.1 

18.39 +/- 

0.09 

17% 16.7 +/- 

0.6 

16.9 +/- 

0.6 

1% 

 

The percent difference between the modified effective doses determined using either the 

mathematical phantom or experimental measurement is very small, 17% for Daisy and 1% 

for Dude.  When accounting for only those organs within the scanning field of view (all 

organs vice the brain), the percent difference is 16% for Daisy and stays the same for Dude 

at 1%. 
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Chest Scan 

Tables 45 and 46 list the organ absorbed doses and modified effective dose for a chest scan.  

Organs within the scanning field of view for a chest scan include the esophagus, liver, lung, 

pancreas, thymus, adrenals/gall bladder, kidney, and thyroid. 

 

Table 45. Organ absorbed doses for a chest scan. 

Organ Daisy Dude 

Measured 

(Daisy) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Measured 

(Dude) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Adrenals/Gall 

Bladder 

4.92 +/- 

0.02 

3.5 +/- 0.7 34% 3.90 +/- 

0.04 

3.1 +/- 06 23% 

Brain 0.26 +/- 

0.01 

0.19 +/- 

.04  

31% 0.5 +/- 

0.2 

0.27 +/- 

0.05 

60% 

Colon 0.134 +/- 

0.006 

0.48 +/- 

0.09  

113% 0.20 +/- 

0.01 

0.42 +/- 

0.09 

71% 

Esophagus 12.5 +/- 

0.2 

16.2 +/- 

0.9 

26% 20.5 +/- 

0.3 

22 +/- 1 7% 

Eye 0.29 +/- 

0.02 

NA  0.61 +/- 

0.09 

NA  

Kidney 2.16 +/- 

0.03 

(each) 

4.2 +/- 0.4 3% 2.8 +/- 

0.7 (each) 

3.1 +/- 0.3 57% 

Liver 11.1 +/- 

0.1 

13.3 +/- 

0.4  

18% 14 +/- 9 14.6 +/- 

0.5 

4% 

Lung 10 +/- 4 

(each) 

26.0 +/-

0.3  

26% 22.6 +/- 

0.7 (each) 

38.8 +/- 

0.4 

15% 

Pancreas 2.43 +/- 

0.03 

13 +/- 1  137% 5.62 +/- 

0.08 

11 +/- 1 65% 

Thymus 13.1 +/- 

0.4 

12.1 +/- 

0.5 

8% 27.2 +/- 

0.4 

32 +/- 3 16% 

Thyroid 8.3 +/- 

0.7 

4 +/- 1 70% 25 +/- 2 6 +/- 2 123% 

Uterus/Testes 0.112 +/- 

0.003 

0.13 +/- 

0.07 

15% 0.045 +/- 

0.006 

0.003 +/- 

0.003 

175% 
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Table 46.  Modified effective dose for a chest scan. 

Organ ICRP103 

Tissue 

Weighting 

Factor 

Measured 

Dose 

Equivalent 

(Daisy) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% 

Diff 

Measured 

Dose 

Equivalent 

(Dude) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% 

Diff 

Brain 0.01 0.0026 +/- 

0.0001 

0.0019 +/- 

0.0004 

 0.005 +/- 

0.002 

0.0027 +/- 

0.0005 

 

Colon 0.12 0.0161 +/- 

0.0007 

0.0576 +/- 

0.0108 

0.024 +/- 

0.001 

0.050 +/- 

0.004 

Esophagus 0.04 0.500 +/- 

0.008 

0.648 +/- 

0.036 

0.82 +/- 

0.01 

0.88 +/- 

0.04 

Liver 0.04 0.444 +/- 

0.004 

0.532 +/- 

0.016 

0.6 +/- 0.4 0.58 +/- 

0.02 

Lung 0.12 2 +/- 1 3.12 +/- 

0.04 

5.4 +/- 0.2 4.66 +/- 

0.05 

Thymus 0.04 0.52 +/- 

0.02 

0.48 +/- 

0.02 

1.09 +/- 

0.02 

1.3 +/- 0.1 

Thyroid 0.04 0.332 +/- 

0.001 

0.16 +/- 

0.04 

1.00 +/- 

0.08 

0.24 +/- 

0.08 

Pancreas 0.12* 0.354 +/- 

0.002 

0.62 +/- 

0.04 

0.4 +/- 0.2 0.5 +/- 0.1 

Uterus 0.12* 

Adrenals/Gall 

Bladder 

0.12* 

Kidney 0.12* 

Modified Effective Dose 

(mSv) 

4 +/- 1 5.62 +/- 

0.08 

34% 9.3 +/- 0.5 8.2 +/- 0.2 13% 

 

The percent difference between the two values for the modified effective dose is 34% for 

Daisy and 13% for Dude.  The percent difference between the two values when only 

accounting for those organs within the scanning field of view is 29% for Daisy and 13% 

for Dude. 

Thoracic Spine Scan 

Tables 47 and 48 list the absorbed doses and modified effective dose for a thoracic spine 

scan.  The organs within the field of view for a thoracic spine scan include the esophagus, 

liver, lung, pancreas, thymus, adrenals/gall bladder, kidney, and thyroid. The scanning 

range for a thoracic spine scan is very similar to that of a chest scan just a little shorter.  
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Table 47. Organ absorbed doses for a thoracic spine scan. 

Organ Daisy Dude 

Measured 

(Daisy) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Measured 

(Dude) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Adrenals 8.9 +/- 

0.2  

4.0 +/- 0.8 76% 7.3 +/- 

0.1 

6.9 +/- 0.6 6% 

Brain 0.17 +/- 

0.07 

0.13 +/- 

0.02 

27% 0.6 +/- 

0.3 

0.33 +/- 

0.04 

58% 

Colon 0.36 +/- 

0.009 

0.12 +/- 

0.02 

100% 0.38 +/- 

0.02 

0.20 +/- 

0.04 

62% 

Esophagus 8.8 +/- 

0.2 

9.3 +/- 0.5 6% 20.0 +/- 

0.3 

20 +/- 1 0% 

Eye 0.19 +/- 

0.02 

NA  0.7 +/- 

0.1 

NA  

Kidney  7.6 +/- 

0.2 (each) 

0.80 +/- 

0.08 

180% 5 +/- 1 11.0  +/- 

0.7 

9% 

Liver 9.3 +/- 

0.2 

3.6 +/- 0.1 88% 20 +/- 4 6 +/- 1 108% 

Lung  9.5 +/- 

0.8 (each) 

17.7 +/- 

0.2 

8% 22.9 +/- 

0.8 (each) 

40.0 +/- 

0.5 

14% 

Pancreas 7.5 +/- 

0.2 

2.7 +/- 0.3 94% 14.0 +/- 

0.2 

5.2 +/- 0.6 92% 

Thymus 7.7 +/- 

0.2 

16 +/- 1 70% 27.4 +/- 

0.5 

8.8 +/- 0.3  103% 

Thyroid 2.87 +/- 

0.07 

3.1 +/- 0.6 8% 25 +/- 3 13 +/- 2 63% 

Uterus/Testes 0.44 +/- 

0.01 

0.03 +/- 

0.02 

174% 0.064 +/- 

0.004 

0.003 +/- 

0.003 

182% 

 

Table 48. Modified effective dose for a thoracic spine scan. 

Organ ICRP103 

Tissue 

Weighting 

Factor 

Measured 

Dose 

Equivalent 

(Daisy) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% 

Diff 

Measured 

Dose 

Equivalent 

(Daisy) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% 

Diff 

Brain 0.01 0.0017 +/- 

0.0007 

0.013 +/- 

0.002 

 0.006 +/- 

0.003 

0.0033 +/- 

0.0004 

 

Colon 0.12 0.043 +/- 

0.001 

0.014 +/- 

0.002 

0.046 +/- 

0.002 

0.024 +/- 

0.005 
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Esophagus 0.04 0.352 +/- 
0.008 

0.37 +/- 
0.02 

0.80 +/- 
0.01 

0.80 +/- 
0.04 

Liver 0.04 0.372 +/- 

0.008 

0.144 +/- 

0.004 

0.8 +/- 0.2 0.24 +/- 

0.04 

Lung 0.12 2.3 +/- 0.1 2.12 +/- 

0.02 

4.8 +/- 0.5 4.80 +/- 

0.06 

Thymus 0.04 0.308 +/- 

0.008 

0.64 +/- 

0.04 

1.10 +/- 

0.02 

0.35 +/- 

0.01 

Thyroid 0.04 0.115 +/- 

0.003 

0.12 +/- 

0.02 

1.0 +/- 0.1 0.52 +/- 

0.08 

Pancreas 0.12* 0.96 +/- 

0.04 

0.23 +/- 

0.03 

0.9 +/- 0.2 0.7 +/- 0.1 

Uterus 0.12* 

Adrenals/Gall 

Bladder 

0.12* 

Kidney 0.12* 

Modified Effective Dose 

(mSv) 

4.4 +/- 0.1 3.65 +/- 

0.06 

19% 9.5 +/- 0.6 7.4 +/- 0.2 25% 

 

The percent difference between the two values for the modified effective dose is 19% for 

Daisy and 25% for Dude.  The percent difference between the two values, measured and 

calculated, when only accounting for those organs within the scanning field of view is 

19% for Daisy (4.41 mSv and 3.62 mSv) and 24% for Dude (9.40 mSv and 7.41 mSv). 

Lumbar Spine Scan 

Tables 49 and 50 list the absorbed doses and modified effective dose for a lumbar spine 

scan.  The organs within the field of view for a lumbar spine scan include the liver, lung, 

pancreas, adrenals/gall bladder, kidney, and uterus/testes.  

 

Table 49. Organ absorbed doses for lumbar spine scan. 

Organ Daisy Dude 
Measured 

(Daisy) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Measured 

(Dude) 

Absorbed 

Dose 

(mGy) 

Calculated 

(Phantom)  

Absorbed 

Dose 

(mGy) 

ABS % 

Difference 

Adrenals/Gall 

Bladder 

18.0 +/- 

0.4 

20 +/- 1 11% 22.3 +/- 

0.9 

33 +/- 3 39% 
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Brain 0.0378 
+/- 

0.0009 

0.008 +/- 
0.003 

130% 0.033 +/- 
0.009 

0.002 +/- 
0.001 

177% 

Colon 11.6 +/- 

0.3 

12.8 +/- 

0.2 

10% 22 +/- 3 33.9 +/- 

0.7 

43% 

Esophagus 1.36 +/- 

0.03 

8.7 +/- 0.5 146% 0.227 +/- 

0.006 

3 +/- 1 172% 

Eye (each) 0.069 +/- 

0.001 

NA  0.07 +/- 

0.01 

NA  

Kidney 16.4 +/- 

0.4 

(each) 

25.2 +/- 

0.3 

26% 18.7 +/- 

0.8 

(each) 

36 +/- 1 4% 

Liver 16.0 +/- 

0.4 

24.6 +/- 

0.2 

42% 13 +/- 1 26 +/- 1 67% 

Lung 9.7 +/- 

0.5 

10.0 +/- 

0.2 

3% 2 +/- 1 1.9 +/- 0.3 5% 

Pancreas 17.3 +/- 

0.4 

22.2 +/- 

0.5 

25% 21.1 +/- 

0.3 

22 +/- 3 4% 

Thymus 0.39 +/- 

0.01 

1.5 +/- 0.3 117% 0.290 +/- 

0.006 

0.4 +/- 0.2 32% 

Thyroid 0.190 +/- 

0.005 

0.14 +/- 

0.07 

30% 0.177 +/- 

0.009 

0.04 +/- 

0.04 

126% 

Uterus/Testicles 14.8 +/- 

0.4 

3.5 +/- 0.3 123% 2.07 +/- 

0.01 

5 +/- 2 83% 

 

Table 50.  Modified effective doses for lumbar spine scan. 

Organ ICRP103 

Tissue 

Weighting 

Factor 

Measured 

Dose 

Equivalent 

(Daisy) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% 

Diff 

Measured 

Dose 

Equivalent 

(Dude) 

(mSv) 

Calculated 

Dose 

Equivalent 

(Phantom) 

(mSv) 

ABS 

% 

Diff 

Brain 0.01 0.000378 

+/- 

0.000006 

0.00008 

+/- 

0.00003 

 0.00033 

+/- 

0.00009 

0.00002 

+/- 

0.00001 

 

Colon 0.12 1.39 +/- 

0.04 

1.54 +/- 

0.02 

2.6 +/- 0.4 4.07 +/- 

0.08 

 

Esophagus 0.04 0.054 +/- 

0.001 

0.35 +/- 

0.02 

0.0091 +/- 

0.0002 

0.12 +/- 

0.04 

 

Liver 0.04 0.64 +/- 

0.02 

0.984 +/- 

0.008 

0.52 +/- 

0.04 

1.04 +/- 

0.04 

 

Lung 0.12 1.16 +/- 

0.06 

1.20 +/- 

0.02 

0.5 +/- 0.1 0.23 +/- 

0.04 

 

Thymus 0.04 0.0156 +/- 

0.0004 

0.06 +/- 

0.01 

0.0116 +/- 

0.0002 

0.016 +/- 

0.008 
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Thyroid 0.04 0.008 +/- 
0.002 

0.006 +/- 
0.003 

0.0071 +/- 
0.0004 

0.002 +/- 
0.002 

 

Pancreas 0.12* 2.49 +/- 

0.02 

2.1 +/- 0.1 2.49 +/- 

0.03 

2.9 +/- 0.1  

Uterus 0.12*  

Adrenals/Gall 

Bladder 

0.12*  

Kidney 0.12*  

Modified Effective Dose 

(mSv) 

5.76 +/- 

0.08 

6.2 +/- 0.1 7% 6.1 +/- 0.4 8.4 +/- 0.1 32% 

 

The percent difference between the two values for the modified effective dose is 7% for 

Daisy and 32% for Dude.  The percent difference between the two values, measured and 

calculated, when only accounting for those organs within the scanning field of view is 

0.23% for Daisy (4.29 mSv and 4.28 mSv) and 17% for Dude (3.51 mSv and 4.17 mSv). 

 

Experimental Uncertainties 

Uncertainties of the experimental study are shown below for each scanning protocol 

(Tables 51 – 56).  The sensitivities of the organs represented are an average of the Daisy 

and Dude organ sensitivity.  This was calculated in order to better equate to the model 

which is non-gender specific.  The determination of the rest of the sensitivities is explained 

in Specific Aim 2. 

 

Brain Scan 

Table 51.  Experimental sensitivity for Brain Scan. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

  
     

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 
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CTDIair 

displayed/tabulated 

    

CTDIair measured     

Patient 

Modeling 

Adrenals/Gall 

Bladder 

    

Brain 10 .66  44 

Colon     

Esophagus 7 .055  .15 

Kidney     

Liver 21 .0045  .0089 

Lung 32 .050  2.6 

Pancreas     

Thymus 1.5 .073  .012 

Thyroid 2.5 .17  .18 

Uterus/Testes     

Patient 

Positioning 

Vertical 

Positioning 

   NA 

Lateral Positioning    NA 

Modern 

Scanner 

Matching 

CTDosimetry 

helical Scanning 

(37 rotations) 

   NA 

Detector 

Uncertainties 

(Prins Study) 

Radiation Normal 

Incidence 

1.5 1 20 2.25 

Radiation Edges 

Incidence 

7.5 0.2 20 2.25 

Calibration 

Variation 

2.5 1 20 6.25 

Energy Response 8.7 1 20 75.69 

Standard Deviation 

of Measurement 

2 1 20 4 

Total 

Uncertainty 

Combined 

(ucomb) 

                

 

   

 

12 

 95% CI for Ucomb 24 

 

Cervical Spine Scan 

Table 52.  Experimental sensitivity for Cervical Spine Scan. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

  
     

CT Scanner Tube Current 2.5 1 20 6.25 
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Characteristics Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

   NA 

CTDIair measured    NA 

Patient 

Modeling 

Adrenals/Gall 

Bladder 

   NA 

Brain 31 0.030  0.86 

Colon    NA 

Esophagus 0.64 0.12  0.0059 

Kidney     

Liver 17 0.006  0.010 

Lung 12 0.11  1.7 

Pancreas    NA 

Thymus 0.98 0.19  0.035 

Thyroid 1.2 0.55  0.44 

Uterus/Testes    NA 

Patient 

Positioning 

Vertical 

Positioning 

   NA 

Lateral Positioning    NA 

Modern 

Scanner 

Matching 

CTDosimetry 

helical Scanning 

(rotations) 

   NA 

Detector 

Uncertainties 

(Prins Study) 

Radiation Normal 

Incidence 

1.5 1 20 2.25 

Radiation Edges 

Incidence 

7.5 0.2 20 2.25 

Calibration 

Variation 

2.5 1 20 6.25 

Energy Response 8.7 1 20 75.69 

Standard Deviation 

of Measurement 

2 1 20 4 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

11 

 95% CI for Ucomb 22 

 

Chest Abdomen Pelvis 

Table 53.  Experimental sensivity for Chest Abdomen Pelvis Scan. 

Category Component Standard 

Uncertainty 

Sensitivity 

Coefficient 

Degrees 

of 
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(u) (c) Freedom 
(v) 

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

   NA 

CTDIair measured    NA 

Patient 

Modeling 

Adrenals/Gall 

Bladder 

0.40 0.050  4.0E-4 

Brain 12 0.00030  1.3E-3 

Colon 5.0 0.19  0.90 

Esophagus 1.0 0.06  3.6E-3 

Kidney 1.0 0.05  2.5E-3 

Liver 1.0 0.06  3.6E-3 

Lung 2.0  0.38  0.58 

Pancreas 0.60 0.050  9.0E-4 

Thymus 0.80 0.060  2.3E-3 

Thyroid 1.0 0.12  1.4E-2 

Uterus/Testes 13 0.050  0.42 

Patient 

Positioning 

Vertical 

Positioning 

   NA 

Lateral Positioning    NA 

Modern 

Scanner 

Matching 

CTDosimetry 

helical Scanning 

(37 rotations) 

   NA 

Detector 

Uncertainties 

(Prins Study) 

Radiation Normal 

Incidence 

1.5 1 20 2.25 

Radiation Edges 

Incidence 

7.5 0.2 20 2.25 

Calibration 

Variation 

2.5 1 20 6.25 

Energy Response 8.7 1 20 75.69 

Standard Deviation 

of Measurement 

2 1 20 4 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

11 

 95% CI for Ucomb 22 
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Chest Scan 

Table 54.  Experimental sensitivity for Chest Scan. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

  
     

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

   NA 

CTDIair measured    NA 

Patient 

Modeling 

Adrenals/Gall 

Bladder 

0.36 0.016  3.3E-5 

Brain 11 0.00059  4.2E-5 

Colon 2.4 0.0033  6.3E-5 

Esophagus 0.77 0.11  5.9E-3 

Kidney 6.6 0.016  1.1E-2 

Liver 16 0.088  2.0 

Lung 11 0.54  35 

Pancreas 0.66 0.016  1.1E-4 

Thymus 1.1 0.12  1.7E-2 

Thyroid 4.1 0.095  0.15 

Uterus/Testes 4.0 0.016  4.1E-3 

Patient 

Positioning 

Vertical 

Positioning 

   NA 

Lateral Positioning    NA 

Modern 

Scanner 

Matching 

CTDosimetry 

helical Scanning 

(37 rotations) 

   NA 

Detector 

Uncertainties 

(Prins Study) 

Radiation Normal 

Incidence 

1.5 1 20 2.25 

Radiation Edges 

Incidence 

7.5 0.2 20 2.25 

Calibration 

Variation 

2.5 1 20 6.25 

Energy Response 8.7 1 20 75.69 

Standard Deviation 

of Measurement 

2 1 20 4 
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Total 
Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

12 

 95% CI for Ucomb 24 

 

Thoracic Spine Scan 

Table 55.  Experimental sensitivity for Thoracic Spine Scan. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

  
     

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

   NA 

CTDIair measured    NA 

Patient 

Modeling 

Adrenals/Gall 

Bladder 

0.90 0.039  1.2E-3 

Brain 23 0.00051  1.4E-4 

Colon 1.9 0.0073  1.9E-4 

Esophagus 0.94 0.08  5.7E-3 

Kidney 5.6 0.039  0.048 

Liver 5.5 0.084  0.21 

Lung 3.0 0.51  2.3 

Pancreas 1.0 0.039  1.5E-3 

Thymus 1.1 0.093  0.010 

Thyroid 3.6 0.066  0.056 

Uterus/Testes 2.1 0.039  6.7E-3 

Patient 

Positioning 

Vertical 

Positioning 

   NA 

Lateral Positioning    NA 

Modern 

Scanner 

Matching 

CTDosimetry 

helical Scanning 

(rotations) 

   NA 

Detector 

Uncertainties 

(Prins Study) 

Radiation Normal 

Incidence 

1.5 1 20 2.25 

Radiation Edges 

Incidence 

7.5 0.2 20 2.25 

Calibration 

Variation 

2.5 1 20 6.25 
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Energy Response 8.7 1 20 75.69 
Standard Deviation 

of Measurement 

2 1 20 4 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

11 

 95% CI for Ucomb 22 

 

Lumbar Spine Scan 

Table 56.  Experimental sensitivity for Lumbar Spine Scan. 

Category Component Standard 

Uncertainty 

(u) 

Sensitivity 

Coefficient 

(c) 

Degrees 

of 

Freedom 

(v) 

  
     

CT Scanner 

Characteristics 

Tube Current 2.5 1 20 6.25 

Exposure Time 0.03 1 20 0.0009 

Tube Voltage 1.5 2.5 20 14.06 

Slice Width/Table 

Movement 

1 0.2 20 0.04 

CTDIair 

displayed/tabulated 

   NA 

CTDIair measured    NA 

Patient 

Modeling 

Adrenals/Gall 

Bladder 

1.6 0.11  0.031 

Brain 7.4 0.000060  2.0E-7 

Colon 4.1 0.33  1.8 

Esophagus 1.2 0.0054  4.2E-5 

Kidney 1.7 0.11  0.035 

Liver 2.5 0.098  0.060 

Lung 14 0.14  3.8 

Pancreas 0.93 0.11  0.010 

Thymus 1.2 0.0023  7.6E-6 

Thyroid 1.9 0.0013  6.1E-6 

Uterus/Testes 0.80 0.11  7.7E-3 

Patient 

Positioning 

Vertical 

Positioning 

   NA 

Lateral Positioning    NA 

Modern 

Scanner 

Matching 

CTDosimetry 

helical Scanning 

(37 rotations) 

   NA 

Detector 

Uncertainties 

(Prins Study) 

Radiation Normal 

Incidence 

1.5 1 20 2.25 

Radiation Edges 7.5 0.2 20 2.25 
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Incidence 
Calibration 

Variation 

2.5 1 20 6.25 

Energy Response 8.7 1 20 75.69 

Standard Deviation 

of Measurement 

2 1 20 4 

Total 

Uncertainty 

Combined 

(ucomb) 

               
 

 

   

 

11 

 95% CI for Ucomb 22 

 

The experimental sensitivity for the brain scan, thoracic spine scan, and lumbar spine scan 

is ±12%.  The experimental sensitivity for the cervical spine scan, chest abdomen pelvis 

scan, and chest scan is ±11%.  The greatest contribution to the overall uncertainty for each 

of the scans is from the dosimeter energy response uncertainty, 8.7%. As expected, the 

scanning experimental sensitivities for the different scans are less (therefore have more 

precision) than the scanning sensitivities calculated by using Monte Carlo techniques.   

This is because experimental sensitivities reflect what is truly happening with the 

measurements rather than attempting to simulate reality. 

Discussion 

The models developed (Chapter 4) for the six CT trauma scans can be used with 

confidence.  Experimental verification compared the scanning techniques used in the model 

development with the scanning techniques used on physical phantoms in a real computed 

tomography scanner.  In all scans (vice the cervical spine scan for Daisy), the absolute 

percent difference between the experimentally measured modified effective dose and the 

calculated (same technique as that used in the model development) modified effective dose 

was under 30%.  The 37% absolute percent difference between the two methods for 
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calculating the modified effective dose for Daisy in the cervical spine scan was driven by 

the slightly higher equivalent dose to the thyroid (1.780 +/- 0.002 mSv for experimentally 

measured and 1.2 +/- 0.1 mSv for the calculated value) from the experimentally measured 

scan.  This is probably due to the difference in the sizes of the thyroid between the 

mathematical phantom and the anthropomorphic phantom.  Experimentally measured 

higher absorbed doses in organs as compared to calculated values are not uncommon [46, 

59, 123, 190, 250, 281-282].   

 

Values between anthropomorphic phantoms and mathematical phantoms will compare well 

when the organ is small in volume and can be represented by a centrally located point dose.  

However, when the organ is large and the dose is not uniform throughout the organ due to 

only a partial volume of the organ being irradiated or due to low x-ray energies, a higher 

absolute percent difference will be seen.  But when the organ is large and the dose is fairly 

uniform across the organ due to the entire organ being in the scanning field-of-view, the 

absolute percent difference will be low [250].  This was observed in the measurement 

sensitivity analysis.  Likewise, organs within the scanning field-of-view will generally 

contribute the more equivalent dose to the overall effective dose than organs not within the 

scanning field-of-view.  Organs outside the scanning field-of-view will have a higher 

percent error associated with the absorbed dose.    

 

Anthropomorphic phantoms have been used extensively to measure the radiation dose to 

specific locations within the human body.  Researchers can design and develop their own 

phantoms but will often purchase the anthropomorphic phantoms from a manufacturer 



155 

 

equipped to design, manufacture, and modify the phantoms to the researcher specifications.  

In my research, I purchased the anthropomorphic phantoms from CIRS (Norfolk, Virginia) 

modified for my specific purpose of measuring radiation dose to an exact location with 

optically stimulated luminescent dosimeters.  The phantoms replicate reference male and 

reference female dimensions as defined by ICRU 44 and ICRP 23 specifications.  

Experiments were conducted in order to characterize the dose response of optically 

stimulated luminescent dosimeters designed by Landauer, Inc.  These dosimeters are 

extremely small (approximately 1 cm x 1 cm x 0.2 cm) and can be inserted into the 

specifically designed tissue plugs in the anthropomorphic phantoms.  Our experiments 

confirmed the linearity and response of the manufacturer specifications (reporting dose 10 

mrad to 1500 rad, energy range 5 keV up to 20+ MeV, and an accuracy of +/- 5%) [249, 

268, 283].  Additionally, our experiments also assessed the dose response of the dosimeters 

at varying thicknesses of solid water used to simulate increasing depths of tissue.  The 

results confirmed that the dosimeters have an expected exponential response and when 

compared with a calibrated ion chamber, the response is within +/- 20% at depths down to 

14 cm. 

 

Acceptance of the verification measurements to within 30% is driven by both literature and 

statistical analysis.  Since the measurements are assumed to be normally distributed, then 

about 68% of the data will lie within one standard deviation of the mean.  Therefore, if two 

measures are within 30% of each other, then one can assume that the two measures are 

within one standard deviation of the true mean.  There are several reasons why 

experimental measurements differ from the mathematical modeling.  The calculated 
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method uses a stylized mathematical Cristy phantom (Figure 10) while the measurement 

values were obtained using a physical anthropomorphic phantom (Figure 33).  Even when 

Struelens et al [59] compared an MCNP voxelized Rando-Alderson phantom with a 

physical Rando-Alderson phantom, results were said to in agreement with most absorbed 

doses within the scanning field-of-view being within +/- 15% and for those organs outside 

the field-of-view being within +/- 30%.  Struelens attributed the difference to the energy 

and geometrical dependence of the detectors, difference in material compositions, field 

sizes, and phantom positioning.  Experiments performed with PCXMC and Rando-

Alderson phantoms have shown strong correlation of the computed doses to experimental 

doses being within 30% with the primary reason for the difference being anatomic [209].  

Also of note is that differences in the field size can either increase the dose (resulting from 

more organs being included within the field-of-view) or decreasing the dose (resulting from 

fewer organs being included within the field-of-view). Comparisons between two methods 

of calculating effective doses, experimental using TLDs and weighted CTDI methods, 

Cohnen et al found that excellent correlation between the two calculations could be 

demonstrated for differences up to 30% [284].  
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CHAPTER 6.  Specific Aim 4:  Validate the effective dose models against current 

DLP methods for estimating effective doses using a pilot study of representative 

trauma patient CT scans. 

 

Introduction 

Chapter 6 will address the comparison of effective doses estimated by use of the Ht/Wt 

model developed in Chapter 4 against current effective dose estimation methods.  Data 

from a real MSKCC patient population will be used as inputs for the two methods.  The 

two effective dose estimation methods will be statistically analyzed for repeatability and 

interchangeability.  Finally, the two effective dose estimation methods will be applied to a 

hypothetical example of a CT scanning history for a Soldier who sustained traumatic 

injuries. 

  

Validation of the effective dose methodology occurred with data collected in a Memorial 

Sloan-Kettering Cancer Center Institutional Review Board approved (approval number 

WA0313-10) retrospective study of patients from 2005 to 2010 who underwent CT scans 

of the aforementioned six scanning protocols (brain, cervical spine, chest abdomen pelvis, 

chest, thoracic spine, and lumbar spine).  Although MSKCC patients tend to be older and 

have less muscle mass than the average soldier in the U.S. Army, the scanning ranges for 

the different scans will be very similar and are based upon anatomic locations as opposed 

to age, muscle mass, or gender. All patients were chosen at random and only pediatric 

patients were excluded due to difference in scanning machine technique factors and 

scanning ranges.   
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The statistical comparisons used in this chapter will be performed using Bland-Altman 

plots.  Bland-Altman plots represent the difference of two measurements versus the average 

of the two measurements [285].  Other techniques use standard regression analysis for the 

two measurements, but regression analysis only shows a measure of the association 

(correlation) between the two measurements rather than show any information concerning 

agreement.  Bland-Altman plots are more informative and allow us to determine how 

repeatable the measurements are and how well the two measurements agree.   

 

In order to validate the Ht/Wt model developed in Chapter 4, I compared the modeled 

effective dose results to the current accepted method for estimating effective dose 

calculates the effective dose from a computed tomography scan by multiplying the dose-

length-product from the scan, obtained from the individual CT dose report, with an 

effective dose conversion coefficient.  The conversion coefficients are accepted values 

(AAPM [286], NCRP [14], and ICRU [287]) based upon Monte Carlo modeling of the 

beam characteristics, the scanning field-of-view, the photon simulation inside a patient, and 

the modeling of the patient themselves.  Conversion coefficients are designed for specific 

organs and are therefore applied to each slice thickness in accordance with the location of 

the CT scan.  Conversion coefficients typically have a higher degree of statistical 

uncertainty for the organs that lie outside of the scanning field-of-view than for those 

organs that lie within the scanning field-of-view [66, 201].  However, the effective dose 

contributions from these organs are generally low and are of less importance than those 

organs within the primary scanning field-of-view.  Researchers from respected agencies 

(Center for Devices and Radiological Health, GSF-National Research Center for 
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Environment and Health, and National Radiological Protection Board) have published 

conversion coefficients specifically for calculating the effective dose [288].   

 

The probability risk estimates of cancer incidence and cancer mortality can be calculated 

using BEIR VII methodology [29].  This methodology has been previously used to quantify 

the risks from CT scans [21].  

 

Methods 

Radiation doses from six different CT protocols (10 adult scans of each protocol; brain, 

cervical spine, chest-abdomen-pelvis, chest, thoracic spine, and lumbar spine) were 

collected and analyzed for dose variability.  The information collected from the PACS 

database was age, gender, height/weight (obtained from patient electronic records), CTDI, 

DLP, scanning range and CT machine techniques (mA, kVp, pitch, and slice thickness). 

This information was used to validate the Ht/Wt models. 

 

Previous research that we conducted showed that the variability in dose-length-product can 

range from 2.5-fold to 5-fold among different manufacturers and CT models when using 

identical technique factors.  The highest variation occurred with CT scans covering the 

abdominal portion of the body.  Other published research has shown that the effective dose 

can vary by 13-fold (difference between lowest effective dose and highest effective dose) 

with abdominal and pelvis CT scans among machines from four different institutions [289].  

Our preliminary research using an anthropomorphic phantom with two different detectors 

on one machine showed that the effective dose (calculated from established DLP to 
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effective dose conversion coefficients) can vary by 2-fold for brain, chest-abdomen-pelvis, 

and lumbar spine scans. 

 

Results 

Brain Scan Comparison 

In accordance with MSKCC IRB (approval number WA0313-10), data on ten patients who 

underwent a brain scan were collected (Table 57). All the patients were adults.  The 

population means +/- SD were: height 172 +/- 11 cm, weight 74 +/- 17 kg, DLP 719 +/- 18 

mGy cm, and scan range 17.5 +/- 0.6 cm.  

 

Table 57. Brain scan patient information. Ht/Wt model dose estimate, conversion 

coefficient model dose estimate, and comparison to nominal values for brain scans. 

Height 
(cm) 

Weight 
(kg) 

DLP 
(mGy 
cm) 

Scan 
Range 
(cm) 

 

Predicted Effective 
Dose (mSv)   

Effective Dose (mSv) 
DLP-CC method  [91] 

NCRP 
160 
ED 

(mSv) 
Ht/Wt 
Model 

SD     0.0021   0.0023 

170 77 710.84 17.3 1.80 ±0.25 1.49 1.63 

B
rain

 

0.9 - 4 

172.8 59.4 710.84 18.3 1.92 ±0.26 1.49 1.63 

173 60.5 710.84 17.0 1.91 ±0.26 1.49 1.63 

178 65.3 752.65 18.0 1.84 ±0.26 1.58 1.73 

179.1 84.4 752.65 18.1 1.69 ±0.20 1.58 1.73 

193 108.9 710.84 18.3 1.44 ±0.26 1.49 1.63 

162 60.9 710.84 17.1 1.97 ±0.26 1.49 1.63 

165 58.7 710.84 17.0 1.97 ±0.26 1.49 1.63 

175.3 74 710.84 17.0 1.80 ±0.26 1.49 1.63 

153 92.7 710.84 17.0 1.80 ±0.27 1.49 1.63 

 

The population average and standard deviation of predicted effective dose is 1.8 +/- 0.2 

mSv.  The average and standard deviation of the effective dose using the conversion 

coefficients for both coefficients are 1.51 +/- 0.04 mSv and 1.65 +/- 0.04 mSv respectively.   
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Cervical Spine Scan Comparison 

Data on ten patients who underwent a cervical spine scan was collected (Table 58). All the 

patients were adults.  The population means +/- SD were:  height 166 +/- 10 cm, weight 67 

+/- 15 kg, DLP 464 +/- 42 mGy cm, and scan range 21 +/- 2 cm. 

 

Table 58. Cervical Spine patient information. Ht/Wt model dose estimate, conversion 

coefficient model dose estimate, and comparison to nominal values for cervical spine 

scans. 

Height 
(cm) 

Weight 
(kg) 

DLP 
(mGy 
cm) 

Scan 
Range 
(cm) 

Predicted 
Effective Dose 
(mSv)   

Effective Dose (mSv) 
DLP-CC method  [91] 

NCRP 
160 ED 
Range 
(mSv) Ht/Wt 

Model 
SD 0.0048 0.0054 0.0059 

174 75.9 388.99 20.36 2.36 ±0.04 1.87 2.10 2.30 

N
o

t L
isted

 

171 72.5 417.18 17.41 2.41 ±0.04 2.00 2.25 2.46 
175.3 49.9 439.06 23.59 2.54 ±0.09 2.11 2.37 2.59 
162 48.5 441.15 19.41 2.72 ±0.07 2.12 2.38 2.60 
144 46.8 459.98 19.66 3.37 ±0.10 2.21 2.48 2.71 
161 66.3 480.42 23.78 2.62 ±0.06 2.31 2.59 2.83 
177 77.7 493.44 22.60 2.34 ±0.05 2.37 2.66 2.91 

159.1 89.8 500.41 20.91 2.50 ±0.08 2.40 2.70 2.95 
170 68 502.68 20.91 2.45 ±0.06 2.41 2.71 2.97 

168.8 77.6 519.45 23.92 2.40 ±0.05 2.49 2.81 3.06 

 

The population average and standard deviation of predicted effective dose is 2.6 +/- 0.3 

mSv.  The average and standard deviation of the effective dose using the conversion 

coefficients for the three coefficients are 2.2 +/- 0.2 mSv, 2.5 +/- 0.2 mSv, and 2.7 +/- 0.2 

mSv respectively.   
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Chest Abdomen Pelvis Scan Comparison 

Data on ten patients who underwent a chest abdomen pelvis scan was collected (Table 59). 

All the patients were adults.  The population means +/- SD were:  height 167 +/- 8 cm, 

weight 81 +/- 19 kg, DLP 1114 +/- 248 mGy cm, and scan range 68 +/- 4 cm. 

 

Table 59.  Chest abdomen pelvis patient information. Ht/Wt model dose estimate, 

conversion coefficient model dose estimate, and comparison to nominal values for chest 

abdomen pelvis scans. 

 

 

 

 

 

 

 

 

 

 

The population average and standard deviation of predicted effective dose is 19 +/- 2 mSv.   

The average and standard deviation of the effective dose using the conversion coefficients 

for the two coefficients is 17 +/- 3 mSv, and 19 +/- 4 mSv respectively.   

Height 
(cm) 

Weight 
(kg) 

DLP 
(mGy 
cm) 

Scan 
Length 
(cm) 

Model 
Predicted Effective 
Dose (mSv 

Standard Method 
Effective Dose 
(mSv) using 
Conversion 
Coefficient [91] 

NCRP 
160 ED 
Range 
(mSv) 

Ht/Wt 
Model 

SD 0.015  0.017  

164 83.6 1414.61 67.62 18.97 ±1.07 21.22 24.05 

C
h

est 4 - 18 
A

b
d

o
m

en
/

P
elv

is 

3 - 25 

162.9 60.8 842.61 65.62 21.23 ±1.07 12.64 14.32 
173 78.6 1017.59 71.01 20.05 ±1.05 15.26 17.30 

157.5 65.8 902.81 62.48 20.38 ±1.07 13.54 15.35 
159 63.7 951.82 61.64 20.69 ±1.06 14.28 16.18 
180 114 1213.6 67.87 16.88 ±1.07 18.20 20.63 

174.2 114.3 1586.81 71.09 16.48 ±1.08 23.80 26.98 
166 68 960.56 72.60 20.69 ±1.07 14.41 16.33 
173 84.5 1291.96 72.10 19.45 ±1.06 19.38 21.96 

158.5 72 965.65 66.64 19.81 ±1.07 14.48 16.42 
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Chest Scan Comparison 

Data on ten patients who underwent a chest scan was collected (Table 60). All the patients 

were adults.  The population means +/- SD were:  height 169 +/- 10 cm, weight 84 +/- 15 

kg, DLP 479 +/- 33 mGy cm, and scan range 13 +/- 1 cm. 

 

Table 60. Chest scan patient information. Ht/Wt model dose estimate, conversion 

coefficient model dose estimate, and comparison to nominal values for chest scans. 

Height 
(cm) 

Weight 
(kg) 

DLP 
(mGy 
cm) 

Scan 
Length 
(cm) 

Predicted Effective Dose 
(mSv)   

Effective Dose (mSv) 
using Conversion 
Coefficient [91] 

NCRP 
160 
ED 

Range Ht/Wt Model SD 0.014  0.017 0.018  

156 108.1 428.31 12.78 8.72 ±1.4 6.00 7.28 7.71 

 C
h

est S
can

 4-18 m
S

v
 

172 69.6 435.29 10.4 11.71 ±1.36 6.09 7.40 7.84 
181 95.6 458.5 12.78 10.27 ±1.37 6.42 7.79 8.25 
157 73 471.89 12.88 11.00 ±1.37 6.61 8.02 8.49 
170 75.5 473.43 12.5 11.19 ±1.35 6.63 8.05 8.52 
160 85 480.79 12.53 10.21 ±1.37 6.73 8.17 8.65 
183 97 492.15 12.66 10.28 ±1.35 6.89 8.37 8.86 
181 100.4 496.85 12.78 9.99 ±1.36 6.96 8.45 8.94 

166.5 68.1 509.16 12.38 11.64 ±1.35 7.13 8.66 9.16 
161 67 538.72 14.13 11.57 ±1.36 7.54 9.16 9.70 

 

The population average and standard deviation of predicted effective dose is 10.7 +/- 0.9 

mSv.  The average and standard deviation of the effective dose using the conversion 

coefficients for the three coefficients is 6.7 +/- 0.5 mSv, 8.1 +/- 0.6 mSv, and 8.6 +/- 0.6 

mSv respectively.   

 

Thoracic Spine Scan Comparison 

Data on ten patients who underwent a thoracic spine scan was collected (Table 61). All the 

patients were adults.  The population means +/- SD were:  height 169 +/- 9 cm, weight 76 

+/- 24 kg, DLP 941 +/- 174 mGy cm, and scan range 38 +/- 2 cm. 
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Table 61. Thoracic spine scan patient information. Ht/Wt model dose estimate, 

conversion coefficient model dose estimate, and comparison to nominal values for 

thoracic spine scans. 

Height 
(cm) 

Weight 
(kg) 

DLP 
(mGy 
cm) 

Scan 
Range 
(cm) 

Predicted 
Effective Dose 
(mSv 

Effective Dose (mSv) 
using Conversion 
Coefficient (Chest) [91] 

NCRP 
160 
ED 

Range 
(mSv) 

Ht/Wt 
Model 

SD 0.014  0.017  0.018 

177.8 109 931.52 40.3 12.066 ±0.654 13.04 15.84 16.77 

N
o

t L
isted

 

182 128.9 1213.95 41.1 11.309 ±0.663 17.00 20.64 21.85 
170 59.8 1079.82 37.4 14.440 ±0.654 15.12 18.36 19.44 

165 64.6 1155.71 37.7 13.919 ±0.652 16.18 19.65 20.80 
165 60 651.33 38.4 14.209 ±0.653 9.12 11.07 11.72 

158.6 53.7 874.82 38.4 14.328 ±0.656 12.25 14.87 15.75 

176 72 773.31 36.8 14.002 ±0.651 10.83 13.15 13.92 
159 74.5 972.19 35.9 12.931 ±0.654 13.61 16.53 17.50 
177 70.6 947.64 34.2 14.124 ±0.651 13.27 16.11 17.06 

160 61.9 811.53 38.4 13.841 ±0.654 11.36 13.80 14.61 

 

The population average and standard deviation of predicted effective dose is 13 +/- 1 mSv.  

The average and standard deviation of the effective dose using the conversion coefficients 

for the three coefficients is 13 +/- 2 mSv, 16 +/- 3 mSv, and 17 +/- 3 mSv respectively.  

The average values are skewed because the second patient’s BMI (38.9 kg/cm
2
) is outside 

of the model predictive value of BMI’s between 18 kg/cm
2
 and 36 kg/cm

2
.  This type of 

patient results in a lower predicted effective dose.  The predicted effective dose is low 

because the dose values are based off of a single entrance skin dose value which is used for 

all predicted BMIs.  The high DLP value for the obese patient will reflect the adjustment 

made by the machine to ensure a quality diagnostic image. 
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Lumbar Spine Scan Comparison 

Data on ten patients who underwent a lumbar spine scan was collected (Table 62). All the 

patients were adults.  The population means +/- SD were:  height 169 +/- 9 cm, weight 86 

+/- 29 kg, DLP 888 +/- 173 mGy cm, and scan range 32 +/- 6 cm. 

 

Table 62. Lumbar spine scan patient information. Ht/Wt model dose estimate, conversion 

coefficient model dose estimate, and comparison to nominal values for lumbar spine 

scans. 

Height 
(cm) 

Weight 
(kg) 

DLP 
(mGy 
cm) 

Scan 
Range 
(cm) 

Predicted Effective 
Dose (mSv)   

Effective Dose (mSv) 
using Conversion 
Coefficient (Abdomen) 
[91] 

NRCP 
160 
ED 

Range 
(mSv) Ht/Wt 

Model 
SD 0.012  0.015  0.017  

154 79 788.67 34.1 8.89 ±0.70 9.46 11.83 13.41 

N
o

t L
isted

 

155 62.4 949.15 32.4 11.32 ±0.70 11.39 14.24 16.14 
160.6 62.2 978.96 39.0 11.79 ±0.70 11.75 14.68 16.64 

157 62 762.08 25.9 11.52 ±0.70 9.14 11.43 12.96 
170 68 727.48 25.2 11.82 ±0.70 8.73 10.91 12.37 
167 70.5 726.22 27.2 11.21 ±0.70 8.71 10.89 12.35 

180.3 98.2 967.51 34.1 7.71 ±0.70 11.61 14.51 16.45 
167.5 77.1 579.19 26.7 10.28 ±0.70 6.95 8.69 9.85 

151 68.9 893.42 25.2 10.15 ±0.70 10.72 13.40 15.19 
175 61.4 805.92 27.4 13.11 ±0.69 9.67 12.09 13.70 

 

The population average and standard deviation of predicted effective dose is 11 +/- 2 mSv.  

The average and standard deviation of the effective dose using the conversion coefficients 

for the three coefficients is 9 +/- 2 mSv, 12 +/- 3 mSv, and 14 +/- 3 mSv respectively.  The 

predicted model average absolute difference to each of the conversion coefficient values is 

10%, 12%, and 24%. 
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Determination of acceptability (agreement) was performed by analyzing the data via Bland-

Altman plots.  These plots show the average of the means of the two values calculated by 

using the two different effective dose estimation methods on the x-axis.  On the y-axis, the 

differences between the values calculated by using the two different effective dose 

estimation methods are shown. This difference represents a measurement of the bias 

between the two effective dose estimation methodologies.  A positive bias indicates that the 

Ht/Wt model is biased towards a higher effective dose estimation value than the DLP-CC 

method whereas a negative bias would indicate that the Ht/Wt model is biased towards a 

lower effective dose estimation value than the DLP-CC method.  The 95% confidence 

interval of the mean of the differences illustrates the magnitude of the systematic 

difference.  The value of zero shows the measure of equality (there is no difference 

between the means of the two values).  If the measure of equality, zero, is not in the 

interval, there is a significant systematic difference.  The 95% confidence interval lines (+/- 

1.96 SD) show the upper and lower limits of agreement.  When the values on the plot are 

within the mean +/- 1.96 SD and are not clinically important, the models may be used 

interchangeably [285, 290]. 

 

Brain Scan Bland-Altman Plot 

Figure 34 shows the Bland-Altman plot for the two methods of calculating the effective 

dose from a brain scan.  I used the average effective dose values of the two conversion 

coefficients.  As can be seen from the plot, the Ht/Wt model has a slight positive bias in 

estimating the effective dose compared to the DLP-CC method.  The bias is small though, 

indicating that there is good agreement between the two methods on average.   There is no 
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significant systematic difference because the line of equality is within the +/-1.96 SD lines.  

All plot values are within two standard deviations. 

 
Figure 34. Bland-Altman plot of two methods for calculating the effective dose from a 

brain scan.  DLP-CC method represents the average of the doses from the two different 

conversion coefficients. 

Cervical Spine Bland-Altman Plot 

Figure 35 shows the Bland-Altman plot for the two methods of calculating the effective 

dose from a cervical spine scan.  I used the average effective dose values of the three 

conversion coefficients.  As can be seen from the plot, the model has a slight positive bias 

compared to the average of the conversion coefficients.  The bias is small though, 

indicating that there is good agreement between the two methods on average.   There is no 

significant systematic difference because the line of equality is within the +/-1.96 SD lines.  

All plot values are within two standard deviations. 
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Figure 35. Bland-Altman plot of two methods for calculating the effective dose from a 

cervical spine scan. DLP-CC method represents the average of the doses from the three 

different conversion coefficients. 

Chest Abdomen Pelvis Scan Bland-Altman Plot 

Figure 36 shows the Bland-Altman plot for the two methods of calculating the effective 

dose from a chest abdomen pelvis scan.  I used the average effective dose values of the two 

conversion coefficients.  As can be seen from the plot, the model has a slight positive bias 

compared to the average of the conversion coefficients.  The bias is large indicating that the 

Ht/Wt model consistently estimated higher effective doses than the DLP-CC method.  This 

is to be expected because there is no specifically derived conversion coefficient listed for 

Chest Abdomen Pelvis scans only for Chest scans and Abdomen Pelvis scans.  There is no 
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significant systematic difference because the line of equality is within the +/-1.96 SD lines.  

All plot values are within two standard deviations. 

 
Figure 36. Bland-Altman plot of two methods for calculating the effective dose from a 

chest abdomen pelvis scan. DLP-CC method represents the average of the doses from the 

two different conversion coefficients. 

Chest Scan Bland-Altman Plot 

Figure 37 shows the Bland-Altman plot for the two methods of calculating the effective 

dose from a chest scan.  I used the average estimate of the effective dose values of the three 

conversion coefficients to compare against the Ht/Wt model.  As can be seen from the plot, 

the Ht/Wt model has a positive bias compared to the estimated effective dose calculated 

using the DLP-CC method.  The 95% CI limits of agreement do not include zero so it is 

very unlikely that the two methods will ever agree. There is a significant systematic 

difference because the line of equality is not within the +/-1.96 SD lines.  There is good 

agreement with between the two methods because the values are within the 95% CI limits 

of agreement.   
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Figure 37. Bland-Altman plot of two methods for calculating the effective dose from a 

chest scan. DLP-CC method represents the average of the doses from the three different 

conversion coefficients. 

Thoracic Spine Scan Bland-Altman Plot 

Figure 38 shows the Bland-Altman plot for the two methods of calculating the effective 

dose from a thoracic spine scan.  I used the average effective dose values of the three 

conversion coefficients.  As can be seen from the plot, the model has a slight negative bias 

away from the model towards the conversion coefficients.  There is no significant 

systematic difference and there is good agreement with between the two methods because 

the values are within +/-1.96 SD limits of agreement.  
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Figure 38. Bland-Altman plot of two methods for calculating the 

effective dose from a thoracic spine scan. DLP-CC method represents 

the average of the doses from the three different conversion 

coefficients. 

Lumbar Spine Scan Bland-Altman Plot 

Figure 39 shows the Bland-Altman plot for the two methods of calculating the effective 

dose from a lumbar spine scan.  I used the average effective dose values of the three 

conversion coefficients.  As can be seen from the plot, the model has a slight negative bias 

away from the model towards the conversion coefficients.  There is no significant 

systematic difference and there is good agreement with between the two methods because 

the values are within +/-1.96 SD limits of agreement.  
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Figure 39. Bland-Altman plot of two methods for calculating the effective dose from a 

lumbar spine scan. DLP-CC method represents the average of the doses from the three 

different conversion coefficients. 

The additional risk of cancer to a female and male Army Soldier of age 30 who received a 

chest abdomen pelvis scan is calculated using the BEIR VII methodology (Table 64). BEIR 

VII calculates the lifetime attributable risk (LAR) for cancer incidence and mortality 

according to the formulaic using tables in BEIR VII on page 311 [29].   

                    
           

        
                                                                    15 

                    
           

        
                                                                    16 

 
 
Table 63.  Estimation of cancer incidence and mortality from one chest abdomen pelvis 

CT scan. 

Risk of one helical CAP scan to a reference sized Female (Daisy) and Male 
(Dude) Army Soldier both with age of 30 years old 
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Organ 

Dose (mGy) 

Lifetime Risk of 
being diagnosed 
with cancer in that 
organ 

Lifetime Risk of 
dying of cancer in 
that organ 

Daisy Dude Daisy Dude Daisy Dude 

Adrenals/Gall 
Bladder 

26.90 +/- 
0.03 

27.9 +/- 
0.4 

6 in 10,000 6 in 10,000 3 in 10,000 3 in 10,000 

Brain 0.29 +/- 0.02 0.7 +/- 0.3 6 in 
1,000,000 

1 in 100,000 3 in 
1,000,000 

7 in 
1,000,000 

Colon 22.3 +/- 0.7 28 +/- 5 2 in 10,000 4 in 10,000 8 in 
100,000 

4 in 10,000 

Esophagus 25 +/- 1 22.1 +/- 
0.4 

5 in 10,000 4 in 10,000 3 in 10,000 2 in 10,000 

Eye 0.50 +/- 0.02  0.74 +/- 
0.08 

NA NA NA NA 

Kidney 24.2 +/- 0.5 
(each) 

24.2 +/- 
0.8 (each) 

5 in 10,000 5 in 10,000 3 in 10,000 2 in 10,000 

Liver 26.0 +/- 0.2 26.3 +/- 
0.9 

5 in 10,000 5 in 
1,000,000 

2 in 
100,000 

5 in 
1,000,000 

Lung 27 +/- 1 
(each) 

24 +/- 1 
(each) 

7 in 10,000 3 in 10,000 6 in 10,000 3 in 10,000 

Pancreas 25.9 +/- 0.4 28.5 +/- 
0.2 

5 in 10,000 6 in 10,000 3 in 10,000 3 in 10,000 

Thymus 23.5 +/- 0.3 27.0 +/- 0.5 5 in 10,000 5 in 10,000 2 in 10,000 3 in 10,000 

Thyroid 12.3 +/- 0.4 30.2 +/- 0.8 5 in 100,000 3 in 10,000 1 in 10,000 3 in 
100,000 

Uterus/Testes 25.6 +/- 0.1 8 +/- 4 5 in 100,000 2 in 10,000 1 in 
100,000 

8 in 
100,000 

 

Likewise, the lifetime attributable risks can be estimated for all the trauma scans assessed 

(Tables 65 and 66).  For those organs not specifically listed in BEIR VII Table 12D-1 and 

Table 12D-2 [29], the cancer incidence and cancer mortality risk is calculated using values 

for Other.  The Daisy and Dude measured absorbed dose values (Specific Aim 3) are used 

for dose inputs. 

 

Table 64.  Estimation of cancer incidence and mortality for each trauma scan for a female 

age 30 patient. 

Specific Organ Doses and Lifetime Attributable Risks to a 30-year old reference 
Female 
Organ Measured (Daisy) LAR Cancer LAR Cancer 
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Absorbed Dose 
(mGy) 

Incidence (for 
those organs not 
explicitly listed, 
the category 
OTHER was used) 

Mortality (for 
those organs not 
explicitly listed, 
the category 
OTHER was used) 

Brain Scan 
  Eye 34 +/-3  (each) NA NA 

  Brain 30 +/- 5 6 in 10,000 3 in 10,000 
  Thyroid 2.82 +/-.05 1 in 100,000 3 in 100,000 
  Lung 0.13 +/- .03 (each) 3 in 1,000,000 3 in 1,000,000 
  Thymus 1.31 +/- .05 3 in 100,000 1 in 100,000 
  Esophagus 0.286 +/- .007 6 in 1,000,000 3 in 1,000,000 

  Liver 0.054 +/- .002 5 in 100,000,000 5 in 100,000,000 
Cervical Cancer 
  Eye 34 +/- 2  (each) NA NA 

  Brain 9 +/- 6  2 in 10,000 9 in 100,000 
  Thyroid 44.5 +/-.05 2 in 10,000 5 in 10,000 
  Lung 0.5 +/- .1 (each) 1 in 100,000 1 in 100,000 
  Thymus 8.0 +/- .2 2 in 10,000 8 in 100,000 
  Esophagus 1.83 +/- .02 4 in 100,000 2 in 100,000 
  Liver 0.221 +/- .005 2 in 10,000,000 2 in 10,000,000 
Chest Abdomen Pelvis Scan 
  Adrenals/Gall    
  Bladder 

26.90 +/- 0.03 6 in 10,000 3 in 10,000 

  Brain 0.29 +/- 0.02 6 in 1,000,000 3 in 1,000,000 
  Colon 22.3 +/- 0.7 2 in 10,000 8 in 100,000 
  Esophagus 25 +/- 1 5 in 10,000 3 in 10,000 

  Eye 0.50 +/- 0.02 (each) NA NA 

  Kidney 24.2 +/- 0.5 (each) 5 in 10,000 3 in 10,000 
  Liver 26.0 +/- 0.2 5 in 10,000 2 in 100,000 
  Lung 27 +/- 1 (each) 7 in 10,000 6 in 10,000 
  Pancreas 25.9 +/- 0.4 5 in 10,000 3 in 10,000 
  Thymus 23.5 +/- 0.3 5 in 10,000 2 in 10,000 
  Thyroid 12.3 +/- 0.4 5 in 100,000 1 in 10,000 

  Uterus 25.6 +/- 0.1 5 in 100,000 1 in 100,000 
Chest Scan 
  Adrenals/Gall  
  Bladder 

4.92 +/- 0.02 1 in 10,000 5 in 100,000 

  Brain 0.26 +/- 0.01 5 in 1,000,000 3 in 1,000,000 
  Colon 0.134 +/- 0.006 1 in 1,000,000 5 in 10,000,000 
  Esophagus 12.5 +/- 0.2 3 in 10,000 1 in 10,000 
  Eye 0.29 +/- 0.02 NA NA 

  Kidney 2.16 +/- 0.03 (each) 4 in 100,000 2 in 100,000 
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  Liver 11.1 +/- 0.1 1 in 100,000 1 in 100,000 
  Lung 10 +/- 4 (each) 2 in 10,000 2 in 10,000 
  Pancreas 2.43 +/- 0.03 5 in 100,000 3 in 100,000 
  Thymus 13.1 +/- 0.4 3 in 10,000 1 in 10,000 
  Thyroid 8.3 +/- 0.7 3 in 100,000 9 in 100,000 
  Uterus 0.112 +/- 0.003 2 in 10,000,000 4 in 100,000,000 
Thoracic Spine Scan 
  Adrenals / Gall    
  Bladder 

8.9 +/- 0.2  2 in 10,000 9 in 100,000 

  Brain 0.17 +/- 0.07 4 in 1,000,000 2 in 1,000,000 
  Colon 0.36 +/- 0.009 3 in 1,000,000 1 in 1,000,000 
  Esophagus 8.8 +/- 0.2 2 in 10,000 9 in 100,000 

  Eye 0.19 +/- 0.02 NA NA 

  Kidney (each) 7.6 +/- 0.2 2 in 10,000 8 in 100,000 

  Liver 9.3 +/- 0.2 9 in 1,000,000 8 in 1,000,000 
  Lung (each) 9.5 +/- 0.8 2 in 10,000 2 in 10,000 
  Pancreas 7.5 +/- 0.2 2 in 10,000 8 in 100,000 
  Thymus 7.7 +/- 0.2 2 in 10,000 8 in 100,000 
  Thyroid 2.87 +/- 0.07 1 in 100,000 3 in 100,000 

  Uterus 0.44 +/- 0.01 8 in 10,000,000 2 in 10,000,000 
Lumbar Spine Scan 
  Adrenals/Gall  
  Bladder 

18.0 +/- 0.4 4 in 10,000 2 in 10,000 

  Brain 0.0378 +/- 0.0009 8 in 10,000,000 4 in 10,000,000 
  Colon 11.6 +/- 0.3 1 in 10,000 4 in 100,000 
  Esophagus 1.36 +/- 0.03 3 in 100,000 1 in 100,000 
  Eye (each) 0.069 +/- 0.001 NA NA 

  Kidney 16.4 +/- 0.4 (each) 3 in 10,000 2 in 10,000 
  Liver 16.0 +/- 0.4 2 in 100,000 1 in 100,000 
  Lung 9.7 +/- 0.5 (each) 2 in 10,000 2 in 10,000 
  Pancreas 17.3 +/- 0.4 4 in 10,000 2 in 10,000 
  Thymus 0.39 +/- 0.01 8 in 1,000,000 4 in 1,000,000 
  Thyroid 0.190 +/- 0.005 8 in 10,000,000 2 in 1,000,000 
  Uterus 14.8 +/- 0.4 3 in 100,000 6 in 1,000,000 

 

Table 65.  Estimation of cancer incidence and mortality for each trauma scan for a male 

age 30 patient. 

Specific Organ Doses and Lifetime Attributable Risks to a 30-year old reference 
Male 
Organ Measured (Dude) 

Absorbed Dose 
LAR Cancer 
Incidence (for 

LAR Cancer 
Mortality (for 
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(mGy) those organs not 
explicitly listed, 
the category 
OTHER was used) 

those organs not 
explicitly listed, 
the category 
OTHER was used) 

Brain Scan 
  Eye 22.9 +/- 0.7 NA NA 

  Brain 21 +/- 1 4 in 10,000 2 in 10,000 
  Thyroid 0.8 +/- 0.2 7 in 10,000,000 8 in 1,000,000 
  Lung 0.2 +/- 0.1 2 in 1,000,000 2 in 1,000,000 
  Thymus 0.26 +/- 0.01 5 in 1,000,000 2 in 1,000,000 
  Esophagus 0.680 +/- 0.007 1 in 100,000 6 in 1,000,000 
  Liver 0.04 +/- 0.02 9 in 100,000,000 6 in 100,000,000 

Cervical Cancer 
  Eye 18.6 +/- 0.7 NA NA 

  Brain 7 +/- 4 1 in 10,000 7 in 100,000 
  Thyroid 21 +/- 1 2 in 100,000 2 in 10,000 
  Lung 4 +/- 3 4 in 100,000 4 in 100,000 
  Thymus 14.2 +/- 0.2 3 in 10,000 1 in 10,000 
  Esophagus 13.5 +/- 0.2 3 in 10,000 1 in 10,000 
  Liver 0.6 +/- 0.4 1 in 1,000,000 1 in 1,000,000 
Chest Abdomen Pelvis Scan 
  Adrenals/Gall  
  Bladder 

27.9 +/- 0.4 6 in 10,000 3 in 10,000 

  Brain 0.7 +/- 0.3 1 in 100,000 7 in 1,000,000 
  Colon 28 +/- 5 4 in 10,000 4 in 10,000 
  Esophagus 22.1 +/- 0.4 4 in 10,000 2 in 10,000 
  Eye 0.74 +/- 0.08 NA NA 

  Kidney 24.2 +/- 0.8 (each) 5 in 10,000 2 in 10,000 
  Liver 26.3 +/- 0.9 5 in 1,000,000 5 in 1,000,000 
  Lung 24 +/- 1 (each) 3 in 10,000 3 in 10,000 
  Pancreas 28.5 +/- 0.2 6 in 10,000 3 in 10,000 
  Thymus 27.0 +/- 0.5 5 in 10,000 3 in 10,000 
  Thyroid 30.2 +/- 0.8 3 in 10,000 3 in 100,000 
  Testes 8 +/- 4 2 in 10,000 8 in 100,000 

Chest Scan 
  Adrenals/Gall  
  Bladder 

3.90 +/- 0.04 8 in 100,000 4 in 100,000 

  Brain 0.5 +/- 0.2 1 in 1,000,000 5 in 1,000,000 
  Colon 0.20 +/- 0.01 3 in 1,000,000 3 in 1,000,000 
  Esophagus 20.5 +/- 0.3 4 in 10,000 2 in 10,000 
  Eye 0.61 +/- 0.09 NA NA 

  Kidney 2.8 +/- 0.7 (each) 6 in 100,000 3 in 100,000 
  Liver 14 +/- 9 3 in 1,000,000 3 in 1,000,000 
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  Lung 22.6 +/- 0.7 (each) 2 in 10,000 2 in 10,000 
  Pancreas 5.62 +/- 0.08 1 in 10,000 5 in 100,000 
  Thymus 27.2 +/- 0.4 5 in 10,000 3 in 10,000 
  Thyroid 25 +/- 2 2 in 100,000 2 in 100,000 
  Testes 0.045 +/- 0.006 1 in 1,000,000 4 in 10,000,000 
Thoracic Spine Scan 
  Adrenals / Gall  
  Bladder 

7.3 +/- 0.1 1 in 10,000 7 in 100,000 

  Brain 0.6 +/- 0.3 1 in 100,000 5 in 1,000,000 
  Colon 0.38 +/- 0.02 5 in 1,000,000 5 in 1,000,000 
  Esophagus 20.0 +/- 0.3 4 in 10,000 2 in 10,000 
  Eye 0.7 +/- 0.1 NA NA 

  Kidney (each) 5 +/- 1 1 in 10,000 5 in 100,000 
  Liver 20 +/- 4 4 in 1,000,000 4 in 1,000,000 

  Lung (each) 22.9 +/- 0.8 (each) 2 in 10,000 2 in 10,000 
  Pancreas 14.0 +/- 0.2 3 in 10,000 1 in 10,000 
  Thymus 27.4 +/- 0.5 5 in 10,000 3 in 10,000 
  Thyroid 25 +/- 3 2 in 100,000 2 in 100,000 
  Testes 0.064 +/- 0.004 1 in 1,000,000 6 in 10,000,000 

Lumbar Spine Scan 
  Adrenals/Gall  
  Bladder 

22.3 +/- 0.9 4 in 10,000 2 in 10,000 

  Brain 0.033 +/- 0.009 6 in 10,000,000 3 in 10,000,000 
  Colon 22 +/- 3 3 in 10,000 3 in 10,000 
  Esophagus 0.227 +/- 0.006 4 in 1,000,000 2 in 1,000,000 
  Eye (each) 0.07 +/- 0.01 NA NA 

  Kidney 18.7 +/- 0.8 (each) 4 in 10,000 2 in 10,000 

  Liver 13 +/- 1 3 in 1,000,000 3 in 1,000,000 
  Lung 2 +/- 1 2 in 100,000 2 in 100,000 
  Pancreas 21.1 +/- 0.3 4 in 10,000 2 in 10,000 
  Thymus 0.290 +/- 0.006 6 in 1,000,000 3 in 1,000,000 
  Thyroid 0.177 +/- 0.009 2 in 10,000,000 2 in 10,000,000 
  Testes 2.07 +/- 0.01 4 in 100,000 2 in 100,000 

 

Discussion 

Although the two different methods for estimating the effective dose per scan is not 

consistent, the Ht/Wt model agrees with current literature which states that the DLP-CC is 

known to underestimate the effective dose per scan [66, 286, 291-292].  Utilizing Bland-

Altman [285, 290] plots to compare two measures allows us to determine whether or not 
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the two measures can be used interchangeably.  When the values for the difference between 

the two methods lie within 2 standard deviations of the mean, either method can be used.  

Therefore, since the Bland-Altman plots for all six trauma protocols showed values for the 

difference between the two methods being within +/- 1.96 SD then either method can be 

used.   

 

The American Association of Physicists in Medicine (AAPM) advocates the use of 

estimating the value of the effective dose by means of the DLP and conversion coefficients 

[286].  In fact, the AAPM purports that the values estimated by DLP and the calculations 

by more rigorous methods are consistent with maximum deviation from the mean of 15% 

[286].  However, this method of effective dose estimation requires knowledge of the 

machine technique (DLP) and ensuring that the scanning ranges of the patient and the 

mathematical phantom are similar.  Real patient scans, especially for the chest scan, are 

often different than the scans on stylized mathematical phantoms due to either the anatomy 

of the individual patient or the CT technician’s ability to localize the scan range based off 

of the scout images.  This was observed by the strong positive bias in the Bland-Altman 

plot of the chest scan.  The positive bias indicates that the model will systematically result 

in higher effective dose values for the chest scan.  When we compare the scanning range 

for calculating the effective dose using the DLP method against our predictive model 

(Figure 40), we see that the positive bias is primarily due to the difference in how we 

account for patient variability as opposed to the machine technique variability (DLP 

method). 
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a.   b.  
Figure 40.  Comparison of scanning areas for the chest scan.  (40a) Mathematical 

phantom and scanning range used to calculate the effective dose conversion coefficient 

[66].  (40b) Representative patient scan and mathematical phantom scanning areas used 

in model development.  

Literature shows that experimental measurements of effective dose will often be higher 

than DLP-conversion coefficient methods for calculating effective dose because DLP-

conversion coefficient methods can underestimate the effective dose by up to 37% [274, 

291-292].   

 

Li et al [293] estimates that the use of DLP and conversion coefficients can underestimate 

the effective dose by 30% to 48% when compared against a hybrid computational full body 

computer model of an infant and 12-year old pediatric patient.  Li also points out that the 

effective dose to both patients from an abdomen pelvis scan is nearly double that from a 

chest scan as a result of higher technique values (kVp and/or mA) and a larger irradiated 

body volume.   

 

Part of the reason for this difference in estimation is that conversion factors are dependent 

upon the size of the phantom used and the scanning length [66].  DLPs also can 

underestimate the total energy imparted over the scanning length [286].  When scanning 

http://radiology.rsna.org/content/248/3/995/F1.large.jpg
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lengths are increased or decreased organs are either brought into the scanning field-of-view 

or removed from the scanning field-of-view.  For scanning regions which include fewer 

major organs (brain scan and cervical spine scan), differences between various methods of 

calculating effective doses results from dimensional differences between phantoms and 

patients.  These differences can range from 17-25% for brain CT scans to 15-19% for neck 

and face examinations [294]. 

 

Variations between physical phantoms and computer will yield the smallest difference in 

organ dose when either organs that are small in volume and can be easily represented by an 

averaged point dose estimate, or for those large organs which receive a fairly uniform 

absorbed dose throughout its volume, or when the organ is large but receives a properly 

volume averaged absorbed dose gradient [250].  

 

Since the DLP-conversion coefficient method of calculating the effective dose will 

typically underestimate the effective dose when compared to an organ dose-based effective 

dose method, the Ht/Wt model is a more accurate means of assessing the estimate of the 

effective dose per trauma procedure based upon a patient’s height and weight at the time of 

the scan.  Additionally, the predictive model was developed for a wide range of heights and 

weights.  On the contrary, the DLP-conversion coefficient method depends upon machine 

parameters and a singular mathematical standard-sized phantom. 

   

Ultimately, effective dose describes the relationship between the probability of stochastic 

effects and equivalent dose.  Effective dose represents the total health detriment from 
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uniform radiation to the whole body by summing all the tissues and organs in the body 

[32].  As a result of the increased use of diagnostic scans and the use of multiple scans on 

an individual patient, the general radiology and research community has become more 

aware and concerned with long term consequences of the increased doses to patients [14].  

While radiation-induced cancers are not thought to be risk from general diagnostic 

radiology, researchers are becoming more concerned and aware of accumulated dose from 

multiple diagnostic scans.  BEIR VII [29] can be used to calculate estimates of the 

probability of cancer incidence and mortality [19, 21, 295-297].  BEIR VII reports that the 

probability of cancer incidence decreases with age (Figure 41).   

 

Figure 41.  Lifetime cancer mortality risks as a function of age at exposure based on 

updated atomic bomb survivor data as reported in BEIR VII [29] (Courtesy of Li et al 

[293]). 



182 

 

Part of the reason for this decreasing susceptibility is the relatively long latency period 

between the health detriment and the manifestation of the disease.  As a result, pediatrics 

will have the greatest probability of cancer (4 to 5 times) incidence than an adult.  The U.S. 

Army population falls within the age framework older than a pediatric but young for an 

adult.   

 

The American Cancer Society estimates that the risk of developing a cancer (all cancers) is 

37.76 per 100 or approximately 1 in 3.  Additionally, the risk of dying from a cancer is 

19.58 per 100 or approximately 1 in 5 [298].  BEIR VII estimates that for a single dose of 

radiation, 0.1 Gy, a male of age 30 will have a 6 in 100 chance of cancer incidence (all 

cancers) with a 3 in 100 chance of dying from cancer (all cancers).  The probability of 

incidence and mortality actually increases for a female receiving the same dose.  This was 

shown in Tables 65 and 66 for a female and male Soldier respectively. The probability of 

incidence for all cancers increases to 10 in 100 and the probability of dying from a cancer 

(all cancers) increases to 5 in 100.   

 

We can see that for each scan (Tables 65 and 66), the estimation of cancer incidence and 

mortality is relatively low and the benefit of the scan as opposed to the risk is very high.  

The next chapter will illustrate how a Soldier involved in a traumatic experience can 

undergo multiple scans and that the accumulation of dose is not trivial.   
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CHAPTER 7.  Specific Aim 5:  Recommend action points for the U.S. Army based 

upon this research.  

 

There is concern about the potential health effect of repeated CT scan exposures and 

studies have shown that the lifetime cancer mortality risks from CT scans are not negligible 

[19, 21, 297].  The scientific community remains divided on the long-term health effects of 

CT radiation dose, primarily because few studies of populations exposed to CT are 

available.  There is no debate though about how the diagnostic information from justified 

CT scans contributes to saving the lives of thousands of people on a daily basis. 

 

Ultimately, reducing radiation dose to the patient is the goal while still obtaining 

appropriate diagnostic images.  Previous dose reduction techniques have focused on 

adjusting for patient size and machine scanning characteristics while innovations in x-ray 

beam collimation, filters, image processing algorithms, automatic tube current modulation, 

and more efficient detector configuration have led to systemic dose reduction [299-302].  

However, a common dose reduction technique, limitation of scanning length, is not a 

luxury that physicians have when triaging patients of whole body trauma.   

 

Being able to establish any association between low-dose radiation and long term health 

effects hinges not only on the statistical model used but also on how the study is designed 

and employed.  This is particularly important in the recommendation for a future study.  

U.S. Army Soldiers change duty stations frequently over the course of their career in the 

Armed Forces.  As such, the Army Medical Department interlinks all the hospitals through 

a system called the Armed Forces Health Longitudinal Technology Application (AHLTA).  
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Currently, almost all Soldier medical records are maintained digitally in AHLTA.  Military 

medical professionals have access to AHLTA in order to assess Soldier clinical 

information.  There are also efforts being made towards ensuring a seamless transition of 

Soldier medical information from when a Soldier is on active duty to when a Soldier is 

seen by the Veterans Administration hospitals. 

 

The majority of epidemiologic radiation effect studies are ecologic (based upon population 

comparisons) and as such causal inferences cannot be made since confounding factors or 

selection bias cannot be controlled.  The following discussion will show how effective 

doses can be used in future studies.  Previous radiation cohort studies involved 

occupationally exposed workers who potentially receive more radiation (up to 0.05 mSv 

per year) than the normal population yet still have relatively low exposure to radiation.  

Trauma patients can easily experience more than this amount of radiation [303-305].   

 

Need for Study (Example) 

The following is a hypothetical (but not atypical) scenario. 

 

While deployed to a remote outpost in Afghanistan in support of Operation Enduring 

Freedom, a 25-year old male Soldier was in a tactical vehicle convoying from one location 

to another.  Half-way through the convoy trip, the lead vehicle stopped in order to 

investigate an unusual section of the dirt road.   Unfortunately the rest of the convoy 

stopped in what is referred to as a kill zone.  Improvised explosive devices (IEDs) had been 

dug into the road where the convoy now stopped.  The IEDs were remotely detonated by 
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wireless communication signals (often in the form of cell phones) and the vehicle 

containing the Soldier was hit in the underbelly.  Shrapnel and explosives were sent flying 

into and through the vehicle killing one occupant and severely injuring the Soldier and the 

driver of the vehicle.  During the blast, the Soldier was thrown violently against the 

restraining harness (seat belt) and severely hit his head against both the side bullet proof 

window and the windshield.  Other Soldiers in the convoy immediately laid down 

suppressive fire against the enemy and the combat medics initiated first aid to the wounded.  

After securing the zone by running off the enemy combatants, helicopter evacuation was 

called for and when arrival seemed imminent the evacuation of the wounded Soldier 

commenced to the forward support hospital located 40 miles away.  The Soldier, while 

unconscious, was evacuated via the helicopter and received immediate emergency medical 

attention at the forward support hospital.  While the Soldier’s vital signs were stabilized, 

the Army physicians noticed lower leg fractures and suspected severe internal bleeding.  

CTs were ordered in order to better assess the extent of the injuries.  The Soldier received 

two chest-abdomen-pelvis scans (ordered to assess the internal bleeding), one cervical 

spine scan (ordered to assess any cervical spine damage), and since the on-site combat 

medics noticed cracks in the windshield and the side window, a brain scan was ordered to 

assess any potential brain injury.  A total of four CT scans were ordered in the first 6-hours 

following the IED explosion.  12-hours after the explosion, the Soldier was evacuated back 

to Balad Air Field in Iraq where the next higher level of medical assistance could be 

obtained.  Either the diagnostic images were too damaged in transit or they never reached 

the attending physicians at Balad.  As a result, the physicians immediately ordered a chest-

abdomen-pelvis scan, another cervical spine scan, and a brain scan.  The scans were also 
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ordered to assist in the initial diagnosis while the swelling from the internal damage 

obfuscated the injury extent.  The Soldier was then evacuated back to Landstuhl Regional 

Medical Center in Kaiserslautern, Germany for further evacuation coordination could be 

initiated to fly the Soldier back to Walter Reed Medical Center in Silver Springs, 

Maryland.  While at Landstuhl Regional Medical Center the Soldier received another chest-

abdomen-pelvis scan in order to ensure that the internal bleeding was stabilized enough for 

evacuation to Walter Reed.  The Soldier remained at Walter Reed Medical Center for more 

than 4 weeks and underwent three surgical operations designed to assist in the healing of 

wounds received in the lumbar spine (from shrapnel coming through the floor board in the 

vehicle) and the chest area (from flying debris caused by explosions coming up through the 

radio area).  Diagnostic imaging was performed in order to assist the surgeons in their 

preparations and during follow-up (2 chest scans (with and without contrast), 2 lumbar 

spine scans (with and without contrast), and 2 brain scans (with and without contrast)).  

During the rehabilitation which occurred over the course of the next year three more brain 

scans were performed to help with assessing the traumatic brain injury and two more spinal 

scans were performed (one lumbar spine scan and one thoracic spine scan).  A total of 19 

scans were performed for this one traumatic event (seven brain scans, two cervical spine 

scans, four chest-abdomen-pelvis scans, two chest scans, one thoracic spine scan, and three 

lumbar spine scans).  While the Soldier was still in the operational theater (Afghanistan and 

Iraq), CT machine techniques from the CT scanning machines were not collected.  

Scanning information from the CT machines is only known from the Landstuhl Regional 

Medical Center and Walter Reed Regional Medical Center.  Table 67 is a list of 

retrospective effective doses from the computed tomography scans. 
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Table 66. Dose estimation for the above 19 scans. 

Location Scanning Types Assigned Effective Dose 
(mSv) 

Forward Support Hospital in 

Afghanistan 

2-CAP 34 (2 x 10 (average for Ab-

Pel), and 2 x 7 (average for 

chest)) 

1-CS 6 (average for c-spine) 

1-Brain 2 (average for head) 

Combat Support Hospital in 

Balad, Iraq 

1-CAP 17 (based on above) 

1-CS 6 (same as above) 

1-Brain 2 (same as above) 

Landstuhl Regional Medical 

Center 

1-CAP 18 (based upon average of 

CAP patients in validation 

study using DLP method) 

Walter Reed Regional 

Medical Center 

2-Chest  15.6 (2 x 7.8 (average of 

chest patients in validation 

study using DLP method) 

3-Lumbar 39 (3 x 13 (average of 

lumbar patients in validation 

study using DLP method)) 

5-Brain 8 (5 x 1.6 (average of Brain 

patients in validation study 

using DLP method) 

1-Thoracic 15.3 (average of thoracic 

patients in validation study 

using DLP method) 

19 Total Scans Total Effective Dose = 123 

mSv 

 

Assuming that the CT ranges used are similar to ranges used in the model development, 

and assuming that no other information is known except for the Soldier’s height and weight 

measured at the beginning of the deployment (6’2” (188 cm) and 200 lbs (91 kg)) and 

noting that the Soldier gained 10 pounds while at Walter Reed (6’2” (188 cm) and 210 lbs 

(96 kg)), the total effective dose is shown (Table 68). 

 

Table 67.  Ht/Wt predictive model dose estimation for the above 19 scans. 

  Location Scanning Types Ht/Wt Modeled Effective 
Dose (mSv) 
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Forward Support Hospital in 
Afghanistan 

2-CAP 54 (2 x 27.12) 
1-CS 2.36 

1-Brain 1.6 

Combat Support Hospital in 

Balad, Iraq 

1-CAP 27.12 

1-CS 2.36 

1-Brain 1.6 

Landstuhl Regional Medical 

Center 

1-CAP 27.12 

Walter Reed Regional 

Medical Center (assume new 

ht/wt) 

2-Chest 21.26 (2 x 10.63) 

3-Lumbar 32.71 (3 x 10.90) 

5-Brain 7.84 (5 x 1.57) 

1-Thoracic 13.14 

19 Total Scans Total Effective Dose ≈ 200 

mSv 

 

The Ht/Wt model estimates an accumulated effective dose 47% higher than by estimating 

the effective dose using DLP-conversion coefficients and standard NCRP effective dose 

values.  Assuming that the total effective dose from the 19 total scans over the course of 

one year can be modeled as a single acute dose, the BEIR VII excess relative risk (ERR) 

for solid cancer incidence can be modeled, where ERR is defined as the rate of the disease 

in an exposed population divided by the rate of disease in an unexposed population minus 

1.0 [29].   

 

Figure 42 presents how the age-time patterns in the radiation-associated risks for all solid 

cancer mortality is different for a male Soldier who received an exposure of 123 mSv at 

age 25 opposed to that same Soldier receiving an exposure of 200 mSv at age 25.  The 

initial ERR reflects the exposure of 200 mSv which is 62% higher than an exposure of 

123 mSv.  
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Figure 42.  Hypothetical Soldier effective dose chart showing how the ERR decreases 

over time but is greater for a higher initial effective dose.  Age-time patterns represent the 

radiation-associated risks for all solid cancer mortality. 

The effective dose study was conducted for one hypothetical situation.  However, many 

Soldiers have been on multiple deployments and could have sustained wounds which 

resulted in evacuation multiple times.  This type of situation while not frequent is not rare 

especially with Special Operations personnel.  Spinal injuries are on the rise [306] as are 

traumatic brain injuries [116, 307-310].  Therefore, developing and utilizing the predictive 

model for specific trauma scans will better estimate a patient’s total effective dose than 

utilizing standard methods. 

 

Recommendations 

BEIR VII states that future medical radiation studies are needed to assist in understanding 

the effects of low-dose radiation.  Organizing a population study within an Army 

population will help to achieve some of the aims stated in BEIR VII Research Need 8 [29].  

One of the primary limitations to studying radiation-cancer as an outcome is that the latent 
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period of cancer development can be up to 20 years.  However, with a Soldier population, 

this study period is possible because subjects can be tracked through both the Army 

medical system and the Veterans Affairs hospital system.   

  

Population studies are fairly common with research using Veterans Affairs (VA) hospitals 

and military subjects.  In other populations, management difficulties can arise because 

people die, move away, or develop other medical conditions.  A Soldier population may be 

followed with minimal disruptions as long as Soldiers are observed in an Army or VA 

medical facility.  Difficulty will arise of a Soldier is sent to a civilian hospital for treatment 

and diagnostic scans are not properly inputted into the Soldier’s medical records.  Special 

procedures should be put into place to account for this common occurrence.   

 

Medical records should be adjusted to account for the total number of diagnostic scans that 

are performed not just inputs for the best diagnostic scan performed.  For example, if two 

CT scans are performed in order to get one diagnostic quality image, then there needs to be 

input variables for the first scan (which didn’t yield a diagnostic quality image) in order to 

track the dose.  Although the PACS system archives the patient images, there are still 

patient image records which do not include a dose report which reflects the scanning range, 

CTDIvol, and DLP.  Therefore, the Ht/Wt models should be used to estimate the effective 

dose for appropriate scanning procedures.     
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Research Implications 

Soldiers are receiving higher effective dose per scan than is currently being reported in 

literature.  This has been shown in the preceding dissertation chapters.  Even though it 

looks as though increased weight provides somewhat of a shielding effect, CT machines 

can automatically adjust for changes in tissue density and thickness of tissue in order to 

achieve a certain diagnostic picture quality.  Therefore, heavier patients (thus greater cross-

sectional area per slice thickness) will actually get higher doses.  The Ht/Wt models do not 

account for higher entrance skin doses since only one entrance skin dose value was used for 

modeling the radiation dose of all 100 mathematical phantoms modeled.  What we see 

from the above hypothetical example is that the predictive model predicts a total effective 

dose 47% higher than using standard methods.  Potentially, the total effective dose may be 

another 10%-20% higher than the predictive model estimation.  Therefore, for patients 

receiving multiple diagnostic CT scans, absorbed doses are indeed an area of concern and 

researchers should emphasize investigations of low-dose radiation effects on the human 

body. 

 

Research Needs  

The research predictive models could be improved upon with further research.  Further 

research is needed to collect experimental absorbed dose information on a wide variety of 

CT machines and CT manufacturers.  While the predictive model is an accurate estimate of 

the absorbed dose, further experiments will shrink errors that lead to a lack of precision.  

Experiments can be performed at large medical facilities which have different types of 

machines/manufacturers.  Once absorbed dose data has been collected for both the male 
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and female reference phantom, the predictive model should be adjusted as necessary and 

then validated against a patient population with the largest number of patients possible.  

Effective dose estimation of pediatric patients is also important since Army combat support 

hospitals will often treat pediatric patients from the host nation [311].  Theocharopoulus et 

al [197] determined that even though pediatric patients absorb less energy per scan, the 

effective dose is up to 24% higher than adult patients.   
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CHAPTER 8:  Conclusion 

 

The goal of this study was to develop predictive models for estimating the effective dose 

from common CT scans that are used to diagnose and assist in the rehabilitative efforts of 

Soldiers who have experienced traumatic injuries while serving Operation Iraqi Freedom 

and Operation Enduring Freedom, as well as future such activities. The hypothesis 

examined is the extent to which a patient’s height and weight is associated with the 

effective dose from CT scans. My models are more accurate than current methods for 

estimating effective dose based upon CT machine parameters and conversion coefficients.  

Additionally, my models can be used as a means of estimating the effective dose when 

machine parameters are not known.  My models support recent literature which states that 

current effective dose estimating methods appear to underestimate the accumulated 

effective doses from multiple CT diagnostic scans. 

 

Conference presentations to appropriate professional societies are planned in order to share 

this research and associated results with the greater health physics community. The 

research results will also be presented to authorities in the U.S. Army medical system. 

These presentations will be conducted with the senior Army health physicists and other 

senior officers within the Army’s Environmental, Safety, and Occupational Health 

community.   

 

My research was unique in four different areas: specific focus on a U.S. Army Soldier 

population involved in defense of our Country through involvement in Operation Iraqi 

Freedom and Operation Enduring Freedom, predictive models designed to estimate the 
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effective dose from six specific trauma protocols based off of patient heights and weights, 

verification of models using specifically designed anthropomorphic phantoms for use with 

OSL dosimeters, and validation of results against a pilot study of trauma patient 

representative CT scans. 

 

Specific areas for continuation of this research include verification of the predictive models 

with a wider variety of CT machine types and manufacturers.  Additionally, more research 

should be conducted into the establishment of long-term cohorts as requested in BEIR VII 

for low-dose medical radiation health effects.   

 

I am extremely thankful and appreciative of the dedicated Army physicians, surgeons, and 

medical staff for their efforts in saving the lives of our American heroes. 
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