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Abstract

Decisionmakers who confront a long sequence of criminal opportunities act
differently from those who confront a single opportunity. If the sequence is long enough,
people will take big chances in return for very small gains, even if the probability of
detection is very great and the scale of punishment very large. Risk neutral people will
appear to love risk. For long enough sequences of future opportunities, raising the
probability of detection increases the amount of crime committed, rather than lowering it.
Constitutional safeguards are an important deterrent to crime.



People are often presented with opportunities to commit crimes. In assessing each

opportunity, they need to consider the past, the present, and the future ~ the crimes they

have already committed, the opportunity at hand, and the crimes they are likely to

commit. Decision-making in this context is different from decision-making when a single

criminal opportunity is being analyzed in isolation ~ the sort of problem Becker (1968)

studied. In this paper I show how it is different.

In particular, if the sequence of future opportunities is long enough, rational

people will take big chances in return for very small gains, even if the probability of

detection is very great and the scale of punishment very large. Risk neutral people will

appear to be risk-loving. For long enough sequences of future opportunities, raising the

probability of detection increases the amount of crime committed, rather than lowering it.

For sequences of any length, increases in the probability that an innocent person will go

free reduce crime by more than equivalent increases in the probability that a guilty person

will be punished, and as the length of the sequence grows this difference grows.

Constitutional safeguards ~ "coddling criminals," in today's political parlance ~ are thus

an important deterrent to crime. In the traditional one-shot model, convicting wrongly is

just as bad for deterrent purposes as acquitting wrongly (see, for instance Schrag &

Scotchmer 1994); but as the horizon over which potential criminals plan grows longer,

convicting wrongly becomes ever worse in its consequences. Deontology and long-run

consequentialism agree.

The intuition behind these results lies in the notion of fatalism. Kremer (1996)

and Mahal and O'Flaherty (1997) discuss how fatalism affects decisions to engage in

behavior that could cause AIDS. If an injecting drug user, for instance, believes that



sometime in the future the temptation to use an infected needle will be so large that he

will give in and contract AIDS, then he might as well start using dirty needles now, since

he will be infected no matter what he does in the current period. Fatalism works in the

opposite direction of fear; thus, for instance, if fear predominates, a partially effective

vaccine encourages risky behavior while if fatalism predominates a partially effective

vaccine discourages risky behavior.

The key problem in applying the results from AIDS research to the study of

criminal behavior is that contracting AIDS is an all-or-nothing, once-in-a-lifetime event;

punishment for crimes can be more finely graded and dispersed over one's lifetime. The

timing question turns out not to be a serious problem: what we need to consider is

lifetime punishment. The gradation question is more serious: fatalism is present only if

lifetime punishment is a concave function of lifetime detected crimes. Since lifetime

punishment is bounded from above, concavity is not an unreasonable assumption.

The next section of this paper sets out the simplest model of long-term criminal

behavior, one where crimes are detected either in the same period in which they are

committed, or never. This is essentially a straightforward extension of Mahal and

O'Flaherty (1996). Section 2 derives a series of results about willingness to commit

crimes and risk aversion. Section 3 derives the ergodic distribution of potential criminals

by number of convictions. Section 4 compares the deterrence effects of increases in the

probability of correct and incorrect detection and shows the greater effectiveness of

constitutional safeguards. Section 5 shows how changes in punishment affect crime, and

section 6 concludes.



All models in this paper have infinite horizons. Mahal and O'Flaherty (1997)

show that in the study of AIDS finite horizon models are not much different from infinite

horizon ones. I therefore have omitted finite horizon extensions from this paper.

1. THE SETTING

I consider an individual decision problem. A decision-maker (DM) lives for an

infinite number of discrete periods. In each period he must decide whether to commit a

crime. The (instantaneous) payoff from abstaining from crime is zero. The

(instantaneous) payoff from committing a crime is a random variable b. This random

variable (the attractiveness of that period's criminal opportunity) is drawn independently

each period from the same distribution F(-). I assume that F(-) is atomless and its support

is the positive half-line. The DM knows the current period's value of b before he decides

whether to commit a crime, but he does not know future values.

At the end of each period, there is a constant hazard q>0 that the DM will die (or

be removed from the sequence of temptations). The DM maximizes the expected

undiscounted sum of payoffs. Note that q=\ corresponds to the one-shot case that Becker

studied.

The DM is also liable for punishment in each period, based on his choice of

activity. At the end of each period, an exogenous legal system either convicts him of a

crime or does not. If he has committed a crime, the probability that he will be punished is

(1 - a ) ; so a is the probability that a guilty party will escape punishment. If he has not

committed a crime, the probability that he will be punished is p ; so p is the probability



that an innocent person will be punished. The parameters a and p both represent

mistakes that the legal system can make. I assume

a +P <1 ;

criminal behavior increases the probability of criminal conviction. Policies that give

police and prosecutors more leeway seek to reduce a ; policies that reduce police powers

and raise the hurdles for conviction seek to reduce (3 . Since it is probably hard to reduce

a without increasing p or vice versa, I will be interested in the relative responsiveness

of criminal activity to changes in these two parameters.

In this paper I assume that the probability of conviction each period depends only

on the activities in that period. A crime that goes unpunished in the period in which it is

committed goes unpunished forever. This assumption can be relaxed without serious

changes to the results.

Punishment following a conviction depends on the number of previous

convictions. LetP

denote the lifetime punishment function: a person convicted of x crimes in his lifetime is

sentenced to a total punishment of P(x). Thus if a person who has already been

convicted of x crimes in his life is convicted of another one, the punishment he will

receive is



p(x)=P(x+\)-P(x)

I assume throughout that P(x) is a weakly increasing function of x and hence thatp(x) is

always nonnegative and sometimes positive. I will also be concerned whether P() is

bounded, convex, linear or concave. Notice that I have not restricted the domain of P()

to the integers, even though we will never encounter a DM with a fractional number of

convictions. This is for convenience; in fact I assume that/?(x) is twice differentiable.

Let B(x) denote the set of crime benefits b that will induce a DM who is behaving

optimally with x prior convictions to commit a crime.

Let V(x\q,a, P) denote the value function: V{x[) is the expected value of current

and future payoffs for a DM who has already been convicted of x crimes and acts

optimally from now on. Then the fundamental recursion equation is

(1)

The maximization in (1) is simple and obvious: a criminal opportunity b should

be taken — that is, beB(x) — if and only if the expression in curly brackets in the first

integrand is greater than the expression in curly brackets in the second integrand,

b - (1 - a)p(x) + (1 - q)[(\ -a)V(x +1) +aF(jc)]

> -P/7(JC) + (1 -4)W{x. + 1) + (1 - Wtol

So B(x) is an upper half-line with minimum b* (x|#,a, P) , where

(2) b* (x\q,a, p) = (1 - a - ?>)[p(x) + (1 - q)[V(x) - V(x +1)]].



If b > b* (x\q,a, p) the DM commits the crime; otherwise he abstains. Note that if q=\,

the DM follows the Becker one-shot rule,

We can substitute (1) into (2) and simplify in order to derive a fundamental

recursion equation for b* (-|-). Such a recursion equation is our basic interest, since the

probability of criminal behavior

\-F(b\x\q,a,?>))

is monotonically (and negatively) related to b* (•[). To do so, define the following

function:

00

G(z,y) = j[min(b,z) - y]dF(b) if z > y
y

00

= - J [min(Z>, y) - z\df(b) ifz<y.
z

Note that G(-) is continuous and differentiable in both its arguments with

(4) ,eo
dy~

Then we can simplify and write the following proposition:

Proposition 1:

(a) The minimum criminal opportunity b*(x\q,a,$) satisfies the following

recursion equation:

(5) '



(b) A unique solution to (5) exists and is continuous and differentiable in all its

arguments.

Proofs are gathered in the appendix.

2. WILLINGNESS TO COMMIT CRIMES

Proposition 1 gives the fundamental recursion equation we can use for tracing out

willingness to commit crimes. How that willingness varies with x depends on the

curvature of the lifetime punishment function P. If P is concave, then additional crimes

bring less punishment, and so willingness to commit crimes increases as the number of

convictions increases. Moreover, the cut-off is always lower than the Becker one-shot

cut-off: one gain from being convicted of a crime is that future crimes will be punished

less harshly.

Conversely, if the lifetime punishment function is convex, these results are

reversed. The cut-off b* (•[) rises as convictions increase, and is always higher than the

Becker one-shot cut-off. If the lifetime punishment function is linear, the cut-off is

independent of the number of convictions and equals the Becker one-shot cut-off.

Formally:

Proposition 2:

(a) If P(-) is concave, b*(x\q,a, P) is a decreasing function of x, and always less

than the Becker one-shot rule given by (3).



(b) If P(-) is convex, b*(x\q,a,fi) is an increasing function ofx, and always

more than the Becker one-shot rule.

(c) If P(-) is linear, b* (x\q,a, p) is constant with respect to x, and the Becker

one-shot rule holds.

Note that if punishment is bounded and concave, someone who has been

convicted of many crimes will not be much deterred by threats of punishment:

Corollary to proposition 2:

If P is concave and bounded, then

lim u*(r\n n a\ — r\

Moreover,

Proposition 3:

for all x,a, p if P is concave

Thus with convex and bounded punishment and a long enough expected sequence

of trials, any temptation is big enough to succumb to, because eventually you are likely to

be convicted enough times that this particular transgression won't matter.

What is the actual shape of punishment functions? Some provisions ~ leniency

for first offenders, for instance ~ suggest some convex portions, while others ~ "three

strikes and you're in" ~ suggest concavity. A stigma that attaches to anyone who has a

record makes the punishment function concave (see Freeman [1992] for evidence on such

a stigma). Since punishment is bounded from above, it is unlikely that punishment



functions are convex or linear, at least in their entirety. Thus concavity and boundedness

are probably the more interesting properties, especially for limit arguments.

3. THE DISTRIBUTION OF DMs BY NUMBER OF CONVICTIONS

These basic equations allow us to calculate the distribution of DMs by number of

convictions.

Consider an arbitrary number of convictions x>0, and let s(x) denote the number

(or share) of DMs who have that many convictions. DMs leave this state in two ways:

qs(x) of them die each period, and (l-q)c(x)s(x) get convicted of another crime, where

c(x) = (1 -<x)(l - F(b\x)) + p>F(b\x))

the unconditioned probability that a DM with x prior convictions will be convicted this

period. On the other hand,

(l-q)c(x-\)s(x-l)

people who had (x-1) convictions last period were convicted and so entered state x. The

steady state requires that entries equal exits and so

qs(x) + (1 - q)c(x)s(x) = (1 - q)c(x - l)s(x -1)

or

s(x) (\-q)c(x-l)
(l-q)c{x)



If punishment is concave or linear c(x -1) < c(x) and so s(x) < s(x -1). The

more convictions, the fewer the number of DMs in the steady state. If punishment is

convex, this relationship may still hold for some x, but no general statement is possible.

4. CHANGES IN CONVICTION PROBABILITIES

What happens when conviction probabilities change? I confine my attention to

concave punishment functions; results for convex ones are generally opposite.

The easiest kind of change to consider is a reduction in the probability of

wrongful conviction, p . Roughly speaking, this causes two effects, both in the same

direction. First, it means that the difference in expected convictions caused by abstaining

on this particular trial,

1-a-p

increases; so even if the punishment function were linear, there would be a greater gain

from abstention (see Schrag and Scotchmer 1994). Second, it means that given any

pattern of behavior on future trials, the number of expected lifetime convictions is less,

and so the relevant region of the punishment function is steeper. This also increases the

gain from abstention, and so both effects reduce the attractiveness of crime.

On the other hand, for reductions in a , the probability of wrongly escaping

conviction, the two effects work in opposite directions. Changing a changes ( 1 - a - p )

the same way changing p does, and so the effect on convictions from abstaining in this

period is the same. But reducing a increases, rather than reduces, the number of

10



expected future convictions, and makes the relevant range of the punishment function a

region where that function is flatter, rather than steeper. Thus whenever the punishment

function is concave, a reduction in p reduces crime more than an equal reduction in a .

This difference in effects grows as the expected number of temptations grows.

Indeed, if punishment is concave, reductions in a increase crime if the horizon is

sufficiently long. The intuition is that the second effect becomes stronger than the first.

Recall that with bounded punishment if your future number of expected convictions is

large enough you might as well start committing crimes now since current crimes will

make almost no difference to lifetime punishment; reducing a increases the strength of

this fatalistic argument.

Let

db*(x\q,a,fi)
A(x\q,a,fi) =

W(x\q,a,p) =

da

db\x\q,a,f>)

D(x\q,a,f>) = W(x\q,a,p>)- A(x\q,a,fi),

and say "fatalism predominates at (q, x)" whenever A(x\q,a, P) > 0 (increasing the

probability of convicting a guilty person increases crime). We can restate the above

informal ideas as three propositions.

Proposition 4:

If P is concave, W(x\q,a,$) < 0 for all x,g,a,p

11



Proposition 5:

If P is concave, D(x\q,a,fi) < 0.

Proposition 6:

If P is concave, there exists a quit probability q , 1> q >0, such that for all x and

all q<q\ A(x\q,a,$) > 0.

5. CHANGES IN THE PUNISHMENT FUNCTION

The other class of policies proposed to deter crime are those that make

punishment "tougher." In the one-shot case, definition of tougher punishment is obvious

and so is the argument for its efficacy in reducing crime. For the repeated case neither

definition nor argument is so clear.

What is clear is that ifp(x) were to increase for all x, b* (x[) would, too; this

follows fairly directly from (5). But if lifetime punishment is bounded, such an across-

the-board increase is not feasible.

Consider first a change in only one value ofp(x). Implicitly such a change

changes P(x') for x'> x, but (5) shows that this change in P(x') is irrelevant for

behavior. Since b*(x +J|-) depends only onp(x) and on b*(x + k\) for higher values of &,

b* (x +1|-) does not change whenp(x) changes. Thus we can differentiate (5) with respect

to p(x) and rearrange to obtain

12



dp(x) q + (1 - q)c(x)

Note that in the one-shot Becker case

dp(x)

and so since < 1, one-shot punishment impacts are larger than punishment

impacts in the repeated decision problem. Indeed, as the horizon grows (that is, q —» 0),

the impact of changes in punishment vanishes.

Unless x=0, however, the impact of a change in punishment at x is not limited to

DM in state x; it affects all DMs with fewer than x convictions as well. From (5),

db\x-\) _ )c(x)<l

db*(x)

and so

db\x-\) _ q
dp{x) q + (1 - q)c(x)

and in general

dp(x) q + (\-q)c(xy t

13



for k=l,. .. Thus the effect of a change inp(x) is felt by all DMs with x or fewer

convictions, but the fewer the number of convictions the smaller the impact. All these

impacts are in the intuitive direction: punishment deters crime. (There is a curious

dichotomy here. If P(x') changes — that is, if xf> x — then behavioral incentives don't

change. If P(x') stays the same ~ that is, if x'< x ~ then behavioral incentives change.)

If there is a binding physical bound on maximum punishment, then a simple

increase in one/?(x) is impossible. Consider therefore a compound perturbation of the

punishment function; let p(x0) increase by 5 and p{xx) decrease by 8 . Changes like

this are probably the kind observed most often. The impact depends on whether xQ > xx

or not.

Suppose x0 > Xj; punishment increases after more crimes but decreases after

fewer. For x between x0 and x}, only the increase at x0 matters; thus b * (x1) increases

and crime decreases. But the effect wears off as x decreases. For x'< x,, both effects

matter, but the effect of the increase is more distant and so is less strong. So b* (x1)

decreases in this range and crime increases. So the overall effect on crime is ambiguous

and depends on the distribution of DMs by number of convictions.

Suppose x0 < Xj; punishment decreases after more crimes, but increases after

fewer. An example would be "three strikes and you're in." The pattern is the opposite.

For x between x0 and x,, crime increases; for x'< x0, crime decreases. Once again the

overall effect is ambiguous and depends on the conviction distribution.

14



If punishment is concave or linear, the steady state distribution of DMs by number

of convictions slopes down. For x0 >xl9 the crime cut-off b* (x) increases for states x

that are less populated than the states at which the cut-off decreases. If increases and

decreases were of the same size, and F(-) were uniform in the relevant range, crime

would unambiguously increase. But neither of these conditions holds, and so even with

the steady state assumption the overall impact is ambiguous. For x0 <xl9 the crime

decreases occur in more populated states than the crime increases, but the magnitudes of

the changes in b* (x) work in the opposite direction.

Notice that both the effects of changes in a and changes in P(-) are ambiguous

even though DMs are risk neutral. From (3) it is clear that in the Becker one-shot model

if p = 0, all that matters for risk neutral DMs is the product (1 -a)p(x). Thus empirical

findings of greater elasticity of crime with respect to (1 - a ) than with respect top(x)

have been taken as evidence that criminals, at least on the margin, are risk-loving. (See

Becker 1968; Ehrlich 1975, 1977; Wolpin 1978)

In a dynamic context, however, these empirical findings are not inconsistent with

risk-neutral criminals (or even risk-averse ones).

15



6. CONCLUSION

Repeated decision problems are qualitatively different from one-shot decision

problems. Thus empirical work based on the one-shot model runs a high risk of being

misleading. Longitudinal analysis is the natural and least dangerous way to study the

incentives for criminal behavior.

16



Proof of Proposition 1:

(a) This part is essentially algebra. To save notation, I will omit the parameters

(q,a,f>) in &•(•) and V(-) . From (1),

V(x)=
b\x)

b\x)

+1) + (1 - q)V(x)}dF(b)

b (x)

b\x)

+ \)-V(x)]}dF(b)
o

But from (2)

(1 - q)[V{x +1) - V(x)] = — p(x);
v VJL K J K n 1 _ a _ p ^ v

a n d so

00 j * , x

V(x)= \ {b-(\-a) W—}dF(b) + (\-q)V(x)
^ 1 — a — R

-a-p

A*(x) X ^ ^ A'(x)

-a-p

-a-p

17



7 / \

= (1 - </)F(*) + \ (b-b* (x))dF(b) - p W .
. . . . 1-a-B

Then

1-a - p

- V(x +1)] + J[ft - b* (x)]dF(b) - j[b - b* (x + \)]dF(b)
b* b\x+\)

\b\x)-b\x + l)]

= -p(x) + - K—^--G(b (x),b
l pl-a-p l-a-p l-a-p

Substituting this expression in (2) yields (5).

(b) To prove existence, uniqueness, and differentiability, it is easiest to prove

these properties for the value function V(-[). Existence, uniqueness, and differentiability

for b* (•]•) then follow from (2).

Consider the transform Uqa^ defined by

UgaMx)=max { \{b-(l-a)p(x) + (\-q)[(\-a)u(x + \) +au(x)]}dF(b)
s J

bes

+ J{-fip(x) + (1 -q)[Mx +1) + (1" P)u(x)]}dF(b)}-
bis

To save notation in this section, I will supress the subscripts on U. It is clear that if u is a

continuous and differentiable function of x,^,a,p then Uu is a continuous and

differentiable function x,q,a,$ also. Hence all that remains to be shown is that Uisa

contraction mapping.

Use the sup norm:

18



Consider Uux (•) and Uu2 (•) and suppose w.l.o.g. that

\\Uul,Uu2\\=Uu1(x)-Uu2(x)>0.

But

Uux(x)-Uu2(x)<
bes

bis2

bzs2

u2 (x +1) + (1 - P)a2 (x)]}dF(b)
bis.

where s2 denotes the set that maximizes value with u2. The inequality follows because

Uui(x) is at least as great as value constrained to be in s2. The right-hand side of this

inequality simplifies to

Uux (x) - Uu2 (x) < (1 - q){[ux (x +1) - u2 (x +1)][(1 - a ) jdF(b) + P (1 - \dF(b)]
s2 s2

+[ux(x) - u2(x)][a jdF(b) + (1 - p)(l - jdF(b)]}
s2 s2

where the expression in curly brackets is just a weighted average of

and

[ux(x)-u2(x)]

and (\-q) <\. Thus

19



\\Uux,Uu2\\<

and so Uis a contraction mapping. QED.

Proof of Proposition 2:

Consider the transform 7 âp defined by

(6)

PM*) + M* +1) - (1 - a - f>)G(u(x), u(x +1))}.

To save notation in this section, I will supress the subscripts on T. From (3) and

proposition l(b), b * (-|-) is the unique fixed point of T. Thus to show that b * (-|-) is

decreasing in x, it suffices to show that if w(-) is decreasing, so is 7w(-). The smae for

increasing and constant. I will confine the proof to part (a). Proof of parts (b) and (c) is

so similar as to be obvious.

Suppose then that P is concave and u(x) is decreasing. Then

dTu(x) .. n. .. . .. .(du(x).. . .. du(x + Y) ,

ox ox

where

cu(x) = PF(M(JC)) + (1 - a ) ( l - F(u(x))) > 0

is the unconditional probability of being convicted this period if you have x convictions

and will accept ̂  criminal opportunity b if and only if b ̂  u(x). Since p} (x) is negative

from concavity and both derivatives in curly brackets are negative by hypothesis

dTu(x) ^Q

dx

20



Hence for all x9q,a,$,b*(x\q,a9$) is decreasing in JC.

For the second claim, we use the following:

Lemma 1:

If P is concave, V(x\q,a,$) is an increasing function of*.

Proof of lemma:

Use the transform [/from the proof of proposition 1, and suppose u(x) is

increasing in JC.

dUuW = f[_(i - a )//(*) + (1 - q)[(\ -a)w'(jc +1) + au'(x)]]dF(b)
dx bt

P^'(JC) + (1 - q)[$u\x +1) + (1 - f>)u'(x)]dF(b) > 0

where we can ignore changes in the bounds of integration by the envelope theorem, and

the inequality follows because all terms are positive. QED.

From the lemma, then

V(x)-V(x + l)<0

and so from (2)

the Becker one-shot criterion. QED.

Proof of corollary to Proposition 2:

From proposition 2(a)

b\x\q,a,?>)<(\-a-p>)p(x)

21



and so

But if P is bounded

lim
X—> p(x) = 0

and so since b*(x\) is by construction nonnegative, the corollary follows. QED.

Proof of Proposition 3:

Consider the transform

Let q -» 0

^oT,aAx) = (l~ P)«W + P"(* +1) - (1 - a - P)G(«(jc),ii(x +1)).

The fixed point for the limit transform is any constant function. Hence by continuity

b* (x\q,a, P)must be arbitrarily close to a constant function for q sufficiently close to

zero. By the corollary to proposition 2, the only constant function that can behave

appropriately for arbitrarily large x is

b*(x\q,a,?>) = 0. QED.

Proof of Proposition 4:

From (6)

22



-*%- = -qp(x) + (1 - q)[-u(x) + u(x +1) - G(i/(*), «(* +1))]
ap

which is always negative if u(x) is a decreasing function. Consider the fixed point b* (-|-)

of this transformation. From proposition 2 it is a decreasing function on the right-hand

side of this equation; hence

But since Tga^b* =b*, the proposition follows. QED.

Proof of Proposition 5:

For any function v(x,a,P) define

A(v)(x,a,P) = — - — - .
5p da

Let u(x) be a decreasing function. Then

A(7;ap«)(x,a, P) = (1 - q){[~u(x) + u(x +1) - G(u(x),u{x +1)] + G(u(x),u(x +1)}

= (1-?)[-!/(*)+ i/(* + l)]<0.

At the fixed point

A(7;apZ>*)(x,a,P) = D(x\q,a,f>) < 0. QED.

Proof of Proposition 6:

Let w(x) be a strictly decreasing function. Define

23



Q,U N =min Kjyuy*,),uy*TL))

x G(i/(x),i/(* + l))+ /?(*)

Since u(x) is strictly decreasing, Q(u)>0 and clearly £?(")< 1 (since p(x)>0 for some x.

Since

+ (1 - q)G(u(x),u(x +1)),
da

> 0 for all q < Q{u).
da

Consider the mapping 7̂ p u = TQ{u)a^. It is easy to see that this is a contraction

mapping, since the proof of proposition 1 relied only on q<l, not any particular value of

q. So 7̂*p has a fixed point vap and

* (\*But then b (x\q ,oc,p) = vap solves (6) and

db\x\q,a,V)
da

> 0 for all <?<,?•. QED.

24
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