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Abstract

In this paper we employ the Kullback Information appa-
ratus in (a) obtaining the strong consistency of the maximum
likelihood (ML) estimator in the standard version of the general
linear structural econometric model (GLSEM); (b) deriving very
succinctly the necessary and sufficient (nas) conditions for identi-
fication by the use of exclusion restrictions. The arguments given
in (a), however, are equally applicable to a wide class of nonlin-
ear models and the arguments in (b) are equally applicable in the
context of more general types of restrictions.

1 Introduction

The purpose of this paper is to illustrate the usefulness of Kullback In-
formation in deriving identification conditions. We do so in the context
of the standard GLSEM, by showing how the resolution of the identifi-
cation problem becomes almost a routine by product of the convergence
properties of the (log) likelihood function (LF), and the consistency prop-
erty of the maximum likelihood (ML) estimator.

* This paper is prepared for the Conference in honor of Carl F. Crist, and is inspired
by his exceptionally lucid discussion of the identification problem in Christ (1966).



2 Formulation of the Problem
and Notation

Consider the standard GLSEM and the corresponding reduced form (RF)

YB* = XC + U, or ZA* = U, with RF Y = XII + V, (1)

A* = (B*',-C')\ Z = (Y,X), 11 = CD, V = UD, D = B*~\

where Y is T x m, X is T x G and contain, respectively, the current
endogenous and predetermined variables of the system; evidently, B*
and C are m x m, G x m, respectively, and contain the unknown
parameters of the model; U is the T x m matrix of the "structural"
errors whose rows are taken to be i.i.d., with1

E(ut) = 0, Cov{ut.) = E > 0.

In this context it is customary to impose

Convention 1. In the ith equation it is possible to, and we do, set the
coefficient of y± equal to unity.

The convention above allows us to rewrite the strucural form in Eq. (1)
as

Y = YB + XC + U = ZA + U, where

A — I I A — 0 ? — 1 9 m O\
A — \ n ) i On — U, i — l , z , . . . , m . (̂ ZJ

The model is assumed to be dynamic; thus, the predetermined vari-
ables are given by

xt. = {yt-i.,yt-2-> • • • iVt-k-iPt.),

where pt. is an s -element row vector representing the exogenous vari-
ables; the latter may be assumed (a): to be generated by a nonstochas-
tic process, or (b): by a zero mean stochastic process, independent of
the error process, which is square integrable and obeys, at least, a second
moment ergodic condition

1 T T

1 The simplicity of this specification is retained so as to have exact correspondence
with the historical evolution of this subject.



the term a.c. meaning almost certainly, also rendered as almost surely
(a.s.) in the literature.

In this context, "identification" is obtained by "exclusion restric-
tions", although, of course, more general schemes are possible; this alter-
native is easily incorporated in our framework, although for simplicity of
exposition we shall operate with the "exclusions" option. Consequently,
we have

Convention 2. In the ith equation there are m,- (< ra — 1), and
Gi (< G) "explanatory" variables, which are endogenous and pre-
determined, respectively.

In order to implement this convention, we introduce the device of se-
lection matrices, 2 as follows. Let Lu , be a permutation of mz- of the
columns of the identity matrix Im , and L2i, a permutation of G{ of the
columns of IQ , such that

=Xt, z = l , 2 , . . . , m . (4)

Giving effect to Convention 2, the ith equation may be written as

y.i = YiP.i + Xn, + Y;pt + X*7* + u.i, i = 1,2,..., m, (5)

where the notation y.i, u.i means the ith column of Y and U, respec-
tively, and p.i, 7.j- contain, respectively, the elements in the ith column
of B, b.i, and C, c.z-, not known a priori to be zero. Evidently, /?*• and
7* represent the elements of the two columns, respectively, set to zero
by the prior restrictions. It follows immediately that

b.i = LuP.i, c.i = L2l^.l, L'ub.i = p.i, L'2ic.i = 7.,-. (6)

Define

L.-\L" ° 1 L ' - \ L " ° 1 i - 1 2 m (7)
'" I 0 L 2 i \ ' L<' ~ [ 0 L'2i\> ' - 1 . A - - - . ' " . (7 )

and note that the ith column of A, in Eq. (2), is given by

The unknown structural parameters of the ith equation are rendered, in
this notation, as

S.i = L\a.i, i = 1 , 2 , . . . m , (8)

2 The device of selection matrices was first introduced, in this context, by Dhrymes
(1973). Greater detail regarding their meaning and function may be found in that
reference, as well as in Dhrymes (1978).



and for the system as a whole we have3

6 = L a, a = vec(A), where L = diag(Z,i, L2, . . . ,Lm). (9)

Finally, we append the following standard assumptions:

Al. The error process {ut, : t > 1} is a sequence of i.i.d. random
vectors distributed as N(0, E) , E > 0 .

A2. If the GLSEM is dynamic, it is stable in the sense that the roots of
its characteristic equation lie outside the unit circle (no unit roots).

A3. The exogenous variables of the system lie in a compact subset E C
Rs, or alternatively they are generated by a zero mean stochastic
process independent of the structural errors, are square integrable
and obey the condition in Eq. (3).

A4. The parameter space, 0 C Rn is compact, i.e. the admissible
values of the elements of A* and S lie in a compact set, B* is a
nonsingular matrix and E is positive definite.

We may thus write the likelihood function of the observations as

L*(9) = (27r)-(mT/2)|E|-( : r/2)|JB* /
JB*|( r/2Wp('-| ')trE-15, where

S=^A*'MZZA*, MZZ = ̂ Z'Z, 0 = (vec(A*)\vec(£)')' (10)

and a zero subscript (or superscript) will indicate the true parameter
vector.

3 Kullback Information and
Minimum Contrast (MC) Estimators

3.1 Kullback Information

We begin by defining the general concept of Kullback information (KI).
3 Note that the exclusion restrictions for the system as a whole may be written as

L*'a = 0, L'

If the prior restrictions are not imposed directly, as has been the universal practice
in this literature and as we shall do below, but rather in form of Lagrange multipliers,
we shall be afforded a routine instrumentality for testing the validity of some or all
of the overidentifying restrictions. For a discussion of this approach in the case of
2SLS and 3SLS see Dhrymes (1994a).



Definition 1. Let ft be a countable (discrete) set and let A be the set
of all subsets of 17 ; let P and Q be two probabilities defined on A,
such that P{uoi) = 0 whenever Q(u)i) = 0 , together with the conventions
that OlnO = 0, and 0/0 = 0. The Kullback Information of P on Q
is given by

Definition 2 (Generalization). Let P and Q be probability measures
defined on the measurable space (ft, A), and suppose that Q is abso-
lutely continuous with respect to P . Suppose further that P and Q
are dominated by a measure \i, in the sense that there exists a measure
fi, and integrable functions / and g , such that for every set A G A

P(A)= f fdfi, Q(A)= f gdfi.
J A J A

The Kullback Information of P on Q is defined by

In the framework created in the previous section, the probability space(s)
indexed on the parameter 0 will be termed an econometric model.
Basically, this is the probability space ( 0 , A, V$), which is induced
by the probability space of the error process, (as well as that of the
exogenous variables) indexed on the parameter 0 which comprises the
parameter triplet (B,C, S ) , or in the case of nonstochastic exogenous
variables, given the space of the exogenous variables H.4

In the context created above, it is to be understood that the dependent
variables of the problem are viewed as measurable functions defined on
the sample space, i.e.

y : ft —> Rm ,

so that everything may be expressed in terms of the econometric models
(ft , A, Ve0 ) and (ft , A, VQ). If there exists a dominant measure ji
such that dVe = fodfi, in the sense that Ve(A) = fA fedfi, for every A-
measurable set A , by a simple change in variable procedure, the Kullback
information may be rendered as

K(0,0o)= I \n(^]feodf,. (11)

4 The discussion of this section is, in part, based on Chs. 2 and 3, vol. II, of
Dacunha-Castell and Dufio (1986).
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Remark 1. We note that in the case under consideration, for A G A,
Ve(A) gives the probability that the dependent variables of the problem
obey y € B, where A = y~1(B); thus, if L* is the likelihood, not the
loglikelihood, function of the observations then

Ve (A) = I L*(0)d^ (12)
JB

where fi is ordinary Lebesgue measure. Consequently, the Kullback
information expression of Eq. (11) may also be written as

K(0,0O) = / In ( ^ ^ ) L*{eo)dii = E0L(e0) - EoL(0) > 0, (13)
JRm \ L*{V) )Rr

where L(0) = \nL*(0). This shows that the Kullback information is a
nonnegative function and, further, that it attains its global minimum
when 0 — 0o .

3.2 MC Estimators

Definition 3. Consider the probability space (H, A, V\ and the
econometric model ( 0 , A, Vo), 0 E 0 C Rn , with the "true" param-
eter, #o, being an interior point of 0 . A contrast function of this
model, relative to 0O , is a function

K: 0 x 0 — > R ,

say K{01 0Q) , having a strict minimum at the point 0 = 0O, in the sense
that K(0O, 0O) < K(0, 0O), for all 0 G 0 , 0 + 0O •

Definition 4. In the context of Definition 3, let X = {X't. : t =
1, 2 , 3 , . . . , T} be a sequence of random vectors (elements), and consider
the (nested) sequence of subalgebras5

Go C Qx C Q2 C • • • C QT C • • • A.

A contrast, relative to 0O and K , is a function6

5 Basically, the motivation for the sequence of subalgebras is to provide the minimal
probability space on which to describe certain sequences of r.v. Thus, for example,
if we take QQ = {0, Q} , the trivial a -algebra used to describe "constants", and
QT = (r{X\, X2, • • •, XT) , we will have produced the sequence referred to in the text,
which is quite suitable for studying the samples {X(T) '• T > 1} .

6 In the description of the function, J\f+ represents the natural numbers, i.e. A/+ =
{1,2,. . .}.



H : Af+xSxn — > R ,

independent of 0O, such that

i. for every 0 E 0 , HT(0,LO) is (^-measurable;

ii. HT(@, •) converges to the contrast function K(0, 0Q), at least in
probability. 7

A minimum contrast (MC) estimator associated with if is a func-
tion,

0: Af+xil —> 0 ,

such that
HT(0T) = miHT(0).

The definition above makes possible the following important

Theorem 1. In the context of Definitions 3 and 4, suppose, further,

i. 0 C Rn is closed and bounded (compact);

ii. Ar(0,#o),and HT(O,UJ) are continuous in 0;

iii. letting
cn(6) = sup I Hn{0x) - Hn{62)

|
there exist sequences {en : en > 0,n > 1} , and {8n : <5n >
0,n > 1} , both (monotonically) tending to zero with n, such that
the sets Fn — {LO : cn(<5n) > en} obey V(Fn) < 2en , and hence

iv. (identification condition) if inf^e K(6, OQ) = K(0*,6o) then 0* =

Then, every MC estimator is consistent.

Proof: We proceed by contradiction; thus suppose the estimator does not
converge to 0o . Since K(0,0O) is continuous and K{0Q^0Q) = 0, there
exists e > 0, such that

/i(6>A) > 2c, for 6 £B, (14)

7 When a statement like this is made, or when an expectation is taken, we shall
always mean that the operations entailed are performed in accordance with the prob-
ability measure Ve0 .



where
B = {0:\6-0o\<c}. (15)

We shall obtain a contradiction if 6T converges in 0 , but outside the
set B . Since B is open , 0* = 0 H B is compact; consequently, there
exists a countable set D that is everywhere dense in 0* , say

D = {0t : i > 1}.

Moreover, for ej- < e, there exists a finite open cover of 0* , say

N

e*c{jA{, with A{ = {0: \ 0 - 0{ | < eT}. (16)

Next, note that we can write HT(0) = HT(0i) - [HT(9i) - HT(0)], so
that HT(0) > HT(6i) - \ HT{9i) - HT(0) |. Consequently, we obtain

inf HT(0) > inf HT(0i) - sup sup | HT{0i) - HT(0)
£@* i<i<N e£D \ e e i < S

(17)

Let 6T be the MC estimator, i.e. HT(OT) = inf^ee HT(@) '•> w e show
that its probability limit is 60 . It is clear that OT G B if and only if
inf#ee* HT(0) < HT{0Q) • This is so since, by the continuity of HT(0) ,
if the condition above holds, there exists a neighborhood of 60 , say
N(0o; e) = {$ : | 0 - 0o |< e} , such that

inf HT{9) < HT(S), for S G ^(^o; e)»

and it is this type of neighborhood that constitutes the set B. Define
now the sets

BT = {LV : 9T e 0*}, CT = {UJ : mfm[HT(0) - HT(0o)} < 0}

DT = : inf \HT(6i) - HT(90)] - cT(6T) < 0},
l<t<N

(18)

ET = {LO : inf \HT(9i) - HT{0o)]
l<i<N

and note that

FT = : cT(ST)

C

If ^T converges in 0* then for all (sufficiently large) T

V{ET) > 0, and indeed lim V(ET) > 0.
T—+oo

(19)



We show that this implies a contradiction. To this end, note that for

DTnFT = {u : inf [HT(0i)-HT(0Q)\ < cT(6T), and cT(8T) < eT} C ET.
l<i<N

(20)
Since

DT = (DT D FT) U (DT n FT) C (ET U FT), (21)
it follows that

V(BT) < V(CT) < V(ET U FT) < V(ET) + V{FT). (22)

By iii of the premises of the proposition, V(FT) -^ 0, and by Definition
3 and Corollary 4 Dhrymes (1989) p. 147,

x miN[HT(0i) - HT(0O)] $ ^ K{0,0t) - K(0Q, 0o) > 2e. (23)

This is a contradiction if V{ET) > 0, since for all T the left member
above is negative while the right member is positive. Hence

lim V(ET) = 0, and thus lim V(BT) = 0.
T—*-oo T—>-oo

q.e.d.

But his means that limT-̂ oo V(BT) — 1; since BT = {to : 0T G
and e is arbitrary, we have that ^ is consistent for 0O .

Corollary 1. In the context of Theorem 1, suppose that

HT{0)-HT(0O) ^ K(0,Oo)

uniformly for 0 E 0 • Then the MC estimator converges to 0O with
probability one, i.e, it is strongly consistent for 0O .

Proof: We note that under the premises of the corollary, /P(limn^oo Fn) —
0. Proceed as in the proof of Theorem 1, and define the sets B, 0* ,
BT-, CT , as defined therein. Suppose we have convergence as in the
premise, but 0? converges in 0* . We show a contradiction. Consider
the "event"8

{LO : 0T e 0V'.o.} = Imi BT.
T—+oo

In view of the preceding we obtain

/ \
lim BT C lim CT C I lim ET U lim FT ) ;

T-^oo T^oo \T^oo X^oo /
8 The notation i.o. means infinitely often.



Since ^(limr^oo FT) = 0 ,

V ( Hm BT) < V ( lim" CT) < V ( lim" £
\T—+00 / \T—*-oo / \T—»-co

If V flim^^oo ET) > 0 , we have a contradiction since the premises imply

$0) > 2e > 0. (24)

Consequently, V (\im.T-+oo BT) = 0 . Or more directly, since the conver-
gence is uniform in 9,

inf \HT(0) - HT(90)} ^ inf K(9,9Q) > 2c,

which is a contradiction. This is so since the left member is negative for
all T but it converges a.c. to the right member which is positive. Thus,

V( lim CT) = 0, and, consequently, V( lim BT) = 0. (25)
T—K5O T—KX>

lim BT = Hm BT, and ,BT = {to : 0T G iV(^0; e)}, (26)
Since

the argument above implies Pflimy^^ ^ ) = 1 , which means that the
event {UJ : $T G N($0;e), i.o.} has probability one, i.e. that the ML
estimator, inf^ee HT{6) = HT{9T) , obeys

thus converging a.c. to the true parameter #o •

q.e.d.

Remark 2. Notice that in the proof of Theorem 1 we place no restric-
tions on how 9 the parameters of the problem enter the function HT ;
nor do we require that the likelihood function be of a specific form, or
that the observations be i.i.d.. The strongest condition imposed is the
"smoothness" condition in iii which will be satisfied if H is bounded
by an integrable function of the observations and, at any rate, is rather
mild by the standards of the literature of econometrics. Thus the results
of Theorem 1 are applicable to a wide variety of contexts that can be
shown to satisfy conditions i through iii of Theorem 1 and, for strong
consistency, the premise of Corollary 1. For an application to the general

Meanining whether they enter the model linearly or nonlinearly.
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nonlinear model or the general nonlinear simultaneous equations model
with additive errors see, for example, Dhrymes (1994c).

Indeed, the class of estimators referred to in the literature as M-
estimators are MC estimators. It would certainly facilitate matters, at
least in a pedagogical sense, if M-estimators were discussed in the context
created above; the use of the contrast function will render the discussion
of identification and consistency far simpler to carry out.

4 Identification and Strong Consistency
of ML in the GLSEM

4.1 Strong Consistency

In this section we employ the Kullback information (KI) developed in
the preceding sections to establish identification criteria, as well as the
strong consistency of the ML estimator in the context of the standard
GLSEM. First, we show that the LF of the model of Eq. (1) satisfies
the conditions in Theorem 1. Evidently, condition i of the theorem is
satisfied, in view of assumption A.4. Define

LT(0) = ^lnL*(Y, X- 0), H*T(0) = -LT{9). (27)

and note that H^(9) = —Lj{6) is a constrast in the sense of Definition
4. In fact, we shall not violate the sense of Definition 4, if we put

HT(0) = H*T(0) - H*T(0o), (28)

since the minimization procedure does not involve H^(90). This is quite
evident from the fact that

MHT(0) = miH*(6).

By assumptions A.3 and A.4 we may conclude, using the results in Ch.
4 Dhrymes (1984), that

which is10 an integrable function and does not depend on 0;
thus, Hj satisfies condition iii of Theorem 1 as well. As for condition
iv (the identification condition), this is of course a condition that must
be imposed in the ML context as well, otherwise no identification is

10 We note that M2Z = (Z Z/T).
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possible. The point of this section is to illustrate how condition iv yields
the standard results of the identifiction discussions in the GLSEM, the
argumentation for which normally consumes several pages.

Our next task is to determine the limit to which H? converges. We have

Proposition 1. Under conditions A.I through A.4, and assuming the
GLSEM is dynamic and stable,

c\ I U

Q = [B*'n0B* + (A - A0)'P0(A - Ao)]

Po = (no,/G)'Mra(IIo,/G), — ^M,*. (29)

Proof. From the nature of the LF, we need only determine the limit of

S(0) = \-A*'z'ZA\ A* = (£*', -C')' (30)

Since ZA* = ZA* - Z{A* - A*) = U - Z(A* - A*), we need only
determine the limiting behavior of

U'U U'Z Z'Z
rp 1 rp 1 a I 1 d rp •

We have
U'U I f , a.c
-y- = 7f2^ut-ut- ~* so- (31)

This is so since {ut. : t > 1} is a sequence of i.i.d. random elements
(vectors) with mean zero and covariance matrix E o . The almost certain
(a.c.) convergence follows by Proposition 23 Dhrymes (1989) p. 188.
Next, we consider the limiting behavior of U Z/T , which consists of two
components, U X/T, and U Y/T . The first component is of the form

12



by the discussion in the Appendix. Consequently, the second component,
obtained from the reduced form representation, obeys

Finally, since by the preceding discussion and that in the Appendix

I , y
o o

o = (n0,/o)'MII(n0,/G), (34)

we may establish, after some manipulation, that (uniformly) for every
6 <E 0

5(0) n- B*'SIOB* + (A*o - A*)'P0{A* - A*). (35)

Hence, we conclude that uniformly in 0 , we have that

LT(0) a-4- L(0,0o), (36)

where

Q = B*'n0B* + (AZ-A*)'P

It follows, threfore, that uniformly in 0

HT(0) *S l

= - \ (m + ln|So| -

(37)

Defining now

we shall now show that the function K, above, is the asymptotic KI of
the problem, i.e. the limit of ^0Xj-(^0) — EQQLT(0) . To this end, we
observe that

EeoLT(0o) = -yln(27r) - y - | ln |S o ^ '

yln(27r) - i Q. (39)

13



Consequently, defining the sample based KI by KT{0Q->O) =
EQOLT{0) , we find

o = (UO,IG)'MXX(UOJG)

Q = B*'%B* + (A* - A*) 'P 0 (^ - A*), M ^ = ^ , (40)

and it may be verified quite easily that the asymptotic KI is given by

lim KT{0,0O) = K{0,0O) = L(0o, 0O) - 1(0, 0O). (41)
T—>oo

An immediate consequence of the preceding is

Corollary 2. Under assumptions A.I through A.4, Conventions 1 and
2, and assuming the GLSEM is identified, the ML estimator $? defined
by the operation inf^€e HT{0) obeys

inf HT{0) ̂  inf K(0,60) = K(0,0O) = 0, and 0T ^ 0O.

Proof: The function Hj satisfies all conditions of Theorem 1, as well the
conditions of Corollary 1; consequently,

T(0)^ mmiK(e,eQ).

If 0 is the point at which K attains its global minimum then: (a)
0T —̂  0, and (b) K(0, 0Q) = 0 . But, from the properties of KI we also
have K(9Oi0o) = 0. By the identification condition, we have 0 = 0O.
Thus 0T —•> 0o , and the ML estimator of the parameters of the standard
GLSEM is stronerly consistent.

q.e.d.

4.2 Identification

In this section we derive the detailed identification conditions for (each
of) the equations of the GLSEM, as implications of the identification
requirement of the preceding discussion. We recall that

K(0, 0o) = -l-rn - hn \ Eo | +^ln | B ^ \ +^ln | E | -^ ln | B*B*

14



Noting that Qo = Bo ^ o ^ o * a n d, therefore, that BQ SIQBQ — Eo •>
 w e

can rewrite the (asymptotic) KI of Eq. (40) as

"1K{0o,0) = -\m - iln | E ^
(42)

The expression above may be (partially) minimized with respect to £ \
yielding the first order conditions,

whence we obtain

Noting that

E = Q.

= - In

and inserting the minimizer in Eq. (41), we obtain the "concentrated'
KI expression,

/i*(Mo) = - In n0
• (43)

Remark 3. Since the expression in the large round bracket is equal to or
greater than unity, K* is globally minimized when we take A* — AJ;
when we do so the fraction becomes unity, in which case the Kullback
information becomes null. Referring back to the partial minimization
with respect to E, we see that when the choice A* = AQ is made, the
expression therein implies S = Eo . However, in Eq. (42) it is not
transparent that the global minimizer is unique. This is so since
the matrix Po is of dimension G + m, but of rank G! Hence, its null
space is of dimension m and thus contains m linearly independent
vectors, say the columns of some matrix iVo . If J is an arbitrary m x m
nonsingular matrix consider the choice A* = AQ — N0J, which implies
PO(AQ — A*) = PQN0J = 0. Consequently, the Kullback information of
Eq. (41) does not satisfy the (identification) condition in item iv of
Theorem 1, unless certain restrictions are placed on the structure, as
indicated in Conventions 1 and 2. Suppose that in order to make A*
admissible,n the restrictions required were such that the intersec-
tion of the null space of Po and the class of admissible structures

11 In this context a matrix A* is said to be admissible, as in the standard context,
if and only if it satisfies all prior restrictions.
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has AQ as its only member, in the sense that PQ(A*Q — A*) = 0 if and
only if AQ = A* . Evidently, this would establish identification!

In Remark 3 we had established that, in order to have identification, any
matrix A* for which the (concentrated) Kullback information attains its
global minimum, must have the property that A* = AQ , where AQ is
the "true" parameter matrix. This means that a necessary and sufficient
condition (nas) for identification is that

* = (A'o - A')'Po(A'o - A') = 0,

for every admissible matrix A* . To implement this requirement we have
at our disposal Conventions 1 and 2. By Convention 1 (normalization)
we may set B* = Im — B , with bu = 0 , for all i, and similarly for BQ =
Im — Bo . Consequently, AQ — A* = A — Ao , where now A = (B\ C ) ,
and AQ is the true parameter matrix; thus, we may rewrite W in terms
of A and AQ ; moreover, since we are dealing with a positive semidefinite
matrix, the condition ^ = 0 is equivalent to

1=1

Reintroducing the selection matrices L{, and L = diag(Li, L2,..., Lm),
of the preceding sections we note that

a.i - a°t = Lt{6.% - 6%), t r t f = (6- 6°)'L\lm <g> P0)L(S - 8°). ( 4 4 )

In the framework of Eq. (43) a nas condition for identification of the
parameters of the system is that the block diagonal matrix L (Im®Po)L
be positive definite. The ith diagonal block of that matrix, however,
is of the form

Thus, identification of the system is obtained if and only if

rank(5t) = rank(IIZi, L2i) = rrii -f (J,-, for every i = 1,2,... m. (45)

By Theorem 5 and Corollary 1, in Chapter 3 Dhrymes (1994c), the condi-
tions above are the nas conditions for the identification of the parameters
in the ith equation, and the system as a whole. Thus, we have derived
the nas conditions for the identification of the equations of a GLSEM by
a very simple argument based solely on the identification requirements
placed on KI, and almost as a by-product of the argument showing the
strong consistency for the ML estimator. We may summarize the pre-
ceding discussion in

16



Theorem 3. Consider the GLSEM of Eq. (1), subject to Conventions
1, 2 and assumptions A.I through A.4.; suppose further that it satisfies
the KI based identification condition (KfBIC)

0o)i implies 6* = 0O.
9£&

Then

i. the ML estimator obeys 6? —> 0o 5

ii. the KIBIC holds if and only if Eq. (44) holds, i.e. if the standard
identification requirements are valid.

Remark 4. Notice that the identification result for the GLSEM of Eq.
(1) in no way depends on whether the error process is Gaussian; nor
does it depend on whether the structural errors are i.i.d.. It only depends
on whether the conditions of Theorem 1 are applicable; even if the errors
were not normal but, engaging in a quasi-ML exercise, we define
the function to be minimized by

HT{0) = iln|S| - l-\a\B*'B'\ + h,rT,-1 A''Ma,A"

- | ln |So | - \ln\BZ'B*0\ + i trEJ1 <MZZA'O,

we shall establish, as its a.c. limit, precisely the function K(0,0O) above,
even if normality is not assumed. The only difference in this context is
that we must show that K is a contrast function; thus, the normality
assumption is only incidental in that it allows us to write the particular
LF and, given that we are dealing with a LF function, we are assured
that K is KI and as such it is a contrast function. However, the results
obtained are of much wider applicability, and depend only on the proper-
ties of the function to be minimized in order to obtain the MC estimator,
and on whether the limit to which it converges is a contrast function. If
these two conditions hold then detailed identification conditions may be
routinely obtained for the GLSEM, or for nonlinear models. It is this
feature of the MC estimator framework that makes it very appealing.

Finally if the errors are dependent, certain complications will arise
which are related to subsidiary issues, such as the convergence of the
function to be minimized to an appropriate probability or a.c. limit.
Whereas these issues may be easily dealt with by proper modification of
the model specification, they lie outside the purview of this paper.
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APPENDIX

In this appendix we provide the details of the covergence arguments for
the loglikelihood function, and demonstrate the asymptotic normality of
the ML estimator. We do so for the case where the model is dynamic
and stable and the exogenous variables are generated by a zero mean,
square integrable stochastic process obeying the condition in Eq. (3); or,
alternatively, they lie in a compact set H C Rs, i.e. for every t, pt. G H,
and have the property

t- = Mpp>0.

Consider the model in Eq. (1) as amplified in the discussion following,
and write its reduced form as

or in more compact form

U(L)y't. = noP;. + D'ul U(L) = I

where L , in the context of this discussion only, is the usual lag operator.
Let H(L) be the matrix adjoint to H(L) and h(L) = |II(Z)| . Since the
model is stable we may write

i H(L)

so that each element of the inverse matrix operator is a ratio of polyno-
mial operators of degree (ra — l)k and mk , respectively, and it possesses
an absolutely converging power series expansion. We may thus obtain
the final form

Putting

H2(L)u,
h(L) % '

h(L) ^l'

H2(L) ,
h(L) Ut'

with

v* >

{ j

CO

/ ^

s=0

f

isPt-s,

2s t-s-i

3=0

CO

19



the final form may be written, more compactly in vector and matrix
form, as

yt. =pt. +
ut-, °r y = P +u

the first term being the "systematic" or exogenous component, the second
being the "random component".

From Eqs. (29) through (34) it is clear that the basic entities whose
behavior needs to be determined are:

u'u x*'u x'x
rp "> rp 5 rp '

Examining the first term, we find

U'U _ y> ' a x . s

T t=i

by Proposition 23 Dhrymes (1989) p. 188.

4.3 Convergence of U'X/T

Before we proceed, we note that having assumed the existence of the a.c.
limit

1 T T

— y^ pf pt. ̂  lim y^ Epf pt. = Mvv > 0,
1 i = l t=l

we must conclude that the a.c. limits

1 T

1 t=i

exist as well for all z,j; , owing to the fact that

Pt-i.Pt-j- + Pt-j.Pt-i. < Pt-i.Pt-i- + Pt-j.Pt-j-

We begin by noting that

U'X 1 /* , . * , . T N

^ ^ \i=i f=i t=i

T T

and defining the entities

Cn = vec(u't.pt.), C*2 =
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What is common amongst the three entities above is that they are zero
mean uncorrelated random elements; the covariance matrix of these
terms is given, respectively, by

Cov(Cn) =

) = $00
s=0

Moreover, by the result given in the appendix of Dhrymes (1994b), all
such matrices are dominated by C\ta , a £ [0, | ) , where C\ is a matrix
of finite constants. Consequently, by Proposition 26 Dhrymes (1989) p.
193,

1 T U X
7p^2Cui^ 0, i = 1,2,3, and thus —— ̂  0.

4.3.1 Convergence of

In this section the basic entities are

P-iP-i P-iP P'P U<U*_3 Pl'iUlj P'U -3

The first three of these entities may be handled by the following generic
argument. Recall that

and consider

p*' p* co co
—Zl—ZL _ M*. M*. —

s—0r—0

We shall show that DT —>' 0 . We first note that
CO CO

II DT II < E E II Fi* IIII Fir Illl
5=0r=

1 ^ ac
Mi+Sij+r = -EK-z-s .P t - j - r - , and Mi+8ij+r ™ Ml

1
l+SiJ+r

t=i

In view of the last equation above, there exists a constant k and S > 0 ,
(but arbitrarily small) such that for all T > T(s, r)

AT(s,r) = {u : || Mz+s,j+r - Ml+SjJ+r | |< fc}, and P(A r( s , r)) >1- 6.
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Thus, for T > TQ and
To = sup T(s,r)

s,r>N

we have, with probability at least 1 — S,

II DT || < £ E II fi. IIII fir IIH M, + s , , + r - M i + , J + r
5=0 r=0

CO CO

E
s=N r=N
E

Letting T —> oo we find

DT ir-s- *• < * E E II fi.* E E
s=./V r =

Finally, letting N —> CXD , we obtain the desired conclusion, viz.

p
- ' - J

Consider now the entities

7 0 — 1 9 ^
, 2, J — I , Z, . . . , K.

P<U*_3 P'U*_3

rp rp rji 5

and note that u*. and u*'u*. are mixingales, see Hall and Heyde (1980),
(HH), p. 19. The parameters ^ m , cn in HH's notation are given by

1/2

Cn = | | E ||,

in the case of w*. , and by

Cn = K,

2s
,.7=771

in the case of vec(u*. ® u*m), where Â  is a bound on fourth order mo-
ments; this is a uniform finite bound in view of the fact that the structural
error process is normal.12 Thus, the a.c. convergence of the first entity

12 This is the only instance, in this Appendix, where the normality assumption re-
garding the error process plays a role by ensuring, whithout additional conditions,
that the fourth order moments are uniformly bounded; note that we would have ob-
tained the same result if we only assumed the errors to be independent with uniformly
bounded fourth moments, or even weaker conditions.
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is implied by Theorem 2.1 in HH, p. 41, if ]C^Lm || F2s || converges to
zero at the rate of m~a , where a > (1/4). This is so since

(lnm)2 -> 0,

under the conditions specified. Thus, we obtain

U<U
-
— i^—i a . c .

T
z, j = 1,2,..., k.

s=0

If we take the exogenous variables to be nonstochastic and lie in
a compact set El, it is clear that convergence to zero is implied for
Pl{UZj/T by the result in HH cited above, because p£ u*. is a mixingale,
and thus we have convergence a.c. to its mean, which is zero. In the case
of stochastic exogenous variables the same result will continue to hold,
in view of the assumption that pt. is independent of ut., ; this is so since
if we condition on Qt = a(ps.,s < t) the sequence (p*. <g> u*.\Qt) is a
mixingale, as in the nonstochastic case, and the result continues to hold.
With this argument we have completed the derivation of the required
results; specifically, we have obtained

UU
T So,

XX
T

Mx

M
k

$ 22

M
M,

10

20

M,ki
M,01

p'p*.

Mfc2 + $A;2

Mo*2

'fcJb
M*,0k

Mt

M,
k0

00 J

T
M,00 5 $.-.- = $00-

4.3.2 Limiting Distribution

Admitting stochastic exogenous variables introduces a certain complica-
tion into the problem of the limiting distribution of ML estimators; this
section is devoted to the resolution of this issue. It is shown in Dhrymes
(1994c) p. 214, that the limiting distribution in question depends cru-
cially on

1
(IG 0 X')u = = %)w i . =

11

Vi t=l
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In that discussion, the exogenous variables were specified to be non-
stochastic and lie in a compact subset of Rs. Now, construct the stochas-
tic basis

At - cr(pr., r < t + 1, us., s <t)

and note that {((t-, At) : t > 1} is a martingale difference, since it
is integrable and E((t-\At-i) = 0. Moreover, it may be shown that it
satisfies a Lindeberg condition, and in the preceding discussion we have
shown that

X X *_$ M > o

and obtained the precise form of that matrix. Hence, by Proposition 21
Dhrymes (1989) p. 337, we conclude that

x't.)ut. -^ N(0, E 0 Mxx).
t=i

The remaining arguments remain unaffected, and may be obtained fol-
lowing the discussion in Dhrymes (1994c) p. 212fF.
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