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Abstract

This paper obtains the limiting distribution of the trace test
for cointegration in the context of the VAR{n) model dealt with
in Johansen (1988), (1991). The limiting distribution in question
turns out to be that of a linear combination of mutually inde-
pendent chi-squared variables all with the same degree of freedom
parameter. The coefficients of the linear combination are charac-
teristic roots of a certain positive definite matrix which may be
estimated consistently.
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1 Introduction and Summary

Let {Xt. : t G Af} be a stochastic sequence defined on some probability
space ( fi , A , V). If the sequence is taken to be 1(1), in the sense that
{(I — L)Xt. : t E Af} is strictly stationary, the question often arises as
to whether the sequence in question is cointegrated. The latter means,
in this context, that there exists a q x r matrix B of rank r < q such
that Xt.B is (strictly) stationary. In this paper we follow the derivation
and arguments in Johansen (1988), (1991) and obtain the result that
the trace test for cointegration, i.e. the test that the smallest q — r
roots of a certain determinantal equation are null, whose test statistic

* I wish to thank Ioannis Karatzas for a number of conversations, and Morris L.
Eaton for helpful comments.
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is the trace of a certain function of the orginal matrix is asymptotically
distributed as the trace of a Wishart matrix. We show that this trace
is distributed as a linear combination of chi-squared variables with q — r
degrees of freedom. Finally relying on earlier work by Box (1954), and
Siddiqui (1965) we show the precise form of the distribution needed in
order to carry out significance test. Although the form of this distribution
cannot be tabulated owing to the fact that it depends on certain
characteristic roots of an unknown matrix, still the form is quite simple
and easily programmed to be used in conjunction with any estimation
software dealing with such issues.

2 Notation and Problem Formulation

Consider the standard VAR

t.j.Uj = e t . , * > 1 , n o = /g , X.t. = 0, * > 0 , ( 1 )
j=0

where Xt. is a g-element row vector, the error process being a multi-
variate white noise process with mean zero and covariance matrix E > 0,
denoted by MWN{Z).

Remark 1. Although, as in the case of Johansen (1988) (1991), we
shall formally assume the MVVN process to be normal, this particular as-
sumption merely motivates the form of the likelihood function. In fact,
normality is quite irrelevant to most of our discussion, and the "likelihood
function" may be thought of as the "objective function" of the problem
much as in the so-called quasi-maximum likelihood literature of simulta-
neous equations. In this interpretation, the e-process is MWN(T>) with
unspecified distribution.

"Dividing" II(JL) by (7 — L), where L is the usual lag operator we find,
after some rearrangement,

(7 - L)Xt. = -AVi .n ( l ) + xt.n* + Q., (2)

where

xt. =

ir = (n;1,...,^^)', n;= £ n,-,
t=j+l 3=0

It is assumed that

= 0, where U(</>) = "£11'^, (3)
3=0



has ro unit roots, and the remaining roots are less than one in absolute
value, so that the X -process is cointegrated of rank r = q — ro . It is an
easy consequence of the preceding that

(I - L)X't. = ril »fc. = 5 > ; 4 i o M ; H 3 ~ O \ c G ( 0 , l ) . (4)
i=o

If the process is cointegrated of rank r then 11(1) is of (reduced) rank
r < q. Hence, by the rank factorization theorem, see Dhrymes (1984) p.
23, there exist matrices F, B both of dimension q x r and rank r such
that 11(1) = BT . We must now estimate the parameters of the model
given T observations on {Xt. : t = 1,2,3,. . . ,T} ; in order to give this
problem the familiar look of systems of general linear models we define

yt. = (I - L)Xt. + A V i . n ( l ) = AXt. + Xt^

Y = (</,.), X = (xt.), U = (et.), t = 1 ,2 ,3 , . . . T,

y = vec(F), 7T* = vec(n*), u — vec(U), 7 = vec(r'). (5)

Thus, we may write

yt. = xt.IL* + et., Y = XTT + U, or y = (Iq ® X)ir* + u, (6)

for a single observation and the entire sample, respectively, and define
the estimation problem as: maximize the likelihood function with respect
to the unknown parameters subject to the condition that B is q x r
of known rank r . In view of the preceding, the loglikelihood (LF) of
the T observations is given by

Fo = -^ln(2*) - | h | E | - \tr(Y - XW)^~\Y - XXl')'. (7)

From Dhrymes (1984) p. 106, we have

and solving the first order condition (dFo/dir*) = 0, we find

v' = (Iq®(X'X)-"X']y. (8)

Inserting this in Eq. (7), we obtain the concentrated LF

rp rp -i

Fx = - — ln(27r) - - l n | E | - - ^ ' ( S " 1 <g> N)y, N = IT - X(X'X)~1X'.
2 2 2

(9)
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Next, we note that y = Ap — (Iq <g) P_\B)^, where

P = (Xt.), P-i = (Xt-i.), t = l , 2 , 3 , . . . , T , z = l , 2 , 3 , . . . 7 i - l

p = vec(P), p_2 = vec(P_j), 7 = vec(F ) (10)

and the concentrated LF may be rendered as

^ | (11)

- (7, ® P^BJ^'CE"1 ® N)[Ap -

solving the first order conditions (dFi/dj) = 0 , we find

7 = [/, <g> (B'P'^NP^By'B'p'^NjAp. (12)

Noting that

<t> = (/, <8) 7V)[Ap - (7, <g> P_!£)7] = (I , <8> N*)(Iq ® N)Ap,

N* = IT - NP^BiB'P'^NP^B^B'p'^N, (13)

we may write the (once again) concentrated LF as

F2 = -q |

\ ' 1 ® N'N)Ap\. (14)

Using the results in Dhrymes (1984) p. 106 and "rematricizing" the last
expression in the LF, we may rewrite the latter as

2̂ = - ^ ^ r J - l l n l S I - l t r S - ' S , 5 = ^(NAP)'N'(NAP). (15)

Maximizing F2 with respect to the elements of E"1, we obtain

0, or t = S. (16)

Inserting this in Eq. (14), we find the ultimately concentrated LF

which is now to be maximized with respect to B



To continue, it is convenient to define

W = NAP = A^(P-P_!), V = NP.U (18)

and to omit the term. (1/T) from the definition of S ; in this notation the
maximization of F3 in Eq. (17) is equivalent to the minimization
of

D(B) = \S\ = \W'W - W'VB(B'V'VB)-1B'V'W\ (19)

= \w'w\\iq-Ji J = W'VB{B'V'VB)-1B'V'W(W'W)-\

From Dhrymes (1989) p. 39, we have that

\Iq -J\ = \B'V'VB\-* \B'[V'V - V'W(W'W)-1W'V]B\. (20)

Since the function D(B) is homogeneous of degree zero in 5 , we
need to impose a normalization, else the problem is not well defined, or
there is an infinitude of solutions. A convenient normalization, under the
circumstances, is B V VB — Ir , so that the quantity to be minimized,
with respect to B , is

D(B) = \W'W\ \B'[V'V - V'W{W'W)-lW'V]B\. (21)

To do so we proceed in a roundabout fashion, abstracting for the moment
from the probabilistic aspects of the problem. Consider the characteris-
tic roots of V'W^W^'VF^VFV in the metric of V'V, i.e consider the
equation

\W'V - V'W{W'W)-1W'V\ = 0. (22)

Since the matrix V V—V W(W W)~1W'V is posit ive definite, all such
characteristic roots are (positive and) less than unity, see Dhrymes (1984)
p.75. Let the roots {Xj : j — 1,2, 3 , . . . ,q} be arranged in decreasing
magni tude , let the corresponding characteristic vectors be {g.j : j =
1 ,2 ,3 , . . . ,9} , define

A = diag(Ai,A2 ,A3 , . . . ,A9) , G = (g.i,g.2,g.z, ••- ,#•<?), (23)

and impose the normalization G V VG = Iq . Since

V'W(W'W)-lW'VG = V'VGA, (24)

we conclude that

D(G) = \W'W\ \G'[V'V - V'WiW'W^W'V^ = \W'\V\ \Iq - A|.
(25)



Thus, the estimator we seek, B, must be a subset of the columns of
the matrix G, it must be of rank r , and must minimize D(G). The
solution is then obvious, we must choose B to be the submatrix
G(r) containing the r characteristic vectors, corresponding to
the r largest roots. Thus, the maximized value of the LF is given by

W'W
T

rp r

-fZ>(l (26)

where the notation A^), j = 1,2,... ,g, indicates the ordered roots.

It is easily demonstrated that under the alternative of no cointegration,

Hx :rank[II(l)] =q,

the maximum of the LF is given by

F4(B-q) =
W'W

T
(27)

3 =

so that the test of this hypothesis involves the question of whether the
smallest q — r roots are zero, and the log of the likelihood ratio test
statistic is given by

Z j=r+l
(28)

Since the matrix whose characteristic roots are involved in the test is at
worst positive semidefinite, an equivalent test is in terms of the alterna-
tive

which will yield the test statistic

f = T J2 XU).
j=r

3 The Limiting Distribution of f

To investigate this problem consider the matrix

S(X) - x v'v v'w (w'wy1 w'v

(29)



Let G2 be an arbitrary q x q — r matrix whose columns are linearly
independent, such that {B1 G2) is a nonsingular matrix, and define

CT = ( B , -±=G2) , S*(A) = C'TS(\)CT. (30)

It is easily verified that the characteristic roots of interest in our discus-
sion are the roots of |5'*(A)| = 0 and, moreover,

~lB'V'W (W'W\~l W'VB

XB'V'VG2 B'V'W fW'wy1 W'VG2
A ^ 3 / 2 ~ T \ T )

> V'V G'2V'W (W'wy1 W'VG

It may be easily shown that ^ ( A ) —> 0 and, asymptotically,

G2V VG2 G2P_1P-1G2 d n> p . * / r>( \ TD( \ J \ ID n (<\^\— ~ — > G2P0 / B(s) B(s) ds P0G2, (32)

where PQ is a triangular decomposition of the matrix So , i.e.
00 00

P P v̂  v^ I ^""** . v^* 77? I ^ ^ 77? I X '̂  77? /QO\

B(s) being a SMBM1 of dimension q . We also note

Z'_XNZ^ Z'_
^n\A) — A ^ ^ I ^ I ^ 5

where Z = (zt.), and zt. = Xt.B is the cointegral vector. It follows,
therefore, that

Z'^NZ.x _ Z'_XZ-X Z'_XX (X'xy1 X'Z_X

f ~ T Y~ \ T ) T

a-4- Mzz - MZXM-X
XMXZ = M*zz, (34)

1 In the notation and usage of this paper a standard multivariate Brownian Motion
(SMBM) is a #-element row vector Brownian Motion such that EB(s) B(s) = slq .
A multivariate Brownian Motion (MBM) with covariance matrix s<& , is written as
BPQ , such that Po is the (unique) triangular matrix of the decomposition $ = PQPQ .
For triangular decompositions of this type see Dhrymes (1984), pp. 68-69.
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where Mzz denotes the (conditional) covariance matrix of the cointegral
vector zt-\. given xt.. In a similar fashion we may show that

Z'_XNAP
T

(AP)'NAP

z'_Yx (x'x - 1

T T \ T T
-M:Szz

S + TM*ZT' = Mww, so that (35)
T

s*n(\) ^ \M;Z - M;ZT M~irM;z,

SloiX) ^ XG'2PLKPQG2 = XS22, K= / B(s)'B(s)ds.
Jo

We therefore conclude that the characteristic roots of I-Ŝ A)! = 0
converge, in distribution or a.c, to the characteristic roots of |S*(A)| = 0 ,
where .

[A M-M r^ r M J J (36)
and it is evident that there are at least q — r — r0 zero roots; to
complete the argument we must show that the roots of

\\M:Z - M;ZY'M-WIYM:Z\ = o

are nonnull, so that the number of nonzero roots corresponds to the
number of cointegrating vectors. Since the cointegral vector zt-\. and
xt. are evidently not linearly dependent, Mzz > 0; moreover, since
equally evidently MZZT M~^TMZZ > 0 , we conclude from Proposition
62 in Dhrymes (1984) p. 74 that the roots in question obey 0 < Aj < 1,
for j = 1, 2 , . . . , r and Xj = 0 for j = r + 1, r + 2 , . . . , q.

In view of the fact that the characteristic roots of S(X) are con-
tinuous functions of its elements, its ordered characteristic roots obey,
asymptotically, the relations implied by Eq. (36), i.e. the largest r roots
have positive a.c. limits, while the smallest q — r roots have zero limits
(in distribution).

Remark 2. Since we have employed the normalization B V VB/T — Ir,
we are led to the conclusion that M*z = Ir . Thus, the limiting form of
the characteristic equation yielding the characteristic roots is given by

0 = |A7r - r (S + IT )"1r | \XG2PoKPoG2l (37)

which clearly shows that the r positive roots come from the first factor,
while the q — r zero roots come from the second factor. Finally, using



the partitioned inverse form, see Dhrymes (1984) p. 39, we conclude

that the r largest characteristic roots of relevance to our discussion, Xj ,

j = 1,2,... , r converge to entities, Xj , which are related to the roots of

= 1(1 — X)lr — (lr + 1 h 1) I = \filr — 1 L 1 I, (.38)

by fij = Xj/(1 — Xj). In view of the fact that V S - 1 r > 0 , \x3 > 0 , for
all j , and thus 0 < Xj < 1 . Since F S - 1 r is a nonsingular matrix
of dimension equal to the cointegration rank, we see that the number
of the characteristic roots of S(X) which, in the limit, are positive is
precisely equal to the rank of cointegration.

We now turn to the question of the limiting distribution of the smallest
q — r characteristic roots; thus, we must determine the limiting distri-
bution of X'A(j) = pj , for j = r + 1, r -f 2 , . . . , q . To this end, note first
that

S;2(T-lp)-S'21(T-lp)[S'n(T-lp)}-1S'n(T-lp) 4 0, but

S"(p) = TSUT-'p) - TS'^T-'p^S'^T-'pfi-'SUT-'p) 4 T(p),

where T(/?) is a well defined matrix to be determined below, and more-
over

a* (T-i _ pB'V'VB B'V'W fW'wy1 W'VB
\ /

^ -M;ZT'M-IYM:Z

G'2V'VG2 G'2V'W fW'wy1 W'VG2

(p) - P ^ f [ r j f

~ pG2PoKPoG2--^F-M-i—Y-^

, , W'VGo1~1p) ^ —M*TM -. (39)
r } ZZ WU) rp V /

Consequently,

<r-t \ r ' p ' i - p r ( G ' 2 V ' W \ F / HS (p) ~ p G 2 P 0 I \ P 0 G 2 - — - — ) F [ -

F = M~l - MzlY(Y'M^JT'T'M~l (40)



Since V'W = P'_X[NU - NP-iBV'] and T'F = 0 , we need only be
concerned about the limiting distribution of P_1NU/T, which obeys

U = I' B(s)' dB1(s), T[T, = S,
Jo

where B(s) and B^(s) are two mutually independent SMBM of di-
mension q . Finally, we obtain

S**(P) - i ?(p) = PG'2PQKP0G2 - G'2P^xT1FT[K'xPQG2, (41)

and thus the limiting distribution of the ordered roots TXj , j = r +
l , r + 2,. .. ,g of |5(A)| = 0 is given by the distribution of the ordered
roots pj , j = 1,2,. .. , q - r , of

0 = B(s)'B(s) ds^j P0G2 - G'2P'O

P0G (42)

We have therefore proved

Proposition 1. In the context of the discussion above, let p = T\ and
consider the q — r smallest roots of ^(A)! = 0 . The limiting distribution
of such roots is the distribution of the roots of

\T(p)\ = \PG2P'0KPQG2 - G2P'OK1T1FT[KI
1PQG2\ = 0.

Remark 3. A close examination of the conclusion of the proposition
above indicates that this could not possibly be the final result since it
would imply that the test for cointegration rank depends on the arbi-
trary matrix G2 • Indeed, we may simplify the representation above,
as well as the conclusion of the proposition. To this end, note that the
characteristic roots of

\»M~l - M-l
wT(Y'M-lT)-lY'M~l\ = 0,

consist of r unities and q — r zeros. Consequently, using Proposition 63
in Dhrymes (1984) p. 75, we may write

= ? - r,

(43)
where Fi is a q x q — r matrix of rank q — r .
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Taking into account the discussion in the remark above we may simplify
the representation of Proposition 1, as follows. In the first term the MBM
is BP0G2 whose covariance matrix is given by SG2YJOG2 > 0, which is
of dimension q — r. Thus, define the SMBM £?(2) such that

B{2)(s)T2 = B(s)P0G2, G'2X0G2 = T2T2, (44)

where T2 is the triangular decomposition corresponding to the SMBM
i?(2), which is of dimension q — r. Similarly in the integral

B(s)' dB{1)(s)>JT1F1

we have integration with respect to the MBM B^(s)TiFi , whose co-
variance matrix is sF^Fi > 0 , of dimension q — r . Define

B(3)(s)T3 = B^s^Fu F'^F, = T3T3 (45)

where T3 is the triangular decomposition of FXYJF\ , corresponding to
the SMBM J3(3) , of dimension q — r. We further note that B(2) and
i?(3) are mutually independent. It follows, therefore, that the limit
T(p) of Eq. (41) may be rendered as

B{2)(s)'B(2)(s) da) T2 - [^ (jf' B{2)(s)' dB(3)(s)) T3]

x [^ (J* B(2)(S)' dB(3)(s)) T3

= f B{2)(s)'Bi2)(S)ds.

Utilizing the results in Dhrymes (1995), Example 5 of Chapter 4, we
obtain that

LT~1 = PL_r - XT3T'X\

X = T'4~
l f B(2)(s)'dBm(s) (46)

J 0

and, moreover, that the rows of X are JV(0,/g_r) and mutually in-
dependent. Indeed, all elements of X are i.i.d. unit normal vari-
ables. Since, if both matrices are square, the characteristic roots of
|A7 — AB\ — 0 are identical to those of |A7 — BA\ = 0 we have that the
roots of interest in our discussion are given by

0 = ir-1^-1^*^)^-1^-1! = \Piq.r-YY

= K_ r - rY| , Y = XT3. (47)
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We note that the j t h row of Y is given by yj. = Xj.T3 • Since the rows
of X are i.i.d. N(0,Iq-r), it follows that

j j 3 T 3 ) , (48)

and are mutually independent for j = 1,2,..., q — r . Since

q-r

we conclude that

y # y ~ w ( $ , g - r ) , <$> = TzT3 = F'1ZF1, (50)

where w(<I>,g — r) indicates the Wishart distribution with parameters
$ and q — r, which evidently does not depend on the arbitrary matrix
G2 • For a discussion of the properties of the Wishart distribution see
Eaton (1983), Chapter 8. We conclude, therefore, that the smallest q — r
(ordered) characteristic roots of S(X) converge in distribution to the
ordered characteristic roots of a Wishart matrix with parameters $ and
q — r . This is a standard distribution but it does contain the nuisance
parameter $ .

We have therefore proved

Proposition 2. In the context of Proposition 1, the q — r smallest
(ordered) characteristic roots of ^(A)! = 0 normalized by T , i.e. TX =
p, converge in distribution to the ordered characteristic roots of

0 = \PIq_r - Y'Y\ = 0, Y = T"1 Qf1 B{2)(s)' dB{3)(s)} T3

'4T4 = f B(2)(s)'B(2)(s) ds, T'3T3 = F£FU
J 0

T4

Y'Y

Remark 4. The preceding discussion has established that the limiting
distribution of the q — r smallest roots of ^(A)! = 0 , i.e. the limiting
distribution of TX3, j = r+1 , r+2, ...,<?, under the null of cointegration,
is the distribution of the roots of a Wishart matrix with parameters
$ = FxT,Fi and q — r . Since the test statistic for the test of the existence
of cointegration is that the sum of the smallest q — r roots is zero, we
may utilize the result we have just established to formulate a test based
on that limiting distribution. To accomplish this we need to determine
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the distribution of the trace of a Wishart matrix with the characteristics
above. To this end, we have

Lemma 1. Let

f 2 ' , S ) , i = 1 , 2 , . . . , N

the X{. being n -element row vectors and independent indentically dis-
tributed. Then

tvS ~
t=i

where the d are i.i.d. chi-squared variables with N degrees of freedom,
and V{ are the characteristic roots of £ .

Proof: Since £ > 0 it is orthogonally similar to the diagonal matrix

R = d iag(r i , r 2 , . . . , r n ) , Y, = \

where Q is the orthogonal matrix of the corresponding characteristic
vectors. We note that

'XQ'SQ = £ Q'X-.Xj.Q =
3=1 3=1

where Zy = R-WQ'X]. ~ iV(0, In), so that the Z). are i.i.d. 7V(0, In).
Consequently,

N n I N
^ 2tvS = trQ SQ = y2 Zj.RZ^. = » t

Since the entities in parentheses in the rightmost member above are i.i.d.
chi-squared variables each with N degrees of freedom and the r; are the
characteristic roots of E , the proof is completed.

q.e.d.

Remark 5. Unfortunately the chi-squared distribution does not have
the reproductive properties of the normal distribution under linear com-
binations. Thus, tvS is not necessarily a chi-squared variable, not even
proportional to a chi-squared variable unless rj = 7*1 , for all j . Thus,
the distribution of the test statistic of Eq. (29) obeys

q-r

T ~^ T ~ Z_^r3^3-> (51)
3 =

13



where rj,j = 1, 2 , . . . , q — r are the characteristic roots of the positive
definite matrix $ = F^Fi and the Q are i.i.d. chi-squared variables
with q — r degrees of freedom.

To determine the nature of the limiting distribution above, consider the
moment generating function of r , say

q—r q—r
i * / \ rri — ST I | 7-i — s r .Y , I I / i . n \ — (a—r) / 2 /rn\

/i (5) = Ee = 1 1 ^ e ^ J = M ( l + 2srj) vv '' . (52)

Since, if h is the density function of r

roo

h*(s) = / e"s*/i(£)df, (53)

it follows that /z* is simply the Laplace transform of the desired density
function h . What is required in order to carry out the cointegration test
is the function ^

H(x) = Pr(r > x) = I h(£) d£. (54)
Jx

It is easily shown that the Laplace transform of H is given by

roo

H*(s) = / e-s*iWW«e (55)
Jo

1 f°° 1
e-*fftf)IS°- / e-^h(i)di = -

s Jo s

The significance of the preceding discussion is evident from a result due
to Box (1954a), (1954b), also given in somewhat more general form in
Siddiqui (1965), as follows:

Theorem 1. If the Laplace transform of a density function h is repre-
sentable as

m

h*(s) = Y^ kj(l + dis)~nj (56)

then

m
U(T\ — \^ U .fl(T- A. n ) (z.7\

-i . . . / > \ n , - l

n*i) •>* w

14



Remark 6. The usefulness of Theorem 1 is further enhanced by the fact
that repeated integrations by part yields

G(x;rf,,n,) = e - ( ^ ) n £ ^ ^ . (58)
j=o 3 •

Consider now the Laplace trasnform of the density of r as exhibited in
Eq. (52). We have

Proposition 3. In the context of Propositions 1 and 2, consider the test
of the hypothesis

HQ : the X — process is cointegrated of rankr

as against the alternative

H\ : the X — process is not cointegrated,

through the use of the test statistic

r = T £ A0).
j=r+l

The critical region of size a for the test of the hypothesis above may be
determined, for q — r even, from the relation

q-r{q-r)/2

a = H(xa) = Y^ J2 kjiG(xa;dj,i), (59)

where

Proof: From Eq. (52) we have

q-r

h*( Q\ — TTM J_ A o\~(i~r)/2 A — 9-r •
II \b ] I I I I " j " Uiil) I , Cbj Z / j .

3 = 1

If q — r is even, m = (q — r)/2 is an integer, so that each term has the

partial fraction expansion

-f dis) = > \ ,., (60)
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so that
q-r m r.

In view of Theorem 1 we conclude that

G(r-d i) (62)
j=lt=l

q.e.d.

Remark 7. If q — r is odd, (g — r)/2 is not an integer and Theorem 1
is not directly available. Nonetheless we may define bounding functions
H1(x) < H(x) < H2 by the following procedure: let q — r — 2m — 1 and
define

m— 1

r2j + l(Gj-l +C2j), (63)

m — 1
T2 — 2_y ' 2 j - H S 2 . ? - l i " C,2j; "T ' 2 m - l V S 2 m - l "r S2m/ '

where 2 ^ is another chi-squared variable with ^ —r degrees of freedom,
independent of all others. Since the roots are ordered (in decreasing
order) and since chi-squared variables are nonnegative, for any w E H

If H\, i/, H2 are the corresponding tail functions we may approximate
H by He, where 0 £ (0,1) and

#*(a;) = 6>#!(z) + (1 - 0)H2(x). (64)

The approximation may be carried out by minimum distance methods,
i.e. by defining a suitable metric and norm on an appropriate Hilbert
space. The problem then would be

wm)\\H(x)-9Hl(x)-(l-8)H1{x)\\i.

Other approaches are also available, such as for example matching mo-
ments of HQ to those of H.

We conclude our discussion with
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Example 1. Suppose q — r = 2 . Then we have

h*{s) =
1 1

+
where &! = d1/(di — <i2) and fc2 = —d2j{d\ ~ ^2) • Consequently, we
obtain

i/(2') = Jfcie-
(x/dl) + A;2c-(a?/d2),

and the a-level of significance critical point may be easily found by
solving the equation

for xa .

Example 2. Suppose in Example 1 q — r
nCi + r2C2 + r3£3. Since

= 3 . In this case r =

h* cannot be expanded by partial fractions. To overcome this define

n = r3(Ci + f2), r2 = n(Ci + C2) + ^3(C3 + C;),

where (% is a an arbitrary chi-squared variable with 3 degrees of free-
dom, and independent of £;, i = 1,2,3. It follows immediately that

and consequently we obtain the partial fraction expansion and the tail
functions

H2 H2

Ht(x) =

17



The two tail functions determined above bracket the correct tail func-
tion; thus, if we are content to follow the procedure we follow in the
Durbin-Watson test, we have a very simple procedure for determining
the critical values of the trace cointegration test. If we are not so con-
tent, at least in the case of odd degrees of freedom we may devise a
suitable approximation procedure.
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