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ABSTRACT

Navigating Exponentially Large Spaces in

Biology: Methods for Directed Evolution and

smFRET Time Series Analysis

Jonathan Eiseman Bronson

The recent explosion of high throughput technologies in many fields of biology

has necessitated the use of sophisticated algorithms to guide experimental design

and analyze results. This thesis explores two such fields: directed protein evolution

and single molecule fluorescence resonance energy transfer analysis. Although the

methodologies and applications of the fields differ greatly, they are both limited

by a process which scales exponentially with problem size. In the former case,

the problem is determining which combination of amino acids should be mutated

to enhance or create protein function. In the latter case, the problem is inferring

the number of conformations a molecule explores during an experiment and the

probability of being in each state at each time point in the experiment. Methods

to address both problems will be presented in this thesis.
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Chapter 1

Introduction

High-throughput experiments have become ubiquitous in biology. Pharmaceuti-

cal companies can screen thousands of compounds per day looking for new drugs

(Walters and Namchuk 2003), cellular biologists can study millions of nucleotide

sequences in an experiment using microarrays (Bernstein et al. 2005) and biophysi-

cists can record the individual dynamics of hundreds of molecules on a single glass

slide (Fei et al. 2009). Enzyme and metabolic engineering projects have benefited

tremendously from high-throughput screens and selections as well (Aharoni et al.

2005; Kirby and Keasling 2009). While automation has greatly increased the size

of experiments and experimental analyses possible, the complexity of most prob-

lems in biology scales exponentially, making it impossible to explore all possible

outcomes. Intelligent search algorithms must be devised to sift through these ex-

ponential spaces. This thesis explores two such fields of biology: directed evolution

and single molecule FRET data analysis.

Directed evolution seeks to design novel proteins and metabolic pathways by
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generating large libraries of protein or cell variants and screening or selecting for

desired activity. A screen requires the experimentalist to look through all possible

variants for activity (i.e., by passing them through a fluorescence-activated cell

sorter (Cormack et al. 1996)), and a selection removes inactive variants (i.e., by

killing all cells which cannot produce the desired target (Park et al. 2006)). Libraries

of 104−1015 can be searched, depending on the experimental method (Bloom et al.

2006; Wilson et al. 1999). Directed evolution has been substantially more effective

than computational optimizations and rational design for designing enzymes and

improving metabolic pathways (Bloom et al. 2005). The two most common ways

to generate DNA libraries are though error prone PCR and DNA shuffling.

Although 1015 is an enormous number, there are 20 possible amino acids

at each position in a protein and, therefore, 20N possible N residue long proteins.

With a library of 1015, only ∼12 different sites on a protein could be exhaustively

searched simultaneously, and most proteins are hundreds of residues long. As a

result, much work is spent optimizing libraries, either through judicious choices of

amino acid types or positions (Neylon 2004), or by combining the results of hits in

a way to maximize potential synergies (Stemmer 1994) (which is the logic behind

DNA shuffling).

Nature already has a highly optimized mechanism to evolve novel function-

alities: the genetic algorithm. By harnessing the cell to generate targeted DNA

libraries and to selectively replicate only cells with functional gene products, it

might be possible to drastically improve the results of directed evolutions. Many

directed evolution projects utilize the cell for either library generation or selection;



3

however, “smart cells” capable of generating well designed libraries and systemat-

ically performing selections have yet to be realized. This thesis will consider some

ways to harness the power of the cell for purposes of directed evolution.

Learning from time series data, such as single molecule FRET data, also

presents a challenge which grows exponentially with data length. For a molecule

which can adopt K conformations, there are KT possible trajectories the molecule

could explore in a T step time series. Trying to infer the most probable trajectory

from a noisy time series by enumeration on a useful time scale would be impossible

for all but trivially small systems (e.g., K = 2, T = 25). By appealing to graphical

modeling, and specifically hidden Markov modeling (Andrec et al. 2003), it is pos-

sible to cut that space down to K2T possible trajectories, which is computationally

tractable.

Finding an appropriate model for the data is only the beginning of the in-

ference process. In most experiments, both the trajectory of the molecule and the

model parameters describing the molecule are unknown. Usually the number of

states in the data is also unknown and must be learned as well. The are many

ways of inferring this information from the data. The standard approach is to use

the principle of maximum likelihood and the expectation maximization algorithm

(MacKay 2003; Bishop 2006). This method has two known pathologies: a strong

propensity to overfit (i.e. find more states than are supported by the observed data)

and convergence to divergent solutions (i.e. the algorithm can converge to solutions

where a state has zero variance and infinite likelihood, rendering the analysis mean-

ingless). Alternative strategies, which do not suffer from these pathologies, will be



4

considered in this thesis.

This thesis is organized in two parts. Part one considers ways to harness

the cell for improved directed evolution. Chapter 2 describes an attempt to create

a cell line which can replicate a plasmid with a high error rate, without affecting

the mutation rate of the host chromosome, by using the T7 bacteriophage’s DNA

replisome to create a DNA replication system in E. coli which is orthogonal to the

host’s DNA replication machinery. Chapter 3 describes an approach to make in

vivo logic gates, using the yeast three-hybrid assay (Lin et al. 2000). This project is

not immediately applicable to directed evolution; however, it addresses the larger

issue of cellular logic, which ultimately will need to be considered for sophisticated

in vivo directed evolution projects.

Part two describes two different methods for smFRET inference. Chap-

ter 4 presents overviews of hidden Markov modeling and single molecule FRET.

Chapters 5 and 6 describe how the principle of maximum evidence and the varia-

tional Bayesian expectation maximization algorithm can be used to solve the hidden

Markov model without the problems associated with maximum likelihood. Chapter

7 proposes a novel method for single molecule FRET inference, which builds on the

work of Chapters 5 and 6 but allows for more accurate inference and inference of

problems which were previously impossible. Chapter 8 will discuss possible future

directions for this project.



Part I

Directed Evolution
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Chapter 2

The Use of T7 DNA Polymerase

for Error Prone PCR

2.1 Background

2.1.1 epPCR

Error prone PCR (epPCR) is one of the most commonly used methods to create

random point mutations in a targeted region of DNA (Romero and Arnold 2009).

The method was first developed in 1989 using Taq polymerase (since it lacks a 3’→

5’ exonuclease proofreading activity) under conditions that promote poor fidelity

lacks (Leung et al. 1989). The first directed evolution experiment using epPCR

came three years later (Rice et al. 1992). Numerous directed evolution experi-

ments have been carried out since, including the directed evolution of thermostable

enzymes for industrial use, novel binding proteins with potential medicinal appli-
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cations, and β-lactamases to understand the evolution of bacterial drug resistance

(Giver et al. 1998; Binz et al. 2005; Goldberg et al. 2003).

Typically mutation rates are tuned to create very few (i.e. 1–3) mutations

per gene per round of epPCR, although error rates an order of magnitude higher

are used in some experiments. Higher error rates can create gene sequences which

are enriched for positively coupled mutations, but far fewer gene sequences will

result in functional proteins (Drummond et al. 2005). Often epPCR is combined

with other methods as well, such as DNA shuffling (Stemmer 1994).

Although epPCR is an effective way to generate mutations in a gene target,

implementation of the method is somewhat tedious and suboptimal for evolving new

protein function. Each round of epPCR requires the researcher to run the epPCR

reaction on the target gene, ligate the gene into an expression vector, transform

the library of vectors into a cell line and screen or select for functional proteins.

Often the best hits from the screen or selection are collected, purified and used as

a template for another round of epPCR. A typical directed evolution experiment

might require several dozen rounds of epPCR (Goldberg et al. 2003). In these

experiments, transforming the DNA into the cell line is what limits the size of the

library that can be screened or selected. Transformation efficiencies of up to 1010

transformants per µg DNA can be achieved in E. coli using electroporation (Dower

et al. 1988). Transformation efficiencies using other methods and/or cell lines are

typically lower. Since the transformation process is highly stressful to the cell,

random mutation of the cellular genome and genetic recombination between cell

and transformed plasmid are common during transformations (Foster 2005). Often
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the most time consuming step of a directed evolution experiment is screening out

false positives that result from recombination between the genome and the library

plasmids.

To circumvent some of these problems, researchers have tried using mutator

strains: cell lines which lack DNA repair mechanisms and/or have highly error

prone DNA polymerases (Nguyen and Daugherty 2003). The problem with these

strains is that they mutate a cell’s entire genome in addition to the target gene,

leading to a high false positive rate. It would be far more desirable to have a

cell line which only mutates the gene of interest and leaves the cellular genome

untouched. Some progress has been made in this regard using an error prone DNA

polymerase I (PolI) in E. coli (Fabret et al. 2000; Camps et al. 2003). Only three

point mutations, D424A, I709N and A759R, were required to increase the error rate

of PolI 80,000-fold. PolI plays a minor role in genome replication, but replicates the

first few kilobases of the ColE1 origin of replication (ori) found in most commercial

plasimds. Provided the gene is only a few kilobases long and can be expressed on a

ColE1 plasmid, this method provides a way to selectively increase the mutation rate

of the target gene. While PolI’s role in genome replication is minor, it is significant

enough that the genome mutation error rate is still elevated in these strains1.

A more desirable option would be to create a cell in which specific plasmids

were replicated with DNA replication machinery completely orthogonal to the rest

of the cell. Not only would this allow researchers in directed evolution experiments

1
Estimates for the increased error rate vary, but in my personal experience with the strain

created by Camps et. al., the increased background mutation rate was high enough to preclude

its use in directed evolution experiments.
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to tune the mutation rate of a gene without affecting the cellular genome mutation

rate, but it would also provide a synthetic biology platform to study DNA repli-

cation (Baker et al. 2006). A synthetic biology model system for DNA replication

would be especially helpful to researchers studying DNA replication and cellular

maintenance of plasmid copy numbers, because the modifications to the cellular

DNA replication machinery necessary to test many hypothesises would disrupt

normal cellular function.

2.1.2 T7 bacteriophage

Figure 2.1: Cartoon depiction of T7 DNA replisome during bidirectional DNA
replication. The replisome is one of the smallest DNA replisomes known, consist-
ing of only four proteins: T7 DNA polymerase (gp5), T7 helicase/primase (gp4),
T7 single stranded binding protein (gp2.5) and E. coli thioredoxin increases the
processivity of gp5. Figure reproduced from (Perumal et al. 2009)

T7 is an icosahedral bacteriophage, with a capsid diameter of 60 nm and

40 kb double stranded genome (Kruger and Schroeder 1981). It is a lytic virus,
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capable of creating ∼200 progeny within 15 minutes of infecting a host E. coli

cell. More importantly for this work, it has among the simplest DNA replisomes,

comprising only four proteins. Three of the proteins, the DNA polymerase (gp5),

helicase/primase (gp4) and single stranded binding protein (gp2.5), are encoded by

the T7 genome (Perumal et al. 2009). A processivity factor, thioredoxin (trx), is

supplied by the host. The T7 RNA polymerase (gp1) is necessary to initiate DNA

replication at the T7 ori (oriT7). It has been shown that these genes are sufficient

to replicate DNA containing oriT7 both in vitro (Fischer and Hinkle 1980) and on

a plasmid in vivo (Rabkin and Richardson 1988). Replication of DNA via the T7

replisome proceeds bidirectionally.

The crystal structure of gp5 has been solved (Doublie et al. 1998). It has

been shown to have high structural homology with the E. coli PolI (Ollis et al.

1985). Sequence alignments of PolI and gp5 show the three residues required to

make PolI error prone, D424, I709 and A759 correspond to the semi-conserved

residues E228, L479 and T523, suggesting that mutating these residues will make

gp5 error prone as well. Alternative, it has been shown that simply inactivating

the 3’ → 5’ exonuclease increased error rates in gp5 (Tabor and Richardson 1990).

2.2 Experimental objectives

This project consists of four objectives:

1. Clone gp1, gp2.5, gp4 and gp5 onto a plasmid which expresses the genes at

appropriate levels (I will refer to the plasmid containing these genes as pT7).
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2. Stably transform pT7 and a plasmid containing oriT7 (pOriT7) into a strain

of E. coli.

3. Make gp5 error prone.

4. Use the error prone gp5 in an in vivo directed evolution experiment, such as

the evolution of a β-lactamase to hydrolyze a novel drug target (Camps et al.

2003).

Gp4 has been shown to be toxic to E. coli in high concentrations (Rosenberg et al.

1992; Patel et al. 1992). Personal communications with F.W. Studier suggest that

a variant of gp4 containing a M64L point mutation (termed gp4A’) may be more

appropriate for pT7 than gp4. DNA is still efficiently replicated with gp4A’, with

less toxicity to the host.

The proposed plasmids for this system are diagrammed in Fig. 2.2. Given

that the T7 genes are slightly toxic to the host and that they are normally expressed

at levels designed for lytic growth of the virus, controlling copy number of the T7

genes is an important consideration. Finding the appropriate expression levels of

the replisome genes can be accomplished by making a replisome expression level

library. If pOriT7 and pT7 have different antibiotic resistance markers, which is

necessary to ensure neither is lost by the host, then the ability of pT7 to replicate

pOriT7 can be used as a selection for functional T7 replisomes. Copy number of

the pOriT7 can be controlled in a number of ways, perhaps most easily by encoding

anti-sense RNA for gp5 on pOriT7 (Dias and Stein 2002).
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Figure 2.2: (Bottom) Plasmids needed for T7 based orthogonal DNA replication.
The E. coli host (brown rectangle) contains its own genetic material (orange), pT7
(green) and pOriT7 (red). The pOriT7 contains the genes for error prone replication
of pOriT7, which contains the gene(s) of the directed evolution experiment. (Top)
A plasmid map of pT7.

2.3 Construction of the T7 expression vector

There are many factors which affect how much of a protein is made in a cell: plasmid

copy number (del Solar et al. 1998), promoter strength (Studier and Moffatt 1986),

intergenic RNA (Pfleger et al. 2006) and ribosome binding site (RBS) strength

(Barrick et al. 1994). I chose the pACYC177 plasmid (NEB) as a starting point to

construct the pT7 expression vector (Rose 1988). It has the p15A replicon, which
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has a relatively low copy number at 10-12 plasmids per cell. Using standard molec-

ular biology methods I inserted the medium strength trc promoter (Amann et al.

1983) and strong rrnB anti-termination region (Li et al. 1984) from the pTrcHis2

vector (Invitrogen). The trc promoter is constitutive but regulated by the LacIq

repressor (Calos 1978). To simplify subcloning into this vector, an 800 bp stuffer

flanked by SfiI sites was inserted between the promoter and terminator. The re-

sulting plasmid is shown in Fig. 2.3. SfiI is a useful restriction enzyme for making

large DNA libraries. Its recognition site (GGCCNNNN’NGGCC) is long, so the

enzyme is selective, the three bp sticky-ends it creates can have any sequence and

it only cuts two restriction sites at once, so most vectors are either cut completely

or left uncut.

To confirm the activity of the plasmid, I subcloned the LacZ gene into the

vector and detected its presence using a standard ONPG hydrolysis assay (Strathern

2005). In the presence of the LacZ gene product, colorless ONPG is hydrolyzed

into galactose and bright yellow ortho-nitrophenol. The 96-welled plate in Fig. 2.3

shows the results of cells containing the pT7-LacZ in both the absence and presence

of IPTG. Each condition was assayed eight times.

Because the expression system is prokaryotic, the entire T7 replisome can

be expressed as a single polycistronic mRNA. It has been shown that the insertion

of a well chosen library of intergenic RNA can affect protein expression levels by

a factor of 100 (Pfleger et al. 2006) and varying the RBS can influence protein

expression levels by a factor of 3,000 (Barrick et al. 1994). A RBS library can be

encoded into the primers used to PCR the T7 replisome genes, whereas additional
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Figure 2.3: The vector built to express the T7 replisome. This expression vector
will ultimately become p7, once the replisome is subcloned into the expression site.
(A) ONPG hydrolysis assay confirming the inducible promoter was successfully
subcloned into the vector. The LacZ, which hydrolyzes colorless ONPG to yellow
ONP, was subcloned into the expression site. It is only expressed in the presence
of IPTG. Either 0.1 or 1 mM IPTG is sufficient for full induction. Each condition
was assayed eight times. (B) Map of the expression vector showing details of the
promoter and gene regulatory elements.

intergenic RNA would require additional gene assembly. I opted to attempt to

create a library of T7 replisomes with expression levels varied via the RBS.

Each T7 replisome gene was PCRed individually and the RBS library was

encoded in the PCR primers. As shown in Fig. A.2, the six bases beginning −7

upstream from a gene’s start codon should either be an A or G, and the start codon

can be either an A or a G. Primers were constructed to have a 50% probability of

being A or G at each of these sites. Primer sequences are listed in Table A.2.

With seven binary options for each of four genes, the library contained (27)4 =
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∼2×108 members. This library was constructed so that each T7 replisome gene

could be digested with BglI (NEB). The sticky ends of each gene were designed to

be uniquely complementary, so that the genes and the expression vector could be

ligated together in a one pot reaction, depicted in Fig. 2.4. This gene assembly

strategy has been successfully employed before, but only to create a library with

125 members (Guet et al. 2002).

Figure 2.4: Gene assembly strategy. Each primer contains a BglI restriction site.
Forward primers contain a RBS library as well. Once the genes are PCRed with
these primers, they can be digested with BglI and ligated together in a one pot
reaction.

All the genes were PCRed directly from a 500x diluted T7 virus stock, except

the gp4A’ gene, which was PCRed from a plasmid. Both the virus and plasmid

were obtained from F.W. Studier. The genes were PCRed using Vent polymerase

(NEB) and standard PCR conditions:

100 µL rxn:

— 85 µL deionized H2O

— 10 µL 10x ThermolPol buffer (NEB)

— 1 µL Template (1–10 ng of plasmid)

— 1 µL Primer 1 (100 µM)

— 1 µL Primer 2 (100 µM)

— 1 µL dNTPs (should be 200-400 µM for each dNTP)

— 1 µL Vent (NEB)
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Figure 2.5: DNA gels showing PCR products of the four T7 DNA replisome genes.
Gp1, gp2.5, gp4 and gp5 are 2.75, 0.70, 1.70 and 2.12 KB, respectively (see Ta-
ble A.1). DNA fragment lengths for the 100 bp and 1 KB ladders can be found in
Fig. A.3. Empty lanes were from failed PCRs, and should be ignored.

I was able to PCR all four T7 replisome genes using this protocol. The gene

products are shown in Fig. 2.5. There was a contaminating band in gp4/4A’, which

was removed via gel purification. The 4 genes were purified, digested with BglI

and ligated together. The ligation reaction was PCR amplified using the outside

primers of gp5 and pg2.5 (which should amplify the entire four gene replisome),

but no PCR product formed. The ligation followed by PCR amplification was tried

numerous times, varying many different parameters: PCR cycling temperatures,

PCR cycling times, PCR primers, template concentrations, primer concentrations,

dNTP concentrations, DNA polymerases, PCR volume, PCR additives (DMSO,

BSA, MgSO4), DNA concentrations during ligation, ligation duration, and ligase

concentration. I tried using the FailSafe PCR system (Epicentre Biotechnologies),

and I tried constructing the replisome via fusion PCR (Kuwayama et al. 2002), also
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varying many of these same parameters, but was unable to construct an operon of

the T7 DNA replisome. After several months of unsuccessful plasmid construction,

I decided to abandon the project.

2.4 Concluding thoughts

It is unfortunate that I was unable to progress past the gene construction phase

of this project. The creation of an orthogonal DNA replication system within

a bacteria is an exciting prospect for directed evolution, synthetic biology and

the study of DNA replication. Successful completion of this project would have

been especially exciting in 2006, when synthetic biology was beginning to take

off as a field and I was attempting this experiment. My failure in this project

can be attributed to a combination of factors. The most important were likely

my inexperience as a molecular biologist, a lack of colleagues with expertise in

assembling large DNA fragments (the standard PCR methodologies, which were

sufficient for the other projects in the lab, are limited to genes ≤ 4 Kb in length

(Shevchuk et al. 2004)) and focusing on expression level libraries before I was able

to assemble a single T7 replisome.

The technologies for constructing DNA sequences and libraries is rapidly

advancing (Baker et al. 2006). Undoubtedly, constructing a gene sequence the

size of the T7 replisome will soon be a routine exercise for a molecular biologist.

Creating orthogonal DNA replication in vivo remains an interesting challenge with

many useful scientific applications. I hope the work described here can somehow
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be helpful in achieving this goal.
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Chapter 3

In vivo Logic

The following chapter is reproduced with minor modifications from: “Transcription

factor logic using chemical complementation”, by Jonathan E. Bronson, William

W. Mazur and Virginia W. Cornish. Molecular Biosystems (4):56–58. 2008.

3.1 Abstract

Chemical complementation was used to make a transcription factor circuit capable

of performing complex Boolean logic.

3.2 Introduction

Artificial transcription regulation networks are used to quantitatively study bio-

logical processes such as quorum sensing, circadian rhythm, cellular memory and

biochemical signaling pathways (Chen and Weiss 2005; Elowitz and Leibler 2000;
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Figure 3.1: (Left) The three-hybrid system. A heterodimeric ligand (Dex-Mtx or
Dex-Tmp (red)) bridges a DNA binding protein-receptor protein chimera (LexA-
DHFR (yellow)) and a transcriptional activation protein-receptor protein chimera
(B42-GR (green)) effectively reconstituting a transcriptional activator and stim-
ulating transcription of a lacZ reporter gene. Transcription can be disrupted by
the small molecule Mtx (red). (Right) The three-hybrid system viewed as a three
input AND gate. LexA-DHFR and B42-GR are further regulated by the GAL1
promoter, creating a two transcription step circuit. AND, NOT and OR gates di-
rectly involved in the three-hybrid logic gate are shown in orange, blue and fuchsia,
respectively. Inputs regulating production of three-hybrid components are shown
in gray.

Gardner et al. 2000; You et al. 2004). In biotechnology, they are used for the

biosynthesis of natural products such as resveratrol and the malaria drug precursor

artemisinic acid (Beekwilder et al. 2006; Ro et al. 2006). The creation of “smart

cells”, which are engineered to perform sophisticated decision making such as the

ability to recognize and invade tumor cells (Anderson et al. 2006), is based on ar-

tificial transcription networks as well. Often, these designed networks are treated

like electrical circuits with transcription factors functioning as Boolean logic gates

(Hasty et al. 2002). Multi-input logic functions, such as AND or OR logic, are

currently created using combinations of simpler transcription factors, such as LacI,

TetR, cI or LuxR (Hasty et al. 2002; Kaern et al. 2003).

This approach to creating logic gates has several drawbacks though. Very
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few small molecule inducible transcription factors have been well characterized and

shown to be robust and orthogonal enough to the cells genetic machinery to use in

artificial networks, so using them in combination quickly limits the size of the net-

works that can be built. Additionally, regulating promoters with multiple transcrip-

tion factors can produce unexpected transcription regulation (Setty et al. 2003).

These limitations are most pronounced in eukaryotic systems, which are necessary

to study many processes pertinent to human development and disease. We offer

a solution to these limitations here, using our previously reported dexamethasone

methotrexate (Dex-Mtx) yeast three-hybrid system (Lin et al. 2000; Baker et al.

2002), by showing that chemical complementation can be used to create transcrip-

tion factor logic gates.

In the yeast three-hybrid system, depicted in Fig. Fig. 3.1, a DNA-binding

domain (DBD) and an activation domain (AD) of a transcriptional activator are

genetically separated and fused to two receptor proteins that bind their respective

ligands with high affinity. A heterodimeric small molecule designed to bind the two

receptor proteins effectively dimerizes the DBD and AD, reconstituting the tran-

scriptional activator and activating transcription of a downstream reporter gene.

This system builds on previous work on n-hybrid systems and chemical dimeriz-

ers (Brakmann and Johnsson 2002; Fields and Song 1989; Licitra and Liu 1996;

Spencer et al. 1993). For this study, a B42-glucocorticoid receptor chimera (B42-

GR) was used as the AD, a LexA-dihydrofolate reductase chimera (LexA-DHFR) as

the DBD, Dex-Mtx (Lin et al. 2000) and dexamethasone-trimethoprim (Dex-Tmp)

(Gallagher et al. 2007) as the chemical inducers of dimerization (CIDs) and lacZ
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as the transcription reporter. The chimeras were made from E. coli DHFR and a

variant of the hormone-binding domain of the rat GR with two point mutations.

Both chimeric proteins were placed under control of the GAL1 promoter. Both

small molecules dimerize this three-hybrid system, however, Dex-Tmp has a higher

KD for DHFR than does Dex-Mtx (Benkovic et al. 1988). Although Dex-Mtx and

Dex-Tmp both dimerize this three-hybrid system, Mtx and Tmp have significantly

different binding affinities for eukaryotic DHFRs and should be functionally distin-

guishable molecules in other environments (Baccanari et al. 1982). Dimerization of

the transcription factor can be disrupted by the presence of 10 mM Mtx without

an observable decline in cell viability (Lin et al. 2000).

This three-hybrid system behaves as a three-input Boolean AND gate with

LexA-DHFR, B42-GR and Dex-Mtx and/or Dex-Tmp as the inputs. Regulation

of the CID is achieved by its presence or absence from the media. To regulate

the DBD and AD, we placed both under control of the GAL1 promoter, creating

the two transcription step circuit depicted in Fig. 3.1. We evaluated the three-

hybrid logic gate in the context of this circuit. Note the GAL1 promoter is only

active in the presence of galactose and strongly repressed in the presence of glucose

(Strathern 2005). This circuit is capable of processing five bits of information:

the presence or absence of glucose, galactose, Dex-Mtx, Dex-Tmp and Mtx in the

cellular environment. The 32 entry truth table for this circuit is shown in Fig. 3.2.

Only three combinations of inputs, shown in bold in the table, should result in

lacZ transcription. The circuit corresponds to the logical expression ((Dex-Mtx

OR Dex-Tmp) AND (NOT Mtx)) AND (Gal AND (NOT Glu)).
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3.3 Results

The ability of this circuit to perform the expected logical operations was assessed by

growing cells containing the circuit in synthetic complete media with 2% raffinose

and all 32 combinations of the inputs. Transcription of lacZ was determined using

a standard ONPG hydrolysis assay (Strathern 2005). Each condition was tested in

quadruplicate. The averaged values and standard deviations are shown in Fig. 3.2.

As expected, all combinations of inputs expected to produce a logical 0 showed

activity on the order of 100 or 101 Miller units. All combinations of inputs expected

to produce a logical 1 showed activity on the order of 103 Miller units. When both

Dex-Mtx and Dex-Tmp are present, the circuit shows a slightly weaker output than

it does in the presence of just one or the other, however. This is likely due to the

inhibitory effect of high concentrations of chemical dimerizers on the three-hybrid

system (Lin et al. 2000). These results show the circuit behaves as predicted and

the on states and off states are easily distinguishable.
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This three-hybrid system behaves as a three-input Boolean

AND gate with LexA-DHFR, B42-GR andDex-Mtx and/or Dex-

Tmp as the inputs. Regulation of the CID is achieved by its

presence or absence from the media. To regulate the DBD and

AD, we placed both under control of the GAL1 promoter,

creating the two transcription step circuit depicted in Fig. 1b. We

evaluate the three-hybrid logic gate in the context of this circuit.

Note the GAL1 promoter is only active in the presence of

galactose and strongly repressed in the presence of glucose.20 This

circuit is capable of processing five bits of information: the

presence or absence of glucose, galactose, Dex-Mtx, Dex-Tmp

and Mtx in the cellular environment. The 32 entry truth table

for this circuit is shown in Fig. 2. Only three combinations of

inputs, shown in bold in the table, should result in lacZ

transcription. The circuit corresponds to the logical expression

((Dex-Mtx OR Dex-Tmp) AND (NOT Mtx)) AND (Gal AND

(NOT Glu)).

The ability of this circuit to perform the expected logical

operations was assessed by growing cells containing the circuit

in synthetic complete media with 2% raffinose and all 32

combinations of the inputs. Transcription of lacZ was determined

using a standard ONPG hydrolysis assay.20 Each condition was

tested in quadruplicate. The averaged values and standard

deviations are shown in Fig. 2. As expected, all combinations of

Fig. 2 (Top) The 32 entry truth table for the three-hybrid genetic circuit. This circuit obeys the logical expression ((Dex-Mtx OR Dex-Tmp) AND (NOT

Mtx)) AND (Gal AND (NOTGlu)). The table was split in two for formatting purposes only. A 0 indicates the absence of the input from the media and a 1

indicates the presence of the input in the media. Combinations of inputs that produce a transcription output are shown in bold. The observed outputs (in

Miller units), averaged over four trials, and standard deviations of the measurements are shown to the right of the expected outputs. Inputs (left to right)

are: 2% glucose, 2% galactose, 1 mM Dex-Mtx, 10 mM Dex-Tmp and 10 mM Mtx. (Bottom) Graphs demonstrating that when several inputs are held

constant, the three-hybrid circuit reduces to simpler one and two bit logic functions. On states are shown in dark gray and off state are shown in light gray.

Error bars show standard deviation. Glucose, Dex-Mtx andMtx were all set to 0 for the AND gate. Glucose andMtx were set to 0 and galactose was set to

1 for the OR gate. Dex-Tmp andMtx were set to 0 and galactose and Dex-Mtx were set to 1 for the NOT gate. Galactose, Dex-Mtx and Dex-Tmp were set

to 1 for the NOR gate.
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Figure 3.2: (Top) The 32 entry truth table for the three-hybrid genetic circuit. This
circuit obeys the logical expression ((Dex-Mtx OR Dex-Tmp) AND (NOT Mtx))
AND (Gal AND (NOT Glu)). The table was split in two for formatting purposes
only. A 0 indicates the absence of the input from the media and a 1 indicates
the presence of the input in the media. Combinations of inputs that produce a
transcription output are shown in bold. The observed outputs (in Miller units),
averaged over four trials, and standard deviations of the measurements are shown
to the right of the expected outputs. Inputs (left to right) are: 2% glucose, 2%
galactose, 1 mM Dex-Mtx, 10 mM Dex-Tmp and 10 mM Mtx. (Bottom) Graphs
demonstrating that when several inputs are held constant, the three-hybrid circuit
reduces to simpler one and two bit logic functions. On states are shown in dark
gray and off state are shown in light gray. Error bars show standard deviation.
Glucose, Dex-Mtx and Mtx were all set to 0 for the AND gate. Glucose and Mtx
were set to 0 and galactose was set to 1 for the OR gate. Dex-Tmp and Mtx were
set to 0 and galactose and Dex-Mtx were set to 1 for the NOT gate. Galactose,
Dex-Mtx and Dex-Tmp were set to 1 for the NOR gate.
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If simpler logic gates are desired, this three-hybrid circuit can be converted

to an AND, OR, NOT or NOR logic gate by holding several of the inputs constant.

AND logic is created when glucose and Mtx are off and galactose and either CID

are used as inputs. OR logic is created when glucose and Mtx are off, galactose is

on and both CIDs are used as inputs. NOR logic is created when galactose and

either CID is on and glucose and Mtx are used as inputs. NOT logic is created

when galactose is on, Dex-Mtx or Dex-Tmp is on and either glucose or Mtx is used

as the input. The outputs of several of these logic gates are shown in Fig. 3.2. YES

logic (small molecule or protein inducible transcription) may be produced several

ways as well.

3.4 Conclusions

These results demonstrate that chemical complementation can be used to create

multiple input transcription factor logic gates. Both complex circuits and simple

one or two bit logic gates can be created. The on states and off states of our ge-

netic circuit behaved robustly and with the expected logics. Although not shown

here, increasing levels of logical sophistication can be added by having the cell

enzymatically modify the chemical inducer of dimerization or by having multiple

three-hybrid systems with different DBD-ligand receptor small molecule pairs or

different AD-ligand receptor small molecule pairs (Brakmann and Johnsson 2002).

Since transcription factors based on chemical complementation are created using

known receptor-small molecule pairs and protein chimeras that do not require al-
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losteric interactions, it is possible to rapidly generate new, modular transcription

factors. The transcription output of one gate can be an input for another, so chem-

ical complementation logic gates are easily connected to each other. All of these

features suggest chemical complementation is a useful platform to build artificial

transcription factor networks in yeast.

As it becomes possible to create larger transcription factor networks, more

complicated cellular decision making will be possible as well. For example, it might

be desirable to create a yeast strain that could monitor the conditions in a fermen-

tor, determine whether they were more favorable for producing ethanol or glycerol

and turn on/off the appropriate biosynthetic pathways. It would not be possible

to make such a strain without creating a sophisticated genetic circuit inside it.

The next step in this project will be to to construct three-hybrid NAND gates and

characterize our current system in greater depth to further enhance the utility of

three-hybrid transcription factors.
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3.6 Methods

Standard protocols for yeast genetics were used (Strathern 2005). Synthetic de-

fined media were purchased from Qbiogene. ONPG, amino acids, D-raffinose and

D-galactose were purchased from Sigma-Aldrich. D-Glucose was purchased from

Mallinckrodt Chemicals. Yeast was grown in U-bottomed 96-well plates (VWR)

while shaking at 200 rpm in a 30 degree incubator for two days before taking mea-

surements. Spectroscopic measurements were taken with a SpectraMaxPlus 384

spectrophotometer (Molecular Devices). The yeast strain used in this study was

the V781Y strain previously described by Baker et. al. (Baker et al. 2003). It

contains Pgal1-LexA-eDHFR and 8lexAop-lacZ integrated into the chromosome at

the ade4 and ura3 loci, respectively, as well as a 2µ plasmid containing Pgal1-

B42-(GSG)2-rGR2 and a tryptophan auxotrophy marker. Synthesis of Dex-Mtx

is described by Lin et. al. (Lin et al. 2000). Synthesis of Dex-Tmp is described in

Gallagher et. al. (Gallagher et al. 2007).
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Chapter 4

Introduction

4.1 smFRET

When the emission spectrum of a polar chromophore (donor) overlaps with the

absorption spectrum of another polar chromophore (acceptor), electromagnetic ex-

citation of the donor can induce a transfer of energy to the acceptor via a non-

radiative, dipole-dipole coupling process termed Förster resonance energy transfer

(FRET) (Förster 1948). The transfer efficiency between donor and acceptor scales

with the distance between molecules (r) as 1/r6, with FRET efficiencies most sen-

sitive to r in the range of 1 − 10nm. Because of this extraordinary sensitivity to

distance, FRET efficiency can serve as a molecular ruler, allowing an experimental-

ist to measure the separation between donor and acceptor by stimulating the donor

with light and measuring emission intensities of both the donor (ID) and acceptor

(IA) (Stryer and Haugland 1967). Usually a summary statistic called the “FRET

ratio” (given by FRET = IA/(ID + IA)) is used to report on molecular distance
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rather than the “raw”, 2-channel IA/ID data1. A summary of the FRET process is

shown in Fig. 4.1.

When the donor and acceptor are attached to individual proteins, nucleic

acids or other molecular complexes, the FRET signal can be used to report on the

dynamics of the molecule to which the donor and acceptor are attached; and when

the experiment is crafted to monitor individual molecules rather than ensembles of

them, the process is termed single molecule FRET (smFRET). For most biological

studies smFRET must be used rather than FRET, since the majority of molecular

dynamics cannot be observed from ensemble averages. Often the molecule of inter-

est adopts a series of locally stable conformations during a smFRET time series.

From these data, the experimentalist would like to learn (1) the number of locally

stable conformations in the data (i.e., states) and (2) the transition rates between

states. Although it is theoretically possible use the FRET signal to quantitatively

measure the distance between parts of a molecule during a time series, there are

usually too many variables affecting FRET efficiency to do this in practice (Schuler

et al. 2005). Consequently, smFRET is usually used to extract quantitative infor-

mation about kinetics (i.e. rate constants) but only qualitative information about

distances.

The phenomena of FRET has been studied for over half a century, but the

first smFRET experiments were only carried out about fifteen years ago (Ha et al.

1996). The field has been growing exponentially since, and hundreds of smFRET

1
It is unclear from the literature whether the FRET ratio is used because it a more reliable

reporter of donor/acceptor separation than the 2-channel data or if the 2-channel data were merely

too hard to analyze when FRET experiments were analyzed by hand and the FRET ratio is a

maladaptive statistic which has persisted out of tradition.
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papers are published every year now (Joo et al. 2008). Diverse topics such as protein

folding (Deniz et al. 2000), RNA structural dynamics (Zhuang et al. 2002) and

DNA-protein interactions (Roy et al. 2009) have been investigated via smFRET.

The size and complexity of smFRET experiments have grown substantially since

the original publication by Ha et. al. A modern smFRET experiment can require

thousands of time series to be analyzed (Fei et al. 2009). Such large data sets

require automated methods to analyze the data and provide a lens of objectivity.

There is a consensus in the smFRET inference field that the data should be

modeled with a hidden Markov model (HMM), however, there is debate as to how

best to perform inference using the HMM. Chapters 5, 6 and 7 will discuss possible

inference methods. The rest of this chapter will provide background information to

provide a context for chapters 5, 6 and 7.
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Figure 4.1: (A) Cartoon of a smFRET experiment. A DNA hairpin is shown
with FRET donor (green balloon) and acceptor (red balloon) choromophores at-
tached. The DNA can adopt two conformations: (1) the zipped hairpin with donor
and acceptor near each other (left) and (2) unzipped single stranded DNA with
donor and acceptor far apart (right). When the donor is excited with green light in
conformation 1, the majority of energy is transferred to the acceptor, causing the
donor to fluoresce dimly and the acceptor to fluoresce brightly. In conformation
2, the FRET probes are too far apart for efficient FRET, so when the donor is
excited it fluoresces brightly and the acceptor fluoresces dimly. (B) The absorp-
tion/emission spectrum for a typical donor/acceptor FRET pair (AD, ED, AA and
EA, respectively). Stimulation of the donor with short wavelength light (green for
the dye used in this thesis) causes it to fluoresce at a slightly longer wavelength
of light. Overlap between ED and AA allows efficient FRET. The acceptor fluo-
resces at an even longer wavelength of light (red for the dye used in this thesis).
(C) A smFRET time series for the cartoon in A. A CCD camera would be set up
to separately record the wavelengths where ED and EA are at their maxima. As
the DNA transitions between zipped and unzipped, the relative emission intensi-
ties of the FRETing dyes switches (more intense red = zipped, more intense green
= unzipped), allowing the experimentalist to observe the DNA zipping/unzipping
dynamics. (D) The 1D FRET transformation of the time series from C. A more
intense signal means the FRET pair is closer together. This is the presentation of
FRET data which is most commonly analyzed.
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4.2 The smFRET time series as a HMM

In early smFRET studies, data were analyzed either “by eye” (Tan et al. 2003),

where the experimentalist would assign states to each data point by inspecting the

data, or by thresholding, where the experimentalist sets cutoffs between smFRET

states (Blanchard et al. 2004a). In 2003, Talaga and and coworkers proposed that

a smFRET time series would be well approximated by a hidden Markov model

(HMM) (Andrec et al. 2003). The HMM models temporal data using the following

assumptions:

1. Time is discrete.

2. At each time step (t) the system is in one of K discrete states.

3. These states cannot be observed (i.e. they are hidden), but at each time step

there is a noisy observable which is a function of the current hidden state.

The observable can be discrete or continuous.

4. After each time step the system can transition to a new state or remain in

its current state. The probability of transitioning is a function of the current

state.

5. Both the observed datum at each time step and the probability of transition-

ing to a new state depend only on the current hidden state of the system. In

other words, these probabilities are completely independent of the past, given

the current hidden state.
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Figure 4.2: Graphical model of a HMM corresponding to Eq. 4.1. Hidden variables
(zt) are shown as empty circles. Observed data (dt) are shown as filled circles. An
arrow from A to B denotes that the probability of B is a function of A. At each time
step, the system is in one of K hidden states (i.e. zt can equal {1, 2, . . . , K}) and
produces a noisy observable (dt), which is a function of the hidden state occupied
by zt. The system can transition after each time step, with transition probabilities
that are also functions of the state of zt.

A graphical model of the HMM is shown in Fig. 4.2. Using the HMM, the modeler

wishes to learn the probability of being in each of the K hidden states at each point

in time, given the observed data. Often one wishes to know the most probable

hidden state trajectory from the data (i.e., the idealized trace). This is known as

the Viterbi path of the HMM (Viterbi 1967).

In this thesis, observable data sets will be denoted D, individual data points

will be denoted d1, d2, . . . , dT , sets of hidden states will be denoted Z and individual

hidden states will be denoted z1, z2, . . . , zT . The parameters of the HMM will be

denoted �θ. For the HMM, the joint probability of D and Z is then given by

p(D,Z|�θ, K) = p(z1|�θ, K)

�
T�

t=2

p(zt|zt−1,�θ, K)

�
T�

t=1

p(dt|zt,�θ, K). (4.1)

The probability of D is found using the sum rule of probability (Eq. B.2):

p(D|�θ, K) =
�

Z

p(D,Z|�θ, K). (4.2)
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Much of what is believed about a smFRET time series for a molecule with a

set of locally stable conformations is represented by the HMM. The conformation of

the molecule is hidden from the observer. The FRET signal observed is a function

of the conformation of the molecule, and one wishes to use the observed data

to report on the conformation of the molecule. The probability of transitioning

from one molecular conformation to another is a function of the current molecular

conformation (i.e. the DNA in Fig. 4.1. is more likely to be zipped at time t + 1

if it is zipped at time t than if it is unzipped at time t). The CCD camera used

to collect smFRET data2 automatically time bins the data, making a discrete time

series.

For smFRET data, each hidden state (molecular conformation) is assumed

to give rise to data with Gaussianly distributed noise3. The mean and standard

deviation of each hidden state (µk and σk, respectively) are typically different for

every state. The values of µk and σk can be the same for two different states, how-

ever, provided that the transition probabilities from those states are different (i.e.

if the molecule can somehow switch between fast and slow transitioning conforma-

tions). Transition probabilities are modeled as multinomial distributions — at each

time step, the molecule throws a weighted die to determine what state it transitions

to next. Transition probabilities are stored in a matrix, appropriately called the

transition matrix (A). The value of the jth row and kth column of A (aj,k) holds the

probability of transitioning to the kth hidden state at the next time step given that

2
FRET can also be observed by other instruments, such as confocal microscopes. However,

the majority of smFRET experiments, including all the ones in this thesis, use a CCD camera.
3
Since FRET data must be between 0 and 1 it cannot actually be Gaussian, but the approxi-

mation appears to work well and is generally accepted as a valid approximation.
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the system is currently in the jth hidden state (i.e. aj,k = p(zt+1 = k|zt = j)). (The

probability of not transitioning while in state k is given by ak,k.) As an example,

in a two state system in which there is a 10% chance of transitioning to state 2

when the system is in state 1 and a 25% chance of transitioning to state 1 when

the system is in state 2, A would look like

A =




0.90 0.10

0.25 0.75



.

In addition to the transition matrix, there is another 1×K vector of param-

eters, �π. Each entry stores the probability that the HMM starts in the kth hidden

state. This variable is needed since the first hidden state of the HMM cannot de-

pend on its state at time t− 1. In practice, �π is unimportant for smFRET analysis

(aside from being necessary for the HMM calculations) since it reflects the state

the molecule was in the moment the experimentalist started the experiment, rather

than any biologically significant quantity.

4.3 A Bayesian primer

4.3.1 Bayes’ rule

Bayes’ rule (also known as Bayes’ theorem and Bayes’ law) is an equation which

relates a conditional probability, p(A|B), to its inverse, p(B|A). According to Bayes’

rule:

p(A|B) =
p(B|A)p(A)

p(B)
. (4.3)
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This equation can easily be derived by noting that, according to the product rule

of probability (Eq. B.3), p(A, B) is equal to both p(A|B)p(B) and p(B|A)p(A).

Equating the two and dividing by p(B) yields Eq. 4.3. Bayes’ rule arises in many

problems where one wants to know p(A|B), but one only has access to p(B|A). The

classic example is the following medical paradox (Ross 2008). Imagine a disease

which infects 1% of the population. There is a test for the disease which is 99%

accurate (i.e. 99 of 100 people with the disease test positive and 99 of 100 people

without the disease test negative). You take the test and the results come back

positive, what is the probability you have the disease?

Here we want to know p(disease|test positive) but all we know is p(test

positive|disease). Using Bayes’ rule, we can find the desired probability.

p(disease|test positive) = p(test positive|disease)p(disease)
p(test positive)

= p(test positive|disease)p(disease)
p(test positive|disease)p(disease)+p(test positive|healthy)p(healthy)

= 0.99∗0.01
0.99∗0.01+0.01∗0.99

= 0.5

Despite the test’s 99% accuracy rate, you only have a 50% chance of having the

disease! This somewhat counterintuitive result can be rationalized when one realizes

that the overwhelming majority of people taking the test are healthy and 1 in 100

of these healthy people will produce false positives.

4.3.2 Data modeling with Bayes’ rule

Bayes’ rule is important for data analysis because often we have some data (D) and

a model (m) which we believe describes the data. We want to learn the parameters
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(�θ) which describe the model. In the case of smFRET data, D is the time series, m is

a K state HMM with Gaussian observables and �θ contains the means and standard

deviations of the Gaussians as well as the transition probabilities between states.

Since we do not know the values of �θ, we treat them probabilistically4 and ask,

what is the probability of the parameters, given the data and model, p(�θ|D, m)5?

This is a difficult calculation, since p(�θ|D, m) has no obvious functional form (i.e.

there is no obvious way to write a mathematical expression for p(�θ|D, m)). The

inverse calculation, p(D|�θ, m), is, in general, straightforward though. For example,

calculating the probability of flipping {heads, heads, tails} with a coin given that

it is weighted to land on heads 70% of the time is much simpler than calculating

the probability that the coin is weighted to land on heads 70% of the time given

that you observed {heads, heads, tails} in three coin flips6. In order to calculate

p(�θ|D, m) we turn to Bayes rule,

p(�θ|D, m) =
p(D|�θ, m)p(�θ|m)

p(D|m)
. (4.4)

Note that Bayes’ rule is still algebraically exact when an extra variable, m,

is included as a given for all terms in the equation. Both p(D|�θ, m) and p(�θ|m)

have functional forms, which are specified by the choice of model. The p(D|m) can

4
In the Bayesian approach to statistics, all unknown parameters and variables are assigned

probability distributions. A frequentist would take issue with this approach, and argue instead

that only a best estimate of parameters should be inferred from the data. This is a large debate

in the field of statistics, but is well outside the scope of this work.

5
This probability is often written as p(�θ|D) to avoid clutter, leaving the parameters’ dependence

on the model implicit. The model dependency is written explicitly here, since much of this work

will be about model selection.
6
The former probability is given by 0.7 ∗ 0.7 ∗ 0.3 = 0.147. The latter requires Bayes’ rule.
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be calculated using the sum rule of probability:

p(D|m) =

�
d�θp(D|�θ, m)p(�θ|m) (4.5)

The integral should be replaced with a summation in Eq. 4.5 if �θ has discrete

variables instead of continuous ones. In theory p(D|m) can always be calculated

using Eq. 4.5. In practice this calculation is often intractable and approximations

must be used. The approximation used in this thesis is described in Sec. 4.4.2.

4.3.3 Bayesian terminology

When Bayes’ rule is written as Eq. 4.4, the four probabilities are given special

names.

p(�θ|m) — this term is called the prior. It is the only term in Eq. 4.4 that is

independent of D, and can be thought of as one’s belief about �θ prior to seeing

data7. There are many ways one can set a prior (Van Dongen 2006). They generally

fall in to two large categories: either p(�θ|m) is set to incorporate one’s beliefs about

what �θ should be, or p(�θ|m) is set to be as non-specific as possible. The former

approach makes sense when one has seen many similar data sets, and the latter

makes sense when one has little belief about �θ and does not want the prior to bias

the p(�θ|D, m) learned from the data.

7
The use of priors is the largest point of contention between Bayesians and Frequentists but,

again, this debate is outside the scope of this thesis.
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p(D|�θ, m) — this term is called the likelihood. It is the probability (or likelihood)

of the observed data, given the model and a specific choice of model parameters.

p(D|m) — this term is called the evidence. It can be thought of as a normalization

constant for the right hand side of Eq. 4.4. When more than one model might be

appropriate for a data set, a comparison of the models’ evidence can be used to

choose which model to use. For reasons described in Sec. 4.3.4 the model with the

largest evidence is most likely the best model for the data.

p(�θ|D, m) — this term is called the posterior. It is the probability of the model’s

parameters after (or posterior to) seeing the data.

Bayes’ rule can be thought of as a way to incorporate data to update a world view.

The modeler starts with a belief about a model’s parameters prior to seeing data.

The modeler then views the data, through the likelihood and evidence, and develops

a belief of the parameters posterior to seeing the data. This posterior belief takes

both the prior and the data into account. The relative weighting of the prior and

data on the posterior depends on the strength of the prior chosen and the amount

of data observed (for more details, see (Bishop 2006)). In the limit of an infinite

amount of data, the prior has no effect on the posterior, since an infinite amount

of data should outweigh any preconceived notions about model parameters.
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4.3.4 Evidence based model selection

When one is presented with competing models to describe a data set and needs

to choose between or among them, the model with the highest evidence is most

probably correct. There are two arguments for why higher evidence implies a more

probable model. The first is Bayesian. The quantity needed for model selection is

the probability of the model given the data, p(m|D). For two competing models

m1 and m2, if we look at the ratio of p(m1|D) and p(m2|D) and apply Bayes’ rule

we get:

p(m1|D)

p(m2|D)
=

p(D|m1)p(m1)
p(D)

p(D|m2)p(m2)
p(D)

=
p(D|m1)p(m1)

p(D|m2)p(m2)
≈ p(D|m1)

p(D|m2)
(4.6)

It is okay to make the approximation at the end of Eq. 4.6 provided we do not

have a strong prior belief about p(m1) or p(m2) — in other words, we assume both

models are equally likely prior to seeing data. As long as this assumption is valid,

the evidence of m1 can be compared to the evidence of m2 to determine which

model is more probable.

The second argument is a bit more philosophical, and is sometimes referred

to as the Occam’s razor argument (MacKay 2003). According to this argument,

if the model is too simple it will not be able to explain the data, so the evidence

will be small. If the model is too complex, then the probability of observing that

specific data given the model is also small, because a complex model can account

for many data sets making the probability of observing any one of them less likely.

There is some evidence that humans naturally evaluate competing models this way

(Kemp and Tenenbaum 2008).
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To make this argument more concrete, consider the following problem. There

is a random number generator which can generate random numbers between 1 and

N. You observe the following sequence of numbers:

{1,2,1,1,3,2,3,1,3,3,1,1,1,2,1,3,1,2,3,2,2,3,1,3,2}

What is the value of N?

Most people will intuitively say N=3. The reasoning is that if N is less than

three, the model is too simple to explain the data and, therefore, p(D|m) is small8.

Random number generators where N is greater than three are possible, but the

probability of observing a data set with no numbers greater than three is very

unlikely. For instance, N could be 4, but the probability of observing zero 4s in

the 25 number string above would be 0.7525 = 0.00075254, making it unlikely to

observe that data given a model with N=4.

4.4 Solving the HMM

We now return to the problem of solving the HMM described in Sec. 4.2. From

now on, the only type of model we will be concerned with is a HMM with Gaussian

observables, multinomial transition probabilities and K states. Since these models

only differ in the number of states, K will be used as shorthand for a model with

K states. We want to learn the hidden states occupied by the system during the

time series (Z) and the means, standard deviations and transition rates between

states (�θ) from the observed time series. Once �θ is known, the most probable Z is

8
In this case p(D|m) is actually 0 because the data is impossible, not just improbable given

this model for N< 3. In most real examples a simple model could in theory explain the data, but

it would explain it poorly, making p(D|m) small.
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easily calculated using Viterbi’s method (Viterbi 1967). Consequently, once we find

�θ we will known Z as well. The Bayesian approach to solving this problem would

be to assign probability distributions to all the parameters in �θ and calculate the

posterior, p(�θ|D, K), using Eq. 4.4. Once the posterior is known, a best estimate

of the parameters (�θ∗) can be taken from the posterior’s mode:

�θ∗ = max
�θ

p(�θ|D, K). (4.7)

Moreover, by knowing the full p(�θ|D, K), one also knows the margin of error for this

estimate. The more sharply p(�θ|D, K) is peaked around �θ∗ the better the estimate

for �θ∗. Unfortunately, the expression for the evidence for the HMM,

p(D|K) =
�

Z

�
d�θp(�θ|K)p(z1|�θ, K)

�
T�

t=2

p(zt|zt−1,�θ, K)

�
T�

t=1

p(dt|zt,�θ, K) (4.8)

is intractable for all known choices of p(�θ|K), so some form of approximation must

be used to estimate p(�θ|D, K).

4.4.1 Maximum likelihood

The maximum likelihood (ML) estimate for �θ∗ is given by:

�θ∗ = argmax
�θ

p(D|�θ, K). (4.9)

There are two arguments for why one would want to take the ML estimate of

�θ∗. The frequentist argument asserts that finding the parameters which make the

likelihood of the data greatest should be done as a first principle of statistics. The

second argument relies on Bayes’ rule. Since

p(�θ|D, K) =
p(D|�θ, K)p(�θ|K)

p(D|K)
,



44

there is a good chance that the values of �θ which maximize p(D|�θ, K) will maximize

p(�θ|D, K) as well.

The main advantage of ML is that it is easy to implement. For the HMM,

the Expectation Maximization (EM) algorithm (Dempster et al. 1977) can be used

to efficiently find the ML estimate of �θ∗. The EM algorithm starts with a guess

for �θ∗. It uses the guessed �θ∗ to assign the values of the hidden states, Z. These

new values of Z are then used to calculate new values of �θ∗. The process iterates

until the likelihood converges. Convergence to a local optimum is guaranteed. A

local optimum is a set of �θ which are better than any other set of �θ nearby in

parameter space, but are still worse than �θ∗, which is located in a different region

of parameter space. Consequently, the EM algorithm must be run many times with

many different initial guesses for �θ∗ (sometimes called “random restarts”). One is

never guaranteed to find the true �θ∗, but the chances of finding it are much higher

if many random restarts are used.

There are two well known problems with ML, both of which are illustrated

in Fig. 4.3. The first problem with ML is there is no form of model selection. As

K is increased, the likelihood of the fit of data will always monotonically increase.

The reason for this is that extra states can be used to fit the noise of the observed

data. Since the likelihood is the probability of the observed data given �θ and K,

adding extra states to fit the noise will always increase the likelihood. This problem

is known as overfitting, and is highly undesirable for two reasons. First, because

the model is tuning parameters to the observed noise in the data, the �θ∗ learned

from a model which overfits will not accurately reflect the true parameters of the
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system being studied. Second, a model which overfits will be a poor predictor of

future observed data, since it is not correctly modeling the true dynamics of the

system.

To further illustrate the problem of overfitting, consider its most extreme

possible case: every data point is assigned to its own state. Such a fit of the data

would have the highest likelihood possible, since the observed data is completely ac-

counted for by the model. Such a model has absolutely no explanatory or predictive

power however; it is merely a restatement of the data.

In order to properly use ML, it must be combined with some form of model

selection, most commonly cross validation or the addition of a penalty term. In

cross validation, the observed data is split into two groups: training and testing

data. The training data is used to learn �θ∗. The testing data is then fit with the

�θ∗ learned. The likelihood of the training data will monotonically increase as K is

increased, but the likelihood of the testing data will peak for the model of correct

complexity (see Fig. 4.3, left panel). Although generally effective, cross validation

can be computationally intensive, and prevents the model from learning from all of

the data that is collected.

Adding a penalty term to the likelihood, which grows with model complexity,

is computationally quicker than cross validation and allows the model to learn from

the full data set. The two most common penalty terms are the AIC and BIC (Bishop

2006). The AIC says choose the model for which log(p(D|�θ, K)) −M is largest,

where M is the number of free parameters in the model. The BIC says choose the

model for which log(p(D|�θ, K))− 1
2M log(n) is the largest, where n is the number



46

Figure 4.3: Illustration of the two known pathologies ML. (Left) the problem of
overfitting. The same data set is shown three times. Starting with the lower left
subplot and going clockwise: a 0th, 3rd and 9th order polynomial fit of the same data
set. The true curve (green) gives rise to noisy observations (blue), which are then
fit by the mth degree polynomials (red). Lower right subplot: (blue) the squared
error between the model and observed data (training error) for m = 0 − 9, and
(red) the squared error on new noisy data drawn from the green curve (test data,
not shown on subplots 1 − 3). The testing error is used to determine the correct
model in cross validation. As the degree of the polynomial increases, the squared
error decreases because the model is better able to account for the noise. (The
likelihood increases with m as well, since the model is accounting for more of the
observed data). Although it has the lowest training error, the m = 9 model is
substantially overfit, and the model learned does not resemble the true curve at
all. As expected, the testing error is very high for the overfit model. (Right) the
problem of divergent solutions. A pathological fit of a Gaussian mixture model is
shown. One hidden state is assigned to a single data point, giving the associated
Gaussian 0 variance and infinite likelihood at the point of that datum. The rest
of the fit of the data has no meaning, since the likelihood is already infinite. This
is a problem whenever ML is used on a hidden mixture model with continuous
observables. Figures reproduced from (Bishop 2006) Figs. 1.4 & 9.7.

of data points and M is still the number of free model parameters. Penalty terms

such as these tend to be coarse, general fixes for the problem of overfitting and often

favor a model of the wrong complexity. The derivation of the BIC and conditions

under which its use is appropriate are contained in Sec. B.3.
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The second problem with ML occurs only in the case of a model with multiple

hidden states and a continuous observable (such as the HMM). If one hidden state

is assigned to exactly one data point, then the variance of that state will be zero,

and the likelihood of that datum will be infinite. This pathology is known as a

“divergent solution” (Fig. 4.3, right panel). Since the likelihood of the data will

be infinite regardless of how poorly the rest of the data is fit, divergent solutions

make meaningful inference impossible. The EM algorithm can be modified to detect

divergent solutions and fix them by setting the variance of diverging states to be

very large. This correction requires the modeler to impose a subjective criteria

to detect divergence though. For some data sets, divergent solutions can be a

substantial problem when fit by ML.

4.4.2 Maximum evidence

The principle of maximum evidence (ME), can be thought of as an extension of ML

for model selection. Where ML asks which parameters make a given model most

probable, ME asks which model makes a given data set most probable (see Sec. 4.3.4

for an explanation of why ME selects the most probable model). Often the evidence

is an intractable quantity to calculate (e.g. it requires a summation which grows

exponentially with the size of the data set) and approximations to the evidence must

be used. One such approximation, the variational Bayes expectation maximization

algorithm (VBEM), provides an estimate of both the model’s evidence and the

posterior parameters of the model, allowing the modeler to simultaneously select

the model of the correct complexity and fit the data using the model’s posterior.
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The basis of the VBEM algorithm is explained with the following simple

algebraic identity (Bishop 2006). Since Bayesian analysis treats unknown states

(Z) and unknown parameters (�θ) the same way this section will lump them both

into X for notationally simplicity. Let q(X) be any probability distribution which

only depends on X.

log p(D|K) =

�
q(X) log (p(D|K)) dX (4.10)

=

�
q(X) log

�
p(D,X|K)

p(X|D, K)

�
dX (4.11)

=

�
q(X) log

�
p(D,X|K)q(X)

p(Z|D, K)q(X)

�
dX (4.12)

=

�
q(X) log

�
p(D,X|K)

q(X)

�
dX

−
�

q(X) log

�
p(X|D, K)

q(X)

�
dX (4.13)

= L(q) + DKL(q(Z,�θ)||p(Z,�θ|D, K)) (4.14)

Summations over the discrete components of X should be included in these

equations, but were omitted for notational simplicity. The equality in Eq. 4.10 re-

sults from the requirement that q(X) be a normalized probability, Eq. 4.11 rewrites

p(D|K) in terms of a conditional probability and Eq. 4.14 reinserts {Z,�θ} for X

and renames the two terms in Eq. 4.13 as the lower bound of the log(evidence) and

Kullback-Leibler divergence, respectively.

Using Jensen’s inequality, it can be shown that

DKL(q||p) ≥ 0, (4.15)

with equality when q = p (Bishop 2006). Since DKL is always non-negative,

log (p(D|K)) ≥ L(q), (4.16)
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which proves that L(q) is a lower bound on the model’s log(evidence). Moreover,

because of the equality condition for Eq. 4.15, L(q) is maximized when q(Z,�θ) is

equal to the posterior distribution for the model’s parameters and hidden states (i.e

q(Z,�θ) is an approximating function for the posterior). Therefore, the optimiza-

tion simultaneously performs model selection (calculation of p(D|K)) and inference

(calculation of p(Z,�θ|D, K)).

The net effect of Eqs. 4.10 − 4.15 is to replace an intractable calculation

with a tractable bound optimization problem. The only assumption about q(X)

needed to make the optimization tractable is that it factorizes into a function of Z

and a function of �θ (q(X) = q(Z)q(�θ)) (Ji et al. 2006; Bishop 2006). The VBEM

optimization is similar to the EM optimization. Instead of iteratively using guesses

for �θ∗ to set Z and guesses for Z to set �θ∗ VBEM iterates between the following

update equations:

VBE : q(Z) =
1

ZZ
exp

�
Eq(�θ)

�
log

�
p(D,Z|�θ, K)p(�θ|K)

���
(4.17)

VBM : q(�θ) =
1

Z�θ

exp
�
Eq(Z)

�
log

�
p(D,Z|�θ, K)p(�θ|K)

���
. (4.18)

Here E denotes the expected value with respect to the subscripted quantity and Z

is a normalization constant. Whereas the log(p(D|K)) is a log of a sum/integral,

Eqs. 4.17 & 4.18 are both the sum/integral of a log. This difference is what renders

log(p(D|K)) intractable, but Eqs. 4.17 & 4.18 tractable.

For the HMM used in smFRET analysis, �θ comprises four types of variables.

The noise of each states is Gaussianly distributed, with mean µk and precision
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Λk
9. The probability that the time series started in the kth state (�π) is modeled as

a multinomial distribution. The rows of the transition matrix ({ai,1 . . . , ai,K}) are

modeled as multinomial distributions as well. The prior used for calculations in this

thesis, and in other work (Ji et al. 2006), models p(µk, Λk) as a Gaussian-Gamma

distribution,

p(µk, λk) =

�
uk

βλk

2π
e−

1
2uk

βλk(µk−uk
µ)2 1

Γ(uk
v/2)

(2uk
W )−uk

v/2λ(uk
v/2)−1

k e
− λk

2uk
W (4.19)

p(�π) as a Dirichlet distribution,

p(�π) =
Γ(

�K
k=1 uk

π)
�K

k=1 Γ(uk
π)

K�

k=1

πuk
π−1

k , (4.20)

and the rows of A as Dirichlet distributions

p(aj1, ..., ajK) =
Γ(

�K
k=1 ujk

a )
�K

k=1 Γ(ujk
a )

K�

k=1

aujk
a −1

jk . (4.21)

Note that setting probability distributions over �θ moves the inference prob-

lem from finding the parameters of the model to finding the parameters of the

probability distributions over the parameters of the model. These parameters are

known as “hyperparameters”. The terms �uπ, �ua, �uβ, �uµ, �uv, and �uW (collectively

termed �u) in Eqs. 4.19−4.21 are the hyperparameters for the model of the HMM

used in this thesis. For this model

p(D,Z|�θ)p(�θ) = p(z1|�π)

�
T�

t=2

p(zt|zt−1, A)

�
T�

t=1

p(dt|zt,�µ,�λ)×

p(�π|�uπ)p(A|�ua)p(�µ|�uµ, �uβ,�λ)p(�λ|�uv, �uW ) (4.22)

where the dependence on K has been omitted for clarity. The full graphical model

for this HMM is shown in Fig. 4.4.

9Λk is the inverse of covariance (Λ = 1/σ2
). Using Λ instead of σ simplifies some of the algebra

of the VBEM equation.
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Figure 4.4: Graphical model representation of the HMM, corresponding to the
factorization of the probability distribution in Eq. 4.22. Each vertical slice repre-
sents a time slice t = 1, . . . , T , for which there is an observed FRET ratio dt, given
a hidden conformational state zt ∈ 1, . . . , K. Transitions between conformational
states are represented by the dependencies between zt and zt−1. Parameters are
also modeled as random variables, with arrows indicating the dependence of the
observed (shaded) and hidden (unshaded) variables. Hyperparameters are shown
as small solid circles.

In summary, the goal of variational Bayes is to simultaneously calculate a

model’s evidence, p(D|K), and the posterior parameter distribution for the model,

p(�θ|D, K). The former allows one to perform model selection and the latter al-

lows one to model the observed data. The VBEM algorithm, implemented via in

Eqs. 4.17 & 4.18, is designed to find the set of hyperparameters, �u, which param-

eterize the posterior, p(�θ|D, K), given a choice of �u for the prior and given the

observed data.
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4.4.3 Advantages of ME over ML

There are several reason which the ME method described in Sec. 4.4.2 is better

than the ML method described in Sec. 4.4.1.

• ME naturally provides model selection, ML does not. Model selection with

ML requires cross validation (time & data intensive) or the use of penalty

terms (inaccurate).

• ME does not suffer from the problem of divergent solutions. ML is a point

estimate of �θ, which allows the EM algorithm to converge to solutions with

zero variance and infinite likelihood. By looking at both p(�θ|K) and p(D|�θ, K),

ME prevents divergent solutions. The reason for this is that the evidence

calculation is only interested in distributions over �θ. Only for point estimates

of �θ can p(D|�θ, K) =∞ and, like any other continuous distribution, p(�θ|K) =

0 for all point estimates of �θ so p(D|�θ, K)p(�θ|K) does not contribute to the

evidence at these divergent points.

• By returning the full p(�θ|D, K), ME provides a simple mechanism both to

extract an estimate of �θ∗ and an estimate for the error on �θ∗. To estimate

the error on �θ∗ using ML requires splitting the data set up into many inde-

pendent segments, calculating �θ∗ for each one and using the variance on the

�θ∗ calculated to estimate error bars.

• When more states are fit to the data than are supported by the data, ME

will leave some states unpopulated, but ML will usually populate all available



53

states. The reasons ME does not populate these states are somewhat abstract

(Bishop 2006, Ch. 3). Essentially, the posterior calculated in ME can be

thought of as the prior plus modifications to the prior made as a result of

seeing the data. If there is no data to support populating a state, then the

posterior of that state will be identical to the prior (which is the same thing

as saying the state was unpopulated in the posterior).

4.4.4 Other estimation methods

It should be noted that there are other inference methods aside from ML and the

version of ME discussed here. The most notable are maximum a posteriori (MAP)

estimates (Gauvain and Lee 1994) and Monte Carlo (MC) techniques (Neal 1993).

MAP is similar to ML, but seeks to find the argmax�θ of p(D|�θ, K)p(�θ|K), rather

than the argmax�θ of p(D|�θ, K). MAP avoids the divergent solutions problem of ML.

It suffers from a lack of intrinsic model selection and is still a point estimate of the

posterior, making it a less desirable inference method than ME. MC uses computer

simulations to calculate a model’s evidence and/or posterior. It can be very accurate

given an infinite amount of computing time, but is too computationally intensive

to be of much use for smFRET inference in practice.

4.5 Current methods

There are currently two software packages commonly used for smFRET data anal-

ysis: QUB (Qin et al. 1997; 2000)and HaMMy (McKinney et al. 2006). Both
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programs model the smFRET time series using a HMM and both programs solve

the HMM via ML. Consequently, both programs suffer from the known problems

of ML, discussed above. QUB was originally created to analyze ion channel data

and HaMMy was created specifically for smFRET analysis.

The next two chapters of this thesis present an alternative approach to

smFRET analysis, based on ME. I developed an open source matlab software

package, termed vbFRET, as well. A screenshot of the graphical user interface

(GUI) is shown in Fig. 4.5. The code is available for download at http://vbfret.

sourceforge.net/.

Figure 4.5: The vbFRET GUI

http://vbfret.sourceforge.net/
http://vbfret.sourceforge.net/
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Chapter 5

vbFRET

The following chapter is reproduced with minor modifications from: “Learning rates

and states from biophysical time series: a Bayesian approach to model selection and

single-molecule FRET data”, by Jonathan E. Bronson, Jingyi Fei, Jake M. Hofman,

Ruben L. Gonzalez Jr., and Chris H. Wiggins. Biophysical Journal (97):3196–3205.

2009.

In addition, the inference algorithm described here was used to analyze the data in:

“Allosteric collaboration between elongation factor G and the ribosomal L1 stalk

direct tRNA movements during translation”, by Jingyi Fei, Jonathan E. Bronson,

Jake M. Hofman, Rathi L. Srinivas, Chris H. Wiggins and Ruben L. Gonzalez,

Jr. Proceedings of the National Academy of Sciences (106):15702-15707. 2009.

The process of analyzing this data was extremely helpful in refining the inference

algorithm.
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5.1 Abstract

Time series data provided by single-molecule Förster resonance energy transfer

(smFRET) experiments offer the opportunity to infer not only model parameters

describing molecular complexes, e.g. rate constants, but also information about the

model itself, e.g. the number of conformational states. Resolving whether or how

many of such states exist requires a careful approach to the problem of model selec-

tion, here meaning discriminating among models with differing numbers of states.

The most straightforward approach to model selection generalizes the common idea

of maximum likelihood — selecting the most likely parameter values — to maximum

evidence: selecting the most likely model. In either case, such inference presents a

tremendous computational challenge, which we here address by exploiting an ap-

proximation technique termed variational Bayesian expectation maximization. We

demonstrate how this technique can be applied to temporal data such as smFRET

time series; show superior statistical consistency relative to the maximum likelihood

approach; compare its performance on smFRET data generated from experiments

on the ribosome; and illustrate how model selection in such probabilistic or gen-

erative modeling can facilitate analysis of closely related temporal data currently

prevalent in biophysics.

5.2 Introduction

Single-molecule biology has triumphed at creating well-defined experiments to an-

alyze the workings of biological materials, molecules, and enzymatic complexes. As
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the molecular machinery studied become more complex, so too do the biological

questions asked and, necessarily, the statistical tools needed to answer these ques-

tions from the resulting experimental data. In a number of recent experiments,

researchers have attempted to infer mechanical parameters (e.g., the typical step

size of a motor protein), probabilistic parameters (e.g., the probability per turn

that a topoisomerase releases from its DNA substrate), or kinetic parameters (e.g.,

the folding/unfolding rates of a ribozyme) via statistical inference (Koster et al.

2006; Moffitt et al. 2009; Munro et al. 2007; Zhuang et al. 2000; 2002; Fei et al.

2008; Yildiz et al. 2004; Wiita et al. 2007; Myong et al. 2005). Often the ques-

tion of interest is not only one of selecting model parameters but also selecting the

model, including from among models which differ in the number of parameters to

be inferred from experimental data. The most straightforward approach to model

selection generalizes the common idea of maximum likelihood (ML) — selecting

the most likely parameter values — to maximum evidence (ME): selecting the most

likely model.

Here we focus on model selection in a specific example of such a biologi-

cal challenge: revealing the number of enzymatic conformational states in single

molecule FRET (smFRET) data. FRET (Jares-Erijman and Jovin 2003; Joo et al.

2008; Roy et al. 2008; Schuler and Eaton 2008) refers to the transfer of energy from

a donor fluorophore (which has been excited by short-wavelength light) to an accep-

tor fluorophore (which then emits light of a longer wavelength) with an efficiency

which decreases as the distance between the fluorophores increases. The distance-

dependence of the energy transfer efficiency implies that the quantification of the
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light emitted at both wavelengths from a fluorophore pair may be used as a proxy

for the actual distance (typically ∼1–10 nm) between these fluorophores. Often a

scalar summary statistic (e.g. the “FRET ratio” IA/(IA +ID) of the acceptor inten-

sity to the sum of the acceptor and donor intensities) is analyzed as a function of

time, yielding time series data which are determined by the geometric relationship

between the two fluorophores in a non-trivial way. When the donor and acceptor

are biochemically attached to a single molecular complex, one may reasonably in-

terpret such a time series as deriving from the underlying conformational dynamics

of the complex.

If the complex of interest transitions from one locally stable conformation

to another, the experiment is well modeled by a hidden Markov model (HMM)

(Rabiner 1989), a probabilistic model in which an observed time series (here, the

FRET ratio) is conditionally dependent on a hidden, or unobserved, discrete state

variable (here, the molecular conformation). HMMs have long been used in ion

channel experiments in which the observed dynamic variable is voltage, and the

hidden variable represents whether the channel is open or closed (Qin et al. 1997;

2000). More recently, Talaga proposed adapting such modeling for FRET data

(Andrec et al. 2003), and Ha and coworkers developed HMM software designed for

FRET analysis (McKinney et al. 2006). Such existing software for biophysical time

series analysis implement ML on individual traces and require users either to guess

the number of states present in the data, or to overfit the data intentionally by as-

serting an excess number of states. Resulting errors commonly are then corrected

via heuristics particular to each software package. It would be advantageous to



59

avoid subjectivity (as well as extra effort) on the part of the experimentalist neces-

sary in introducing thresholds or other parameterized penalties for complex models,

as well as to derive principled approaches likely to generalize to new experimental

contexts and data types. To that end, our aim here is to implement ME directly,

avoiding overfitting even within the analysis of each individual trace rather than as

a post-processing correction.

We begin by describing the general problem of using probabilistic or genera-

tive models for experimental data (generically denoted D) in which one specifies the

probability of the data given a set of parameters of biophysical interest (denoted

�θ) and possibly some hidden value of the state variable of interest (denoted Z).

We then present one particular framework, variational Bayesian expectation maxi-

mization (VBEM), for estimating these parameters while at the same time finding

the optimal number of values for the hidden state variable Z. (Bold variables are

reserved for those extensive in the number of observations.) We next validate the

approach on synthetic data generated by an HMM, with parameters chosen to sim-

ulate data comparable to experimental smFRET data of interest. Having validated

the technique, we apply it to experimental smFRET data and interpret our results.

We close by highlighting advantages of the approach; suggesting related biophysical

time series data which might be amenable to such analysis; and outlining promising

avenues for future extension and developments of our analysis.
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5.3 Parameter and model selection

Since the techniques we present here are natural generalizations of those which

form the common introduction to statistical techniques in a broad variety of natural

sciences, we first remind the reader of a few key ideas in inference necessary before

narrowing to the description of smFRET data, briefly discussing ML methods for

parameter inference and ME methods for model selection. Note that, since the ML-

ME discussion does not rely on whether or not the model features hidden variables,

for the sake of simplicity we first describe in the context of models without hidden

variables.

5.3.1 Maximum likelihood inference

The context in which most natural scientists encounter statistical inference is that of

ML; in this problem setting, the model is specified by an expression for the likelihood

p(D|�θ, K) — i.e., the probability of the vector of data D given some unknown vector

of parameters of interest �θ. (While this is not often stated explicitly, this is the

framework underlying minimization of χ2 or sums-of-squared errors; cf. Sec. B.2

for a less cursory discussion.) In this context the ML estimate of the parameter �θ

is

�θ∗ = argmax
�θ

p(D|�θ, K). (5.1)

ML methods are useful for inference of parameter settings under a fixed model (or

model complexity), e.g. a particular parameterized form with a fixed number of

parameters. However, when one would like to compare competing models (in ad-
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dition to estimating parameter settings), ML methods are generally inappropriate,

as they tend to “overfit”, because likelihood always increases with greater model

complexity.

This problem is conceptually illustrated in the case of inference from FRET

data as follows: if a particular system has a known number of conformational

states, say K = 2, one can estimate the parameters (the transition rates between

states and relative occupation of states per unit time) by maximizing the likelihood,

which gives a formal measure of the “goodness of fit” of the model to the data.

Consider, however, an overly complex model for the same observed data with K = 3

conformational states, which one might do if the number of states is itself unknown.

The resulting parameter estimates will have a higher likelihood or “better” fit to

the data under the maximum likelihood criterion, as the additional parameters have

provided more degrees of freedom with which to fit the data. The difficulty here is

that maximizing the likelihood fails to accurately quantify the desired notion of a

“good fit” which should agree with past observations, generalize to future ones and

model the underlying dynamics of the system. Indeed, consider the pathological

limit in which the number of states K is set equal to the number of FRET time

points observed. The model will exactly match the observed FRET trace, but will

generalize poorly to future observations. It will have failed to model the data at

all and nothing will have been learned about the true nature of the system; the

parameter settings will simply be a restatement of observations.

The difficulty in the above example is that one is permitted both to select the

model complexity (the number of parameters in the above example) and to estimate
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single “best” parameter settings, which results in overfitting. While there are sev-

eral suggested solutions to this problem (reviewed in (Bishop 2006; MacKay 2003)),

we present here a Bayesian solution for modeling FRET data which is both theoret-

ically principled and practically effective (Sec. 5.3.2). In this approach, one extends

the concepts behind maximum likelihood to that of maximum marginal likelihood,

or evidence, which results in an alternative quantitative measure of “goodness of

fit” that explicitly penalizes overfitting and enables one to perform model selec-

tion. The key conceptual insight behind this approach is that one is prohibited

from selecting single “best” parameter settings for models considered, and rather

maintains probability distributions over all parameter settings.

5.3.2 Maximum evidence inference

The ML framework generalizes readily to the problem of choosing among different

models. This includes not only models of different algebraic forms, but also among

nested models in which one model is a parametric limit of another, e.g. models

with hidden variables or in polynomial regression. (A two state model is a special

case of a three state model with an empty state; a second order polynomial is a

special case of a third order polynomial with one coefficient set to 0.) In this case

we introduce an index K over possible models, e.g., the order of the polynomial to

be fit or, here, the number of conformational states, and hope to find the value of

K∗ which maximizes the probability of the data given the model, p(D|K):

K∗ = argmax
K

p(D|K) = argmax
K

�
d�θp(D|�θ, K)p(�θ|K). (5.2)
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The quantity p(D|K) is referred to as the marginal likelihood, or evidence, as

unknown parameters are marginalized (or summed out) over all possible settings.

The second expression in Eq. 5.2 follows readily from the rules of probability pro-

vided we are willing to model the parameters themselves (in addition to the data)

as random variables. That is, we must be willing to prescribe a distribution p(�θ|K)

from which the parameters are drawn given one choice of the model. Since this

term is independent of the data D, it is sometimes referred to as the prior; the

treatment of parameters as random variables is one of the distinguishing features

of Bayesian statistics. (In fact, maximizing the evidence is the principle behind the

oft-used Bayesian information criterion (BIC), an asymptotic approximation valid

under a restricted set of circumstances. The BIC is explored more thoroughly in

Sec. B.3.)

In this form we may interpret the marginal likelihood p(D|K) as an aver-

aged version of the likelihood p(D|�θ, K) over all possible parameter values, where

the prior p(�θ|K) weights each such value. Unlike the likelihood, the evidence is

largest for the model of correct complexity and decreases for models that are either

too simple or too complex without the need for any additional penalty terms. There

are several explanations for why evidence can be used for model selection (Bishop

2006). Perhaps the most intuitive is to think of the evidence as the probability

that the observed data was generated using the given model (which we are allowed

to do, since ME is a form of generative modeling). Overly simplistic models can-

not generate the observed data and, therefore, have low evidence scores (e.g. it is

improbable that a two FRET state model would generate data with three distinct
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FRET states). Overly complex models can describe the observed data, however,

they can generate so many different data sets that the specific observed data set

becomes improbable (e.g. it is improbable that a 100 FRET state model would

generate data that only has 3 distinct FRET states (especially when one considers

that the evidence is an average taken over all possible parameter values)).

In addition to performing model selection, we would like to make inferences

about model parameters, described by the probability distribution over parame-

ter settings given the observed data, p(�θ|D, K), termed the posterior distribution.

Bayes’ rule equates the posterior with the product of the likelihood and the prior,

normalized by the evidence:

p(�θ|D, K) =
p(D|�θ, K)p(�θ|K)

p(D|K)
. (5.3)

While ME above does not give us access to the posterior directly, as we show below,

VBEM gives not only an approximation to the evidence but also an approximation

to the posterior.

5.3.3 Variational approximate inference

While in principle calculation of the evidence and posterior completely specifies

the ME approach to model selection, in practice exact computation of the evidence

is often both analytically and numerically intractable. One broad and intractable

class is that arising from models in which observed data are modeled as condition-

ally dependent on an unknown or hidden state to be inferred; these hidden variables

must be marginalized over (summed over) in calculating the evidence in Eq. 5.2.
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(For the smFRET data considered here, these hidden variables represent the un-

observable conformational states.) As a result, calculation of the evidence now

involves a discrete sum over all states Z in addition to the integrals over parameter

values �θ:

p(D|K) =
�

Z

�
d�θp(D,Z|�θ, K)p(�θ|K) (5.4)

This significantly complicates the tasks of model selection and posterior inference.

Computing the terms in Eq. 5.2 and Eq. 5.3 requires calculation of the evidence,

direct evaluation of which requires a sum over all K settings for each of T extensive

variables Z (where T is the length of the time series). Such a sum is intractable

for even K = 2 and modest values of T , e.g. on the order of 25. While there

exist various methods for numerically approximating such sums, such as Monte

Carlo techniques, we appeal here to variational methods for a scalable, robust, and

empirically accurate method for approximate Bayesian inference. (For a discus-

sion regarding practical aspects of implementing Monte Carlo techniques, including

burn-in, convergence rates, and scaling, cf. (Neal 1993).)

To motivate the variational method, we note that we wish not only to select

the model by determining K∗ but also to find the posterior probability distribution

for the parameters given the data, i.e., p(�θ|D, K). This is done by finding the

distribution q(Z,�θ) which best approximates p(Z,�θ|D, K), i.e.,

q∗(Z,�θ) = argmin
q(Z,�θ)

DKL

�
q(Z,�θ)||p(Z,�θ|D, K)

�
, (5.5)

where DKL is the usual Kullback-Leibler divergence, which quantifies the dissimi-

larity between two probability distributions. A simple identity (derived in Sec. 6.6)
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relates this quantity to the evidence p(D|K):

log p(D|K) = −F [q(Z,�θ)] + DKL

�
q(Z,�θ)||p(Z,�θ|D, K)

�
≥ −F [q(Z,�θ)] (5.6)

where F [q(Z,�θ)] is an analytically tractable functional (owing to a simple choice of

the approximating distribution q(Z,�θ)). The inequality in Eq. 5.6 results from the

property DKL ≥ 0, with equality if and only if q(Z,�θ) = p(Z,�θ|D, K). Mathemat-

ically, Eq. 5.6 illustrates that minimizing the functional F [q(Z,�θ)] simultaneously

maximizes a lower bound on the evidence and minimizes the dissimilarity between

the test distribution q and the parameter posterior distribution. Qualitatively, the

best test distribution not only gives the best estimate of the evidence but also the

best estimate of the posterior distribution of the parameters themselves. In going

from Eq. 5.4 to Eq. 5.6, we have replaced the problem of an intractable summation

with that of bound optimization. As is commonly the case in bound optimizations,

the closeness of this bound to the true evidence cannot be calculated. The valid-

ity of the approximation must be tested on synthetic data (tests we perform in

Sec. 5.5).

Calculation of F is made tractable by choosing an approximating distribution

q with conditional independence among variables which are coupled in the model

given by p; for this reason the resulting technique generalizes mean field theory of

statistical mechanics (MacKay 2003). Just as in mean field theory, the variational

method is defined by iterative update equations; here the update equations result

from setting the derivative of F with respect to each of the factors in the approx-

imating distribution q to 0. This procedure for calculating evidence is known as

VBEM, and can be thought of as a special case of the more general expectation
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maximization algorithm (EM). (We encourage the reader to enjoy the text (Bishop

2006) for a more pedagogical discussion of EM and VBEM.) Since F is convex

in each of these factors, the algorithm provably converges to a local (though not

necessarily global) optimum, and multiple restarts are typically employed. Note

that this is true for EM procedures more generally, including as employed to max-

imize likelihood in models with hidden variables (e.g., HMMs). In ML inference,

practitioners on occasion use the converged result based on one judiciously chosen

initial condition rather than choosing the optimum over restarts; this heuristic often

prevents pathological solutions (cf. (Bishop 2006, Ch. 9)).

5.4 Statistical inference and FRET

5.4.1 Hidden Markov modeling

The HMM (Rabiner 1989), illustrated in Fig. 4.2, models the dynamics of an ob-

served time series D (here, the observed FRET ratio) as conditionally dependent

on a hidden process Z (here, the unknown conformational state of the molecular

complex). At each time t, the conformational state zt can take on any one of K pos-

sible values, conditionally dependent only on its value at the previous time via the

transition probability matrix p(zt|zt−1) (i.e., Z is a Markov process); the observed

data depend only on the current-time hidden state via the emission probability

p(dt|zt). Following the convention to the field, we model all transition probabilities

as multinomial distributions and all emission probabilities as Gaussian distributions

(McKinney et al. 2006; Dahan et al. 1999), ignoring for the moment the complica-
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tion of modeling a variable distributed on the interval [0, 1] with a distribution of

support (−∞,∞).

For a smFRET time series with observed data (d1, . . . , dT ) = D and corre-

sponding hidden state conformations (z1, . . . , zT ) = Z, the joint probability of the

observed and hidden data is

p(D,Z|�θ, K) = p(z1|�θ, K)

�
T�

t=2

p(zt|zt−1,�θ, K)

�
T�

t=1

p(dt|zt,�θ, K) (5.7)

where Z comprises four types of parameters: a K-element vector, �π where the kth

component, πk, holds the probability of starting in the kth state; a K×K transition

matrix, A, where aj,k is the probability of transitioning from the jth hidden state

to the kth hidden state (i.e. aj,k = p(zt = k|zt−1 = j)); and two K-element vectors,

�µ and �λ, where µk and λk are the mean and precision of the Gaussian distribution

of the kth state.

As in Eq. 5.4, the evidence follows directly from multiplying the likelihood

by priors and marginalizing:

p(D|K) =
�

z

�
d�θp(�π|K)p(A|K)p(�µ,�λ|K)p(z1|�π, K)

×
�

T�

t=2

p(zt|zt−1, A,K)

�
T�

t=1

p(dt|zt,�µ,�λ, K). (5.8)

The p(�π|K) and each row of p(A|K) are modeled as Dirichlet distributions; each

pair of µk and λk are modeled jointly as a Gaussian-Gamma distribution. These

distributions are the standard choice of priors for multinomial and Gaussian dis-

tributions (Bishop 2006). If we also assume that q(Z,�θ) factorizes into q(Z)q(�θ),

this HMM can be solved via VBEM (cf. (Ji et al. 2006)). Algebraic expressions
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for these distributions can be found in Sec. 6.4.1. Their parameter settings and the

effect of their parameter settings on data inference can be found in Sec. 6.4.2 and

Sec. 6.4.3, respectively. We found that for the experiments considered here, and

the range of prior parameters tested, there is little discernible effect of the prior

parameter settings on the data inference.

The variational approximation to the above evidence utilizes the dynamic

program termed the forward-backward algorithm (Rabiner 1989), which requires

O(K2T ) computations, rendering the computation feasible. (In comparison, direct

summation over all terms requires O(KT ) operations.) We emphasize that, while

individual steps in the ME calculation are slightly more expensive than their ML

counterparts, the scaling with the number of states and observations is identical.

As discussed in section 5.3.3, in addition to calculating the evidence the variational

solution yields a distribution approximating the probability of the parameters given

the data. Idealized traces can be calculated by taking the most probable parameters

from these distributions and calculating the most probable hidden state trajectory

using the Viterbi algorithm (Viterbi 1967).

5.4.2 Rates from states

HMMs are used to infer the number of conformational states present in the molec-

ular complex as well as the transition rates between states. Here, we follow the

convention of the field by fitting every trace individually (since the number and

mean values of smFRET states often vary from traces to trace). Unavoidably then,

an ambiguity is introduced comparing FRET state labels across multiple traces,
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since “state 2” may refer to the high variant of a low state in one trace and to the

low variant of a high state in a separate trace. To overcome this ambiguity, rates

are not inferred directly from q(�θ), but rather from the idealized traces Ẑ where

Ẑ = argmax
Z

q(Z|D,�θ†, K) (5.9)

and �θ† are, for ME, the parameters specifying the optimal parameter distribution

q∗(Z,�θ) or, for ML, the most likely parameters, �θ∗. The number of states in the

data set can then be determined by combining the idealized traces and plotting

a 1D FRET histogram or transition density plot (TDP). Inference facilitates the

calculation of transition rates by, for example, dwell-time analysis, TDP analysis, or

by dividing the sum of the dwell times by the total number of transitions (Cornish

et al. 2008; McKinney et al. 2006). In this work, we determine the number of

states in an individual trace using ME. To overcome the ambiguity of labels when

combining traces, we follow the convention of the field and use 1D FRET histograms

and/or TDPs to infer the number of states in experimental data sets and calculate

rates using dwell time analysis (Sec. 6.3.3).

5.5 Numerical experiments

We created a software package to implement VBEM for FRET data called vbFRET.

Software was written in matlab and is available open source, including a point and

click GUI. All ME data inference was performed using vbFRET. All ML data infer-

ence was performed using HaMMy (McKinney et al. 2006), although we note that

any analysis based on ML should perform similarly (see Sec. 6.3.1 for practicalities
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regarding implementing ML). Parameter settings used for both programs, methods

for creating computer generated synthetic data, and methods for calculating rate

constants for experimental data can be found in Sec. 6.3. Following the conven-

tion of the field, in subsequent sections the dimensionless FRET ratio is quoted in

dimensionless “units” of FRET.

5.5.1 Example: maximum likelihood vs maximum evidence

To illustrate the differences between ML and ME, consider the synthetic trace shown

in Fig. 5.1, generated with three noisy states (K0 = 3) centered at µz = (0.41, 0.61,

0.81) FRET. This trace was analyzed by both ME and ML with K = 1 (underfit),

K = 3 (correctly fit), and K = 5 (overfit) (Fig. 5.1A). In the cases when only one or

three states are allowed, ME and ML perform similarly. However, when five states

are allowed, ML overfits the data, whereas ME leaves two states unpopulated and

correctly infers three states, illustrated clearly via the idealized trace.

Moreover, whereas the likelihood of the overfitting model is larger than that

of the correct model, the evidence is largest when only three states are allowed

(p(D|�θ∗, K > K0) > p(D|�θ∗, K0); however, p(D|K) peaks at K = K0 = 3). The

ability to use the evidence for model selection is further illustrated in Fig. 5.1B,

in which the same data as in Fig. 5.1A are analyzed using both ME and ML with

1 ≤ K ≤ 10. The evidence is greatest when K = 3; however, the likelihood

increases monotonically as more states are allowed, ultimately leveling off after five

or six states are allowed.
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Figure 5.1: A single (synthetic) FRET trace analyzed by ME and ML. The trace
contains 3 hidden states. A) (Top) Idealize traces inferred by ME when K = 1, K =
3, and K = 5, as well as the corresponding log(evidence) for the inference. The
data are under resolved when K = 1, but for both K = 3 and K = 5 the correct
number of states are populated. (Bottom) Idealized traces inferred by ML when
K = 1, K = 3, and K = 5, as well as the corresponding log(likelihood). Inference
when K = 1 and K = 3 are the same as for ME but the data are overfit when
K = 5. B) The log evidence from ME (black) and log likelihood from ML (gray)
for 1 ≤ K ≤ 10. The evidence is correctly maximized for K = 3, but the likelihood
increases monotonically.



73

5.5.2 Statistical validation

ME can be statistically validated by generating synthetic data, for which the true

trajectory of the hidden state Z0 is known, and quantifying performance relative

to ML. We performed such numerical experiments, generating several thousand

synthetic traces, and quantified accuracy as a function of signal-to-noise via four

probabilities: (1) accuracy in number of states p(|Ẑ| = |Z0|): the probability in any

trace of inferring the correct number of states (where |Z0| is the number of states

in the model generating the data and |Ẑ| is the number of populated states in the

idealized trace); (2) accuracy in states p(Ẑ = Z0): the probability in any trace

at any time of inferring the correct state; (3) sensitivity to true transitions: the

probability in any trace at any time that the inferred trace Ẑ exhibits a transition,

given that Z0 does; and (4) specificity of inferred transitions: the probability in any

trace at any time that the true trace Z0 does not exhibit a transition, given that

Ẑ does not. We note that, encouragingly, for the ME inference, |Ẑ| always equaled

K∗ as defined in Eq. 5.2.

We identify each inferred state with the true state which is closest in terms

of their means provided the difference in means is less than 0.1 FRET. Inferred

states for which no true state is within 0.1 FRET are considered inaccurate. Note

that we do not demand that one and only one inferred state be identified with the

true state. This effective smoothing corrects overfitting errors in which one true

state has been inaccurately described by two nearby states (consistent with the

convention of the field for analyzing experimental data).

For all synthetic traces, K0 = 3 with means centered at µz = (0.25, 0.5, 0.75)
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FRET. Traces were made increasingly noisy by increasing the standard deviation,

σ, of each state. Ten different noise levels, ranging from σ ≈ 0.02 to σ ≈ 0.15

were used. Over this noise range, traces vary from trivially resolvable by eye to

unresolvable by either inference program — both methods correctly infer < 45% of

transitions by the final value of σ. Trace length, T , varied from 50 ≤ T ≤ 500 time

steps, drawn randomly from a uniform distribution. One time step corresponds

to one time-binned unit of an experimental trace, which is typically 25–100 msec

for most CCD camera based experiments. Fast-transitioning (mean lifetime of 4

time steps between transitions) and slow-transitioning (mean lifetime of 15 time

steps between transitions) traces were created and analyzed separately. Transitions

were equally likely from all hidden states to all hidden states. For each of the

10 noise levels and 2 transition speeds, 100 traces were generated (2,000 traces in

total). Traces for which K0 = 2 (Fig. 6.7) and K0 = 4 (Fig. 6.8) were created

and analyzed as well. The results were qualitatively similar and can be found in

Sec. 6.5.

As expected, both programs performed better on low noise traces than on

high noise traces. ME correctly determined the number of FRET states more often

than ML in all cases except for the noisiest fast-transitioning trace set (Fig. 5.2, top

left). Of the 2,000 traces analyzed here using ME and ML, ME overfit 1 and underfit

232. ML overfit 767 and underfit 391. In short, ME essentially eliminated overfitting

of the individual traces, whereas ML overfit 38% of individual traces. Over 95% (all

but 9) of ME underfitting errors occurred on traces with FRET state noise > 0.09,

whereas ML underfitting was much more evenly distributed (at least 30 traces at
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Figure 5.2: Comparison of ME and ML as a function of increasing hidden state
noise. Fast transitioning (hidden state mean lifetime of 4 time steps) and slow
transitioning (hidden state mean lifetime of 15 time steps) traces were created and
analyzed separately. Each data point represents the average value taken over 100
traces. (Top left) p(|Ẑ| = |Z0|): the probability in any trace of inferring the correct
number of states. (Top right) p(Ẑ = Z0): the probability in any trace at any time
of inferring the correct state. (Bottom left) Sensitivity to true transitions: the
fraction of time the correct FRET state was inferred during FRET trajectories.
(Bottom right) Specificity of inferred transitions: the probability in any trace at
any time that the true trace Z0 does not exhibit a transition, given that Ẑ does
not. Error bars on all plots were omitted for clarity and because the data plotted
represent mean success rates for Bernoulli processes (and, therefore, determine the
variances of the data as well).
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every noise level were underfit by ML). The underfitting of noisy traces by ME may

be a result of the intrinsic resolvability of the data, rather than a shortcoming of the

inference algorithm; as the noise of two adjacent states becomes much larger than

the spacing between them, the two states become indistinguishable from a single

noisy state (in the limit, there is no difference between a one state and two state

system if the states are infinitely noisy). The causes of the underfitting errors by

ML are less easily explained, but suggest that the ML algorithm has not converged

to a global optimum in likelihood (for reasons explained in Sec. 6.3.2).

In analyzing the slow-transitioning traces, the methods performed roughly

the same on probabilities (2–4) (always within ∼5% of each other). For the fast-

transitioning traces, however, ME was much better at inferring the true trajectory

of traces (by a factor of 1.5–1.6 for all noise levels) and showed superior sensitivity

(factor of 2.7–12.5) to transitions at all noise levels. The two methods showed

the same specificity to transitions until a noise level of σ > 0.8, beyond which

ML showed better specificity (factor of 1.06–1.13). Inspection of the individual

traces showed that all three of these results were due to ML missing many of the

transitions in the data.

These results on synthetic data suggest that when the number of states in

the system is unknown, ME clearly performs better at identifying FRET states.

For inference of idealized trajectories, ME is at least as accurate as ML for slow-

transitioning traces and more accurate for fast-transitioning traces. The perfor-

mance of ME on fast-transitioning traces is particularly encouraging since detec-

tion of a transient biophysical state is often an important objective of smFRET
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experiments, as discussed below.

5.6 Results

Having validated inference with vbFRET, we compared ME and ML inference

on experimental smFRET data, focusing our attention on the number of states

and the transition rates. The data we used for this analysis report on the con-

formational dynamics of the ribosome, the universally-conserved ribonucleoprotein

enzyme responsible for protein synthesis, or translation, in all organisms. One

of the most dynamic features of translation is the precisely directed mRNA and

tRNA movements that occur during the translocation step of translation elonga-

tion. Structural, biochemical, and smFRET data overwhelmingly support the view

that, during this process, ribosomal domain rearrangements are involved in direct-

ing tRNA movements (Moazed and Noller 1989; Blanchard et al. 2004b; Munro

et al. 2007; Kim et al. 2007; Fei et al. 2008; Cornish et al. 2008; Agirrezabala et al.

2008; Julian et al. 2008; Cornish et al. 2009). One such ribosomal domain is the L1

stalk, which undergoes conformational changes between open and closed conforma-

tions that correlate with tRNA movements between so-called classical and hybrid

ribosome-bound configurations (Fig. 5.3A) (Fei et al. 2008; Cornish et al. 2009; Fei

et al. 2009; Sternberg et al. 2009).

Using fluorescently-labeled tRNAs and ribosomes, we have recently devel-

oped smFRET probes between tRNAs (smFRETtRNA−tRNA) (Blanchard et al. 2004b),

ribosomal proteins L1 and L9 (smFRETL1−L9) (Fei et al. 2008), and ribosomal pro-
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tein L1 and tRNA (smFRETL1−tRNA) (Fei et al. 2009). Collectively, these data

demonstrate that, upon peptide bond formation, tRNAs within pre-translocation

(PRE) ribosomal complexes undergo thermally-driven fluctuations between classi-

cal and hybrid configurations (smFRETtRNA−tRNA) that are coupled to transitions

of the L1 stalk between open and closed conformations (smFRETL1−L9). The net

result of these dynamics is the transient formation of a direct L1 stalk-tRNA con-

tact that persists until the tRNA and the L1 stalk stochastically fluctuate back

to their classical and open conformations, respectively (smFRETL1−tRNA). This

intermolecular L1 stalk-tRNA contact is stabilized by binding of elongation factor

G (EF-G) to PRE and maintained during EF-G catalyzed translocation (Fei et al.

2008; 2009).

Here we compare the rates of L1 stalk closing (kclose) and opening (kopen)

obtained from ME and ML analysis of smFRETL1−L9 PRE complex analogs (PMN)

under various conditions (which have the same number of FRET states by both

inference methods) and the number of states inferred for smFRETL1−tRNA PMN

complexes by ME and ML. (FRET complexes shown in Fig. 5.3B.) These data were

chosen for their diversity of smFRET ratios. The smFRETL1−L9 ratio fluctuates

between FRET states centered at 0.34 and 0.56 (i.e. a separation of 0.22 FRET),

whereas the smFRETL1−tRNA ratio fluctuates between FRET states centered at 0.09

and 0.59 FRET(i.e. a separation of 0.50 FRET). In addition, smFRETL1−L9 data

were recorded under conditions that favor either fast-transitioning (PMNfMet+EFG)

or slow-transitioning (PMNfMet and PMNPhe) complexes (complex compositions

listed in Table 5.6).
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Pre-translocation complex analog PMN

E      P      A

E      P      A

E      P      A

E      P      A

A

E      P      A

E      P      A

E      P      A

E      P      AB

smFRETL1-tRNAsmFRETL1-L9

 Classical-bound tRNA
        Open L1 stalk

 Hybrid-bound tRNA
     Closed L1 stalk

Figure 5.3: Conformational rearrangements within a pre-translocation (PMN) com-
plex and smFRET labeling schemes. (A) Cartoon representation of a PMN complex
analog. The small and large ribosomal subunits are shown in tan and lavender, re-
spectively, with the L1 stalk depicted in dark blue, and ribosomal protein L9 in cyan.
The aminoacyl-, peptidyl- and deacylated-tRNA binding sites are labeled as A, P
and E, respectively, and the P-site tRNA is depicted as a brown line. PMN complex
analogs are generated by adding the antibiotic puromycin to a post-translocation
complex carrying a deacylated-tRNA at the E site and a peptidyl-tRNA at the
P site. The resulting PMN complex analog exists in a thermally-driven dynamic
equilibrium between two major conformational states in which the P-site tRNA
fluctuations between classical and hybrid configurations correlate with the L1 stalk
fluctuations between open and closed conformations. (B) Two labeling schemes
have been developed in order to investigate PMN complex dynamics using sm-
FRET. PMN complexes are cartooned as in (A) with Cy3 and Cy5 depicted as
green and red stars, respectively. smFRETL1−L9 (left), which involves a Cy5 label
on ribosomal protein L1 within the L1 stalk and a Cy3 label on ribosomal protein
L9 at the base of the L1 stalk, reports on the intrinsic conformational dynamics
of the L1 stalk. smFRETL1−tRNA (right), which involves a Cy5 label on ribosomal
protein within the L1 stalk as in smFRETL1−L9 and a Cy3 label on the P-site tRNA,
reports on the formation and disruption of a direct interaction between the closed
L1 stalk and the hybrid bound P-site tRNA.
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First, we compared the smFRETL1−L9 data obtained from PMNfMet, PMNPhe,

and PMNfMet+EFG. As expected from previous studies (Fei et al. 2009), 1D his-

tograms of idealized FRET values from both inference methods showed two FRET

states centered at 0.34 and 0.56 FRET (and one additional state due to photo-

bleaching, for a total of three states). When individual traces were examined for

overfitting, however, ML inferred four or five states in 20.1% ± 3.7% of traces in

each data set whereas ME inferred four or five states in only 0.9%± 0.5 of traces.

Consequently, more post-processing was necessary to extract transition rates from

idealized traces inferred by ML.

Data set∗ Method kclose kopen

PMNPhe
† ME 0.66± 0.05 1.0± 0.2

ML 0.65± 0.06 1.0± 0.3

PMNfMet
‡ ME 0.53± 0.08 1.7± 0.3

ML 0.52± 0.06 1.8± 0.3

PMNfMet+EFG ME 3.1± 0.6 1.3± 0.2
(1µM)§ ML 2.1± 0.4 1.0± 0.2

PMNfMet+EFG ME 2.6± 0.6 1.5± 0.1
(0.5µM)§ ML 2.0± 0.3 1.0± 0.1

∗
Rates reported here are the average and standard deviation from three or four inde-

pendent data sets. Rates were not corrected for photobleaching of the fluorophores.
†

PMNPhe was prepared by adding the antibiotic puromycin to a post-translocation

complex carrying deacylated-tRNA
fMet

at the E site and fMet-Phe-tRNA
Phe

at the P

site, and thus contains a deacylated-tRNA
Phe

at the P site.
‡

PMNfMet was prepared by adding the antibiotic puromycin to an initiation complex

carrying fMet-tRNA
fMet

a the P site, and thus contains a deacylated-tRNA
fMet

at the P

site.

§
1.0 µM and 0.5 µM EF-G in the presence of 1 mM GDPNP (a non-hydrolyzable GTP

analog) were added to PMNfMet, respectively.

Table 5.1: Comparison of smFRETL1−L9 transition rates inferred by ME and ML.
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Our results (Table 5.6) demonstrate that there is very good overall agree-

ment between the values of kclose and kopen calculated by ME and ML. For the

relatively slow-transitioning PMNfMet and PMNPhe data, the values of kclose and

kopen obtained from ME and ML are indistinguishable. For the relatively fast-

transitioning PMNfMet+EFG data, however, the values of kclose and kopen obtained

differ slightly between ME and ML. Since the true transition rates of the experimen-

tal smFRETL1−L9 data can never be known, it is impossible to assess the accuracy

of the rate constants obtained from ME or ML in the same way we could with the

analysis of synthetic data. While we cannot say which set of kclose and kopen values

are most accurate for this fast-transitioning data set, our synthetic results would

predict a larger difference between rate constants calculated by ME and ML for

faster-transitioning data and suggest that the values of kclose and kopen calculated

with ME have higher accuracy (Fig. 5.2).

Consistent with previous reports (Fei et al. 2008), ML infers two FRET

states centered at flow ≡ 0.09 and fhigh ≡ 0.59 FRET (plus one photobleached

state) for all smFRETL1−tRNA data sets. Conflicting with these results, however,

ME infers three FRET states (plus a photobleached state) for these data sets. Two

of these FRET states are centered at flow and fhigh, as in the ML case, while the

third “putative” state is centered at fmid ≡ 0.35 FRET, coincidentally at the mean

between flow and fhigh. Indeed, TDPs constructed from the idealized trajectories

generated by ME or ML analysis of the PMNfMet+EFG smFRETL1−tRNA data set

evidence the appearance of a new, highly populated state at fmid in the ME-derived

TDP that is virtually absent in the ML-derived TDP (Fig. 5.5). Consistent with the
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Figure 5.4: Analysis of the smFRETL1−tRNA fmid state. A) A representative
smFRETL1−tRNA trace idealized by ME, taken from the 50 msec exposure time
data set. Both the observed data and idealized path are shown. Individual data
points, real and idealized, are shown as Xs. To emphasize the data at or near fmid,
the Xs are enlarged and the observed data are shown in black. (B) Bar graph of
the percentages of transitions to or from the fmid state under 25 msec, 50 msec and
100 msec CCD integration time. (C) Normalized population histograms of dwell
time spent at the fmid state under 25 msec, 50 msec, and 100 msec CCD integration
time.

TDPs, ∼46% of transitions in the ME-analyzed smFRETL1−tRNA trajectories are

either to or from the new fmid state (Fig. 5.4B). This fmid state is extremely short

lived; ∼75% of the data assigned to fmid consist of a single observation, i.e. with

a duration at or below the CCD integration time CCD blurring artifact (here, 50

msec) (Fig. 5.4C). A representative ME-analyzed smFRETL1−tRNA trace is shown

in Fig. 5.4A.
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There are at least two possible origins for this putative new state. The first

is a very short-lived (i.e. lifetime ≤ 50 msec), bona fide, previously unidentified

intermediate conformation of the PMN complex. The second is that fmid data are

artifactual, resulting from the binning of the continuous-time FRET signal during

CCD collection. Each time binned data point represents the average intensity of

thousands or more photons. If a transition occurs 25 msec into a 50 msec time

step, half the photons will come from the flow state and half from the fhigh state,

resulting in a datum at approximately their mean. This type of CCD blurring

artifact would be lost in the noise of closely spaced FRET states, but would become

more noticeable as the FRET separation between states increases.

To distinguish between these two possibilities, we recorded PMNfMet+EFG

smFRETL1−tRNA data at half and double the integration times (i.e. 25 msec and

100 msec). If the fmid state is a true conformational intermediate then: (1) the

percentage of transitions exhibiting at least one data point at or near fmid should

increase as the integration time decreases, and (2) the number of consecutive data

points defining the dwell time spent at or near fmid should increase as the integration

time decreases. Conversely, if the fmid state arises from a time averaging artifact,

then: (1) the percentage of transitions containing at least one data point at or near

fmid should increase as the integration time increases, as longer integration times

increase the probability that a transition will occur during the integration time,

and (2) the number of consecutive data points defining the dwell time spent at or

near the fmid state should be independent of the integration time, as transitions

occurring within the integration time will always be averaged to generate a single
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data point.
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Figure 5.5: Transition density plots (TDP) of smFRETL1−tRNA PMNfMet+EF−G

derived from ME and ML analysis with different CCD integration times. TDPs are
contour plots showing the kernel density estimation of the transitions in idealized
traces (with starting and ending FRET values of the transitions as the X and Y
axes, respectively). Note that transitions to short-lived or nearby states count with
equal weight as those to long-lived states in a TDP. This should not be confused
with a time-density plot, which illustrates the probability of observing a pair of
experimental values at two different times p(y(t), y(t + δt)), which can be made
from the FRET data themselves without appealing to statistical inference. The
plots show ML (left), ME (middle) and ME analysis corrected for the presence
of a blur state (right). Contours are plotted from tan (lowest population) to red
(highest population). Different CCD integration times were used for recoding these
data sets: (A) 25 msec, (B) 50 msec, and (C) 100 msec. For interpretation of the
significance of these TDPs, cf. Sec. 5.6.
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Consistent with the view that the fmid state arises from time-averaging over

the integration time, Fig. 5.4B demonstrates that the percentage of transitions

containing at least one data point at or near fmid increases as the integration time

increases. This manifests as the increase in the density of transitions starting

or ending at fmid as the integration time decreases for the ME-derived TDPs in

Fig. 5.5. These data are further supported by the results presented in Fig. 5.4C,

demonstrating that the number of consecutive data points defining the dwell time

of the fmid state is remarkably insensitive to the integration time. We conclude

that the fmid state identified by ME is composed primarily of a time-averaging

artifact which we refer to as “camera blurring” and the ME-inferred fmid state

as the “blur state”. Although ML infers four or five states in 35% of the traces

(compared to only 25% for ME), for some reason ML significantly suppresses, but

does not completely eliminate, detection of this blur state in the individual smFRET

trajectories. At present, we cannot determine whether this is a result of the ML

method itself (i.e. overfitting noise in one part of the trace may cause it to miss a

state in another) or due to the specific implementation of ML in the software we

used (Sec. 6.3.1). In retrospect, the presence of blur states should not be surprising,

since they follow trivially from the time-averaging that results from averaging over

the CCD integration time. In Sec. 6.2, we propose a method for correcting these

blur artifacts.

The observation that ML analysis does not detect a blur state that is readily

identified by ME analysis is in line with our results on synthetic data in which

ME consistently outperforms ML in regards to detecting the true number of states



86

in the data, particularly in fast-transitioning data, and strongly suggests that ME

will generally capture short-lived intermediate FRET states that ML will tend to

overlook. While this feature of ML might be desirable in terms of suppressing blur

states such as the one we have identified in the smFRETL1−tRNA data set, it is

undesirable in terms of detecting bona fide intermediate FRET states that may

exist in a particular data set.

5.7 Conclusions

These synthetic and experimental analyses confirm that ME can be used for model

selection (identification of the number of smFRET states) at the level of individual

traces, improving accuracy and avoiding overfitting. Additionally, ME inference

solved by VBEM provides q∗, an estimate of the true parameter and idealized trace

posterior, making possible the analysis of kinetic parameters, again at the level of

individual traces. As a tool for inferring idealized traces, ME produces traces which

are visually similar to those of ML; in the case of synthetic data generated to em-

ulate experimental data, ME performs with comparable or superior accuracy. The

idealized trajectories inferred by ME required substantially less post-processing,

however, since ME usually inferred the correct number of states to the data and,

consequently, did not require states with similar idealized values within the same

trace to be combined in a post-processing step. The superior trajectory inference,

accuracy, and sensitivity to transitions of ME on fast transitioning synthetic traces

suggests that the differences in transition rates calculated for fast transitioning
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experimental data is a result of superior fitting by ME as well.

In some experimental data, ME detected a very short lived blur state, which

comparison of experiments at different sampling rates suggests results from a cam-

era time averaging artifact. Once detected by ME, the presence of this intermediate

state is easily confirmed by visual inspection, but yet was not identified by ML in-

ference. Although not biologically relevant in this instance, this result suggests that

ME inference is able to uncover real biological intermediates in smFRET data that

would be missed by ML.

We conclude by emphasizing that this method of data inference is in no

way specific to smFRET. The use of ME and VBEM could improve inference for

other forms of biological time series where the number of molecular conformations

is unknown. Some examples include motor protein trajectories with an unknown

number of chemomechanical cycles (i.e. steps), DNA/enzyme binding studies with

an unknown number of binding sites and molecular dynamics simulations where

important residues exhibit an unknown number of rotamers.

All code used in this analysis, as well as a point and click GUI interface, is

available open source via http://vbFRET.sourceforge.net.
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Chapter 6

vbFRET II

The work described in Ch. 5 was too large to fit in one publication. The remainder of

the work, originally published as the supporting material from Ch. 5, is reproduced

here with minor modifications.

6.1 2D inference

Instead of analyzing the 1D FRET ratio, it is also possible to model the donor

and acceptor molecule intensities directly. Such analysis can be accomplished by

treating the donor and acceptor signals as a 2D vector, which is then fit by a

2D Gaussian. (The VBEM solution to the HMM with multidimensional Gaussian

observables is solved in (Ji et al. 2006), and requires only a minor change to the

code used in the rest of this work.) Because information is necessarily lost by

transforming the 2D donor / acceptor signal into a 1D ratio, the 2D data may yield

more information about the FRETing complex and, therefore, better inference.
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However, it is also possible that the 2D data provide information only about the

photophysics rather than the biophysics, i.e., that the only biophysically meaningful

quantity is the donor / acceptor transfer efficiency reflected in the FRET ratio.

While it is outside the scope of this paper to assess the relative merits of 1D and 2D

FRET analysis, it is worth considering whether evidence could be used to evaluate

the relative accuracies of inferences performed in 1 or 2 dimensions.

Intuitively, one should not expect evidence to be an appropriate evaluative

quantity in this situation: evidence allows one to select between competing models

for a fixed data set, i.e. a selection between p(D|m1) and p(D|m2) (which is how

evidence is used in the rest of this work). Here, we are asking the for p(D1|m1)

versus p(D2|m2), where D1 and D2 are the 1D FRET ratio and donor / acceptor

data. Because the space of 2D data sets is so much larger than the space of 1D

data sets, the evidence for the 2D inference may be lower, regardless of the quality

of the inference.

To test this hypothesis, the following data set was devised. Ten K = 3

traces were generated as described in Sec. 6.3.4, each of length T = 200, with 1D

FRET state means of ∼ 0.11 ± 0.014 FRET. The traces were then replicated 5

times, and both the donor and acceptor signals were modified by multiplication

with the a linearly decreasing envelope function A(t) = 1 − (t/T )S, where S =

{0, 0.15, 0.30, 0.45, 0.60}. When S = 0, the 2D traces should have more information

than do the 1D FRET transformations. By the time S = 0.60, the 2D traces should

be poorly described by 2D Gaussian HMMs (since the means of the donor / acceptor

signals at the end of the traces are 40% of their original values), but the 1D traces
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will still look the same as when S = 0 (since the multiplying factor cancels out of

the FRET ratio). A sample trace is shown in Fig. 6.1.

Figure 6.1: (Top left) one of the S = 0 traces fit using a 2D Gaussian HMM and
(bottom left) the 1D FRET transform. (Right) the same trace, but multiplied by
the A(t) = 1 − 0.60(t/T ) vector. By the end of the 2D trace the means of the
donor and acceptor signal intensities are 40% of their original values while the 1D
transformation (bottom right) is unchanged.

The results are shown in Fig. 6.2. The mean and standard deviation of

ln(p(D|m)) for each set of traces are shown in Table 6.1. Consistent with expecta-

tions, as S increases from 0 to 0.60, the 1D inference is unchanged, but the accuracy

of the inferred trajectory and the sensitivity to transitions decrease for the 2D in-
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Table 6.1: ln(p(D|m)) for 1D and 2D inference.

S: 0 0.15 0.30 0.45 0.60

1D 45.1± 18.3 45.1± 18.3 45.1± 18.3 45.1± 18.3 45.1± 18.3
2D −501.2± 19.8 −502.5± 18.7 −509.1± 16.5 −515.5± 16.2 −504.6± 18.3

ference. Inspection of individual traces shows that when S = 0, 2D inference is

better or equal to 1D inference, by all four accuracy metrics in Fig. 6.2, for 9 out

of 10 traces (data not shown). When S = 0.60, accuracy of the inferred trajectory

and the sensitivity to transitions is worse for 2D inference than for 1D inference for

all traces (specificity of transitions is slightly better for 2D inference, but that is a

result of missing transitions in the data).

Regardless of the quality of inference, ln(p(D|m)) for the 2D inference is

lower than for the 1D inference, consistent with our intuition about the far greater

number of possible 2D data sets, with log p(D1|m1) ≈ 40 and log p(D2|m2) ≈

−500. Similar results were observed for all synthetic data sets we have tested

(other data sets not shown) and reflect that evidence cannot be used to assess the

quality of 1D versus 2D data inference. It should be noted, however, that evidence

based model selection does work for choosing among different 2D models of varying

complexity, as evidenced in Fig. 6.2, since the comparison is again between p(D|M1)

and p(D|M2).
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Figure 6.2: Accuracy of 1D inference versus 2D inference. Accuracy metrics are
the same as those used in Fig. 5.2.

6.2 Proposed method to correct camera blurring

Single data point artifacts caused by stochastic photophysical fluctuations of flu-

orophore intensity are a well known and common problem in smFRET data (Roy

et al. 2008). These artifacts can be corrected for by applying smoothing algorithms

or rolling averages over the data (Blanchard et al. 2004b; Cornish et al. 2009) or

ignoring FRET states with a dwell time of one time point (Fei et al. 2008). The ar-

tifacts we encounter here are different in nature, since they result from time binning

the data rather than a photophysical fluctuation in donor/acceptor signal intensity

and, therefore, should be corrected for using a different approach. The algorithm
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we propose performs a second round of ME inference on the data, using the ideal-

ized traces from the first round of ME inference to make the following modification

to the raw data: data which could have resulted from time-averaging artifacts (i.e.

events lasting exactly one data point and occurring between two distinct idealized

values) were moved to the idealized value closest to the value of the suspected time-

averaging artifact (the assumption here is that that a single fmid data point should

be considered part of the “real” FRET state that the molecular complex spent the

most time in during that transitioning time point). We performed this algorithm

on the smFRETL1−tRNA. The TDP for this “cleaned” data shows the blur state

at fmid is virtually eliminated, yielding a result that is wholly consistent with that

generated by ML (Fig. 5.5). In general, however, it should be cautioned that a

bona fide intermediate FRET state may well exist and be buried under a strongly-

populated blur state. Unless this intermediate FRET state is positively identified

and somehow separated from the blur state (i.e. by obtaining data at an increased

integration time), eliminating or ignoring FRET states with dwell times exactly

equal to one time point may risk overlooking a bona fide intermediate FRET state.

We note that the vbFRET software package which we have made available allows

the user the opportunity to run this second round of ME analysis with possible blur

states detected and cleaned as described above.
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6.3 Methods

6.3.1 ML inference settings

Following the HaMMy user manual, ML analyses use Kmax+2 states, where Kmax is

either K0 (the true number of states) in the case of synthetic data or simply 3 in the

case of experimental data, as 1D FRET histograms suggest two biophysical states

and one photophysical state: the photobleached state. No additional complexity

control was applied to the resulting parameters inferred from individual traces.

The default guess for the initial distribution of the means µk was used, i.e., uniform

spacing between 0 and 1 FRET.

Also consistent with default settings, we use the parameters inferred using

only one set of initial parameter-guesses. Note that this differs from the usual

implementation of expectation-maximization as a technique for performing ML

(cf.(Bishop 2006)). Expectation-maximization (the maximization technique used in

both HaMMy and vbFRET) provably converges to a local optimum, and therefore

the maximization typically is performed using many random restarts for parameter

values. One possible reason to avoid this procedure is the inescapable pathology of

ML for real-valued emissions (e.g. in FRET data) and for which the width of each

state is an inferred parameter: the optimization is ill-posed since the case in which

one observation is assigned to a state of 0 uncertainty is infinitely likely (cf.(Bishop

2006) Ch. 9: “These singularities provide another example of the severe overfitting

that can occur in a maximum likelihood approach. We shall see that this difficulty

does not occur if we adopt a Bayesian approach.”).
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6.3.2 ME inference settings

In analyzing synthetic and experimental data with ME, we attempt each choice of

K = 1, 2, . . . , Kmax + 2 with Kmax as above. For synthetic data, 25 random initial

guesses were used for each of the traces; for experimental data, 100 initializations

were used (though, in our experience, little or no change in the optimization was

found after 25 initializations). As with all local optimization techniques, including

expectation maximization in ML or in ME, we use the parameters which give the

optimum over all restarts (here, the set of parameters specifying the approximating

distribution q which gives the maximum evidence p(D|K)).

6.3.3 Rate constant calculations

Rates for the smFRETL1−L9 experimental data, both for ME and ML analyses, were

extracted as previously described (Fei et al. 2008; Sternberg et al. 2009). First, the

set of all idealized traces over all times is histogrammed into 50 bins, evenly spaced

between −0.2 and 1.2 FRET. The counts in the resulting histogram are given to

Origin 7.0, which learns a Gaussian mixture model via expectation-maximization,

using user-supplied initial guesses for the three means (we used µ = (0, 0.35, 0.55)

FRET). Origin returns true means and variances for each of the 3 states. From

these variances the width at half-max for each mixture is determined, defining three

acceptable ranges of fret values. (For this experiment, these ranges had widths

of approximately 0.05 FRET. We next re-scan the idealized traces and, for each

transition from one acceptable range to another, record the dwell time (the total
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time spent within the range; any number of inferred transition within one accepted

range are ignored, effectively smoothing overfit idealized traces). The cumulative

distribution of dwell times from a given state is now given to Origin 7.0 to infer

the most likely parameters, asserting exponential decay. The inverse of the inferred

time constant is the rate constant reported for that state.

6.3.4 Generating synthetic data

Synthetic data were generated in matlab. Rather than testing the inference on

data generated precisely by the emissions model (one in which the scalar FRET

signal is taken to be normally-distributed in each state), we challenge the inference

by using a slightly more realistic distribution: one that is normally-distributed in

each of the two fluorophore colors. That is, each synthetic trace was created from a

hidden Markov model with 2D Gaussian output (representing the two fluorophore

colors). The 2D data x1,x2 were then FRET transformed using f = x2/(x1 + x2);

points such that f /∈ (0, 1) were discarded.

The 2D Gaussians are chosen so that, in any state z, the sum of the means

is 1000 (µ1
z + µ2

z = 1000 ∀z), roughly corresponding to our experimental data.

Variances were drawn from a uniform distribution centered at each dimension’s

mean over a range given by 10% of the mean. The two components were allowed

a nonzero covariance, also drawn from a uniform distribution centered at 0, with a

range given by 1/2 the smaller of the two means. We emphasize that these choices

are intended both to be consistent with the smFRETL1−L9 and smFRETL1−tRNA

data and not to match the algebraic expressions in the priors used below, which
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would be a less challenging inference task (model specification identically matching

the generative process).

Increasingly noisy traces were generated by multiplying the covariance ma-

trix of each hidden state by a constant. Ten constants, chosen log-linearly between

1 and 100, were used. The mean standard deviation of the FRET state noise in

the resulting 1D traces varied from, approximately, 0.02 < σ < 1.4.

6.4 Priors

6.4.1 Mathematical expressions for priors

To calculate the model evidence, we treat the components of �θ as random variables.

The vector �π and each row of A are modeled as Dirichlet distributions:

p(�π) =
Γ(

�K
k=1 uk

π)
�K

k=1 Γ(uk
π)

K�

k=1

πuk
π−1

k (6.1)

p(aj1, ..., ajK) =
Γ(

�K
k=1 ujk

a )
�K

k=1 Γ(ujk
a )

K�

k=1

aujk
a −1

jk (6.2)

The probabilities for each pair of µk and λk are modeled jointly as a Gaussian-

Gamma distribution:

p(µk, λk) =

�
uk

βλk

2π
e−

1
2uk

βλk(µk−uk
µ)2 1

Γ(uk
v/2)

(2uk
W )−uk

v/2λ(uk
v/2)−1

k e
− λk

2uk
W . (6.3)

The terms �uπ, �ua, �uβ, �uµ, �uv, and �uW are called the hyperparameters for the prob-

ability distributions over �θ.
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6.4.2 Hyperparameter settings

Hyperparameters for vbFRET were set so as to give distributions consistent with

experimental data and to influence the inference as weakly as possible: uk
π = 1,

ujk
a = 1, uk

β = 0.25, uk
m = 0.5, uk

v = 5 and uk
W = 50, for all values of k. Qualitatively,

these hyperparameter priors correspond to probability distributions over the hidden

states such that it is most probable that the hidden states are equally likely to

be occupied and equally likely to be transitioned to. Quantitatively, they yield

< µk >= 0.5 and typical σ ≈ 0.08, consistent with experimental observation.

(1/
�

mode(λk) = 1/
√

150 ≈ 0.08 ∀k).

6.4.3 Sensitivity to hyperparameter settings

One standard approach (McCulloch and Rossi 1991; Kass and Raftery 1995) to

sensitivity analysis is to halve and double hyperparameters and recompute the

evidence for different models. The sensitivity of ME inference on hyperparameter

settings was investigated on both experimental and synthetic data. First, the two

and three state traces from Fig. 5.2 and Fig. 6.7 were reanalyzed with all the

hyperparameters set to one half their default values and twice their default values

(Figs. 6.3, 6.4, 6.5, 6.6). One hyperparameter, the prior on the mean of each

Gaussian, was not changed during this analysis, since its value is set to 0.5 based

on a symmetry argument.

The results show a relative insensitivity to the hyperparameter values over

the settings considered. The largest difference in inference accuracy between the
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different settings was for the noisy, slow-transitioning traces shown in Fig. 6.6,

when the hyperparameters were doubled. Interestingly, these traces are harder to

resolve than the two state traces but not as difficult to resolve as the noisy, fast-

transitioning three state traces. A possible explanation for this behavior is that

the two state trace results are insensitive to hyperparameter settings because the

data are easy enough to resolve and the noisy, fast-transitioning three state traces

are insensitive to hyper parameter settings because they are too hard to resolve.

The noisy, slow-transition states are on the border of being resolvable, so using

a prior that more closely matches the true parameters of the model yields more

accurate results. Additionally, the three state, slow-transition data has the highest

probability of having a sparsely populated state (i.e. one that is only present for a

few time steps in a trace). When σ is large, these sparsely populated states become

harder to identify as distinct states, which may explain why p(|Ẑ| = |Z0|) decreases

more than p(Ẑ = Z0), sensitivity or specificity .
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Figure 6.3: Effects of hyperparameter settings on fast-transitioning, two state
traces.

Figure 6.4: Effects of hyperparameter settings on slow-transitioning, two state
traces.
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Figure 6.5: Effects of hyperparameter settings on fast-transitioning, three state
traces.

Figure 6.6: Effects of hyperparameter settings on slow-transitioning, three state
traces.
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To investigate further the effects of the hyperparameter settings on ME infer-

ence, the experimental data from Table 5.6 were reanalyzed using a more strongly

diagonal transition matrix prior (Table 6.2). In this second prior, the diagonal

terms of the transition matrix were set to 1 and the off-diagonal terms were set to

0.05, loosely corresponding to a prior belief that the ribosome was 10x more likely

to remain in its current state than transition to a new one. For all of the data, the

transition rates calculated with both hyperparameter settings are within error of

each other for all transition rates.

Table 6.2: Effect of hyperparameters on transition rate inference.

Data set∗ Settings kclose kopen

PMNPhe
† Default 0.66± 0.05 1.0± 0.2

Diagonal 0.66± 0.04 1.0± 0.2

PMNfMet
‡ Default 0.53± 0.08 1.7± 0.3

Diagonal 0.52± 0.09 1.7± 0.1

PMNfMet+EFG Default 3.1± 0.6 1.3± 0.2
(1 µM)§ Diagonal 2.8± 0.5 1.3± 0.1

PMNfMet+EFG Default 2.6± 0.6 1.5± 0.1
(0.5 µM)§ Diagonal 2.6± 0.5 1.4± 0.1

∗
Rates reported here are the average and standard deviation from three or four inde-

pendent data sets. Rates were not corrected for photobleaching of the fluorophores.
†

PMNPhe was prepared by adding the antibiotic puromycin to a post-translocation

complex carrying deacylated-tRNA
fMet

at the E site and fMet-Phe-tRNA
Phe

at the P

site, and thus contains a deacylated-tRNA
Phe

at the P site.
‡

PMNfMet was prepared by adding the antibiotic puromycin to an initiation complex

carrying fMet-tRNA
fMet

a the P site, and thus contains a deacylated-tRNA
fMet

at the P

site.

§
1.0 µM and 0.5 µM EF-G in the presence of 1 mM GDPNP (a non-hydrolyzable GTP

analog) were added to PMNfMet, respectively.
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6.5 Synthetic validation – 2 and 4 state traces

Synthetic data for 2 FRET state traces (fast- and slow-transitioning, smFRET

state means at 0.3 and 0.7 FRET) and 4 FRET state traces (fast-transitioning

only, smFRET state means at 0.21, 0.41, 0.61 and 0.81 FRET) were generated and

analyzed exactly as the traces in Fig. 5.2. The results are qualitatively similar to

those in Fig. 5.2. Inference accuracy begins to decrease at a lower noise level as

more FRET states are added to the traces. This should not be surprising, though,

since the states are more closely spaced as the number of states increases, and

therefore should be harder to resolve. Results for K > 4 state traces follow the

same trend as those for K = 2, 3, 4 (data not shown).

Figure 6.7: Synthetic results for two state traces.
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Figure 6.8: Synthetic results for four state traces.

6.6 Proof of variational relation

We provide a proof of the variational relation in Eq. 5.6. We start with the desired

quantity, the evidence p(D|K), and multiply by one,

ln p(D|K) =

�
�

z

�
d�θq(Z,�θ)

�
ln p(D|K), (6.4)

valid for any normalized probability distribution q(Z,�θ). We then use the definition

of conditional probability to write

p(D,Z,�θ|K) = p(Z,�θ|D, K)p(�θ|K). (6.5)
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We use this to rewrite the argument of the logarithm and multiply by one yet again:

ln p(D|K) =
�

z

�
d�θq(Z,�θ) ln

�
p(D,Z,�θ|K)

p(Z,�θ|D, K)

�
(6.6)

=
�

z

�
d�θq(Z,�θ) ln

�
p(D,Z,�θ|K)q(Z,�θ)

q(Z,�θ)p(Z,�θ|D, K)

�
(6.7)

=
�

z

�
d�θq(Z,�θ) ln

�
p(D,Z,�θ|K)

q(Z,�θ)

�

+
�

z

�
d�θq(Z,�θ) ln

�
q(Z,�θ)

p(Z,�θ|D, K)

�
, (6.8)

where in the last line we have separated logarithm to decompose the integral into

two parts. We recognize the rightmost term as the Kullback-Leibler divergence

between q(Z,�θ) and p(Z,�θ|D, K),

DKL(q(Z,�θ)||p(Z,�θ|D, K)) =
�

z

�
d�θq(Z,�θ) ln

�
q(Z,�θ)

p(Z,�θ|D, K)

�
(6.9)

and define the remaining term as the free energy,

F [q(Z,�θ)] = −
�

z

�
d�θq(Z,�θ) ln

�
p(D,Z,�θ|K)

q(Z,�θ)

�
, (6.10)

which results in the variational relation presented in Eq. 5.6,

ln p(D|K) = −F [q(Z,�θ)] + DKL(q(Z,�θ)||p(Z,�θ|D, K)). (6.11)

This completes the proof of the variational relation and offers several insights.

The first is that the free energy is strictly bounded by the log-evidence, as

the Kullback-Leibler (KL) divergence is a non-negative quantity, proven through

an application of Jensen’s inequality (an extension of the definition of convexity).

Thus we have reduced the problem of approximating the evidence to that of finding

the distribution q(Z,�θ) which is “closest” to the true (and intractable) posterior
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p(Z,�θ|D, K) in the KL sense. As per Eq. 6.11, we see that this is equivalent to

minimizing the free energy F [q(Z,�θ)] as a functional of q(Z,�θ). This observation

motivates the VBEM algorithm, in which a specific factorization for q(Z,�θ) is chosen

as to make calculation of F [q(Z,�θ)] tractable (here, that q(Z,�θ) = q(Z)q(�θ)), and

iterative coordinate ascent is performed to find a local minimum.

In addition, we provide motivation for the term “free energy”, rewriting Eq.

6.10 by decomposing the logarithm:

F [q(Z,�θ)] = −
�

z

�
d�θq(Z,�θ) ln

�
p(D,Z,�θ|K)

q(Z,�θ)

�
(6.12)

= −
�

z

�
d�θq(Z,�θ) ln p(D,Z,�θ|K)

+
�

z

�
d�θq(Z,�θ) ln q(Z,�θ). (6.13)

Recognizing the negative log-probability in the first term as an energy (as in the

Boltzmann distribution) and the second term as the information entropy (Shannon

1948a;b) of q(Z,�θ), i.e.

E ≡ − ln p(D,Z,�θ|K) (6.14)

S ≡ −
�

z

�
d�θq(Z,�θ) ln q(Z,�θ). (6.15)

Thus we can rewrite 6.10 as

F = < E > −TS, (6.16)

(with unit “temperature” T) where the angled brackets denote expectation under

the variational distribution q(Z,�θ). This familiar form from statistical physics

offers the following interpretation: in approximating the evidence (and posterior),
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we seek to minimize the free energy by finding a distribution q(Z,�θ) that balances

minimizing the energy and maximizing entropy.

We encourage the reader to enjoy the texts (MacKay 2003) and (Bishop

2006) for more pedagogical discussions of variational methods.
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Chapter 7

hFRET

7.1 Abstract

Single-molecule fluorescence resonance energy transfer (smFRET) data presents the

opportunity to learn the number of conformational states explored by a molecule as

well as the rate constants governing transitions between these states. While good

methods exist to analyze individual time series, how best to aggregate results from

the many time series collected in an experiment to learn a high-confidence consensus

model remains a challenge. We here present a statistical method which analyzes

an entire corpus of time trajectories, using hierarchical modeling, with inference

performed via an optimization method we term “ensemble variational Bayes”. We

demonstrate superior inference accuracy over methods which analyze individual

time series and show that it is possible to detect and model sub-populations of

traces within a data set which possess identically valued smFRET states, but differ

in the transition rates between these states.
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7.2 Introduction

Single-molecule fluorescence resonance energy transfer (smFRET) provides an indi-

rect probe to explore structure and dynamics at the molecular level. The efficiency

of non-radiative energy transfer from a fluorescing donor molecule to a fluorescing

acceptor molecule is highly distant dependent in the range of ∼ 1− 10 nm, making

it possible to use the relative fluorescent intensities of the donor/acceptor to report

on their nanoscale movements. When attached to an individual protein, nucleic

acid or biomolecule, the donor/acceptor can be used to report on the dynamics of

the molecular complex. Diverse processes such as the crossing of Holliday junctions

(Hohng et al. 2004), the conformational dynamics of individual proteins in vivo

(Sakon and Weninger 2010) and the marching of motor proteins on microtubules

(Mori et al. 2007) have been studied via smFRET.

Typically, the donor and acceptor fluorescent intensities (ID and IA, respec-

tively) observed are converted into a 1D summary static, the “FRET ratio”, given

by FRET = IA/(ID + IA). This dimensionless ratio, traditionally quoted in “units”

of FRET, is analyzed as a function of time in smFRET traces. In many smFRET

studies, the molecule of interest transitions between a series of locally stable con-

formations (i.e. states). From the smFRET time series, it is possible to infer (1)

the number of states the molecule occupies and (2) the transition rates between

these states.

To avoid the tedium and subjectivity of manual analysis, several smFRET

analysis software packages have been developed. QuB (Qin et al. 1997; 2000),
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originally developed for ion channel analysis, has been adapted for smFRET anal-

ysis. HaMMy (McKinney et al. 2006) and, most recently, our vbFRET software

(Bronson et al. 2009) were developed specifically to analyze smFRET. All of these

programs model the smFRET time series as a hidden Markov model (HMM) with

Gaussian observables, which treats time discretely and assumes that at every time

step:

1. The system is in one of K conformations (states). The identity of the con-

formation is hidden from the observer. (The hidden state at time t will be

denoted by zt.)

2. There is an observable, dt. The p(dt) is a Gaussian with parameters {µk, σk}

which are a function of zt.

3. After producing dt the system either transitions to a new state or remains in

its current state. The probability of transitioning is also a function of zt.

These assumptions are appropriate for most smFRET experiments since: the ob-

served FRET signal is a function of the hidden conformation of the molecule and

has roughly Gaussian noise; the probability of adopting a new molecular conforma-

tion is a function of the molecule’s current state; the molecule transitions between

a finite number of locally stable conformations; and the CCD camera commonly

used in smFRET studies naturally time bins the data.

Both QuB and HaMMy solve the HMM using the principle of maximum

likelihood (ML) and the expectation maximization algorithm (EM). ML seeks to

find the parameters, �θ∗, which maximize the probability of the data (D) given the
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parameters (�θ) and model (K) (p(D|�θ, K), also termed the likelihood):

�θ∗ = argmax
�θ

p(D|�θ, K), (7.1)

where K is a HMM with Gaussian observables and K states. Although often effec-

tive, ML suffers from two pathologies: (1) ML has a strong propensity to overfit

data (i.e. find more states than are supported by the observed data) and (2) ML

can find divergent solutions to the HMM (i.e. the algorithm can converge to solu-

tions where a FRET state has zero variance and infinite likelihood, rendering the

analysis worthless) which must be detected and avoided using some form of user

defined algorithm.

The vbFRET software package solves the HMM using the principle of max-

imum evidence (ME) and the variational Bayesian expectation maximization algo-

rithm (VBEM). ME can be thought of as ML for model selection. It seeks to find

K∗, the model complexity which maximizes the evidence, p(D|K):

K∗ = argmax
K

p(D|K) (7.2)

Unlike the likelihood, the evidence peaks for the model with the highest probabil-

ity of having the correct number of states. In addition, calculation of p(D|K) via

VBEM also returns the posterior parameter distribution (p(�θ|D, K)), the param-

eters learned from the data. From the evidence, it is possible to determine how

many states are in the data. From the posterior, it is possible to learn transition

rates between states. Because an entire distribution over �θ is learned rather than

a point estimate for �θ, ME cannot converge to divergent solutions to the HMM.

Note �θ∗ is easily learned from this posterior by finding max�θ p(�θ|D, K). This �θ∗,
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however, will not have divergent parameter values (Bishop 2006). For some data

sets, the use of ME rather than ML substantially improves data inference (Bronson

et al. 2009). A less cursory discussion of ME and ML can be found in (MacKay

2003; Bishop 2006)and, with emphasis on smFRET data, (Bronson et al. 2009).

All of these analysis programs suffer from one major shortcoming, however:

they can only analyze individual time series. While it is trivial for a human to look

at two similar traces with slightly different photophysical parameters (e.g., slightly

different FRET means or variances), and recognize that they are reporting on the

same process, these programs cannot. All of these models assume the data are

identically distributed, both within a trace and between traces, so they can only be

used to analyze multiple traces at once when the model parameters are identical

from one trace to another. All real experiments have some trace to trace variation of

their model parameters, so this ensemble inference (concurrent inference of multiple

time series) is impossible with existing methods.

Undoubtedly more information exists in the ensemble of traces than in any

individual trace (if for no other reason, far more data is present in the ensemble),

so confining inference to individual traces necessarily lowers the potential ability

of these programs to perform inference. For well resolved data it may not matter

which way the analysis is performed. For marginal data, or data where some

information is present only in the ensemble, it would be a substantial advantage

to analyze the ensemble all at once. In particular, the presence of sub-populations

of traces within a data set with similar smFRET states but different transition

rates between those states would only be detectable by analyzing the ensemble.
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This situation might arise if an inhibitor were present in the experiment in sub-

saturating concentrations. Some molecules would be inhibitor bound and some

would not, creating “fast transitioning” and “slow transiting” traces.

When inference is performed on individual traces, the results must be com-

bined in a post-processing step to learn a single, high-confidence consensus model

describing the transition rates between states. Current inference methods learn

a transition matrix (A) for each time series, which contains the transition prob-

ability from every state to every state in the time series. The jth row and kth

column of A (aj,k) holds the probability of transitioning from state j to state k

(i.e., aj,k = p(zt = k|zt−1 = j)). Consequently all the information about the rate

constants for the trace are contained in A as well. (The interconversion between A

and rate constants is straight forward and described in Sec. 7.4.2.) Combining the

individual Ans into a consensus A for the data set is non-trivial and rarely done.

Instead, rate constants are typically learned via dwell-time analysis, a multi-step

procedure which requires subjective post processing, is sensitive to outlying data

points and systematically overestimates transition rates.

Here we describe a method for smFRET inference which can perform ensem-

ble inference to learn a single consensus model from an entire data set. The method

is based on hierarchical modeling, so we term it “hFRET”. It uses an optimization

similar to variational Bayes, which we term “ensemble variational Bayes”. Using

synthetic data, we show the statistical superiority of hFRET for data inference over

both ML and ME and show that rate constants extracted directly from an ensem-

ble inferred transition matrix more accurate than rate constants learned from dwell
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Figure 7.1: Cartoon model showing the relationship among individual smFRET
traces. Each individual trace has a specific set of model parameters, �θn, drawn
from a distribution of parameters, p(�θN). The distribution p(�θN) describes the
full ensemble of parameters for the data set, from which any individual trace’s
parameters can be drawn, meaning that p(�θN) is a complete description of the
experimental system. To our knowledge, all previous inference methods only learn
the individual �θn. The method introduced here learns p(�θN) as well.

time analysis. Finally we show that hFRET can be used to learn when data sets

contain sub-populations of traces within the data, using both synthetic data and

experimental smFRET data taken from the ribosome. This is, to our knowledge,

the first example of a biophysical time series inference method which is capable of

performing ensemble inference on real data.

7.3 The model

In order to perform ensemble analysis, hFRET assumes the following model for the

data.
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1. The data set comprises an ensemble of traces reporting on the same biophys-

ical process.

2. Each trace is modeled as a HMM with Gaussian observables. The parameters

for each trace (�θn) describe the mean (�µ) and variance ( �σ2) of each state,

transition probabilities to other states (A) and the probability that the time

series began in each state (�π).

3. Within a given trace, �θn is fixed (i.e., the means and variances of states are

fixed within a trace).

4. The values in �θn vary slightly from trace to trace.

5. The trace to trace variance of �θn can be described by an “ensemble probability

distribution”, p(�θN).

Departing from the earlier notation of this thesis, the dependence on model com-

plexity K will now be omitted from equations for clarity of presentation. There

are several points worth mentioning about this framework. First, the ensemble

does not have to comprise only one process. It could also comprise a small num-

ber of distinct processes, although this is a more challenging inference problem.

(The model must then learn which traces report on which processes in addition

to modeling the processes). Second, this framework can easily be adapted to data

which is not described by an HMM by changing the model type in #2. Third,

assumption #3 needs to be carefully considered for each data set. The hidden

states of the system model the locally stable conformations of the molecule. Every
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time the system returns to a locally stable conformation, it might be a slightly

different conformation resulting in a slightly different smFRET signal. For many

data sets these fluctuations are negligible, but not for all data sets. It should be

noted that this is a problem for all smFRET analysis methods. Small shifts of a

smFRET states mean intensity within a trace are currently corrected via manu-

ally set thresholds in a post-processing smoothing procedure prior to dwell-time

analysis. As discussed later, hFRET obviates the need for much of this subjective

post-processing, which makes the inference more objective and reliable, but also

more susceptible to data which deviate from the model. Fourth, it is assumption

#5 which makes this model hierarchical; by definition, a hierarchical model is one

where parameters are drawn from specified probability distributions (Gelman and

Hill 2006, p.2). The p(�θN) used here comprises a Gaussian-Gamma distribution for

each {µk, σk} and a Dirichlet distribution for each row of A.

In this model, the ensemble distribution p(�θN) provides the fullest possible

description of the whole data set. Knowledge of p(�θN) also facilitates inference

of individual traces since, according to Bayes’ rule Sec. 4.3.1, the posterior of an

individual trace is then given by

p(�θn|Dn) =
p(Dn|�θn)p(�θN)

p(Dn)
, (7.3)

where Dn denotes the data of the nth trace. The use of p(�θN) for the prior in Eq. 7.3

follows from postulate #5 of the hFRET model. Exact calculation of p(�θn|Dn) is

impossible for the HMM, but an accurate estimate can be efficiently calculated via
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VBEM (Bronson et al. 2009). From p(�θn|Dn), �θn can be estimated using

�θn = max
�θn

p(�θn|Dn). (7.4)

If �θn for each trace ({�θn}N) were known, a maximum likelihood estimate of p(�θN)

could be obtained by using {�θn}N to calculate a mean and variance over each

parameter in �θ, and setting p(�θN) to have those sufficient statistics. In the limit of

an infinite number of traces, this estimate would be exact.

The dependency of p(�θN) on the set of p(�θn|Dn) and the dependency of

p(�θn|Dn) on p(�θN) suggests an iterative algorithm, which we term ensemble vari-

ational Bayes: guess p(�θN), use it to find p(�θn|Dn) for each trace via VBEM, get

{�θn}N using Eq. 7.4, use {�θn}N to calculate the sufficient statistics needed to learn

a new p(�θN). Unlike EM and VBEM, convergence is not guaranteed for this it-

erative procedure so a criterion is needed for when to stop this iterative process.

Additionally, it is necessary to have a criterion for evaluating the quality of p(�θN)

so that it is possible to chose among competing models (i.e. different values of K or

different p(�θN)s learned from different initializations). We assert that such a crite-

rion should be that the best p(�θN) is the one which maximizes the model’s evidence:

p(D) =
�

N

p(Dn) =
�

N

�
d�θp(Dn|�θn)p(�θN). (7.5)

Based on this criterion, the above procedure should iterate until the model’s evi-

dence either peaks or converges.

The algorithm used by hFRET has many similarities to ME. The ensemble

distribution, p(�θN), is algebraically equivalent to a prior, which is why it is possible
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to calculate p(�θn|Dn) via VBEM. The p(�θN) is technically not a prior, however,

since it is learned rather than asserted. This is a fundamental difference between

ME and the hFRET algorithm. The posterior learned for each trace, p(�θn|Dn), still

allows one to infer model parameters and generate idealized traces. The evidence

calculated here can still be used for model selection and the optimization still

naturally suppresses unnecessarily populated states (e.g., if a specific trace in a

K = 3 data set only has two states populated, the optimization will leave one state

unpopulated in the inference of that trace). This feature is especially important

since the majority of data sets do not have every smFRET state populated in each

trace. One caveat is that it is possible to overfit using the hFRET algorithm by

choosing a pathological prior (i.e. if p(�θN) includes a state k such that p(�θn,k) is

a delta function for a Gaussian of zero variance and mean centered directly on a

data point). Such initializations are extremely unrealistic and, in our experience,

difficult to achieve even when done intentionally (data not shown).

7.4 Validating the model

Synthetic data was used to test the performance of hFRET. Unlike real data, the

true hidden states of synthetic data are known, so its is possible to measure infer-

ence accuracy. Generation of synthetic data was performed as previously described

(Bronson et al. 2009). Since the noise in the donor/acceptor fluorescence intensi-

ties of real smFRET data is more likely Gaussian than the noise of the 1D FRET

transform, synthetic traces were generated from a 2D Gaussian model and FRET
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transformed. This procedure creates more realistic synthetic data and avoids test-

ing the inference algorithm’s performance on data generated by the exact emissions

model (one in which the scalar FRET signal is taken to be normally distributed in

each state).

7.4.1 Increasingly noisy data

First, a synthetic data set previously analyzed by ME and ML was analyzed by

hFRET to compare its performance (Bronson et al. 2009). In this data set all

traces have K = 3 states with means centered at µz = (0.25, 0.5, 0.75). Every state

can transition to every other state with equal probability. For half the traces the

mean lifetime of a state is 15±5 time steps (slow transitioning) and for half the data

the mean lifetime of a state is 4± 2 time steps. All smFRET states in a trace have

one of ten different noise levels, ranging from σ = 0.02−0.15 ± 10% (unrealistically

noisless to unrealistically noisy, given the separation of states). Trace length, T,

varied from 50 ≤ T ≤ 500 time steps, drawn randomly from a uniform distribution.

For each of the 10 noise levels and two transition speeds, 100 traces were generated

(2000 traces in total). All traces were analyzed individually by ME and ML. For

hFRET, each combination of σ and transition rate was treated as a “data set” and

analyzed collectively (20 data sets total).

Before comparing the performance of hFRET to ME and ML, the algorithm’s

ability to perform model selection and converge to a p(�θN) was assessed. Each data

set was fit with K = 1− 5 states and ten rounds of ensemble inference was use to

learn p(�θN). For all 20 data sets evidence was largest for the K = 3 model and all
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Figure 7.2: Convergence of log p(D) during ensemble variational Bayesian infer-
ence. Inference was performed for K = 1 − 5. The evidence as a function VBEM
iteration is plotted. The evidence for K = Ktrue = 3 is the largest, illustrating
the value of log p(D) for model selection. For all values of K the evidence quickly
approaches an asymptotic value.

showed convergence of their evidence before the 10th round of ensemble inference

(convergence was typically observed after 2 or 3 iterations). To illustrate this result

the log(evidence) versus ensemble inference iteration number for one data set, fast

transitioning traces with σ = 0.09, is show in Fig. 7.2.

As before the Viterbi path (idealized trace) was learned for each trace and

its accuracy was assessed via four probabilities: (1) accuracy in number of states

p(|Ẑ| = |Z0|): the probability in any trace of inferring the correct number of states

(where |Z0| is the number of states in the model generating the data and |Ẑ| is the

number of populated states in the idealized trace); (2) accuracy in state identity

p(Ẑ = Z0): the probability in any trace at any time of inferring the correct state;
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(3) sensitivity to true transitions: the probability in any trace at any time that

the inferred trace Ẑ exhibits a transition, given that Z0 does; and (4) specificity of

inferred transitions: the probability in any trace at any time that the true trace Z0

does not exhibit a transition, given that Ẑ does not.

For all probabilities except specificity of transitions, hFRET performed as

well or better than ME and ML. (On difficult inference problems a high specificity

score is often a sign that no inference is being performed, since a trace with no

transitions always has 100% specificity. Inspection of the inference here showed

high specificity of ME&ML could be explained by underfitting of transitions.) The

biggest improvements of hFRET over ME/ML were on fast transitioning data,

where inference is harder. For the fast transitioning σ = 0.15 data the accuracy of

inferred trajectory for hFRET, ME and ML were 0.77, 0.61 and 0.37, respectively,

and the sensitivity to transitions for hFRET, ME and ML were 0.50, 0.32 and 0.03,

respectively. The largest performance improvement from inference via hFRET was

for accuracy in the number of states, where hFRET, ME and ML were 0.99, 0.45

and 0.25 on the σ = 0.15 data. The large improvement of hFRET on this last

metric should not be surprising. Once the program determines that the data set

contains three states, it is substantially easier to determine that individual traces

contain three states as well.

7.4.2 Learning a transition matrix

All this above analysis requires the traces to be idealized by the inference method.

While idealized traces can be useful visually and are necessary for dwell-time anal-
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Figure 7.3: Comparison of hFRET inference (red) to ME (blue) and ML (orange)
inference as a function of increasing hidden state noise. Fast transitioning (dashed
line) and slow transitioning (solid line) synthetic, 3-state data (described in the
text and in (Bronson et al. 2009)) were analyzed by the methods. The idealized
trajectories inferred were compared to the true trace trajectories and used to assess
accuracy using four metrics: (1) accuracy in number of states (probability of infer-
ring the correct number of states in a trace), (2) accuracy in idealized trajectory
(probability at each time step in a trajectory of inferring the correct state) (3) sen-
sitivity to transitions (probability of inferring a transition given that one occurs)
and (4) specificity of transitions (probability of inferring no transition has occurred
given that none occurs).

ysis, the ultimate goal of analysis is to learn rate constants. Rate constants can

be learned from dwell-time analysis or extracted directly from a transition matrix.

The entry of the jth row and kth column of A (aj,k) holds the probability of transi-

tioning from state j to state k. The diagonal of A holds the probability of remaining

in the systems current state. For a state k with rate constant rk, the probability
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of remaining in state k for t or more seconds is 1 − exp(−rkt). According to the

transition matrix, the probability remaining in state k for t or more seconds is given

by 1− (ak,k)t. Equating the two converts ak,k to rk:

rk = − ln ak,k. (7.6)

Estimates of rate constants extracted from a transition matrix should be

more accurate and robust than estimates learned from dwell-time analysis. In dwell-

time analysis, data preceding the first transition and following the last transition

are ignored, so not all the data available is for inference (Fei et al. 2009). In

addition, this procedure effectively truncates every trace after its last transition.

Virtually all traces will have non-transitioning data, which is not factored into the

analysis, systematically inflating transition rates. This is especially problematic for

slow transitioning data where zero or one transitions are present in some traces

and entire traces can be omitted from the analysis process. Dwell-time analysis

is also susceptible to overfitting data containing a few (non-representative) long

lifetime events. Finally, the modeler must assume the transition rate between states

conforms to single our double exponential decay.

Each entry of the transition matrix aj,k is calculated by summing the prob-

ability over each pair of time steps that the system was in state j and transitioned

to state k, and then normalizing the rows of the transition matrix:

a†
j,k =

N�

n=1

Tn−1�

t=1

p(zt+1 = k|zt = j) (7.7)

aj,k =
a†

j,k�K
k=1 a†

j,k

(7.8)



125

where a†
j,k is the unnormalized precursor to aj,k, n is an index over traces and t is

an index over time steps. This procedure uses all the available data, can handle

any number of transitions per trace and is less sensitive to non-representative long

lifetime events. As shown in Sec. 7.4.3, evidence can often be used to distinguish

between single and double exponential decay processes.

The performance of dwell-time analysis versus transition matrix inference

was assessed on a set of 8 data sets with these characteristics:

A0 =





0.88 0.06 0.06

0.08 0.80 0.12

0.19 0.17 0.64





µz = (0.25, 0.50, 0.75)± 0.1

σ = (0.090.100.09)± (0.01, 0.02, 0.02)

Each data set had a total of 20,000 time steps of data, but spread over traces

of length {500, 250, 150, 100, 75, 50, 25, 10} (i.e. the inference problem was made

more difficult by holding all things constant but trace length). The data were

analyzed by ME and ML as well. Only dwell-time analysis was performed with these

methods, since they do not lend themselves to learning a transition matrix from

the data. Accuracy was assessed by comparing the Kullback-Leibler divergence

between A0 and A inferred DKL(A0||Ainf). The Kullback-Leibler divergence is a

common dissimilarity metric in information theory. The more similar Ainf and

A0, the smaller DKL(A0||Ainf). Accuracy of rate constants learned by dwell-time

analysis was assessed by converting the rate constants into a transition matrix1

1
Each rk can be converted to an ak,k using Eq. 7.6. The off diagonal terms are then found by

setting each aj,k proportional to the number of transitions from j to k such that the probability
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Figure 7.4: The DKL between A0 and Ainf for data sets of increasingly short trace
length (all other parameters held constant). The DKL between A0 and Ainf learned
by hFRET (red, dashed), learned by dwell-time analysis based on hFRET infer-
ence (red, solid), dwell-time analysis based on ME inference (blue) and dwell-time
analysis based on ML inference (orange) are shown for each data set.

and then computing DKL(A0||Ainf). As seen in Fig. 7.4, transition matrix inference

outperforms dwell-time analysis, especially on shorter traces. Inference accuracy

for these data sets, as judged by the four probabilities discussed in Sec. 7.4.1, is

shown in Sec. 7.7.4.

7.4.3 Learning a mixture of models

Arguably the most exciting advantage of ensemble learning is the ability to detect

the presence of sub-populations within a data set whose smFRET states share the

same photophysical parameters and differ only in transition rates between states.

distribution is normalized.
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Such data sets can arise in many situations, such as protein dynamics studies where

some proteins are bound to an inhibitor and some are not. The presence of the

inhibitor might not change the smFRET states, but could significantly alter the

transition rates between these states. In RNA folding studies, it is common to have

different molecules fold via different pathways (Zhuang et al. 2000). Here too, the

smFRET states observed are the same from trace to trace, but the kinetic pathways

can differ.

A data set where every trace is governed by the same kinetics and a data

set containing sub-populations with different kinetics (i.e. fast transitioning and

slow transitioning traces) are described by different models. Consider a two state

system with smFRET states at {µ1, µ2} and transition probabilities {a12, a21}. The

transition matrix for this system is:

A0 =




1-a12 a12

a21 1-a21



.

Now consider a system that has the same two smFRET states, but half the traces

are fast transitioning, with transition probabilities {a12, a21} and half are slow tran-

sitioning, with transition probabilities {a34, a43}. This data set is actually a four

state system, with smFRET state means equal to {µ1, µ2, µ1, µ2} and a transition

matrix

A0 =





1-a12 a12 0 0

a21 1-a21 0 0

0 0 1-a34 a34

0 0 a43 1-a43
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where the block off diagonal zeros indicate that each trace can either transition

between states one and two or it can transition between states three and four, but

no transitions between the slow transitioning states and the fast transitioning states

are allowed. (If the data switched between fast and slow transitioning states within

a single trace then theses terms would be non-zero.) The HMM variable �π, which

stores the probability that the time series began in the kth state, can be used to

learn the fraction of slow transitioning and fast transitioning traces in the data.

Normally �π has no biophysical significance.

Because these two scenarios are described by different models it is, in princi-

ple, possible to used the models’ evidence to discriminate between the two scenarios.

A set of data set was designed to test hFRET’s ability to perform this selection

in practice. Each data set comprised 100 traces, each containing 4 states with

µz = (0.3, 0.7, 0.3, 0.7) and σ = 0.075± 0.0075 for each state. Trace length, T , was

allowed to be either {100, 200, 300, 400, 500, 600} for each trace in the data set. The

transition rates of each data set were governed by

A0 =





a 1-a 0 0

0.05 0.95 0 0

0 0 0.95 0.05

0 0 0.05 0.95





.

The value of a was allowed to range from 0.5 to 0.95 in increments of 0.05 for each

value of T (a total of 60 data sets). All traces only have two smFRET states,

one at 0.3 FRET (flow) and one at 0.7 FRET (fhigh). When a = 0.5, the data

set consists of two distinct types of traces: traces which quickly transition from
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flow → fhigh and slowly from fhigh → flow, and traces which transition slowly from

both fhigh → flow and flow → fhigh. As a gradually increases, the transition from

fhigh → flow becomes slower in the fast transitioning data. By the time a = 0.95,

the data set is indistinguishable from one containing only one type of trace. The

difficulty of inferring the presence of fast and slow sub-populations should be a

function of both a and trace length.

Each data set was analyzed by hFRET under a two state model and a four

state model (initializations used are described in Sec. 7.7.1.1). The model with the

higher evidence for each data set is shown in Fig. 7.5. This figure is analogous to

a phase diagram, showing in what regions of {a, T} space hFRET can find the fast

and slow transitioning sub-populations and in what regions the evidence suggest

only type of trace in the data. Encouragingly, evidence suggests mixtures of sub-

populations for most data sets. As expected, only for large values of a and small

values of T does evidence favor the two state model.
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Figure 7.5: Ability of hFRET to detect the presence of fast and slow transitioning
time series in a single data set. Each data set contains 100 traces with transition
matrix A. In each data set 50 traces start in states 1 or 2 and 50 start in states 3 or
4. This is the transition matrix of a system with two sub-populations of traces in
them (because transitions are only allowed between either states 1 and 2 or states 3
and 4, but not between the two groups). The smaller the value of a, the larger the
difference between the traces containing states 1 and 2 and the traces containing
states 3 and 4. By the time a = 0.95, the data are indistinguishable from a single
two state system. Each data set was fit as both a two and four state system. The
fit with the higher evidence is shown in this figure. Red denotes a two state model
had the highest evidence. Blue denotes a four state model had the highest evidence.
As seen from the results, the ability to infer the correct composition of the data
depends on both the trace length and the value of a.
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7.4.4 Finding sub-populations in real data

Table 7.1: Table comparing the parameters inferred from smFRET data sets re-
porting on the ratcheting motion of the L1 stalk of the ribosome during translation
(left) in the absence of EF-G (center) in the presence of saturating EF-G (right) in
the presence of sub-saturating EF-G. The data set in the right column consists of
all the traces analyzed in the left and center columns combined. The most probable
means, standard deviations and transition matrices for the states in the data are
shown. Just as in Fig. 7.5, both inference with 2-state and 4-state models were
performed on the data. The results of the inference with the highest evidence are
shown. In addition, the number of traces in the R− and R+ data sets are shown
and the number of traces classified as originating from R− and R+ in the Rmix data
set is shown. If inference were perfect, the Rmix transition matrix would be block
diagonal and comprise the two 2x2 transition matrices of R− and R+ (with AR−

corresponding to the upper left of Amix, and AR+ corresponding to the lower right),
and the means and standard deviations of the states in Rmix would exactly match
those in R− and R+. The agreement between �θR− , �θR+ and �θRmix is good, although
not exact, demonstrating the potential for hFRET to learn sub-populations within
experimental data sets.

The true test of an inference program, however, is its performance on exper-

imental data. In general, it is not possible to assess accuracy on experimental data,

since the true states and rates of an experimental data set can never be known. In

the case of detecting sub-populations, accuracy can be assessed by taking two sepa-

rate data sets and comparing the inference results for the data analyzed separately
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and analyzed as a single data set.

Previous work has shown that during protein translation the L1 stalk domain

of the ribosome transitions between an open and closed conformation, correlating

with tRNA movements between the classical and hybrid ribosome-bound config-

urations (Fei et al. 2008). The transition rate between open (kopen) and closed

(kclose) conformations is a function of whether or not elongation factor G (EF-G)

is bound to the ribosome. Ribosomes bound by EF-G (R+) transition between

kclose and kopen faster than ribosomes not bound by EF-G (R−). The L1 stalk has

been labeled with smFRET probes, and its ratcheting motion has been observed in

the presence and absence of EF-G (Fei et al. 2009). The experimental setup is de-

picted in Fig. 7.7. The open and closed conformations give rise to distinct smFRET

signals. Binding of EF-G to the ribosome only minimally effects these smFRET

states, making this system an ideal candidate to test sub-population inference.

A data set containing translocating R− and a data set containing translo-

cating R+ were analyzed by hFRET. The data were then pooled to form one large

data set (Rmix) and inference was performed again. Evidence was used to choose

the best model for each data set. The results are shown in Table 7.1. hFRET

was able to detect the presence of the sub-populations in Rmix. States 1&2 of Rmix

correspond to R−. States 3&4 of Rmix correspond R+. If inference were perfect,

the upper left 2x2 block of Amix (AUL) would be identical to A− and the lower right

2x2 (ALR) block of Amix would be identical to A+. The agreement is extremely

good, but not perfect, with DKL(A−||AUL) = 2.32 × 10−4 and DKL(A+||ALR) =

5.69× 10−3. The largest transition rate difference between the individual and com-
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bined inference was for the fhigh → flow transition of R+ (0.183 in the individual

and 0.260 for the combined inference). In addition, 12 traces were incorrectly as-

signed to the R− data set, suggesting that some of the slower transitioning EF-G

traces were incorrectly assigned as no EF-G data.

7.5 Discussion

hFRET is unique among smFRET inference programs in that it learns an ensem-

ble probability distribution p(�θN) which governs all traces in a data set, whereas

other inference methods only learn the parameters of individual traces. Once the

ensemble distribution is learned, inference of individual traces is substantially more

accurate as well, as demonstrated by the results in Fig. 7.3 and Fig. 7.4. The im-

proved inference accuracy of hFRET is due to the algebraic equivalence of �θN to

a prior. Inference of a trace’s posterior using a learned “prior” which accurately

describes the probability of the model parameters will be more accurate than in-

ference using a preset prior which less accurately describes the probability of the

model’s parameters. Additionally, hFRET uses more information about the data

set while performing inference on a trace than other existing methods do; when

other inference methods analyze an individual trace, they do not “know” anything

about the rest of the data set, but hFRET does.

An important goal of hFRET is to remove post-processing and subjective

user input from the data analysis process. The trace to trace ambiguity of states in

other inference methods (i.e. “state 1” might refer to the high FRET state in trace
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1 and the low FRET state in trace 2) does not occur for hFRET because “state 1”

will refer to the high FRET state for the entire data set in hFRET. The transition

matrix learned by hFRET does not require idealized traces to be thresholded. As

shown in Fig. 7.4, the transition rates learned from this transition matrix are more

accurate than those learned in dwell-time analysis.

Moreover, when dwell-time analysis is performed on experimental data there

there is often data which are hard to categorize. Imagine, for example, a data set

with smFRET states centered at 0.4 and 0.6 and 0.9 FRET, all of which can vary

by ±0.1 FRET from trace to trace. A transition from a state idealized at 0.5 FRET

to 0.9 FRET is observed. Did the 0.4 FRET state shift up in this trace or did the

0.6 FRET state shift down? The standard post-processing techniques cannot say,

and the data would simply be thrown out. When hFRET performs inference on

such a trace, it will account for the existence of the 0.4 and 0.6 FRET states and

assign the observed 0.5 FRET data to the correct state based on the presence of

other states in the data (e.g. if there is also a 0.4 FRET state present in the data,

then the ambiguous data probably belongs to the 0.6 FRET state and vice versa).

There are several additional features of the ensemble learning algorithm that

should be noted. First, while constructing the transition matrix, hFRET never

actually “fits” the data. It calculates the probability that each observed data point

belongs to each hidden state and uses those probabilities to construct the transition

matrix. For most data points, the probability of belonging to one specific state is

close to 1, in which case this distinction is largely irrelevant. For ambiguous data

there is a difference though. For example, if a molecule transitions between two
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smFRET states exactly halfway through a time binned step, the observed data

point will be half way between the two smFRET states. In dwell time analysis,

the data point must be idealized to one smFRET state or the other. hFRET

would assign the data point to each state with a 50% probability, more accurately

modeling the data.

Second, even if all states are not populated in every trace of a data set,

hFRET can still be used for effective inference. When a state is absent from a

specific trace, the VBEM algorithm used in each iteration of ensemble variational

Bayes will leave the state unpopulated rather than use it to overfit another state.

One important exception to this is that data containing both unpopulated states

and photophysical shifts (i.e. the mean value of a smFRET state moves) within

the same trace. In these cases, the unpopulated state will be used to fit part of the

shifted smFRET state (because, statistically speaking, there are two distinct states

with different mean smFRET values). These traces can substantially influence the

p(�θN) learned and should not be used in hFRET inference.

Third, evidence based model selection is an excellent method to objectively

choose between competing models in many situations. It is computationally efficient

and uses the entire data set for inference. The evidence calculated by hFRET can

be used both to choose the number of smFRET states in the data and to detect

the presence of sub-populations in the data differing only in kinetic parameters.

There are two caveats that should be considered when using evidence based model

selection. The first is that if the data is poorly described by the model, then the

evidence may monotonically increase with increasing model complexity. In the case
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of time series inference, this most commonly occurs when a HMM is used to model a

process where transitions between states occur on the same time scales as lifetimes

in states. The HMM assumes the system jumps instantly from one state to another.

This assumption is reasonable for most processes observed by smFRET. It may not

be an appropriate assumption in all smFRET data however, and it is certainly

not a reasonable assumption for many other single-molecule time series techniques.

The second caveat is that evidence will favor the simpler of two competing models

when either the simpler model is correct or the more complex model is correct but

there is insufficient data to support it. If hFRET fails to detect the presence of

sub-populations in the data, it may reflect an insufficient amount of data to support

their existence rather than a lack of their existence. These two caveats are true for

all evidence based model selection techniques, not just hFRET.

7.6 Conclusions

The results of these synthetic and experimental data analyses demonstrate the value

of learning from the entire ensemble of traces in a data set over learning from just

the individual traces. hFRET outperformed inference by ME and ML on synthetic

data of increasing smFRET state noise and decreasing trace length. The ability

to efficiently and straightforwardly learn a transition matrix directly from the data

is a substantial advantage of hFRET. Not only does the transition matrix learned

yield more accurate rate constants, but it can also be accurately learned from data

with few (i.e. 0 or 1) transitions per trace. These sparsely transitioning traces are
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problematic for dwell-time analysis.

Arguably the most exciting advantage of ensemble learning is the ability

to detect sub-populations of data within a data set. As demonstrated on both

synthetic data and experimental data taken from a smFRET study of the ribosome,

even sub-populations of data which possess identical smFRET states, and only differ

in the transition rates between these states can be identified. Rate constants for

the sub populations can be accurately inferred.

Finally the approach to ensemble learning proposed here need not be limited

to smFRET, or even HMM analysis. Any time series data suitable for inference

by ME/VBEM, such as stepping data or tethered particle motion data, can also

benefit from inference via ensemble variational Bayes. Even non-time series data,

such as Gaussian mixture modeling across multiple data sets, can be analyzed via

this approach.

7.7 Supplementary materials

7.7.1 Methods

7.7.1.1 hFRET algorithm

The ensemble learning algorithm used by hFRET is performed as follows:

1. Guess p(�θN).

2. Use p(�θN) as a prior and perform VBEM inference on individual traces, as

previously described (Bronson et al. 2009), to learn p(�θn|Dn).
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3. Estimate �θn∗ = max�θn
p(�θn|Dn) for each trace.

4. Use the means and variances of each parameter in �θn∗ to set the sufficient

statistics for a new p(�θN).

5. Repeat 2-4 until the evidence peaks or converges.

The solution converged to by the ensemble learning algorithm depends on the initial

choice of p(�θN). To ensure the best possible choice for p(�θN), multiple initial guesses

should be used. The p(�θN) guess for each model under consideration which results

in the highest evidence score after one round of VBEM should be used for the

ensemble learning algorithm.

In all inference performed in this work, up to 10 rounds of ensemble learning

were allowed. For each data set in Fig. 7.3 and Fig. 7.4, inference with K = 1− 5

smFRET states was attempted. For each value of K, 10 initial guesses for p(�θN)

were used. Hyperparameters for the initial guesses were set as follows:

uk
π = 1 ∀ k

ujk
a = 1 ∀ j, k

uk
β = 1 ∀ k

uk
W = 50 ∀ k

uk
v = 5 ∀ k

uk
µ were evenly distributed between 0 and 1 for the first guess and randomly dis-

tributed for the remaining guesses.

Different initializations of p(�θN) are required to identify sub-populations of

fast and slow transitioning data because fast and slow transitioning states cannot

consistently be assigned to the same state in different traces if ujk
a = 1 ∀ j, k. A
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different set of initial guesses was used for inference on data sets containing sub-

populations of data, designed specifically to look for sub-populations of data with

different rate constants. A total of 8 initial p(�θN) guesses were used:

uk
π = 1 ∀ k

uk
β = 1 ∀ k

uk
W = 50 ∀ k

uk
v = 5 ∀ k

�umu = {0.3, 0.7} or {0.3, 0.7, 0.3, 0.7}

uA1 =




1 1

1 1



 uA2 =





1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1





uA3 =





10 1 0 0

1 10 0 0

0 0 1 1

0 0 1 1





uA4 =





1 1 0.1 0

0.1 1 0 0

0 0 1 1

0 0 1 1





uA5 =





10 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1





uA6 =





1 0.1 0 0

1 1 0 0

0 0 1 1

0 0 1 1





uA7 =





1 1 0 0

1 10 0 0

0 0 1 1

0 0 1 1





uA8 =





1 1 0 0

0.1 1 0 0

0 0 1 1

0 0 1 1





The �θn∗ values were used to set the hyperparameters as follows:
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For a Dirichlet distribution of the form

p(�π) =
Γ(�uπ)

�K
k=1 Γ(uk

π)

K�

k=1

πuk
π−1

k , (7.9)

where �uπ =
�K

k=1 uk
π, the variance of each uk

π is

var[πk] =
uk

π(�uπ − uk
π)

�uπ
2(�uπ + 1)

(7.10)

and the mean of each uk
π is

E[πk] =
uk

π

�uπ
(7.11)

Once var[πk] and E[πk] are estimated from the data then Eq. 7.10 and Eq. 7.11 can

be rearranged to yield

�uπ =

�
E[πk](1− E[πk])

var[πk]

�
− 1 (7.12)

uk
π = �uπ E[πk]. (7.13)

For a Gamma function with parameters a and b describing λk,

Gam(λk|a, b) =
1

Γ(a)
baλa−1

k e−bλk , (7.14)

the variance of λk is

var[λk] =
a

b
(7.15)

E[λk] =
a

b2
. (7.16)

Rearranging to solve for var[λk] and E[λk] yields

b =
E[λk]

var[λk]
(7.17)
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a = b E[λk]. (7.18)

For a Gaussian with parameters {uk
µ, (u

k
βλk)−1} describing

µk =

�
uk

βλk

2π
exp

�
−

uk
βλk

2
(µk − uk

µ)2

�
(7.19)

uk
β should be set such that uk

βλk is var[µk] and uk
µ should be chosen to be E[µk].

7.7.2 ME & ML inference

Inference via ME and ML was performed as previously described (Bronson et al.

2009).

7.7.3 Data

Synthetic data was generated as previously described (Bronson et al. 2009). Ribo-

some data was taken from (Fei et al. 2009). Only experimental traces longer than

100 time steps were analyzed.
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7.7.4 Additional Figures

.

Figure 7.6: Accuracy, as measured by the four probabilities described in Sec. 7.4.1,
for the data analyzed in Sec. 7.4.2. Inference results for hFRET, ME and ML are
shown in red, blue and orange, respectively.
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E        P A

E        P A

E        P A

E        P A

E        P A

GDPNP

E        P       A

E        P A

GDPNP

slow

fast

Population 1: PRE complex in the absence of EF-G(GDPNP)

Population 2: PRE complex in the presence of EF-G(GDPNP)

Figure 7.7: Cartoon depicting the experimental setup for the data analyzed in
Sec. 7.4.4. The small and large ribosomal subunits are shown in tan and lavender,
respectively, with the L1 stalk depicted in dark blue, and ribosomal protein L9 in
cyan. The aminoacyl-, peptidyl- and deacylated-tRNA binding sites are labeled as
A, P and E, respectively, and the P-site tRNA is depicted as a brown line. The
smFRET probes Cy3 and Cy5 are depicted as green and red stars, respectively.
In this complex, the ribosome fluctuates between the classical (left) and hybrid
(right) configurations causing a smFRET detectable ratcheting motion of the L1
stalk. Transition rates between the classical and hybrid configurations change in
the presence and absence of EF-G.
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Chapter 8

Future Work

The work presented here describes several advances in the field of smFRET infer-

ence. The introduction of the ME criteria for model selection, described in Ch. 5

and Ch. 6, is the first principled approach to model selection employed in a sm-

FRET inference software package. The use of ME appears to provide the additional

benefit of improved accuracy over previously used ML methods, especially for fast

transitioning data.

It is not obvious why ME inference should be more accurate than ML in-

ference when the number of states in the data is known. My personal suspicion is

that pathological solutions with infinite likelihood (Sec. 4.4.1) are interfering with

ML inference. On a theoretical level, the presence of divergent solutions negates

the entire principle of ML since it is possible to achieve infinite likelihood with a

model that poorly describes the data. On a practical level, convergence to divergent

solutions must be detected by the ML software and corrected by resetting model

parameters to assign more data to collapsing states. One would expect that if the
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transition matrix allows states to rapidly transition, it would be more probable that

a single data point would be assigned to its own state and result in a pathological

solution. Consequently, faster transitioning data should be more problematic for

ML. For the same reason, initializing the transition matrix to have fast transitioning

states could be problematic. This may be why the popular ML software HaMMy

requires each state to have a 90% chance of not transitioning in the initial guess

for the transition matrix (i.e. HaMMy is initialized so ak,k = 0.9 ∀ K).

The use of hierarchical modeling, described in Ch. 7, further improves infer-

ence accuracy and allows the detection of photophysically identical, but kinetically

distinct, sub-populations within a data set. My hope is that this approach will

ultimately replace both ME and ML for smFRET inference. Unfortunately there

are many data sets which cannot currently be analyzed this way. When data sets

have traces which have both (1) unpopulated states and (2) states where the mean

smFRET intensity shifts mid time series within the same trace, the algorithm uses

the state which should be unpopulated to overfit the shifted state. An example

is shown in Fig. 8.1. If enough of these traces exist in the data, they will skew

the sufficient statistics learned during ensemble variational Bayes, p(�θN) will not

describe the data well and the resulting inference can be nonsensical — e.g., the

idealized traces learned look, by visual inspection, wrong or the order of the states

will switch from trace to trace (i.e. state 1 might be the high FRET state in trace

1 and the low FRET state in trace 2). It should be emphasized that simply having

traces with unpopulated states is not problematic. The issue here is that a sm-

FRET state with two mean intensity values deviates from model of the data used
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Figure 8.1: Traces demonstrating the current limitations of hFRET. The majority
of the traces in this experimental data set, taken from (Fei et al. 2009), contain
three smFRET states (a representative trace is shown on the left). The data are
shown in blue. The idealized flow, fmid and fhigh states are shown as green, yellow
and red, respectively, and connected by black lines. A small number of traces only
contain two of the three smFRET states and have the mean intensity of a smFRET
state shift in the middle of the trace (a sample is shown on the right). hFRET uses
the unpopulated state in these traces to overfit the shifted state. This skews the
sufficient statistics used to set p(�θN), resulting in poor inference for all traces and
unrealistic rate constants learned from the data.

by hFRET.

There are several possible fixes for this issue. A criteria could be devised to

detect these traces and ignore them during inference. For example, any trace hav-

ing two states with smFRET means less than 0.1 FRET could be ignored during

ensemble Variational Bayes. Should this fix prove effective it would still be un-

desirable, however, since it requires an unprincipled correction the algorithm. An

important goal in the work presented in this thesis is to avoid such fixes and rely

on principled graphical modeling for inference. A more promising venue would be

to adjust the model itself to better describe the data. For example, the emissions

model could be changed to describe each state with a beta distribution. Although
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a beta distribution still would not account for a smFRET state with multiple mean

smFRET intensity values, it might generally describe smFRET data better, since

both the beta distribution and FRET transformed data can only have values be-

tween 0 and 1. The distribution might be less sensitive to shifts in mean smFRET

state intensities. Unfortunately, Beta(θ|a, b) is an exponential distribution with

respect to θ, but not with respect to a and b. There is no known prior over a

and b which allows for inference via VBEM. The emissions model could also assign

each smFRET state a mixture of Gaussians. This would better model our belief

that each smFRET state is actually an ensemble of locally stable conformations,

each of which has a closely centered but possibly distinct mean smFRET intensity.

Choosing the number of Gaussians for each smFRET state and ensuring that each

mixture only fits data within a single state could prove challenging.

Finally, although briefly discussed in Sec. 6.1, the question of whether analyz-

ing the 2D raw smFRET donor/acceptor data or the 1D smFRET transformation is

still largely unanswered. The question is hard to answer using data since synthetic

data can easily be constructed to favor 1D or 2D inference and the true hidden

states of real data can never be known. The issue is whether the donor/acceptor

intensity signals provide real information about the molecule, or only the smFRET

transfer efficiency is indicative of intermolecular distances. If the former is true, 2D

inference should be more accurate, since information is lost in the 1D transform.

If the latter is true then 2D inference would simply add artifacts to the data ev-

ery time the donor/acceptor change absolute intensity without altering the FRET

ratio. The true answer might require a very detailed picture of the physics of the
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FRET phenomenon, the biophysics of the target molecule’s dynamics and the ex-

perimental set up. A possible experiment to address this issue would be to record

the same data at multiple camera shutter speeds. The longer the exposure time,

the better resolution the data. For example the same experiment could be recorded

with a {200 ms, 100 ms, 50 ms, 25 ms, 10 ms} exposure time. Most data sets are

well resolved at 200 ms and unresolvable at 10 ms. Since the observed system is the

same regardless of the camera shutter speed, the 200 ms inference could be used

to learn the “correct” rate constants and the relative performance of 1D and 2D

inference could be compared on the faster shutter speed data sets. This experiment

would require slow enough transitioning data to observe transitions at all shutter

speeds. It would only answer questions about camera noise, which may or may not

be the most significant source of noise in the data.

In conclusion, while much exciting progress has been made, there are still

many interesting questions left to explore in the field of smFRET inference. I hope

this work, and the open source software I have written, will allow the smFRET

community to employ more accurate and statistically rigorous data analysis and

that the modeling approach used here can inspire biophysicists analyzing other

forms of time series data as well.



Part III

Biblography & Appendix

149



150

Bibliography

Agirrezabala, X., Lei, J., Brunelle, J. L., Ortiz-Meoz, R. F., Green, R., and Frank, J.
2008. Visualization of the hybrid state of trna binding promoted by spontaneous
ratcheting of the ribosome. Mol Cell, 32(2):190–7.

Aharoni, A., Griffiths, A. D., and Tawfik, D. S. 2005. High-throughput screens and
selections of enzyme-encoding genes. Curr Opin Chem Biol, 9:210–216.

Amann, E., Brosius, J., and Ptashne, M. 1983. Vectors bearing a hybrid trp-lac
promoter useful for regulated expression of cloned genes in Escherichia coli. Gene,
25:167–178.

Anderson, J. C., Clarke, E. J., Arkin, A. P., and Voigt, C. A. 2006. Environmentally
controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol., 355:619–
627.

Andrec, M., Levy, R. M., and Talaga, D. S. 2003. Direct Determination of Kinetic
Rates from Single-Molecule Photon Arrival Trajectories Using Hidden Markov
Models. J Phys Chem A, 107:7454–7464.

Baccanari, D. P., Daluge, S., and King, R. W. 1982. Inhibition of dihydrofolate
reductase: effect of reduced nicotinamide adenine dinucleotide phosphate on the
selectivity and affinity of diaminobenzylpyrimidines. Biochemistry, 21:5068–5075.

Baker, D., Group, B., Church, G., Collins, J., Endy, D., Jacobson, J., Keasling, J.,
Modrich, P., Smolke, C., and Weiss, R. 2006. Engineering life: Building a fab for
biology. Scientific American, 294(6):44–51.

Baker, K., Bleczinski, C., Lin, H., Salazar-Jimenez, G., Sengupta, D., Krane, S.,
and Cornish, V. W. 2002. Chemical complementation: a reaction-independent
genetic assay for enzyme catalysis. Proc. Natl. Acad. Sci. U.S.A., 99:16537–16542.

Baker, K., Sengupta, D., Salazar-Jimenez, G., and Cornish, V. W. 2003. An opti-
mized dexamethasone-methotrexate yeast 3-hybrid system for high-throughput
screening of small molecule-protein interactions. Anal. Biochem., 315:134–137.



151

Barrick, D., Villanueba, K., Childs, J., Kalil, R., Schneider, T. D., Lawrence, C. E.,
Gold, L., and Stormo, G. D. 1994. Quantitative analysis of ribosome binding sites
in E.coli. Nucleic Acids Res., 22:1287–1295.

Beekwilder, J., Wolswinkel, R., Jonker, H., Hall, R., de Vos, C. H., and Bovy, A.
2006. Production of resveratrol in recombinant microorganisms. Appl. Environ.
Microbiol., 72:5670–5672.

Benkovic, S. J., Fierke, C. A., and Naylor, A. M. 1988. Insights into enzyme function
from studies on mutants of dihydrofolate reductase. Science, 239:1105–1110.

Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Hue-
bert, D. J., McMahon, S., Karlsson, E. K., Kulbokas, E. J., Gingeras, T. R.,
Schreiber, S. L., and Lander, E. S. 2005. Genomic maps and comparative anal-
ysis of histone modifications in human and mouse. Cell, 120:169–181.

Binz, H. K., Amstutz, P., and Pluckthun, A. 2005. Engineering novel binding
proteins from nonimmunoglobulin domains. Nat. Biotechnol., 23:1257–1268.

Bishop, C. 2006. Pattern Recognition and Machine Learning. Oxford University
Press, Oxford Oxfordshire.

Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S., and Puglisi, J. D. 2004a.
tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol.,
11:1008–1014.

Blanchard, S. C., Kim, H. D., Gonzalez, R. L., J., Puglisi, J. D., and Chu, S. 2004b.
trna dynamics on the ribosome during translation. Proceedings of the National
Academy of Sciences of the United States of America, 101(35):12893–8.

Bloom, J. D., Labthavikul, S. T., Otey, C. R., and Arnold, F. H. 2006. Protein
stability promotes evolvability. Proc. Natl. Acad. Sci. U.S.A., 103:5869–5874.

Bloom, J. D., Meyer, M. M., Meinhold, P., Otey, C. R., MacMillan, D., and Arnold,
F. H. 2005. Evolving strategies for enzyme engineering. Curr. Opin. Struct. Biol.,
15:447–452.

Brakmann, S. and Johnsson, K. 2002. Directed Molecular Evolution of Proteins:
or How to Improve Enzymes for Biocatalysis. Wiley-VCH.

Bronson, J. E., Fei, J., Hofman, J. M., Gonzalez, R. L., and Wiggins, C. H. 2009.
Learning rates and states from biophysical time series: a Bayesian approach to
model selection and single-molecule FRET data. Biophys. J., 97:3196–3205.



152

Calos, M. P. 1978. DNA sequence for a low-level promoter of the lac repressor gene
and an ’up’ promoter mutation. Nature, 274:762–765.

Camps, M., Naukkarinen, J., Johnson, B. P., and Loeb, L. A. 2003. Targeted gene
evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc.
Natl. Acad. Sci. U.S.A., 100:9727–9732.

Chen, M. T. and Weiss, R. 2005. Artificial cell-cell communication in yeast Sac-
charomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat.
Biotechnol., 23:1551–1555.

Cormack, B. P., Valdivia, R. H., and Falkow, S. 1996. FACS-optimized mutants of
the green fluorescent protein (GFP). Gene, 173:33–38.

Cornish, P. V., Ermolenko, D. N., Noller, H. F., and Ha, T. 2008. Spontaneous
intersubunit rotation in single ribosomes. Molecular Cell, 30(5):578–588.

Cornish, P. V., Ermolenko, D. N., Staple, D. W., Hoang, L., Hickerson, R. P.,
Noller, H. F., and Ha, T. 2009. Following movement of the l1 stalk between three
functional states in single ribosomes. Proceedings of the National Academy of
Sciences of the United States of America, 106(8):2571–6.

Dahan, M., Deniz, A. A., Ha, T. J., Chemla, D. S., Schultz, P. G., and Weiss, S.
1999. Ratiometric measurement and identification of single diffusing molecules.
Chemical Physics, 247(1):85–106.

del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M., and Diaz-Orejas,
R. 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol.
Biol. Rev., 62:434–464.

Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from
incomplete data via EM algorithm. Journal of the Royal Statistical Society Series
B-MEthodological, 39(1):1–38.

Deniz, A. A., Laurence, T. A., Beligere, G. S., Dahan, M., Martin, A. B., Chemla,
D. S., Dawson, P. E., Schultz, P. G., and Weiss, S. 2000. Single-molecule protein
folding: diffusion fluorescence resonance energy transfer studies of the denatura-
tion of chymotrypsin inhibitor 2. Proc. Natl. Acad. Sci. U.S.A., 97:5179–5184.

Dias, N. and Stein, C. A. 2002. Antisense oligonucleotides: basic concepts and
mechanisms. Mol. Cancer Ther., 1:347–355.

Doublie, S., Tabor, S., Long, A. M., Richardson, C. C., and Ellenberger, T. 1998.
Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A reso-
lution. Nature, 391:251–258.



153

Dower, W. J., Miller, J. F., and Ragsdale, C. W. 1988. High efficiency transforma-
tion of E. coli by high voltage electroporation. Nucleic Acids Res., 16:6127–6145.

Drummond, D. A., Iverson, B. L., Georgiou, G., and Arnold, F. H. 2005. Why high-
error-rate random mutagenesis libraries are enriched in functional and improved
proteins. J. Mol. Biol., 350:806–816.

Elowitz, M. B. and Leibler, S. 2000. A synthetic oscillatory network of transcrip-
tional regulators. Nature, 403:335–338.

Fabret, C., Poncet, S., Danielsen, S., Borchert, T. V., Ehrlich, S. D., and Jan-
niere, L. 2000. Efficient gene targeted random mutagenesis in genetically stable
Escherichia coli strains. Nucleic Acids Res., 28:E95.

Fei, J., Bronson, J. E., Hofman, J. M., Srinivas, R. L., Wiggins, C. H., and Gon-
zalez, R. L. 2009. Allosteric collaboration between elongation factor G and the
ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl. Acad.
Sci. U.S.A., 106:15702–15707.

Fei, J., Kosuri, P., MacDougall, D. D., and Gonzalez, R. L. 2008. Coupling of
ribosomal l1 stalk and trna dynamics during translation elongation. Molecular
Cell, 30(3):348–359.

Fields, S. and Song, O. 1989. A novel genetic system to detect protein-protein
interactions. Nature, 340:245–246.

Fischer, H. and Hinkle, D. C. 1980. Bacteriophage T7 DNA replication in vitro.
Stimulation of DNA synthesis by T7 RNA polymerase. J. Biol. Chem., 255:7956–
7964.

Förster, T. 1948. Zwischenmolekulare Energiewanderung Und Fluoreszenz. An-
nalen Der Physik, 2(1-2):55–75.

Foster, P. L. 2005. Stress responses and genetic variation in bacteria. Mutat. Res.,
569:3–11.

Fuller, C. W. and Richardson, C. C. 1985. Initiation of DNA replication at the
primary origin of bacteriophage T7 by purified proteins. Site and direction of
initial DNA synthesis. J. Biol. Chem., 260:3185–3196.

Gallagher, S. S., Miller, L. W., and Cornish, V. W. 2007. An orthogo-
nal dexamethasone-trimethoprim yeast three-hybrid system. Anal. Biochem.,
363:160–162.



154

Gardner, T. S., Cantor, C. R., and Collins, J. J. 2000. Construction of a genetic
toggle switch in Escherichia coli. Nature, 403:339–342.

Gauvain, J.-L. and Lee, C.-H. 1994. Maximum a Posteriori Estimation for Multi-
variate Gaussian Mixture Observations of Markov Chains. IEEE Transactions
on speech and audio processing, 2(2):291–298.

Gelman, A. and Hill, J. 2006. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press.

Giver, L., Gershenson, A., Freskgard, P. O., and Arnold, F. H. 1998. Directed
evolution of a thermostable esterase. Proc. Natl. Acad. Sci. U.S.A., 95:12809–
12813.

Goldberg, S. D., Iannuccilli, W., Nguyen, T., Ju, J., and Cornish, V. W. 2003.
Identification of residues critical for catalysis in a class C beta-lactamase by
combinatorial scanning mutagenesis. Protein Sci., 12:1633–1645.

Guet, C. C., Elowitz, M. B., Hsing, W., and Leibler, S. 2002. Combinatorial
synthesis of genetic networks. Science, 296:1466–1470.

Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., and Weiss,
S. 1996. Probing the interaction between two single molecules: fluorescence
resonance energy transfer between a single donor and a single acceptor. Proc.
Natl. Acad. Sci. U.S.A., 93:6264–6268.

Hasty, J., McMillen, D., and Collins, J. J. 2002. Engineered gene circuits. Nature,
420:224–230.

Hohng, S., Joo, C., and Ha, T. 2004. Single-molecule three-color FRET. Biophys.
J., 87:1328–1337.

Jares-Erijman, E. A. and Jovin, T. M. 2003. Fret imaging. Nature Biotechnology,
21(11):1387–1395.

Ji, S., Krishnapuram, B., and Carin, L. 2006. Variational Bayes for continuous
hidden Markov models and its application to active learning. IEEE Trans Pattern
Anal Mach Intell, 28:522–532.

Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., and Ha, T. 2008. Advances in
single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem.,
77:51–76.



155

Julian, P., Konevega, A. L., Scheres, S. H., Lazaro, M., Gil, D., Wintermeyer, W.,
Rodnina, M. V., and Valle, M. 2008. Structure of ratcheted ribosomes with trnas
in hybrid states. Proceedings of the National Academy of Sciences of the United
States of America, 105(44):16924–7.

Kaern, M., Blake, W. J., and Collins, J. J. 2003. The engineering of gene regulatory
networks. Annu Rev Biomed Eng, 5:179–206.

Kass, R. and Raftery, A. 1995. Bayes factors. Journal of the American Statistical
Association, 90(430).

Kemp, C. and Tenenbaum, J. B. 2008. The discovery of structural form. Proc.
Natl. Acad. Sci. U.S.A., 105:10687–10692.

Kim, H. D., Puglisi, J. D., and Chu, S. 2007. Fluctuations of transfer rnas between
classical and hybrid states. Biophys J, 93(10):3575–82.

Kirby, J. and Keasling, J. D. 2009. Biosynthesis of plant isoprenoids: perspectives
for microbial engineering. Annu Rev Plant Biol, 60:335–355.

Koster, D., Wiggins, C., and Dekker, N. 2006. Multiple events on single molecules:
Unbiased estimation in single-molecule biophysics. Proceedings of the National
Academy of Sciences of the United States of America, 103(6):1750–1755.

Kruger, D. H. and Schroeder, C. 1981. Bacteriophage T3 and bacteriophage T7
virus-host cell interactions. Microbiol. Rev., 45:9–51.

Kuwayama, H., Obara, S., Morio, T., Katoh, M., Urushihara, H., and Tanaka, Y.
2002. PCR-mediated generation of a gene disruption construct without the use
of DNA ligase and plasmid vectors. Nucleic Acids Res., 30:E2.

Leung, D. W., Chen, E., and Goeddel, D. V. 1989. A method for random muta-
genesis of a defined DNA segment using a modified polymerase chain reaction.
Technique, 1:11–15.

Li, S. C., Squires, C. L., and Squires, C. 1984. Antitermination of E. coli rRNA
transcription is caused by a control region segment containing lambda nut-like
sequences. Cell, 38:851–860.

Licitra, E. J. and Liu, J. O. 1996. A three-hybrid system for detecting small ligand-
protein receptor interactions. Proc. Natl. Acad. Sci. U.S.A., 93:12817–12821.

Lin, H., Abida, W., Sauer, R., and Cornish, V. 2000. Dexamethasone-methotrexate:
An efficient chemical inducer of protein dimerization in vivo. Journal of the
American Chemical Society, 122(17):4247–4248.



156

MacKay, D. J. 2003. Information theory, inference, and learning algorithms. Cam-
bridge University Press.

McCulloch, R. and Rossi, P. E. 1991. A bayesian approach to testing the arbitrage
pricing theory. Journal of Econometrics, 49(1-2):141 – 168.

McKinney, S. A., Joo, C., and Ha, T. 2006. Analysis of single-molecule FRET
trajectories using hidden Markov modeling. Biophys. J., 91:1941–1951.

Moazed, D. and Noller, H. F. 1989. Intermediate states in the movement of transfer
rna in the ribosome. Nature, 342(6246):142–8.

Moffitt, J. R., Chemla, Y. R., Aathavan, K., Grimes, S., Jardine, P. J., Anderson,
D. L., and Bustamante, C. 2009. Intersubunit coordination in a homomeric ring
atpase. Nature, 457(7228):446–U2.

Mori, T., Vale, R. D., and Tomishige, M. 2007. How kinesin waits between steps.
Nature, 450:750–754.

Munro, J. B., Altman, R. B., O’Connor, N., and Blanchard, S. C. 2007. Identifica-
tion of two distinct hybrid state intermediates on the ribosome. Molecular Cell,
25(4):505–517.

Myong, S., Rasnik, I., Joo, C., Lohman, T. M., and Ha, T. 2005. Repetitive
shuttling of a motor protein on dna. Nature, 437(7063):1321–5.

Neal, R. 1993. Probabilistic inference using Markov chain Monte Carlo methods.
Technical Report CRG-TR-93-1, Department of Computer Science, University of
Toronto.

Neylon, C. 2004. Chemical and biochemical strategies for the randomization of
protein encoding DNA sequences: library construction methods for directed evo-
lution. Nucleic Acids Res., 32:1448–1459.

Nguyen, A. W. and Daugherty, P. S. 2003. Production of randomly mutated plasmid
libraries using mutator strains. Methods Mol. Biol., 231:39–44.

Ollis, D. L., Kline, C., and Steitz, T. A. 1985. Domain of E. coli DNA polymerase
I showing sequence homology to T7 DNA polymerase. Nature, 313:818–819.

Park, H. S., Nam, S. H., Lee, J. K., Yoon, C. N., Mannervik, B., Benkovic, S. J.,
and Kim, H. S. 2006. Design and evolution of new catalytic activity with an
existing protein scaffold. Science, 311:535–538.



157

Patel, S. S., Rosenberg, A. H., Studier, F. W., and Johnson, K. A. 1992. Large scale
purification and biochemical characterization of T7 primase/helicase proteins.
Evidence for homodimer and heterodimer formation. J. Biol. Chem., 267:15013–
15021.

Perumal, S. K., Yue, H., Hu, Z., Spiering, M. M., and Benkovic, S. J. 2009. Single-
molecule studies of DNA replisome function. Biochim. Biophys. Acta.

Pfleger, B. F., Pitera, D. J., Smolke, C. D., and Keasling, J. D. 2006. Combinatorial
engineering of intergenic regions in operons tunes expression of multiple genes.
Nat. Biotechnol., 24:1027–1032.

Qin, F., Auerbach, A., and Sachs, F. 1997. Maximum likelihood estimation of
aggregated markov processes. Proceedings of the Royal Society of London Series
B-Biological Sciences, 264(1380):375–383.

Qin, F., Auerbach, A., and Sachs, F. 2000. A direct optimization approach to hidden
markov modeling for single channel kinetics. Biophysical Journal, 79(4):1915–
1927.

Rabiner, L. R. 1989. A tutorial on hidden markov-models and selected applications
in speech recognition. Proceedings of the Ieee, 77(2):257–286.

Rabkin, S. D. and Richardson, C. C. 1988. Initiation of DNA replication at cloned
origins of bacteriophage T7. J. Mol. Biol., 204:903–916.

Rice, G. C., Goeddel, D. V., Cachianes, G., Woronicz, J., Chen, E. Y., Williams,
S. R., and Leung, D. W. 1992. Random PCR mutagenesis screening of secreted
proteins by direct expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A.,
89:5467–5471.

Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu,
J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., Chang, M. C., Withers,
S. T., Shiba, Y., Sarpong, R., and Keasling, J. D. 2006. Production of the
antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440:940–
943.

Romero, P. A. and Arnold, F. H. 2009. Exploring protein fitness landscapes by
directed evolution. Nat. Rev. Mol. Cell Biol., 10:866–876.

Rose, R. E. 1988. The nucleotide sequence of pACYC177. Nucleic Acids Res.,
16:356.



158

Rosenberg, A. H., Patel, S. S., Johnson, K. A., and Studier, F. W. 1992. Cloning
and expression of gene 4 of bacteriophage T7 and creation and analysis of T7
mutants lacking the 4A primase/helicase or the 4B helicase. J. Biol. Chem.,
267:15005–15012.

Ross, S. 2008. First Course in Probability, a. Oxford University Press, Oxford
Oxfordshire.

Roy, R., Hohng, S., and Ha, T. 2008. A practical guide to single-molecule fret.
Nature Methods, 5(6):507–516.

Roy, R., Kozlov, A. G., Lohman, T. M., and Ha, T. 2009. SSB protein diffusion
on single-stranded DNA stimulates RecA filament formation. Nature, 461:1092–
1097.

Sakon, J. J. and Weninger, K. R. 2010. Detecting the conformation of individual
proteins in live cells. Nat. Methods, 7:203–205.

Schuler, B. and Eaton, W. A. 2008. Protein folding studied by single-molecule fret.
Current Opinion in Structural Biology, 18(1):16–26.

Schuler, B., Lipman, E. A., Steinbach, P. J., Kumke, M., and Eaton, W. A. 2005.
Polyproline and the ”spectroscopic ruler” revisited with single-molecule fluores-
cence. Proc. Natl. Acad. Sci. U.S.A., 102:2754–2759.

Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464.

Setty, Y., Mayo, A. E., Surette, M. G., and Alon, U. 2003. Detailed map of a
cis-regulatory input function. Proc. Natl. Acad. Sci. U.S.A., 100:7702–7707.

Shannon, C. E. 1948a. A mathematical theory of communication (Part 1). Bell
System Technical Journal, 27(1):379–423.

Shannon, C. E. 1948b. A mathematical theory of communication (Part 2). Bell
System Technical Journal, 27(2):632–656.

Shevchuk, N. A., Bryksin, A. V., Nusinovich, Y. A., Cabello, F. C., Sutherland, M.,
and Ladisch, S. 2004. Construction of long DNA molecules using long PCR-based
fusion of several fragments simultaneously. Nucleic Acids Res., 32:e19.

Spencer, D. M., Wandless, T. J., Schreiber, S. L., and Crabtree, G. R. 1993. Con-
trolling signal transduction with synthetic ligands. Science, 262:1019–1024.

Stemmer, W. P. 1994. Rapid evolution of a protein in vitro by DNA shuffling.
Nature, 370:389–391.



159

Sternberg, S. H., Fei, J., Prywes, N., McGrath, K. A., and Gonzalez, R. L. 2009.
Translation factors direct intrinsic ribosome dynamics during translation termi-
nation and ribosome recycling. Nat. Struct. Mol. Biol., 16:861–868.

Strathern, D. C. A. D. J. B. J. N. 2005. Methods in Yeast Genetics: A Cold
Spring Harbor Laboratory Course Manual, 2005 Edition. Cold Spring Harbor
Laboratory Press.

Stryer, L. and Haugland, R. P. 1967. Energy transfer: a spectroscopic ruler. Proc.
Natl. Acad. Sci. U.S.A., 58:719–726.

Studier, F. W. and Moffatt, B. A. 1986. Use of bacteriophage T7 RNA polymerase
to direct selective high-level expression of cloned genes. J. Mol. Biol., 189:113–
130.

Tabor, S. and Richardson, C. C. 1990. DNA sequence analysis with a modified
bacteriophage T7 DNA polymerase. Effect of pyrophosphorolysis and metal ions.
J. Biol. Chem., 265:8322–8328.

Tan, E., Wilson, T. J., Nahas, M. K., Clegg, R. M., Lilley, D. M., and Ha, T.
2003. A four-way junction accelerates hairpin ribozyme folding via a discrete
intermediate. Proc. Natl. Acad. Sci. U.S.A., 100:9308–9313.

Van Dongen, S. 2006. Prior specification in Bayesian statistics: three cautionary
tales. J. Theor. Biol., 242:90–100.

Viterbi, A. J. 1967. Error Bounds For Convolutional Codes And An Asymptoti-
cally Optimum Decoding Algorithm. IEEE Transactions On Information Theory,
13(2):260+.

Walters, W. P. and Namchuk, M. 2003. Designing screens: how to make your hits
a hit. Nat Rev Drug Discov, 2:259–266.

Wiita, A. P., Perez-Jimenez, R., Walther, K. A., Grater, F., Berne, B. J., Holmgren,
A., Sanchez-Ruiz, J. M., and Fernandez, J. M. 2007. Probing the chemistry of
thioredoxin catalysis with force. Nature, 450(7166):124–7.

Wilson, D. S., Szostak, J. W., and Szostak, J. W. 1999. In vitro selection of
functional nucleic acids. Annu. Rev. Biochem., 68:611–647.

Yildiz, A., Tomishige, M., Vale, R. D., and Selvin, P. R. 2004. Kinesin walks
hand-over-hand. Science, 303(5658):676–8.

You, L., Cox, R. S., Weiss, R., and Arnold, F. H. 2004. Programmed population
control by cell-cell communication and regulated killing. Nature, 428:868–871.



160

Zhuang, X., Kim, H., Pereira, M. J., Babcock, H. P., Walter, N. G., and Chu, S.
2002. Correlating structural dynamics and function in single ribozyme molecules.
Science, 296:1473–1476.

Zhuang, X. W., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T. J., Herschlag, D.,
and Chu, S. 2000. A single-molecule study of rna catalysis and folding. Science,
288(5473):2048–+.



161

Appendix A

T7 Primers and sequences

A.1 Replisome genes

Gene Number Size (kb)

T7 RNA polymerase gp1 2.75
ssBP gp2.5 0.70

Helicase/primase gp4 1.70
T7 DNA polymerase gp5 2.12

Table A.1: Genes of the T7 DNA replisome. The full T7 genome is listed in NCBI
under GI:431187.

A.2 T7 origin of replication

The T7 origin of replication + 50 bp was PCRed using the following primers. Bold

is used to denote the SfiI restriction site. Lower case letters are complementary to

the T7 DNA.
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Forward: GCATACGTCACATGT GGCCCCCGGGGCC aaggtaacttgaacctccg

Reverse: GCATACGTCGGTACC GGCCGGCAGGGCC ttagaagtcacgagcattacg

Figure A.1: The primary T7 origin of replication, take from Table 1 of (Fuller and
Richardson 1985).

A.3 Replisome primers
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Connection Target Gene Dir. Type Sequence Name 
1.Promoter - 
DNA PolT7  

DNApolT7 F SD lib GCATACGTCGGCCCCCGGGGCCT
AANNNNNNNNNNRRRRRRRNNNN
NDTGatcgtttctgacatcga 

T7-1: 
ProDNApolSD 

1.Promoter - 
DNA PolT7  

DNApolT7 F Genome GCATACGTCGGCCCCCGGGGCCT
AANNNNNNNNNNaggagaaatcaatatgat
cgtttct 

T7-2: 
ProDNApolGen 

2. Promoter – 
RNApolT7 

Tail of DNA 
polT7 

F N/A GCATACGTCGGCCCCCGGGGCCT
AAcgatttgccactgatacag 

T7-3: 
ProRNApol 

3. DNApolT7 
– RNApolT7 

DNApolT7 R Genome GCATACGTC 
GCCTGCATGGCctgtatcagtggcaaatcg 
(RC of: cgatttgccactgatacag 
GCCATGCAGGC + GCATACGTC) 

T7-4: 
DNARNArev 

3. DNApolT7 
– RNApolT7 

R7NApolT7 F SD lib GCATACGTCGCCATGCAGGCNNN
NNNNNNNRRRRRRRNNNNNDTGaa
cacgattaacatcgcta 

T7-5: 
DNAtoRNASD 

3. DNApolT7 
– RNApolT7 

RNApolT7 F Genome GCATACGTCGCCATGCAGGCNNN
NNNNNNNgaagaggcactaaaacacgattaac 

T7-6: 
DNAtoRNAgen 

4. RNApolT7 
– ssBP 

RNApolT7 R N/A GCATACGTC 
GCCGTGCAGGCttacgcgaacgcgaagtccg 
(RC of: cggacttcgcgttcgcgtaa 
GCCTGCACGGC + GCATACGTC) 

T7-7: 
RNAssBPrev 

4*. RNApol – 
vector 

RNApolT7 R N/A GCATTGCTGGGCCGGCAGGGCCtt
acgcgaacgcgaagtccg 

T7-8: RNAend 

4. RNApolT7 
– ssBP 

ssBP F SD GCATACGTCGCCTGCACGGCNNN
NNNNNNNRRRRRRRNNNNNDTGgct
aagaagattttcacc 

T7-9: 
RNAssBPSD 

4. RNApolT7 
– ssBP 

ssBP F Genome GCATACGTCGCCTGCACGGCNNN
NNNNNNNggagattaacattatggctaagaag 

T7-10 
RNAssBPgen 

5.ssBP – 
Heli/Primase 

ssBP R N/A GCATACGTC 
GCCGCACAGGCttagaagtctccgtcttcgt 
(RC of: acgaagacggagacttctaa 
GCCTGTGCGGC + GCATACGTC) 

T7-11 
ssBPHPrev 

5*. ssPB-
vector 

ssBP R N/A GCATTGCTGGGCCGGCAGGGCC 
ttagaagtctccgtcttcgt 

T7-12 ssBPend 

5. ssBP – 
Heli/Primase 

Heli/Prim F SD GCATACGTCGCCTGTGCGGC 
NNNNNNNNNNRRRRRRRNNNNND
TGgacaattcgcacgattc 

T7-13 
ssBPHPSD 

5. ssBP – 
Heli/Primase 

Heli/Prim F Genome GCATACGTCGCCTGTGCGGC 
NNNNNNNNNNaggagggaattgcatggacaa
t 

T7-14  
ssBPHPgen 

6. 
Heli/Primase – 
LacZ 

Heli/Prim R  GCATACGTC 
GCCGCTAAGGCtcagaagtcagtgtcgttg 
 
(RC of: caacgacactgacttctga 
GCCTTAGCGGC + GCATACGTC) 
 

T7-15 hpLacZ 

6.* Heli/Prim-
vector 

Heli/Prim R n/a  GCATTGCTGGGCCGGCAGGGCCtc
agaagtcagtgtcgttg 

T7-16 HPend 

7. Heli/Prim-
LacZ 

LacZ F plasmid GCATACGTCGCCTTAGCGGCacag
gaaacagctATGATAGATC
CCGTCG 

T7-17 
hpLacZrev 

      

 
Table A.2: Table of PCR primers used to PCR T7 replisome genes. Restriction
sites are highlighted in dark green. Start codons are highlighted in bright green.
Ribosome binding sites are highlighted in red. Regions complementary to T7 DNA
are in lower case. N denotes any base (A, T, G or C) can occupy the spot. R
denotes only A or G can occupy the spot. D denotes A, T or G can occupy the
spot.
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A.4 Additional figures

Figure A.2: Table showing the relative frequencies of DNA bases in the region from
−12 to +2 (relative to the start codon) for 1055 genes in E. coli. Table taken from
(Dower et al. 1988)

Figure A.3: The 1 kb (left) and 100 bp (right) DNA ladders. Figures taken from
www.neb.com

www.neb.com
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Appendix B

Probability and statistics

background

B.1 Probability rules

The notation

p(A|B) (B.1)

is used to denote the probability of A given B. B may be either a random variable

or a model parameter.

The sum rule of probability:

p(A) =
�

B

p(A, B) (B.2)
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The product rule of probability:

p(A, B) = p(A|B)p(B) = p(B|A)p(A) (B.3)

A and B are independent variables if

p(A, B) = p(A)p(B) (B.4)

For N independent and identically distributed (IID) data points:

p(d1, d2, . . . , dn) =
N�

n=1

p(dn) (B.5)

log p(d1, d2, . . . , dn) =
N�

n=1

log p(dn) (B.6)

B.2 Squared error and maximum likelihood

Minimization of squared loss is most commonly derived in the natural sciences

by asserting that ‘error’, the difference between parameterized model prediction

and experimental data, is additive, normally distributed, and independent for each

example (here indexed by i):

di = fθ(xi) + ξi; ξi ∼ N (ξ|0, σ). (B.7)

This notation emphasizes that the model f depends on parameters θ, and

the ∼ indicates the distribution from which the error ξi on the ith observation

is drawn (i.e., the Gaussian or normal distribution and variance σ). Assuming
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independent and identically distributed observations, the probability of all the N

data D = {di}i=N
i=1 is then the likelihood

L = p(D|θ) = Πi=N
i=1 N (yi − fθ(xi)|0, σ) =

e−χ2

(
√

2πσ)N
(B.8)

with the usual χ2 =
�i=N

i=1 (di−fθ(xi))2/σ2 arising as a linear term in the logarithm

of the likelihood �:

� ≡ ln L = −χ2 +
N

2
ln 2πσ. (B.9)

Minimization of χ2, is thus derived from the more general principle of ML: the

parameters θ∗ chosen are those which are the most likely.

B.3 “BIC”: an intuition-building heuristic

Often, explicit calculation of p(D|K) is computationally difficult, and one resorts

to approximation. For example, if the likelihood p(D|�θ, K) is sharply and uniquely

peaked as a function of �θ, meaning that there is one unique maximum, Schwartz

(Schwarz 1978) suggested a pair of approximations: (i) Taylor expansion of �(�θ)

(from Eq. B.9) and Laplace approximation of the integral; and (ii) replacing the

second derivative of �(�θ) by its asymptotic behavior in the limit {K, N}→∞. The

first approximation reads

p(D|K) =

�
dK�θe�(�θ)p(�θ|K) ≈ e�∗p(�θ∗|K)

(2π)K/2

|H|1/2
(B.10)

where �∗ = �(�θ∗) is the ML over all parameters �θ, and the K ×K matrix H, also

termed the Hessian, is the matrix of derivatives (evaluated at �θ∗)

Hαβ ≡
∂2�(θ̃)

∂�θα∂�θβ

. (B.11)
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In the case of N independent data points the derivative of � is a sum of N indepen-

dent terms, and the determinant of the Hessian scales as NK in the limit of infinite

data N and infinitely many K equally-important parameters �θα. Under this pair

of asymptotic approximations, then,

p(D|K) ≈ e�∗p(�θ∗|K)
(2π)K/2

|H|1/2
≈ C(K, N)e(�∗−(K/2) ln N). (B.12)

The exponent is sometimes referred to as the Bayesian Information Criterion or

BIC; for clarity it is worth noting, though, that it does not depend on the prior

(the most common meaning of the adjective ‘Bayesian’ in statistics) and that it is

derived without any appeal to or use of information theory. The usage of such an

algebraic expression alone, ignoring the possible dependence of terms lumped into

C(K, N) (i.e., treating C(K, N) as a constant) is a simple1, intuitive, and appealing

approach to model selection. The increase in �∗ as K increases is penalized by the

term −(K/2) ln N , selecting the optimal model indexed by K∗, the maximizer of

the BIC.

In the case of FRET data the likelihood is complicated by the presence of a

hidden state zi (the discrete conformational state of the molecule which gives rise

to the observed FRET ratio), meaning that the evidence p(D|K) has the richer

formulation (suppressing the cluttering superscripts K on the hidden and manifest

variables z and �θ, respectively)

p(D|K) =
�

Z

�
dK�θp(D,Z|�θ, K)p(Z|�θ, K)p(�θ|K). (B.13)

1
Note that, although use of the BIC obviates determining many facets of one’s model and its

relation to the data, we still need to know the error bars σ, which appear in �.
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This rich structure renders completely inappropriate the assumptions of the BIC

derivation above: among other problems, the hidden variables will be modeled by

a Markovian dynamic, coupling each of the example data (and thus violating the

assumption of N independent data); and the permutation symmetry of the labels

on these violates the assumption that the likelihood is sharply and singly peaked –

rather there are K! such peaks from the possible relabelings of the states.
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