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Abstract

In this paper we examine (some of) the cointegration tests
suggested in Engle and Granger (1987), henceforth EG, those
suggested by Johansen (1988), (1991), henceforth J, and those
suggested in Dhrymes (1994b), henceforth D. We also explore the
relations among the models underlying the various procedures.
We find that the tests suggested by Johansen cannot possibly test
either for the presence of cointegration or for its rank, but they
can determine the cointegration vectors, if cointegration is known
to hold and its rank is known as well.

Key words: Integrated Processes, Stationary Processes, Collinear-
ity, Cointegration, Cointegration tests.

1 Introduction and Preliminaries

This paper narrowly focuses on some of the suggestions in EG, J and the
tests in D. In Dickey, Jansen and Thornton (1991) (DJT) there is a good
review of the procedures in EG and J, so that we shall not focus on them
in great detail unless, as in the case of J, the argument warrants it.

In all three approaches the basic problem is that we are confronted with
a sequence {Xt. : t > 1} which is known to be / ( I ) , and where Xt.
is a (/-element row vector. The question posed is whether or not it is
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t This is a preliminary verision and is not to be quoted, except by permission of

the author. Comments, however, are welcome.



cointegrated. For a definition of cointegration, rank thereof etc. see,
for example, Dhrymes (1994). The underlying models are

- L)X't. = A{L)et., A(L) = Y,AjLj, Dhrymes
i=o

- L)X[. = C(L)etm, C(L) = ^2CjLj, Engle-Granger
j=o

U(L)Xt. = eto n(L) = 2_̂  IljZ/-7, Johansen. (1)
3=1

In the first two, the e-sequence is taken to be a MWN(E), i.e. a
multivariate white noise process with mean zero and covariance matrix
£ > 0. In either case if the argument required it, the authors would not
be averse to asserting that higher moments existed as well. In the third
case, J, the e-sequence is asserted to be a Gaussian MWN(T,).

The first two formulations are essentially the same, in practical terms,
since in D the order of the moving average, k, need not be known a
priori. Moreover, it is shown therein that the EG formulation is not very
apt, given the problem to be investigated. If it is taken seriously, i.e. if
it is applied verbatim in conjunction with the usual definition of cointe-
gration, it cannot admit of cointegration. See the examination of
the example given in EG, which makes this point in Dhrymes (1994a).
Essentially, the problem is the presence of the requisite initial conditions,
in the absence of which no such discussions may proceed. The nature of
the test in D, however, may be viewed as in the spirit of the original EG
intent, if not necessarily the original exposition. The third (J) formula-
tion is somewhat different, in that it neither contains nor is contained,
as a special case, in the other two formulations.

2 Models and Implied Tests

In the first formulation (D), a test for cointegration is immediately avail-
able once we establish that

t-i

r=0

= (t - k)So,kZS'Oyk + Yl So,rZS'Or, if t > k + 1, or
r=0



^5o,feE5'o,Jfc "" •^O.rS'S'o.rj »
r=O

where
i

5,-j = 5 3 ^ ' «,i = 0 , 1 , 2 , . . . , fc, ^0,0 = Ao = Iq. (3)

Since, by the definition of cointegration, a necessary and sufficient
(nas) condition for cointegration of rank r, is the existence of a q x r
matrix B of rank r, such that the cointegral vector, Zt. — Xt.B, has a
stationary covariance matrix (or more precisely is covariance stationary),
it is clear that B must be in the null space of So^Sok but not in
that of D, and the latter must of rank at least r. Hence, in this
formulation the (a) set of cointegrating vectors is simply the basis of
the null space of So^Sok . Since £ > 0, we may also state that the
(a) set of cointegrating vectors is simply the basis of the null
space of Sofk • Thus, in this framework we have cointegration if and
only if there is at least one zero among the roots of So^Sok and
the cointegrating rank is simply the number of such zero roots.

The instrumentality of carrying out this test is the estimator

1 T X' X 1
M = ™ J2 -"V^1' or' a l t e r n a t i v e ly> M =

1 i
The first is an asymptotically unbiased estimator of the desired ma-
trix, while the second is an asymptotically biased estimator of $ , the
limit of its expectation being (1/2)$ . The problem with both estimators
is that under the hypothesis that the X -sequence is 1(1), their limiting
distribution is nonstandard and needs to be established and tabulated.

In the D context to test whether the X -process is 1(0) is equivalent
to testing whether all roots of $ are null. An alternative recommended
in Dhrymes (1994b) is to actually test for zero roots in

^ X t - > ( 5 )
t=l

under the hypothesis that the X -process is 1(0). The argument here
is that if zero roots are detected in this context, it would mean that
we have collinearity among the underlying variables, and whatever else
is obtained by a proper cointegration test may simply be a reflection of
this collinearity, and the well known phenomenon noted first by Stone
(1947), and discussed in the author's early work, Dhrymes (1970). The



desirability of this procedure, as a way of ruling out contaminated results
is strengthened by

Proposition 1. Consider the matrices MT,{{) , i = 0 , 1 , of the previous
discussion; the matrix MT,(O) — -WT.(I) > conditionally on the sample, is
positive semidefinite.

Proof: Neglecting the factor (1/T), we find

X'X-X'N2X = X'DX, JV = diag(^), D = ^

for t = 1,2,..., T . Since D > 0 , it follows that X'DX > 0 .

q.e.d.

Corollary 1. If, conditionally on the sample, MT,(O) has r0 roots that
obey fij < 8 then there exist n > ro characteristic roots of M^^i),
say fj,W such that fi^ < 8, s = 1,2 . . . ri > ro .

Proof: We note, Bellman (1960) p. 115, that since

X'X = X'N2X + X'DX, (6)

and both matrices on the right are at least positive semidefinite, it follows
that

fi>$\ j = 1,2,3,...,*. (7)
It follows, therefore, that

^]<^]<8, i = l ,2 ,3 , . . . , r 0 . (8)

q.e.d.

Remark 1. Evidently, the implications to be derived from Proposition
1 and Corollary 1 above are suggestive, not conclusive.

We now consider the model put forth by J. In this formulation we begin
with a MAR(p) model, generally known in macroeconomics as a VAR,
i.e.

U(L)X't. = e',, n(L) = J2U3L\ Uo = 7g, (9)
j=0

where the t -process is a MWN{H) Gaussian process. After consid-
erable manipulation, but without any transformation of the error
process or of the underlying model, we may write

(/ - L)X\. = - j



where, of course, 11(7) is the operator (52?=o H,-)/• In current parac-
tice, the literature does not distinguish between the operator 11(7), and
the matrix 11(7) = 2 = o nt-. Following this custom, we shall not dis-
tinguish between the two in subsequenct discussion.1 It is important to
understand that the conceptual basis of this approach is different from
those in the D or EG formulation, and we shall return to this issue below.
For the moment, let us note that if the series is cointegrated of rank
r then 11(7) must be a q x q matrix of rank r . This is so since the
left and right members of Eq. (10) are all 7(0), except possibly for the
first term of the right member. Since we assert that the series X is
cointegrated of rank r then the term U(I)Xt. must be, at most, a
multiple of the cointegral vector Zt-\. = Xt-\.B, where B is a qxr
matrix of rank r , whose columns are the cointegrating vectors. Thus,
by the singular value decomposition theorem, we may write

11(7) = YB , where F, B are (both) qxr matrices of rank r. (11)

It bears stressing that in order to write 11(7) as in Eq. (11) we must
assert cointegration of rank r. Otherwise 11(7) is just another param-
eter matrix, whose rank can be determined by a test performed utilizing
the estimated parameter (or a function thereof) as a test statistic. Un-
der the maintained hypothesis that we have cointegration of rank
r , the J procedure maximizes the LF with respect to the ancillary pa-
rameters E , IP- , j = 1,2,... p , and F , thus obtaining the concentrated
LF

q f l | 5 | S = ^W'N*W. (12)[H^) + 1] f
To justify the representation in Eq. (12), define

yt. = (7 - L)Xt. - Xt^.U(I)' = AXt. - X^

xt. = (AX*_i.,AXt_2., AX f _ 3 . , . . . ,A^_ B + i . ) , tt.=ut.,

n* = (-n;\-n;',...,n;;'-i)\ w = ^AP, V = NP.U
Y = (yt.), x = (xt.), u = (ut.), t = i , 2 , 3 , . . . r ,

P = (Xt.), P-i = {Xt_l.), t= 1,2,3,. . . , T , £ = l , 2 , 3 , . . . n - l

p = vec(P), p.i = vec(P_i), N = IT - X{X'X)~lX'.

N* = iT-NP-rBiB'p'^NP-.rB^B'p'^N, (13)

y = vec(Vr), 7T* = vec(IT), u = vec(U), 7 = vec(F'),
1 Note that in our notation we distinguish between the identity operator / and

the q x q identity matrix Iq .



so that we can write

yt. = s , . i r + u«., Y = XH* + U, or y = (7, ® X)TT* + u, (14)

for a single observation and the entire sample, respectively. The concen-
trated LF is obtained by partially maximizing the loglikelihood (LF) of
the T observations

Lo = - ^ ln (27 r ) - | l n | E | - ^tr(Y - Xn*)Z~l(Y - XII*)'. (15)

From Dhrymes (1984) p. 106, we have

and solving the first order condition (dL0/d7T*) = 0 , we find

** = [Iq®(X'X)-lX']y. (16)

Inserting this in Eq. (12), we obtain the concentrated LF

l ! = - ^ l n ( 2 * ) - | l n | E | - ^ ' ( S " 1 <8) N)y. (17)

Next, we note that
y = Ap-(7,(8) P_!5) 7 , (18)

and the concentrated LF may be rendered as

ln(2*) | l n | E | (19)

solving the first order conditions (dLi/d^) = 0 , we find

7 = [7, ® (B'P'_XNP^B)-1 B'P'^NjAp. (20)

Noting that

(7, <g) 7V)[Ap - (7, ® P_i5)7] = (7, 0 N*)(Ig ® 7V)Ap, (21)

we may write the (once again) concentrated LF as

^ | (22)

® N'N)Ap].



Using the results in Dhrymes (1984) p. 106 and "rematricizing" the last
expression in the LF, we may rewrite the latter as

I 2 = - ^ l n ( 2 » ) - | l n | S | - | t r E - 1 5 , 5 = ^(NAP)'N*(NAP). (23)

Maximizing L2 with respect to the elements of S"1 , we obtain

_ _ L _ = _ v e c ( S ) ' _ _ v e c ( 5 ) = 0, or t = S. (24)

Inserting this in Eq. (23), we find the ultimately concentrated LF, L* , as
it appears in Eq. (12). This is now to be maximized with respect to
B, i.e. we are to find a B that maximizes the LF. It bears stressing
again that, in the absence of prior restrictions, to complete the
estimation procedure implicit in the J formulation nothing more and
nothing less is required by that formulation than simply to maximize
the function in Eq. (12) with respect to the elements of the matrix B.
For the moment, let us proceed with this unrestricted framework and see
where it leads us. Without loss of generality, and for notational simplicity,
we neglect the factor (1/T) in the definition of S and, equivalently, pose
the problem: minimize S with respect to B. Now, put

D(B) = Tg\S\ = \W'W - W'V(W'W)-lV'W\,

and note that, after some manipulation, we obtain

D{B) = \W'W\ \BVVB\-1 \B'{F-H)B\,

F = V'V, H = V'W{W'W)-lW'V. (25)

Since D(B) is homogeneous of degree zero in B, the problem is not
well defined, and a normalization is required. A convenient normal-
ization in this context is B V VB = Iq. It is a rather straightforward
procedure to show that the minimizing value of B is given by the ma-
trix of the characteristic vectors of H in the metric of F .2 Thus, the

2 This may be illustrated quite simply when B is taken to be a single vector, say b .
The problem then is to maximize b Hb subject to b Fb = 1 . Set up the Lagrangian
£ = b'Hb + \(1 - b'Fb) . The first order conditions yield (XF - H)b = 0 , and the
solution is evidently given as one of the characteristic vectors of H in the metric
of F; since we wish to maximize, we choose as the solution the vector, say b* , that
corresponds to the largest root, A* . Thus we obtain, for the orginal problem,

b*'(F-H)b* = 1 - A * ,

which yields, for b (F — H)b , the minimum we wish. Since the equation that defines
this solution is the characteristic equation of H in the metric of F , which has q roots
and corresponding characteristic vectors, the reader would easily grasp the conclusion
that in a problem that involves all such roots and vectors, such as the minimization of
a determinant, the solution would involve all characteristic roots and vectors as well.
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minimum value of D(B), obtained without any prior restrictions,
is given by

min D(B) = \W'W\Tt(l-Xj), (26)
B'V'VB=Iq fJi

where the Xj are the characteristic roots of H , in the metric of F.
The question that arises now, in view of the fact that we are dealing with
the loglikelihood function, relates to the magnitude of these roots. For
if some roots are greater than one the maximum of the LF is not well
defined, and thus the problem has no solution. To investigate this issue
consider the matrix

G = (P.UAP)'N(P_UAP) =

and note that since neither P_j , nor AP is in the null space of TV,
G > 0 . Defining

I -V'WiW'W)-1

U
we conclude from

'[F-H J ] (27)
that F-H = V'V-V'W{W'W)-1W'V is also positive semidefinite.
Hence, the characteristic roots of H in the metric of F, obey Xj £
[0,1). If the matrix F — H is singular then at least one of the Xj is
equal to one, and hence the maximum of the LF is not well defined. 3

Zero roots, if any, are due to the singularity of H. Thus, provided no
root is unity, the LF maximized without prior restrictions yields

BmaxrL3 = - ~ H ( ^ ) + 1] - ^\W'W\ - | f > ( l - A,-)- (28)

Since 1 — Aj > 0, if there are zero roots their inclusion or exclusion is
a matter of complete indifference from the point of view of estimation
since the LF is flat relative to this eventuality. Thus, whether to choose
characteristic vectors corresponding to zero roots is akin to the situation
encountered in many nonlinear problems where the likelihood function

3 The argument in this connection is to be understood as an a.c. (almost certain)
argument. If one wished, one could convert all such entities to their parametric
equivalents, if they are ascertained to exist. There is no difficulty with W W which
involves stationary entities only. There may be a problem with V V, since V =
iVP_i , and P_i involves elements that may not be stationary; on the other hand
V V/T2 , as well as H/T2 converge, at least in distribution, and the a.c. argument
may be made without difficulty.



may have more than one maxima. Strictly speaking this results in lack
of identification! Thus, the problem as posed by J does not admit of
a solution, unless restrictions are imposed a priori. In fact the only
unambiguous result that may be obtained from this procedure, absent
any prior restrictions, is in the case where it is conlcuded that B is
nonsingular, without the occasion of zero roots!

But even if we arrive at the nonsingularity of B without the interven-
tion of zero roots, we still face a problem of degeneracy. To see this,
return to the definition of S and note that if B is nonsingular, the de-
terminant l^l does not involve £?, hence B is arbitrary subject to
its being nonsingular. Moreover, returning to Eq. (20) and noting the
nonsingularity of B we obtain, after rematricizing the expression for V,

n(/) = f'B = (P11WP_1)-1P11JVAP, (29)

whose right member has the appearance of a "2SLS-like" estimator of
11(7) in the pseudo-relation AP = NP.iU(I) + error .

If now we impose the prior restrictions (a) that the series is cointe-
grated and (b) cointegration is of rank r < q, we have a well defined
problem and an unambiguous solution, Br, even if one of the roots,
whose corresponding characteristic vector is a column of Br, is zero.
The reason why this is so is because in this context, we have no idea
what cointegration implies beyond the requirement that II(/) be
singular and of rank r < q, and the procedure has, as required, pro-
duced an estimator of 11(7), viz. TBr, which is a q x q matrix of rank
r , irrespective of whether some of the characteristic roots in ques-
tion are null. Thus, the "admissibility" of null characteristic roots is
not an issue in this problem. The difficulty is that, absent prior infor-
mation on the rank and existence of cointegration, the estimation
problem is not well denned, and thus cannot yield relevant tests about
the existence of cointegration or the magnitude of its rank!

Remark 2. It was the practice, until the advent of the J procedure, for
empirical researchers to carry out a Dickey-Fuller (DF) test, or an "aug-
mented" DF test, and then proceed to test for cointegration and estimate
the underlying parameters. The problem was that the several tests sug-
gested in Engle and Granger (1987) (EG), and subsequent modifications
that produced a number of variants, were either too cumbersome, or not
very well argued, or their sampling properties were not available. For
whatever reason, the current practice is to employ almost exclusively the
J procedure. This is aided by the fact that the relevant test statistics in-
volve the chi-squared distribution, which is well tabulated. An additional
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factor, no doubt, is that the last stage of maximization procedure, i.e.
the minimization of |*S*| with respect to B involves certain mechanics
which are almost identical to some part of the process of obtaining pairs
of canonical variates. No doubt this similarity adds to the intuitive
appeal of the J procedure, even though this similarity is coincidental,
and completely irrelevant. The canonical variate problem is the follow-
ing: given two sets of (zero mean) random vectors, say x1 and x2 , and
each of dimension q, find r pairs of linear combinations of x1 and
x2, respectively, that exhibit maximal correlation, subject to their being
pairwise uncorrelated (with other pairs of linear combinations), each
element of the pair having unit variance. If the linear combinations in
question are given by Grx

1 and Hrx
2 , respectively, their constituent

vectors, #.;, h.i, i = 1,2,..., r , are the solutions to the system

which leads to

£ n — Si2E^2
1E2iJ g = 0, h = -j-£J2

1E2i<7. (31)

The first equation in Eq. (31) defines the vectors g.{ as the characteristic
vectors corresponding to the characteristic roots X2 of the appropriate
determinantal equation. The second equation defines the vectors h.i.
Moreover, it can be shown that the correlation between the components
of each pair may be displayed in the diagonal matrix, A r , below, i.e.

EG'rx
lx2'Hr = Ar = diag(Al5 A2 , . . . , Ar), (32)

it being understood that A, is the correlation between g^x1 and h,{x
2 .

It is only the part associated with the first equation in Eq. (31) that
resembles the mechanics of the J procedure. In the case of canonical
variates one rejects vectors corresponding to zero roots, either because
of the second equation in Eq. (31) above, which would involves division
by zero, or because the roots of the first equation may be interpreted
as the square of the correlations between the two components of a
pair of canonical variates. In the J procedure, however, there is no
reason inherent in the formulation of the problem that may lead
one to reject characteristic vectors corresponding to zero roots, particu-
larly since the operation involved in the second equation of Eq. (31)
does not enter the J procedure. The latter is not designed to, nor
does it obtain the canonical variates to which we may transform NP_i
and NAP. It would be difficult to visualize such an operation unless
one were to argue that NP^i represents observations on a stationary
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process. Thus, the fact that (part of) the estimation mechanics of the J
procedure coincide in with (part of) the mechanics of obtaining canoni-
cal variates is completely coincidental and irrelevant to the operation, or
interpretation of the results obtained in the J context. As noted above,
zero roots present identification problems. As in the simultaneous equa-
tions literature identification problems may be "solved" only by means of
prior restrictions. There is no more justification in rejecting all zero roots
than in rejecting only some of them. For example, if in the J context
there are s > 1 roots we may admit s0 < s , thereby establishing cointe-
gration of rank q — (s — s0), or admit all of them, thus establishing that
the series is 7(0), or admit none of them in which case we shall conclude
that we have cointegration of rank q — s . From the point of view of the
maximum of the LF there is absolutely no distinction among these
alternatives. If we claim that we know that cointegration is present,
then we are entitled to take the rank of B to be q — 1 , since this would
make 11(7) of rank q — 1. Equally validly, we could take its rank to be
one! Unless we know what the rank is we cannot settle on anything
but maximal rank, which implies degeneracy. It is important to bear
in mind that whether one or more of the relevant roots employed
is zero has nothing to do with the question of the rank of the matrix
B we have chosen! Thus, testing to see whether some characteristic roots
are, or are not equal to zero is very much like dueling with windmills-it
does not affect the outcome of anything of any consequence.

The next question of significance is: why are the results from J so much
different from those in EG and Dhrymes (1994b). To answer this question
let us juxtapose the three models, obtaining

D : (7 - L)X[. = A(L)el A(L) = £ ^ , AO = /„
i=o

EG : (I- V)X\. = C(L)e't., C(L) = £ C , P , £ || Cj ||< oo,
j=Q j=0

Co = Iq (33)

J : U(L)X't. = 4 , n0 = /,.

The first two models are basically similar, with the exception that the
ostensible greater generality of the EG formulation leads to difficulties
with the concept and existence of cointegration in such models. On the
other hand, any application of models that derive from the EG formu-
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lation will have to rely on a finite number of parameters only, which is
the point of the D formulation to begin with. Thus, we may view D as a
refinement and correction of the EG formulation in so far as the compar-
ison with the J formulation is concerned. In the first two formulations
we may write, without loss of generality

A(L) = A(I) + (7 - L)A*(L), C(L) = C(I) + (7 - L)C*(L), (34)

which are obtained by the long division of the operators A(L) and C(L),
respectively by — (L — 7), coupled in the case of C(L) with a limiting ar-
gument. In Eq. (34) A(I),C(I) are the remainders and A*(L),C*(L)
the quotients. In the EG case further conditions must be satisfied by
C(L) is order for C*(L) to be well defined. A similar decomposition
may be made of 11(7/), thus obtaining

11(7,) = n(/) + (/ - L)IT(L). (35)

The first thing to observe in all three formulations is the role played
by the remainder terms. If A(I) — 0, or C(I) = 0, the D and
EG formulation suggest that the X -process is 7(0). If n ( / ) = 0, on
the other hand, the J formulation suggests that the X -process is 7(1),
provided |II*(.z)| = 0, does not have a root on the unit circle, i.e. if
Zj is any root then \ZJ\ ^ 1 , more precisely \ZJ\ < 1.4 We shall see
in a moment what is the consequence of having |II*(zo)| = 0, for \zo\ =
1. If A(I), C(I) are nonsingular, we cannot have cointegration
and, in the case of the D formulation at least, A(L) is an invertible
operator. 5 In either case, the nonsingularity of the remainder matrix,
allows the X -process to remain 7(1) wihout being cointegrated. If
A(I),C(I) 7̂  0, but are (both) singular, we have cointegration and the
rank of cointegration is simply the dimension of the null space of these
matrices, respectively for the D and EG formulations. Similarly, in the
case of the J formulation if 11(7) is nonsingular, II(L) is invertible,
for the same reasons given above, and we conclude that the X -process
is 7(0). Finally if 11(7) ^ 0, but it is singular, we have cointegration
and the rank of cointegration is the dimension of the null space of

Notice now certain important distinctions:
4 It is customary in such discussions to rule out a priori the possibility that roots

may lie outside the unit circle; thus, the case \ZJ\ > 1 , the so called explosive case,
is ruled out on a priori grounds.

5 Since the matrix involved in A(I) is A(l) , the condition that A(I) is nonsin-
gular rules out a real unit root; it does not necessarily rule out (pairs of) complex
roots with unit modulus. This eventuality is generally ignored in practice, and we
follow the prevailing custom.
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i. A(I) = 0 implies the X -sequence is 7(0) in the D formulation;
11(7) = 0 implies the X -sequence is 7(1) in the J formulation.
Notice that, in an inference context, it is almost impossible to arrive
at these conclusions with real world data in the J formulation; in the
D formulation this is possible if and only if the process is, indeed,
7(0) and the sample is sufficiently large;

ii. |v4(7)| = 0 implies cointegration in the D context, and similarly
|II(7)| = 0 implies cointegration in the J formulation and, in either,
the rank of cointegration is the dimension of the null space of the
matrices corresponding to A(I) and 11(7), respectively;

iii. A(I) and 11(7) nonsingular (and implicitly assuming there are no
complex roots of unit modulus) imply in the D formulation that the
X -process is 7(1) without cointegration, while in the J process it
implies that the X -process is 7(0).

Notice that the two formulations are sort of polar opposites, and this
is to be expected since one relies on a MMA(k) representation of the
differenced X -process, while the other relies on an MAR(p) represen-
tation of the X -process. The range of alternatives in the D formulation
is: 7(0), 7(1) with cointegration, 7(1) without cointegration. For the J
formulation it is: 7(0) and 7(1) with cointegration. The alternative
7(1) without cointegration is almost impossible to attain since, in terms
of the earlier discussion would entail something like P_1NAP = 0, or
more precisely a "positive outcome" to the test of the hypothesis that
B = 0 . The reader should note that in the J estimation context, there is
no way in which B could be estimated to be zero, or even insignificantly
different from zero.

Remark 3. If one wished to invent a valid test in the J formulation, one
of the possible approaches may be: estimate consistently 11(7), perhaps
by least squares, determine the distribution of 11(7) 11(7) and test for
the nummber of nonzero (positive) roots of this matrix; if the number so
determined is r , this is the cointegration rank. If no roots are determined
to be positive one would conclude that 11(7) = 0 and the X -process is
7(1), without cointegration; if no root is determined to be zero one
would conclude that 11(7) is nonsingular, and thus the X -sequence
is 7(0). This will restore to the test the full range of outcomes that a
proper test for cointegration should have.

Remark 4. What is it that is so deficient in the J formulation that it
leads to such undesirable features? The basic reason is that, except in
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the strange case that one writes H(L) when one means to write (/ —
L)U*(L), the formulation does not permit the X -process to be 1(1)
without cointegration. Note that in the D or EG formulation the
characteristic equation of the system of difference equations is

0 = | ( l - * ) / , | = ( l - * ) « , (36)

so that the unit root in question is of multiplicity q. In the J formula-
tion the characteristic equation is

(*)| = o, (37)

if II(z) has only one unit root; if it has a unit root of multiplicity
r < q, it may be represented as

|n(*)| = (i-*)r|n(r)(*)|, (38)

and the reader should note that |II(i)(z)| is of degree at most qp — 1,
while the determinant in Eq. (38) is a polynomial of degree at most
qp — r. Thus, the multiplicity of degree r version of the J formulation
implies that the long run behavior of the X -process is essentially that
of

for an appropriate forcing function, K(L)et., which is MMA(s) with
s < oo. While the relationship above is only suggestive, and need
not imply that cointegration is synonymous with fractional integration,
nonetheless it illuminates the question of why and how the J formula-
tion is inappropriate for testing for the presence of, or for the rank of,
cointegration.
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