
Characterization of the singing voice from

polyphonic recordings

Christine Smit

Submitted in partial fulfillment of the
requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2011

c© 2011
Christine Smit

Some Rights Reserved

This work is licensed under the Creative Commons Attribution-Noncommercial-No

Derivative Works 3.0 United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/us/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Abstract

Characterization of the singing voice from polyphonic recordings

Christine Smit

In order to study the singing voice, researchers have traditionally relied upon lab-

based experiments and/or simplified models. Neither of these methods can reasonably

be expected to always capture the essence of true performances in environmentally

valid settings. Unfortunately, true performances are generally much more difficult

to work with because they lack precisely the controls that lab setups and artificial

models afford. In particular, true performances are generally polyphonic, making it

much more difficult to analyze individual voices than if the voices can be studied in

isolation.

This thesis approaches the problem of polyphony head on, using a time-aligned

electronic score to guide estimation of the vocal line characteristics. First, the exact

fundamental frequency track for the voice is estimated using the score notes as

guides. Next, the harmonic strengths are estimated using the fundamental frequency

information. Third, estimates in notes are automatically validated or discarded

based on characteristics of the frequency tracks. Lastly, good harmonic estimates

are smoothed across time in order to improve the harmonic strength estimates.

These final harmonic estimates, along with the fundamental frequency track

estimates, parameterize the essential characteristics of what we hear singers’ voices.

To explore the potential power of this parameterization, the algorithms are applied

to a real data consisting of five sopranos singing six arias. Vowel modification and

evidence for the singer’s formant are explored.

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis organization . 4

2 Background 6

2.1 The singing voice . 6

2.1.1 Vowel formants . 7

2.1.2 Singer’s formant . 9

2.1.3 Vibrato . 9

2.2 Modeling the voice . 10

2.2.1 Physical modeling . 10

2.2.2 Source-filter modeling . 11

2.2.3 Sinusoidal modeling . 11

2.3 MIDI . 13

2.3.1 Tools for reading MIDI files 14

2.3.2 Time alignment . 15

2.4 The Gilbert and Sullivan data set . 16

3 Determining vowels from lyrics embedded in scores 18

3.1 Calculating syllable to phone alignment 19

3.2 Discussion . 22

i

3.3 Summary . 24

4 Solo voice detection 25

4.1 Optimal Periodicity Cancellation . 28

4.2 Classifier . 31

4.3 Experiments and results . 32

4.4 Discussion . 34

4.5 Summary . 36

5 Frequency estimation 38

5.1 Basic signal model . 39

5.2 Noise model . 41

5.3 Bayesian estimation . 43

5.3.1 Defining probabilities . 44

5.3.2 Finding the maximum . 44

5.4 Template estimation . 46

5.5 Experiments and results . 47

5.5.1 Experiments with simulated data 48

5.5.2 Experiments with multi-track data 49

5.6 Discussion . 54

5.7 Summary . 56

6 Initial harmonic amplitude estimation 58

6.1 Energy estimation . 59

6.2 Best fit estimation . 62

6.3 Heterodyne solution . 64

6.4 Experiments and results . 66

6.4.1 True frequency experiment 67

ii

6.4.2 Estimated frequency experiment 69

6.5 Discussion . 70

6.6 Summary . 71

7 Discarding bad data 72

7.1 Measuring pitch track smoothness 76

7.2 Measuring vibrato . 76

7.2.1 The vibrato model . 76

7.2.2 Estimating the vibrato parameters for the simple vibrato model 78

7.2.3 Estimating the frequency modulation 80

7.2.4 Estimating the amplitude modulation 81

7.3 Classification . 83

7.3.1 Calculating smoothness likelihoods 84

7.3.2 Calculating vibrato model likelihoods 84

7.3.3 Combining likelihoods . 85

7.3.4 The Viterbi path . 85

7.4 Experiments and results . 86

7.5 Discussion . 88

7.6 Summary . 90

8 Estimates of vowel characteristics 91

8.1 Developing vowel models from the source-filter model 92

8.2 Log model . 94

8.2.1 Estimating the underlying energy curve 96

8.2.2 Normalizing the gains and energy curve 98

8.2.3 Summary . 99

8.3 Linear model . 100

iii

8.3.1 Initial estimate of the energy curve 101

8.3.2 Normalizing the gains, slopes, and energy curve 102

8.3.3 Summary . 102

8.4 Estimate reliability . 103

8.4.1 Log model . 103

8.4.2 Linear model . 106

8.5 Experiments and results . 107

8.5.1 Creating the simulated voices 107

8.5.2 Results and discussion from the log experiments 109

8.5.3 Results and discussion of the linear model experiments 116

8.6 Discussion . 123

8.7 Summary . 123

9 Experiments with the Gilbert and Sullivan Data Set 125

9.1 Characterizing the data . 127

9.2 The vowel AA . 133

9.3 The vowel AH . 137

9.4 The vowel IY . 139

9.5 The singer’s formant . 141

9.6 Discussion . 145

9.7 Summary . 145

10 Conclusions 147

10.1 Thesis summary . 147

10.2 Future directions . 149

10.3 Potential applications . 151

Bibliography 153

iv

List of Figures

3.1 Alphabet-to-phones probability map. 21

3.2 Mapping ‘passing’ to ‘p aa s ih ng’. 24

4.1 Example spectra taken from solo voice, ensemble accompaniment, and

background silence. 27

4.2 Optimal cancellation filters. 30

4.3 Example output from the cancellation-based classifier. 32

4.4 Solo voice detection precision/recall trade off for the two approaches. 34

4.5 Comparison of a wave file before and after filtering. 36

5.1 The Bayesian estimate on two harmonics as power shifts from the first

harmonic to the second. 49

5.2 The template estimate on two harmonics as power shifts from the first

harmonic to the second. 50

5.3 Histogram of frequency estimation errors. 52

5.4 Frequency estimates against the spectrogram of a 5 second excerpt. . 53

6.1 Note frequency and harmonic amplitudes. 67

6.2 Amplitude estimation results using the true frequency. 68

6.3 Frequency estimation error. 69

6.4 Amplitude estimation results using the estimated frequency. 70

v

7.1 Sample of a bad note frequency track. 74

7.2 Sample of a good note frequency track. 75

7.3 Vibrato models example . 82

7.4 Frequency track state machine . 83

7.5 Precision vs. recall for good frequency data detection. 88

8.1 Plot of sample amplitudes generated for a single log model experiment.109

8.2 Plot of the calculated first harmonic amplitudes for the first track at

SNR = -3 dB using the log model. 110

8.3 Plot of the mean error of the log amplitudes for the log model. . . . 111

8.4 Plots of the mean error of the parameters of the log model. 112

8.5 Plots of the mean error of the amplitudes and parameters of the log

model using just the energy-based estimates. 114

8.6 Plot of the calculated energy curve in the log model for the first track

at SNR = -3 dB. 115

8.7 Plot of sample amplitudes generate for a single linear model experiment.116

8.8 Plot of the calculated first harmonic amplitudes for the first track at

SNR = -3 dB using the linear model. 117

8.9 Plot of the mean error of the amplitudes for the linear model. 118

8.10 Plots of the mean error of the parameters of the linear model. 120

8.11 Plot of the calculated energy curve for the first track at SNR = -3 dB

for the linear model. 121

8.12 Plots of the mean error of the amplitudes and parameters of the linear

model and error bars. 122

9.1 Plot of the distribution of data across notes and vowels. 128

9.2 AA harmonics across all notes in all operettas. 134

vi

9.3 AA harmonics across all notes in H.M.S. Pinafore. 135

9.4 AA harmonics across all notes in The Gondoliers. 136

9.5 AH harmonics across all notes in all operettas. 138

9.6 IY harmonics across all notes in all operettas. 140

9.7 Singer’s formant examples. 143

9.8 Histograms of notes with and without the singer’s formant. 144

vii

List of Tables

3.1 Syllable-level pronunciation results. 22

5.1 Summary of estimate results from multi-track experiments. 52

7.1 10 Cross-fold validation results. 87

9.1 Median error bars for the log-model gain estimates on the Gilbert and

Sullivan data set. 129

9.2 Median error bars for the log-model slope estimates on the Gilbert

and Sullivan data set. 130

9.3 Median error bars for the linear-model gain estimates on the Gilbert

and Sullivan data set. 131

9.4 Median error bars for the linear-model slope estimates on the Gilbert

and Sullivan data set. 132

9.5 Percentage of notes with evidence of the singer’s formant for each

Operetta. 142

viii

Acknowledgments

I would like to thank the many people who helped me through the process of

developing the ideas in this thesis and through the actual writing process. First

and foremost, I would like to thank my advisor Dan Ellis for all the guidance and

assistance he has provided while I have been a student. He showed me how to take a

germ of an idea and make a thesis out of it. Many thanks to my thesis committee

for their comments and suggestions. I would also like to thank Martha Randall, who

fostered my fascination with the mechanics of the voice while I was an undergraduate.

I feel I must also give a shout out to the members of LabROSA. Thank you, all of

you, for the helpful discussions and the general sense of fun around the lab. I would

especially like to thank Ron Weiss for lending me his thesis template, which made

the process of writing my thesis infinitely easier than it would have been otherwise.

Finally, I must thank my husband Jeff who helped to keep my spirits and energy

up when they threatened to sag.

ix

1

Chapter 1

Introduction

Of all music instruments, the voice is arguably the most complex and most expressive.

Although it may not have the range or power of some other instruments, the voice

does have an incredible ability to produce different kinds of tones.

This thesis is motivated by the idea that a parametric description of the voice

in an artistic performances would allow researchers to answer new questions about

performance practice that they have been unable to answer before. Perhaps just as

importantly, such a parametric model would allow researchers to answer old questions

with more quantitative authority than was possible in the past.

The complexity of the voice is, of course, tied intimately with our ability to

speak and produce all the sounds that speech requires. Researchers have studied

the mechanics of the vocal system that allow us to articulate speech (e.g. [29]) from

the characteristics of the glottal source to how movements of the tongue, jaw, soft

palate, etc. shape the words we speak. Singing requires us to adapt this sophisticated

speech system to the temporal, pitch, and other constraints of music. One of the

most obvious changes is the general practice of elongating vowels on sustained notes.

Indeed, these sustained vowels often make up a majority of what we recognize as

1. Introduction 2

‘singing.’ This thesis confines itself to these vowels, which are voiced and therefore

have the characteristic harmonic structure of musical notes (section 2.1) and can be

described in terms of time-varying magnitudes of harmonically-related pure tones.

1.1 Contributions

There were two ways to think about acquiring data about singers. The first way

essentially involves recruiting singers to come and perform in a room with a mi-

crophone. This data is expensive, difficult to collect, and ultimately means that

only singers who are physically and temporally close to researchers will ever be

studied. The second way involves digging into the enormous and varied corpus of

commercially recorded music. The size of this corpus is appealing, but the reasons

for using artistic recordings rather than laboratory recording go beyond simply the

quantity of data. Laboratory recordings tend to be very unnatural. Researchers

often ask their subjects to sing in an unusual way, such as without vibrato, or use

unusual equipment, such a electroglottograph. In contrast, artistic recordings are

made only with artistic constraints. The performers are singing to express their

musical ideas, not to stay within the confines of the experimental constraints. The

algorithms described in this thesis provide a toolbox for quantitatively studying truly

musical performances.

There is a difficulty peculiar to music that does not generally affect study of

speech, namely the fact that music, at least Western music, is generally polyphonic.

Speech researchers can access huge databases of ‘clean’ speech where the speaker has

been recorded by a microphone in a quiet room. Although there is also, of course,

a great deal of speech recorded in noisy environments, ‘clean’ recordings are the

generally desired form of speech by both the public and researchers. Anyone who

releases audio recordings with a great deal of background noise will be accused of

1. Introduction 3

poor production values. So, in some sense, a single voice, recorded with very little

noise, is a natural and desired kind of speech.

In contrast, Western music is overwhelmingly polyphonic. Even ‘solo’ music

is polyphonic. The lead or ‘solo’ instrument is generally backed by one or more

other instruments. So polyphony is the truly desired and natural form of recorded

music. This form of music is what musicians know, work to, and feel comfortable

performing. Of course, in practice, professional recordings are generally mixes of

tracks of individually recorded instruments. So musicians do sit in sound-isolated

rooms with headphones and a microphone. Still, at some very fundamental level,

music is truly meant to exist as polyphony.

What this thesis does at its most fundamental level is try to give researchers tools

for pulling out the important characteristics of the voice from polyphonic recordings

so that the vast collections of professional recordings can be analyzed for the kind

of information that was previously available most easily from controlled laboratory

recordings:

• Exact pitch estimation. This thesis discusses algorithms for finding exact

fundamental frequency estimates using electronic score information as a guide.

• Harmonic strength estimation. This thesis discusses using the fundamental

frequency estimates to estimate the magnitudes of the harmonics.

• Vowel parameterization. This thesis discusses averaging the raw harmonic

strength estimates across one or more notes sung on the same vowel and pitch

in order to characterize how a particular vowel is sung.

1. Introduction 4

1.2 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 gives a background

discussion of the topics covered later in the thesis. The qualities of the singing voice

are discussed as well as how they have been estimated in the past. There is also a

brief discussion of MIDI files as this is the electronic score format used in the rest of

the thesis. Finally, a data set used in later chapters is described.

Chapter 3 is a very brief chapter that covers converting lyrics into phones. The

lyrics, taken from midi files, are aligned to notes at the syllable level. Pronunciation

dictionaries generally give pronunciations of entire words. This chapter covers

breaking up those pronunciations into syllables.

Chapter 4 discusses an initial approach taken to finding snippets of monophony

in largely polyphonic music. Essentially, the easiest way to isolate a voice is to find

it in isolation already. This chapter explores finding these isolated sections.

Chapter 5 starts down a new path of characterizing voices in polyphony by

examining two different approaches to very exact frequency estimation. The idea is

to start by aligning an electronic score with the audio. This aligned electronic score

provides very good information about approximately where each voice and note is.

The task then becomes homing in on exactly where the note is near the nominal

note frequency provided by the score.

Chapter 6 discusses using the frequency estimates from the previous chapter to

make initial estimates of the harmonic strengths of notes being sung on a frame-by-

frame basis. These initial estimates essentially look for energy where the fundamental

frequency indicates the energy should be.

Chapter 7 investigates the problem of removing bad data estimates. The frequency

estimates can fail, and when they do, the initial amplitude estimates also fail. This

1. Introduction 5

chapter looks at certain characteristics of the frequency track in order to decide what

part of each note, if any, contains good information.

Chapter 8 discusses improving the harmonic amplitude estimates by smoothing

across time. The initial harmonic amplitude estimates are extremely noisy because

they rely on a few Discrete Fourier Transform (DFT) bins. Smoothing across time

allows for better estimates of the characteristics of the vowel across time.

Chapter 9 uses the algorithms explored in chapters 3 and 5 to 8 to explore a

small data set consisting of six arias from five operettas. Finally, chapter 10 offers

concluding remarks about the thesis as a whole.

6

Chapter 2

Background

This chapter lays the background for the work in the remaining chapters. It covers

aspects of the voice that are discussed in the thesis (section 2.1), modeling the voice

(section 2.2), Musical Instrument Digital Interface (MIDI) issues (section 2.3), and a

data set that is used extensively throughout the thesis (section 2.4).

2.1 The singing voice

The voice is often thought of in terms of a source-filter model [22]. In vowels, the

focus of later chapters in this thesis, the source is the vibration of the vocal folds, and

the filter is created by everything above the vocal folds, namely the pharynx, mouth,

and nasal cavities. The source created by the vocal folds is approximately periodic

over short time intervals. In the frequency domain, this glottal source is a harmonic

series of partials where each partial is at an integer multiple of the fundamental

frequency [47]. Since the source is harmonic, what we hear is also harmonic, with

partials whose intensities have been changed by the vocal tract filter.

2. Background 7

2.1.1 Vowel formants

The vocal tract filter characteristics for vowels are generally defined in terms of

formants, or peaks in the vocal tract filter, which strengthen near-by glottal harmonics.

Peterson and Barney [40] showed that the first and second harmonics are sufficient for

characterizing vowels. They plotted the first versus the second formant frequencies

of the utterances of 76 speakers speaking a variety of English vowels and showed

that these vowels formed reasonably separate clusters. Technically, Peterson and

Barney were plotting what they called “energy concentrations” rather than formants

because formants cannot be directly observed from just the vocal utterances. Since

the glottal source is harmonic, spoken vowels can only sample the vocal tract filter

at multiples of the fundamental frequency.

When singing, these vowel formants can create a problem. For example, Peterson

and Barney characterize the vowel /u/ as having a first formant frequency somewhere

between about 200 and 400 Hz. Singers, particularly sopranos, regularly sing above

400 Hz, which is about G4. Because the intensity of the voice is a function of both

the glottal vibrations and the resonances of the vocal tract, the harmonic frequencies

need to be near resonances to maximize intensity. So, to accommodate these higher

pitches, sopranos change the formant frequencies to get more power out of their

voices. This process is called vowel modification or formant tuning.

Sundberg made the argument in 1987 that the lower position of the jaw on higher

notes is a strong arguments for vowel modification since the lower jaw position is

associated with a higher first formant [47]. Unfortunately, measuring these formant

frequencies directly from the recorded voice is difficult or impossible due to the

wide spacing of harmonics at higher pitches. So, Sundberg and Skoog measured jaw

openings as a proxy for formant tuning of the first formant in a variety of voices and

concluded that formant tuning seemed likely in notes higher than the first formant

2. Background 8

[50].

Of course, formant tuning does not necessarily have to be limited to high notes.

Singers may want to take advantage of the energy output increase due to tuning

formants to higher partials even when formant tuning is not required by the low

fundamental. Miller and Schutte found some direct evidence of formant tuning

in a baritone singer in 1990 by recording the electroglottographic, subglottal and

supraglottal pressures simultaneously with audio [36]. A couple years later, however,

Carlsson and Sundberg used an artificial singing synthesizer to simulate three simple

formant-tuning strategies which were then evaluated by professional singing teachers

[12]. As with the baritone, the notes were low enough that the first formant was

above F0 (C4 down to C3, about 262 Hz down to 131 Hz). Interestingly, the singing

teachers overwhelmingly preferred the fixed formant scales rather than the tuned

formant scales, suggesting that the energy increase associated with tuning formants

to upper partials was not sufficient to overcome the intelligibility problems associated

with moving the formants.

Returning once again to sopranos and high notes, Joliveau et al. [25] were able to

make a reasonably accurate estimate of the entire vocal tract filter of nine sopranos

singing four vowels using broad band acoustic excitation of the vocal tract at the

mouth while the singers sang. They showed strong evidence that the first formant

remained essentially constant until F0 reached the first formant, at which point

the first formant began to track F0. As the authors point it out, it may be that

intelligibility ceases to even really be possible at sufficiently high pitches due to the

widely spaced partials, and so increasing energy becomes the primary goal instead.

2. Background 9

2.1.2 Singer’s formant

In 1934, Bartholomew reported an energy peak in the range of 2800-3200 Hz in

good quality male singing voices [7]. Sundberg coined the term “singer’s formant” in

1974 to describe this phenomenon and developed a physical model to explain the

resonance pattern [48], namely that it is a clustering of the third, fourth, and fifth

formants. This definition physically limits the singer’s formant to lower voices. In

contrast, Bloothooft and Plomp performed experiments in 1986 on a wide variety of

voices from bass to soprano [10]. They defined the singer’s formant in terms of energy

in one third of an octave centered around 2.5 kHz for men and 3.16 kHz for women.

In their experiments on 14 singers, the singer’s formant met an energy threshold in

almost all cases except for fundamental frequencies above 392 Hz. Barnes and Davis

et al. [6] stuck with Sundberg’s formant clustering definition of the singer’s formant,

but showed that sopranos with more prestigious careers have more energy in 3 kHz

range, suggesting that energy in this range is also important to sopranos even if the

mechanism by which they achieve this energy is different.

2.1.3 Vibrato

Vibrato, a regular undulation in the pitch of the voice, can be characterized in terms

of rate, depth, regularity, and waveform [49]. The rate of the vibrato is generally

somewhere between 5.5 and 7.5 Hz and the depth is about ± 1 or 2 semitones [49].

While vibrato is nominally a sinusoidal shape, some variations in the shape [49] and

depth [34] do occur.

With an unmodulated tone, the output frequency spectrum only has energy at the

harmonics of the single fundamental frequency. Vibrato, on the other hand, sweeps

out a small section of frequencies and thus illuminates small sections of the vocal

tract filter around the center frequency of each of the partials, causing amplitude

2. Background 10

modulation synchronized with the vibrato. Unfortunately, amplitude modulation

may not be entirely due to the vocal tract filter. First of all, the vocal tract shape

can change in synchrony with the vibrato [49], in which case the vocal tract filter is

not constant across the sung note. Second of all, the glottal source itself may cause

some of the amplitude variation due to changes in subglottal pressure or glottal

adjustment [49].

A second question is whether this amplitude modulation is perceivable. If the

amplitude modulation tells listeners something useful about the location of formants,

then we would expect vibrato to improve intelligibility of vowels. Sundberg, using

synthesized vowels with synthesized vibrato, found the intelligibility did not change

between vowels with and without vibrato, suggesting that these subtle amplitude cues

may not be perceptually relavant [45]. Still, amplitude modulation seems important

enough for researchers to include it in their models (e.g. [2, 34]).

2.2 Modeling the voice

In order to parameterize the voice, a model is first needed. A few common approaches

to voice modeling are physical models, source-filter models, and sinusoidal models.

2.2.1 Physical modeling

Perhaps the most obvious way to model the voice is to create either a mathematical

or physical model for the physical system that produces the voice, namely the vocal

folds and vocal tract. In mathematical models, the vocal folds are usually modeled as

one [23] or more masses [51]. The vocal tract is then modeled as a series of connected

cylindrical tubes of differing cross-sections, known as a waveguide digital filter [27, 14].

Unfortunately, the number of cylinders needed is generally very high and the models

can become unstable [28]. Furthermore, estimating the model parameters can be

2. Background 11

difficult [27]. Physical models, such as [24], get around the instability and waveguide

complexity issues. They are also able to easily model non-linear effects [27].

2.2.2 Source-filter modeling

As mentioned earlier, the source-filter model assumes that the vocal fold source is

linearly filtered through the vocal track. A popular technique for estimating the

vocal tract filter based on this model is Linear Predictive Coding (LPC) [5]. This

method posits that s[n], the current audio sample, can be estimated from a weighted

sum of the previous P samples and the glottal source. The transfer function of this

equation, which corresponds to the model of the vocal tract, then becomes an all-pole

filter. The coefficients of the filter, which are the weights in the sum, are estimated

by minimizing the distance between s[n] and the weighted sum plus glottal source.

The simplicity of the model and the ease with which the filter coefficients can be

calculated makes this model appealing[27].

2.2.3 Sinusoidal modeling

Sinusoidal modeling means estimating the frequency, amplitude, and phase of the

partials. This is essentially the approach taken in this thesis. A very simple model

for a stationary harmonic tone is a sum of weighted partials1,

x(t) =

Nh∑
i=1

Ai cos (2πtif0 + φi) (2.1)

where t is the current time, Nh is the number of partials, Ai is the amplitude of partial

i, f0 is the fundamental frequency, and φi is the phase of partial i. To completely

reconstruct x(t) in this case, the fundamental frequency, harmonic amplitudes, and

1Not all musical tones are perfectly harmonic [54], but a healthy voice is very close to perfectly
harmonic [33].

2. Background 12

harmonic phases would have to be estimated. However, it has long been known

that the phases of the partials are relatively unimportant to perception [35], so this

thesis will primarily focus on estimating the fundamental frequency and harmonic

amplitudes.

The most basic problem of single frequency estimation has been covered exten-

sively using, for example, instantaneous frequency estimations [11] or autocorrelation

[16]. These methods either will not work for musical tones with harmonics [11] or

they ignore the extra information available in the higher harmonics [16]. Linear

predictive filtering has been used to tackle harmonic sinusoids [13], but this method

does not address the issue of multiple musical notes at once. Transcription (e.g. [9])

involves finding multiple simultaneous musical notes, but is more often concerned

with looking for note names, not exact pitches or amplitudes. Coding via harmonic

pitch objects [53] is more interested in exact pitches and amplitudes, but aims mostly

more for good reconstruction.

The phase vocoder, used for analysis and synthesis, can give frequency, amplitude,

and phase estimates [19], but will not work in a polyphonic context because it will

generally be impossible to isolate the partials of the voice from the instrumental

partials.

Given the difficulty of dealing with mixtures of voices, it would be nice to separate

the voice from the mix first before trying to estimate its characteristics. Ozerov et

al. [39] attempt to pull the singer out of the mix in pop music using binary masking,

which assumes that the sources are reasonably separated in time and frequency. Bins

in the spectrogram of the signal are assigned exclusively to one source or another.

This model may not be a good fit to the data, particularly in the case of music where

notes in musically consonant relations have harmonics that overlap. There, even

after separation, the problem of interfering partials from other instruments may be a

2. Background 13

problem.

Other approaches to source separation use directional cues from multiple mi-

crophones to perform source separation. Independent component analysis (ICA)

assumes that the source at each microphone is a linear mixture of the sources present.

Such algorithms can have problems in reverberant environments, where echoes can

look like additional sources [41]. Since most music recordings have reverberation,

this can be a problem.

2.3 MIDI

Much of this thesis relies on information from electronic scores either directly

(chapters 5, 7 and 9) or indirectly. Although these electronic scores can in theory be

in any convenient form, in practice the scores used in this thesis are all MIDI files.

This section is a catch-all description of the issues that arise from having to work

with MIDI.

The complete MIDI standard, of which the MIDI file format is a small part,

can be found on MIDI Manufacturers Association website [3]. In brief, MIDI files

can store most, but not all, of the information that a typical score contains. Notes,

numbered by half step from 0 to 127, can be turned on and off. The amplitude or

‘velocity’ of the notes can be set or changed. The note tuning can be changed or

‘bent.’ The length of the quarter note can be changed to speed up or slow down

the music using tempo commands. Timed lyric commands can specify lyrics at the

syllable level. MIDI files can also contain events that specify key and time signature,

but these events are purely informational and do not affect the interpretations of

the tempo or note on/off commands. However, because the MIDI standard was

originally developed to allow communication between MIDI devices rather than

creation of electronic scores, MIDI files cannot specify many of the score markings

2. Background 14

that musicians are accustomed to seeing. So there is no way of including standard

dynamic markings (e.g. forte, piano), articulation marks (e.g. staccato, tenuto),

tempo indications (e.g. andante, allegro, presto), or mood indications (e.g. dolce,

contabile) in MIDI files.

A type 1 MIDI file essentially contains a stream of time-stamped MIDI events on

tracks. These events can either be channel-based events or meta-events. A channel

in a track generally identifies a single device or instrument, so channel-based events

include commands associated with a particular device such as note on and note off.

Confusingly, meta-events can apply just to the track they are on (e.g. track name

commands) or the entire stream (e.g. tempo and time signature commands). So

why are tracks needed if there are channels? The standard only allows 4 bits to

specify the channel, which limits a single track to 16 devices. Adding additional

tracks allows for more devices. Tracks can also be used to group or organize channels

together.

2.3.1 Tools for reading MIDI files

In Matlab, the MIDI Toolbox [20] is a well known free set of MIDI-related functions.

It’s two low level functions for reading and writing MIDI files unfortunately suffer

from several problems. First, they rely on out-dated external executables that no

longer run under recent versions of Windows. Second, they are unable to deal with

tempo changes, so the timing information is very poor for tracks including such

commands. Third, they cannot pull out lyrics information.

Ken Schutte has also published Matlab MIDI tools2. These tools run reliably

and deal with tempo changes, but do not do all the lyrics processing that is needed

for this thesis.

2http://www.kenschutte.com/midi. Accessed on 2010-11-01.

2. Background 15

Matlab can run java natively and the javax.sound.midi package 3 provides some

useful functionality. It parses MIDI files into MidiEvent objects that each contain

a MidiMessage, which simply has the raw bytes of the MIDI event. Unfortunately,

this package does not do much to parse these raw bytes into anything meaningful.

Because none of the existing tools did exactly what this thesis work needed, new

tools were created. At the time that this thesis’s MIDI work started, Ken Schutte’s

tools were not as advanced as they are now. So, the Java package seemed like the

best place to start. These developed tools have been released4 and can handle tempo

changes, run on multiple operating system, and can easily grab lyrics out of midi

files.

2.3.2 Time alignment

Although MIDI scores contain timing information, the MIDI timing will obviously

not line up particularly well with an actual performance of a particular piece of

music. The problem of automatic MIDI-to-audio alignment is not new and has been

studied extensively, for example [21, 52, 18, 15]. The general approach is to break

the audio into frames, break the MIDI up into frames (if the MIDI is synthesized) or

collections of simultaneous notes (for features directly calculated from the MIDI),

calculate features for the audio and MIDI, calculate distances or matching costs

between every frame in the audio and every frame or note collection in the MIDI,

and then use a dynamic time warp to find the best alignment.

The dynamic time warp works on a matrix of cost values. Each cost value at

index (i, j) represents the cost of matching frame i in the audio to frame or note

collection j in the MIDI. There is also often a transition cost associated with moving

3http://download.oracle.com/javase/1.4.2/docs/api/index.html version 1.4.2. Accessed on 2010-
11-01.

4http://www.mathworks.com/matlabcentral/fileexchange/27470-midi-tools. Accessed 2010-05-
04.

2. Background 16

from one location on the matrix to another. A common transition cost scheme might

assign a cost of 1 to moving diagonally (i, j)→ (i+ 1, j + 1), forward in the audio

(i, j)→ (i+ 1, j), or forward in the MIDI (i, j)→ (i, j + 1), and an infinite cost to

moving in any other direction. The cost of the path through the matrix is then a

combination of all the matching costs and transition costs and the best path is the

lowest-cost path through the matrix.

Clearly the choice of both the matching costs and the transition costs can have a

significant effect on the final solution. For example, if the piece of music contains

repeated notes and the features are based on the stationary short time characteristics

(e.g. harmony) rather than on transient characteristics (e.g. onsets), the dynamic

time warp can have difficulty deciding where to put the boundary between the notes.

For similar reasons, silences in the music can cause problems. The transition costs

can come into play particularly if the number of frames in the audio is significantly

different from the number of frames or note collections in the MIDI. In this case, if

the movement costs are biased toward the diagonal (i, j)→ (i+ 1, j + 1), then the

shortest path will want to incorporate as many diagonal elements as possible even

though the correct path will clearly require more lateral or upward movement.

These issues with the dynamic time warp are neither new nor unknown, but still

cause problems. So, for the work in this thesis, all alignments are calculated by hand

in order to ensure accuracy.

2.4 The Gilbert and Sullivan data set

The Gilbert and Sullivan data set, which is used in several different experiments,

consists of six soprano arias from five different operettas written by the musical

collaborators Arthur Sullivan (music) and W.S. Gilbert (libretto). Each aria has a

2. Background 17

full orchestra recording from the D’Oyly Carte Opera Company, the same company

that gave the original performances of all the works in the late 1800s.

The soprano lines in each recording have been aligned on a note-by-note basis5 to

midi scores from the Gilbert and Sullivan Archive [1]. All note onsets are individually

annotated and note offsets are assumed to be the next note’s onset. For notes

where this is not the case, such as notes right before a breath, the note offset is

also annotated. Some notes from the arias are ignored because they are difficult

or impossible to align, such as cadenzas with extremely fast notes. After removing

these notes, there are approximately 1500 labeled notes in the six recordings.

These midi scores contain both the notes and lyrics of these arias. So, after note

alignment, the midi scores provide syllable-level word alignment.

5Specifically, the author tapped along with the notes using Sonic Visualizer
(http://www.sonicvisualiser.org/), which can play the music and record the timing of the
taps. A musical score was used for reference. The taps were then reviewed for accuracy and
corrected, again using Sonic Visualizer, which can play back the music and add clicks at the
annotated times.

18

Chapter 3

Determining vowels from lyrics

embedded in scores

The ultimate goal of this work is to characterize sung voices. One part of that

characterization involves looking at how singers form vowels (chapter 8). While it

would certainly be possible to hand label notes with the vowels the performers are

singing, an automated solution would be much preferable.

As mentioned in section 2.3, MIDI files can have embedded lyrics. These lyrics

are generally time-tagged at the syllable level. In essentially every case, syllables

have only a single vowel. Diphthongs and glides are an obvious complication, but in

these cases singers generally sustain on the longer vowel. So, if the syllables can be

transcribed in phones, finding the vowel for each syllable is very straightforward.

Pronunciation dictionaries provide word-level phone transcriptions, not syllable-

level transcriptions. So the question is how to break up the word-level string of

phones into the phones associated with each syllable. One approach would be to look

at the all pronunciation rules in English and then try to map these pronunciation

rules onto the words and their corresponding phone sequences. This chapter takes a

3. Determining vowels from lyrics embedded in scores 19

much simpler, probabilistic approach instead.

The organization of the rest of this chapter is as follows. Section 3.1 covers

calculating the alignment, section 3.2 discusses how the alignment works, and

section 3.3 summarizes the chapter as a whole.

3.1 Calculating syllable to phone alignment

The basic idea behind this model is that the relationship between letters and phones

can be estimated probabilistically from a large data set. In other words, a letters-to-

phones matrix can be calculated where each entry is the probability that a particular

letter will map to a particular phone.

In this case, the large data set is the British English Example Pronunciation

(BEEP) dictionary1, version 1.0. An initial, best-guess approximation of the alphabet-

to-phones map is calculated by assuming a linear mapping from letters to phones

in the dictionary and averaging across all words. This initial map is then improved

upon iteratively.

In each iteration, the alphabet-to-phones map is updated using the previous

iteration’s map. For each word-phones pair, the most likely mapping from letters

to phones is calculated using a dynamic time warp on a word-level letter-to-phone

mapping from the previous iteration. Note that since dynamic time warping finds

the lowest cost path while this algorithm needs the highest probability path, the

dynamic time warp is actually given 1− probabilitymap. The new letter-to-phones

map is then the average of all these dynamic time warp-derived mappings from

letters to phones.

Figure 3.1 shows the initial and iterated versions of the alphabet-to-phone map.

The iterated map is a little more sparse, which makes sense because each letter in a

1Compiled by Tony Robinson. ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz.

3. Determining vowels from lyrics embedded in scores 20

word is being assigned to a single phone. The initial linear approximation means

that if the number of letters in a word does not match the number of phones, the

letters will be assigned fractions of one or more phones.

With this probabilistic map in hand, finding the syllable-to-phones relationship

for a new word is simple. First, the phones for the word are found in the BEEP

dictionary. Then, a dynamic time warp on the alphabet-to-phone map is used to

associate letters with phones. Finally, the phones are broken up into syllables based

on which syllable they map to.

3. Determining vowels from lyrics embedded in scores 21

phones

al
ph

ab
et

Initial alphabet to phones map

ao ch er ia l ow sh uw zh

E

J

O

T

Y

log10(p)

-10

-8

-6

-4

-2

0

phones

al
ph

ab
et

Final alphabet to phones map

ao ch er ia l ow sh uw zh

E

J

O

T

Y

log10(p)

-10

-8

-6

-4

-2

0

Figure 3.1: Alphabet-to-phones probability map using a log scale.
The top plot shows the initial estimate of the alphabet-to-phones map
using a linear mapping from letters to phones in the database. The
bottom plot shows the alphabet-to-phones mapping after the algorithm
converges.

3. Determining vowels from lyrics embedded in scores 22

word pronunciation

a-blaze [ax] - [b l ey z]

a-go [ax] - [g ow]

an-ces-tral [ae n] - [s eh s] - [t r ax l]

a-ny [eh] - [n iy]

be-side [b ih] - [s ay d]

ea-sy [iy] - [z iy]

glo-ries [g l ao] - [r ih z]

guil-ty [g ih l] - [t iy]

low-ly [l ow] - [l iy]

Mar-co’s [m aa] - [k ow z]

mat-ter [m ae t] - [t ax]

pass-ing [p aa s] - [ih ng]

pil-lows [p ih l] - [l ow z]

Utt-ered [ah t] - [ax d]

wi-dow [w ih] - [d ow]

Table 3.1: Syllable-level pronunciation results. All these pronuncia-
tions seem to have been broken up sensibly.

3.2 Discussion

Table 3.1 shows the syllable-level break up of a random selection of 10% of the

multi-syllable words found in the MIDI files from the Gilbert and Sullivan data set

(section 2.4). All of the words are broken up correctly.

Since the results are so good at the syllable level, it is interesting to look at the

alignment for a word where there is not a one-to-one correspondence between letters

and phones. Figure 3.2 shows the dynamic time warp for the word ‘passing,’ which

is interesting because of the double s and the ‘ing.’ As might be expected, both

s letters map to the same ‘s’ phone. Interestingly, the ‘ing’ ending is a different

story. A human would probably want to match i → ih and ng → ng. Looking at

the probability map, the likelihoods n→ ih and n→ ng are both reasonably high,

but the time warp picks the higher value and maps n→ ih.

3. Determining vowels from lyrics embedded in scores 23

So interestingly, the full letters-to-phones path may not be completely accurate

or satisfying, but this does not necessarily hurt the syllabification. Although table 3.1

shows only a tenth of the entire word set, other words have also been examined

and the syllabification is fine. The explanation for this disconnect may lie in the

way English uses certain combinations of letters. There are lots of these letter

combinations, such as ‘ing’ or ‘ion.’ In many cases, the pronunciation of the letters

in these letter combinations is quite different from their nominal pronunciations.

So it is not surprising when the simplistic letters-to-phones model used in this

chapter has problems. Fortunately, the process of syllabification is not arbitrary.

Even though different people may have slightly different ideas about where to place

syllable boundaries, it is unlikely that anyone would place a boundary in the middle

of one of these letter combinations. Since the probabilistic model only really needs

to be accurate at the syllable boundaries, it can make mistakes elsewhere and still

produce the correct results.

3. Determining vowels from lyrics embedded in scores 24

Letters to phones map

phones

w
or

d

p aa s ih ng

P

A

S

S

I

N

G

dynamic warp

log10(p)

-10

-8

-6

-4

-2

0

Figure 3.2: Mapping ‘passing’ to ‘p aa s ih ng’. The letter-to-phones
probability map for ‘passing’ and ‘p aa s ih ng’ is a generated by taking
the appropriate columns and rows from the converged alphabet-to-
phones map (figure 3.1, bottom plot). The line shows the results of
the dynamic warp. Once again, the probabilities are shown in the log
scale.

3.3 Summary

Lyrics in MIDI files are often aligned by syllable. Pronunciation dictionaries generally

give word-level pronunciations. This chapter outlines a method by which word-level

phones can be translated into syllable-level phones using a probabilistic mapping

from letters to phones. Since syllables generally have only one vowel, knowing the

pronunciation for the syllable means that finding the vowel for a note is simple.

25

Chapter 4

Solo voice detection

The end goal of this work is to characterize professional singers’ voices. To be able to

make this characterization, a fair amount of data is needed, but getting the data is not

an easy task. Collecting data manually by asking singers to perform in a laboratory

provides very clean, but limited data. In contrast, commercial recordings offer the

promise of enormous amounts of data from environmentally valid sources, but the

generally polyphonic nature of the recordings makes extracting an individual singer’s

voice difficult. The approach laid out in this chapter, which was first published in [43],

attempts to combine the advantages of both laboratory recordings and commercial

recordings by searching for unobstructed or “solo” sections in the middle of otherwise

polyphonic recordings.

A solo musical passage will for the most part consist of a single note (pitch)

sounding at any time. The spectral structure of an isolated pitch is characteristically

simple, consisting of well-defined, regularly spaced harmonic spectral peaks(as illus-

trated in the top pane of figure 4.1) and this should allow a classifier to distinguish

these frames from either multiple simultaneous voices (middle pane) which exhibit

a much more complex pattern of superimposed and interacting harmonic series, or

4. Solo voice detection 26

silent gaps (bottom pane) which reveal a frequency-dependent noise floor.

Several approaches were attempted. The baseline system adopts the same

approach used for detecting when a singer is active during accompanied music [8] by

training a classifier on the ubiquitous Mel-frequency cepstral coefficients (MFCCs)

borrowed from speech recognition.

A second approach involved seeing if the specific structural details visible in

figure 4.1 could be employed directly. The first idea was to attempt to spot the ‘gaps’

between the harmonics of the solo voice which might be expected to revert to the

noise floor. However, it was difficult to make this approach work, particularly as the

voice pitch became lower and the ‘gaps’ became smaller.

The most successful approach is based on the idea of attempting to model a

short-time frame of the signal as consisting of a single periodicity, canceling energy

at that period with an appropriate comb filter (i.e. subtracting the signal delayed

by one period from itself), then seeing what proportion of the total signal energy is

removed. When the signal consists largely or wholly of a single periodicity, it should

be possible to cancel virtually all of the periodic (tonal) energy, leading to a very

large drop in energy after the filter.

In general, however, the optimal period will not be an integer number of samples,

so a fractional-delay filter is required. The next section describes the approach to

finding this filter, then section 4.3 describes the experiments with this detector,

comparing it to the MFCC-based baseline. Section 4.4 discusses the filter and how

it works in practice and finally section 4.5 summarizes the chapter.

4. Solo voice detection 27

-80

-60

-40

-20

0

20

d
B

Solo voice

-80

-60

-40

-20

0

20

d
B

Multiple voices

0 1000 2000 3000 4000 5000 6000
-80

-60

-40

-20

0

20

d
B

Silence

Frequency / Hz

Figure 4.1: Example spectra taken from solo voice (top pane), ensem-
ble accompaniment (middle pane), and background silence (bottom
pane).

4. Solo voice detection 28

4.1 Optimal Periodicity Cancellation

By definition, a single voice has a single pitch (in the sense of a fundamental

frequency), which, for musical voices, will often be relatively stationary. To detect if

only a single voice is present, this approach is to find the best-fitting single period,

cancel its energy, and see how completely the cancellation has removed the energy

of the frame. Solo voices will have only their aperiodic energy left, resulting in a

large drop in energy. Polyphonies consisting of several instruments playing different

pitches will have canceled only one of the periodicities, leading to a much smaller

drop in energy.

After breaking up the sound files into 93 ms frames (4096 samples at 44.1 kHz

sampling rate), autocorrelation is used to obtain an initial estimate, τ , of the

dominant fundamental period for each frame by finding the largest peak in the

autocorrelation. A simple filter (figure 4.2, top) might then be able to remove that

frequency and all its harmonics:

ε[n] = x[n]− x[n− τ]. (4.1)

If τ exactly matches the period of a purely periodic waveform within the frame, ε[n]

should be identically zero. This is exactly the same as an approach taken by Kim

and Whitman to find sections of singing in pop music [26].

The problem with this scheme is that, in general, the period of an acoustic

source will not correspond to an integer number of samples. This problem has been

encountered in many previous circumstances including the “long-term predictor” of

traditional vocoders [4] and the delay lines at the heart of physical modeling music

synthesis [42]. To get around this limitation, a slightly more complicated filter is

4. Solo voice detection 29

used to optimally remove the voice (figure 4.2, bottom),

ε[n] = x[n]−
k∑

i=−k
ai · x[n− (τ + i)] (4.2)

or

e = x− Za (4.3)

where ei = ε[i], xi = x[i], Zi,j = x[i−(τ+j)], aj = a[j]; iε[0, N−1] and jε[−k, k]. The

filter uses k = 3 for a seven-coefficient filter as a more or less arbitrary compromise

between computational complexity and flexibility of the cancellation filter.

The question is how to calculate the coefficients a[j]. One solution is to pick

them to optimally reduce the energy of ε[n],

â = (ZTZ)−1ZTx. (4.4)

This will not generally create exactly a sub-sample delay filter (see section 4.4), but it

should do a reasonable job of removing the energy of non-integer wavelength sources.

Having solved for these coefficients within each frame, the filter is applied to find the

energy of the residual ε[n] within the frame, then the ratio of the residual energy to

the energy of the original signal x[n] is calculated. In the case of a purely periodic

signal whose period is a non-integer number of samples, â should approximate an

ideal fractional delay filter (sinc interpolator) which can exactly cancel the periodic

signal, leading to a residual-to-original ratio close to zero. When the signal consists

of many periodicities, only a small proportion of the energy will be canceled by

eliminating just one dominant periodicity.

In frames consisting of “silence” (noise floor), however, a single spectral peak may

account for a large proportion of the very small amount of energy. In this case, the

4. Solo voice detection 30

Simple �lter

Sub-sample delay �lter

+

z-τ

ε[n]x[n]
-

+

z-τz-τ

ε[n]x[n]
-

+ ε[n]x[n]
-

a-3

a-2

a-1

a0

a1

a2

z-1 a3

+z-(τ-3)

++z-1

+
+z-1

++z-1

++z-1

++z-1

+

+ ε[n]x[n]
-

a-3

a-2

a-1

a0

a1

a2

z-1z-1 a3

+z-(τ-3)z-(τ-3)

++z-1z-1

+
+z-1z-1

++z-1z-1

++z-1z-1

++z-1z-1

+

Figure 4.2: Optimal cancellation filters. Top: for signals with integer
periodicities; bottom: a filter able to cancel non-integer periodicities.

optimal cancellation filter may also be able to remove a large proportion of the energy.

To differentiate between silent frames and single voice frames, a second feature is

added with a value related to each frame’s original energy. To avoid any issues arising

from global scaling of the original sound files, the entire waveform is normalized to

make the 98th percentile of the short-time Fourier transform magnitude equal to 1.

4. Solo voice detection 31

4.2 Classifier

The two-dimensional feature consists of the residual-to-original energy ratio and the

normalized absolute energy as a two-dimensional feature. These features are fed into

a simple Bayesian classifier to estimate the probability that each frame belongs to

each of three classes – solo voice, multiple voices, and silence. The model distribution

parameters for each class are calculated from a small amount of hand-labeled training

data (see section 4.3). The normalized absolute energy is fit with a Gaussian in the

log (dB) domain. The residual-to-original energy ratio, however, always lies between

0 and 1, and is heavily skewed toward 0 in the solo class. A Gaussian is thus a

poor fit, and no simple transformation will make all the classes appear Gaussian.

Instead, a Beta distribution is used for each category. The Beta distribution is

defined over [0, 1] and has two parameters to fit both the mode and spread of the

observed class-conditional values. The two features are treated as independent, so the

overall likelihood is of a particular observation frame under each class is calculated

by multiplying the Gaussian and Beta likelihoods together for that class. Simple ML

classification then is used to label according to the largest posterior.

Independent classification of each time frame can result in rapid alternation

between class labels, whereas real data changes state relatively infrequently. A

three-state hidden Markov model (HMM) with transition probabilities set to match

the empirical frame transition counts in the training data is used to model the actual

transition probabilities. The single most likely label sequence given this transition

model and the class-dependent likelihoods is calculated using the Viterbi algorithm1.

Figure 4.3 shows an example of label sequences before and after HMM smoothing,

compared to the ground-truth labels.

1Kevin Murphy’s Matlab implementation [37] is used for these calculations.

4. Solo voice detection 32

silence

multiple

solo

Raw classification

Correct
Incorrect

0 2 4 6 8 10

silence

multiple

solo

Time / s

Viterbi path

Correct
Incorrect

Figure 4.3: Example output from the cancellation-based classifier.
Top pane shows raw frame-level results, bottom pane shows the result
of HMM smoothing to remove rapid switching between states.

To trade precision for recall, the model can be biased to generate more or fewer

“solo” labels simply by scaling the solo model likelihood by a constant value. Smaller

likelihoods for the “solo” class result in fewer, more confidently “solo” labels. In this

application, assuming a very large underlying archive to search, having a low recall

(only a small portion of all possible solo regions are identified) in order to achieve

a higher precision (nearly all of the identified regions are, in fact, solo regions) is

probably acceptable.

4.3 Experiments and results

The data set consists of twenty 1 minutes samples that are hand-labeled as silence,

solo, or multiple voices. The samples are taken from a variety of professional folk

and classical recordings. About 28% of the frames in the data set contain a solo

4. Solo voice detection 33

voice. The other 72% of data frames contain multiple voices or silence. Ten samples

are used in calculating the distribution and Viterbi path parameters. The remaining

ten samples are used for testing.

The baseline classifier, as mentioned in the introduction, is a ‘generic’ audio

classifier based on the MFCC feature vectors commonly used in speech recognition

and that have also shown themselves very successful in many music classification

tasks [32, 8]. The first 13 cepstral coefficients, normalized so their means are zero

within each track to eliminate any fixed filtering effects, are used. The same Bayesian

classifier structure is used, but in this case each of the three classes is fit by a

full-covariance multidimensional Gaussian. Netlab is used for this modeling [38].

Figure 4.4 shows the results of the cancellation- and MFCC-based classifiers

on all the test data combined. The different precision/recall points are obtained

by manipulating the solo likelihood. Above about 90% precision, the MFCC and

cancelation systems perform approximately equally. At lower precision levels, however,

the cancelation algorithm has a much better recall. At 80% precision and below, the

cancelation algorithm has at least 10% higher recall than the MFCC system.

The cancellation system also exhibits more consistent performance. When

comparing the frame labeling accuracy on individual tracks in the test set, the

variance of the cancellation system performance is half that of the MFCC system.

This is probably because the pitch cancellation algorithm has many fewer learned

parameters (4 per class, compared to 104 per class for the MFCC) and thus is less

susceptible to over fitting.

4. Solo voice detection 34

0 20 40 60 80 100
0

20

40

60

80

100

Recall / %

P
re

c
is

io
n

 /
 %

Results from test data

Pitch cancelation features

Zero-mean MFCC features

Figure 4.4: Solo voice detection precision/recall trade off for the two
approaches.

4.4 Discussion

Although the least-squares optimal filter is used simply as a way to achieve precise

fitting of non-integer-period signals, it is interesting to consider what we get as a

result. The filter is optimized to minimize output energy, subject to the constraints

that (a) the first value of the impulse response is 1; (b) the next τ − 4 are zero; and

(c) the total length is τ + 3, where τ is the initial, coarse estimate of the dominant

period. This filter is not constrained to include an exact unit-gain, linear-phase

fractional delay, and in general energy will be minimized by a more complex response

subject to the constraints. The seven free parameters of the system allow a certain

error tolerance in the coarse period estimation as well as making it possible to match

an ideal sync fractional delay more accurately, but they also permit a more complex

range of solutions; solving for longer filter blocks would result in filters that deviate

increasingly far from our intention of a simple comb canceling a single period.

4. Solo voice detection 35

Results from running the optimal cancellation algorithm on a partial music track

can be seen in figure 4.5. Silence starts the track and then the full orchestra enters

(∼ 2 seconds). The orchestra drops out (∼ 6 seconds) for the soloist’s entrance

and then joins back in the mix (∼ 10 seconds). While the orchestra is playing, the

spectrum is quite dense and the comb filter cannot adapt to remove energy effectively.

As soon as the soloist enters, however, the filter takes advantage of the harmonic

structure to remove a significant portion of the energy, particularly in the lower,

higher energy bands. As mentioned previously, the ‘silent’ frames also have a low

original-to-residual ratio because the optimal cancellation algorithm is able to cancel

a large portion of the small amount of energy present. These silent frames, which

have almost no energy originally, are differentiated from the more energetic solo

frames by the second feature, which is related to the original energy.

As discussed in the introduction, the goal of this chapter was to find a way to

accurately and automatically identify solo excerpts within a large music corpus in

order to collect training data for solo source models. This cancellation system seems

very suitable for this task, and the next step would be to apply the system to a large

music archive to see what it can find. The ability of the system to detect periodicity

without a more detailed model of the particular voice to be found is both a strength

and a weakness – it’s useful to be able to detect solos for instruments not in the

training set, but it means that the returns from the solo detection data mining will

themselves need to be clustered and classified to build separate models for distinct

instruments.

4. Solo voice detection 36

Figure 4.5: Comparison of a wave file before (top) and after (middle)
filtering out the main pitch showing a significant reduction in energy
in the area labeled ‘solo’ voice.

4.5 Summary

Most recordings of western music are essentially polyphonic. However, in these

polyphonic recordings, there may be windows of true “solos.” These windows offer

unobstructed views of a voice that can be analyzed further.

This chapter addresses the issue of how to automatically find these solo passages.

The basic strategy is to do the best job possible of canceling a single voice in a

short time window. If the canceled energy accounts for a substantial portion of

the energy in that window, then the window is most probably monophonic. In

practice, essentially silent windows can sometimes appear to by monophonic using

4. Solo voice detection 37

this calculation, so the overall energy of the initial window is also needs to be taken

into account. This strategy works reasonably well, but can be noisy, so the estimates

are smoothed using an HMM.

38

Chapter 5

Frequency estimation

The end goal of this research is to characterize sung vowels in commercial recordings

which offer the promise of huge, environmentally valid data sets. Unfortunately, the

very thing that makes these recordings interesting, the fact that they are created

with artistic constraints rather than research constraints, makes them difficult to

work with. Most commercial recordings are polyphonic mixes of instruments and

voices. The previous chapter tried to get around this difficulty by searching for ‘solo’

voices hidden in the middle of otherwise polyphonic recordings. Unfortunately, there

simply is not much ‘solo’ time to find. So this chapter starts down a different path

where the polyphony found in most recordings is tackled head-on. The necessary

trick is to isolate the voice of interest in the recordings enough to calculate its most

important characteristics, namely the power in the voice overall and the relative

power in each harmonic of the voice.

Isolating the voice really boils down to fundamental frequency or pitch estimation.

Once the exact fundamental frequency is known, the frequencies of the harmonics

are also known. Assuming these harmonics are sufficiently isolated in frequency and

time, the strength of the harmonics can be estimated.

5. Frequency estimation 39

Finding notes in a polyphonic mix is difficult when there are no constraints on

the pitch, the number of notes, or the location of the notes in time. The question is

how to add constraints sensibly so that the problem becomes more manageable. A

large portion of recorded music is derived from a score of some sort. Many of these

scores can be found in electronic form, such as MIDI files. With this electronic score,

there is suddenly a lot of really good information about approximate fundamental

frequencies of the notes in the form of note names (A4, C3, etc.). If the score is

time-aligned with the recording, then there is also very good information on when

each notes occur. Furthermore, since scores are generally broken up by part, it is

easy to get all the notes associated with just the voice of interest.

The rest of this chapter covers two different approaches to using approximate

pitch and timing information from aligned electronic scores in order to accurately

estimate fundamental frequencies in polyphonic recordings. Section 5.1 covers the

basic signal model that both estimates use. Section 5.2 covers the noise model used

by the Bayesian estimator (section 5.3), which was first presented in [44]. This

estimator is reasonably accurate, but very slow. Section 5.4 covers a template-

matching approach that is much faster, but not as accurate. Section 5.5 describes the

experiments used to evaluate the two approaches. Section 5.6 discusses the results

from the experiments. Finally, section 5.7 summarizes the chapter.

5.1 Basic signal model

A harmonic signal can be written as a sum of harmonics,

x[n] =
∑
i∈H

hi[n] (5.1)

5. Frequency estimation 40

where H is the set of harmonic numbers (say {1, 2} for the first and second harmonics)

and each harmonic is a sinusoid1,

hi[n] =

 Ai cos (ωin+ φi) −N
2 + 1 ≤ n < N

2 − 1

0 n = N
2 ,

(5.2)

where Ai is the strength of harmonic i, ω is the fundamental frequency in radians

per sample, φi is the phase offset of harmonic i, and N is the window size.

In this analysis, hi[n] simply repeats outside of the range of the window n ∈

{−N
2 + 1, · · · N2 }, so hi[m] = hi[m+N]. In particular, the Fourier transforms are all

calculated over the range n = 0 · · ·N − 1.

To reduce side lobe effects, a Hann window is used,

w[n] =
1

2
·
(

1 + cos

(
2πn

N

))
, (5.3)

so

xw[n] =
∑
i∈H

(w[n] · hi[n]) =
∑
i∈H

hi,w[n]. (5.4)

Moving to the frequency domain next makes sense because it separates out the

harmonics. Consider a set of indexes

kh,i ∈ {k0,i − d, · · · , k0,i, · · · , k0,i + d} (5.5)

centered around the harmonic’s nominal frequency ω0

k0,i = round

(
ω0Ni

2π

)
, (5.6)

1A zero point is added to the definition of hi[n] to make the expression for Hi[k] (equation (5.7))
simpler. Note that the windowing function, equation (5.3), is also zero at n = N

2
, so artificially

adding a zero to hi[n] here has no actual effect on the final windowed signal.

5. Frequency estimation 41

where i is the harmonic number and d is some reasonable range around k0,i. In this

range, Xw[kh,i] is dominated by the one harmonic in question and is essentially equal

to Hi[kh,i].

In the Fourier domain, calculated from n = 0 to n = N − 1, the harmonic is

Hi[k] =
Ai
2

(
ejφiFN

2
−1

(
2πk

N
− ωi

)

+ e−jφiFN
2
−1

(
2πk

N
+ ωi

))
,

(5.7)

where

FM (θ) = 2 cos

(
θ · M

2

)
sincM+1

(
θ

2

)
− 1 (5.8)

and sinc is a periodic sinc function,

sincM (θ) =
sin(θM)

sin(θ)
. (5.9)

The Hann window has a simple 3-point Fourier Transform, so the windowed

harmonic is simply

Hw,i[k] =
1

2
Hi[k] +

1

4
Hi[k − 1] +

1

4
Hi[k + 1]. (5.10)

5.2 Noise model

Around each harmonic, the signal is corrupted by noise,

Yw[kh,i] = Hw,i[kh,i] +Nw,i[kh,i] (5.11)

where Yw[kh,i] is the Fourier transform of the full input around harmonic i and

Nw,i[kh,i] is the noise around harmonic i.

5. Frequency estimation 42

To derive Nw,i[kh,i], start with broad-band white noise in the time domain,

ni[n] ∼ N(0, σ2
n,i). (5.12)

In the Fourier domain, it is easier to notate Ni[k] as a vector, Ni, and so

Pr (Ni) = Pr (< (Ni)) · Pr (= (Ni)) (5.13)

because the real and imaginary parts of Ni are independent. Furthermore,

Pr (< (Ni)) ∼ N
(
0, σ2

n,i ·ΣR

)
(5.14)

and

Pr (= (Ni)) ∼ N
(
0, σ2

n,i ·ΣI

)
, (5.15)

where ΣR and ΣR are both N ×N dual diagonal matrices offset by one row and

one column. Using zero-indexing, where k is the row and l is the column,

ΣR(k, l) =



N if k = l = 0 or N
2

1
2N if k = l, k 6= 0, k 6= N

2

1
2N if k = N − l, k 6= 0, k 6= N

2

0 elsewhere

(5.16)

and

ΣI(k, l) =


1
2N if k = l, k 6= 0, k 6= N

2

−1
2N if k = N − l, k 6= 0, k 6= N

2

0 elsewhere.

(5.17)

5. Frequency estimation 43

For the windowed noise, Nw,i, the real and imaginary parts are similarly inde-

pendent and

Pr (< (Nw,i)) ∼ N
(
0, σ2

n,i ·BΣRB
T
)

(5.18)

and

Pr (= (Nw,i)) ∼ N
(
0, σ2

n,i ·BΣIB
T
)

(5.19)

where B is an N ×N matrix,

B(k, l) =


1
2 if k = l

1
4 if k = l − 1 or l + 1 (mod N)

0 elsewhere.

(5.20)

Nw,i only of interest around harmonic i. To calculate just Pr(Nw,i[kh,i]), simply

use the submatrices ΣR(kh,i, kh,i) and ΣI(kh,i, kh,i) as the covariances of the real

and imaginary parts of the noise. Thus, the noise model is a narrow-band piece of

broad-band white Gaussian noise.

5.3 Bayesian estimation

This estimator calculates a maximum a posteriori (MAP) estimate of the pitch, ω.

Because there is no reasonable way of knowing in advance the harmonic strengths,

Ai∈H , and phases, φi∈H , these are also estimated in addition to the noise parameters,

σn,i∈H . So,

θ̂MAP = argmax
θ

Pr (θ|Yw, ω0) , (5.21)

where θ is a vector of parameters, [ω, Ai∈H , φi∈H , σn,i∈H], Yw is the Discrete Fourier

Transform (DFT) of the windowed input, and ω0 is the nominal pitch in the current

window.

5. Frequency estimation 44

5.3.1 Defining probabilities

Using Bayes,

Pr (θ|Yw, ω0) ∝ Pr (Yw|θ, ω0)Pr (θ|ω0) . (5.22)

The prior, Pr (θ|ω0), needs to capture the idea that the pitch of the current window,

ω, should be close to the nominal pitch from our score, ω0, so assign

Pr (θ|ω0) ∝ Pr (ω|ω0) ∼ N(ω0, σ
2
ω) (5.23)

where σ2
ω is the variance of the pitch around ω0.

Returning to equation (5.22), and assuming that Yw only depends on the nominal

pitch ω0 via the actual pitch ω, define

Pr (Yw|θ, ω0) =
∏
i∈H

Pr (Yw[kh,i] | Ai, φi, σn,i, ω) . (5.24)

This essentially combines the information from different harmonics by assuming that

the conditional probabilities associated with each harmonic, Pr (Yw[kh,i] | Ai, φi, σn,i, ω),

are independent. Since the signal spectrum Hi[kh,i] is completely specified by the

givens in equation (5.24), Nw,i[kh,i] = Yw[kh,i]−Hi[kh,i] can be calculated. So

Pr (Yw[kh,i] | Ai, φi, σn,i, ω) = Pr (Nw,i[kh,i] | σn,i) (5.25)

where Pr (Nw,i[kh,i] | σn,i) is specified in section 5.2.

5.3.2 Finding the maximum

Finding the maximum of equation (5.21) directly is difficult. The Nelder-Mead

Simplex Method [31] as implemented by Matlab’s fminsearch() is used here to search

5. Frequency estimation 45

for a maximum, but any suitable maximization algorithm could be used. The main

difficulty lies in seeding the search algorithm sufficiently close to the global optimum

to avoid local maxima.

The first step is to calculate approximate values for ω and Ai∈H . Note that

Hi[kh,i] ≈
Ai
2
FN

2
−1

(
2πk

N
− ωi

)
ejφi , (5.26)

and so

Hw,i[kh,i] ≈ ejφi
(
Ai
4
FN

2
−1

(
2πk

N
− ωi

)
+
Ai
8
FN

2
−1

(
2π(k − 1)

N
− ωi

)
+
Ai
8
FN

2
−1

(
2π(k + 1)

N
− ωi

)) (5.27)

using equation (5.10). Since |Xw[kh,i]| ≈ |Hw,i[kh,i]| there is an expression which is

only a function of ω and Ai∈H . Also note that near the peak values of |Yw[k]|,

|Yw[kpeak,i]| ≈ |Xw[kpeak,i]|, (5.28)

where kpeak,i consisted of the two largest values next to each other in |Yw[kh,i]| for

each harmonic i. The initial estimates are thus a best fit of ω and Ai∈H to the

approximation in equation (5.28).

Initial phases φi are simply the phases of the peak value of Yw[kh,i],

φi ≈ ∠Yw[argmax
k∈kh,i

|Yw[k]|]. (5.29)

For the estimate of σn,i, note that in equations (5.18) and (5.19), the noise

covariance scales linearly with σ2
n,i. The estimates of ω, Ai∈H , and φi∈H are not

5. Frequency estimation 46

always good enough to calculate Nw[kh,i] accurately from Yw[kh,i], particularly around

the peaks. So, instead estimate each σ2
n,i from the non-peak values of Yw[kh,i],

σ2
n,i ≈

∑
i∈kh,i\kpeak,i |Nw[i]|2∑

i∈kh,i\kpeak,i (BΣRBT) +
∑

i∈kh,i\kpeak,i (BΣIBT)
. (5.30)

Thus, for a given window of the original signal, the initial estimates of ω and Ai∈H

are derived using equations (5.26) to (5.28), φi∈H is derived from equation (5.29),

and σn,i∈H is derived using equation (5.30). These values are passed to the optimizer

to maximize equation (5.22), as defined in equations (5.23) to (5.25).

5.4 Template estimation

The main problem with the Bayesian estimator is that the optimization step simply

takes a long time. This template-matching algorithm is an order of magnitude faster,

although it is not as accurate.

In the frequency domain, a harmonic signal is essentially a set of peaks. This

algorithm slides a template, also composed of peaks, over the DFT of the signal to

find the best match.

The template consists of a series of Gaussian-shaped peaks

Tω[k] =
1

B

∑
i∈H

(Gi,ω[k]) (5.31)

where B is a normalizing constant so that
∑

k T [k] = 1 and Gi[k] is a peak centered

around ωi,

Gi,ω[k] = exp

{
−
(
k − ωiN

2π

)2
2σ2

}
, (5.32)

where ω is the fundamental frequency of the template and σ controls the width of

the peaks.

5. Frequency estimation 47

Yw[k], the DFT of the signal with noise, is symmetric because yi[n] is real. So

the fit between the template and the Yw[k] only needs to be calculated over half the

DFT,

FIT (ω) =
∑
khalf

|Yw[k] · Tω[k]| , (5.33)

where khalf =
{
k | 0 ≤ k < N

2

}
.

To find the best fundamental frequency ω, equation (5.33) must be maximized,

ω̂ = argmax
ω

FIT (ω). (5.34)

Recall that ω0, the nominal note frequency from the electronic score, is known and

should be near ω, the true fundamental frequency. So the simplest way to find ω̂ is

to try out a reasonable number of frequencies near ω0 and take the best value.

5.5 Experiments and results

Experiments in this section are performed on real and simulated data. In all cases,

the window size is set to 4096 (93 ms at 44.1 kHz) and the distance between successive

windows is set to 1024 (23 ms) for a 75% overlap. For the bayesian estimates, the

first and third harmonics are used to calculate the fundamental frequency on the

multi-track data (section 5.5.2). The third harmonic is used rather than the second

to reduce the chance that the harmonic because the second harmonic is only an

octave away, which is a common musical interval. The third harmonic, while still low

enough to contain a reasonable proportion of the energy, should also hopefully be less

likely to be near interferring partials from other lines. The fundamental frequency’s

variance parameter, σ2
ω (equation (5.23)), is set to one third of 2 half steps down from

the nominal frequency. This essentially means that the prior over the fundamental

5. Frequency estimation 48

frequency is nearly zero more than 2 half steps away from the nominal frequency. For

the template estimates, which take essentially the same amount of time regardless of

the number of harmonics used, the first three harmonics are used on the multi-track

data. The template’s σ parameter, which controls the width of the template peaks,

is set to 50 cents down from the nominal note frequency derived from the score.

The search range for the template function starts 2 half steps below the nominal

fundamental frequency and ends the same number of Hz above the nominal frequency.

Within this search range, 100 linearly-spaced frequencies are tested.

5.5.1 Experiments with simulated data

One of the key arguments for using multiple harmonics is that it allows the algorithms

to correctly estimate pitch even when one or more harmonics are obscured. To test

this hypothesis, simulated data is generated with two harmonics. The power in each

harmonic (0.5 · A2
i) is varied so the total signal power remains constant while the

power moves incrementally from the first harmonic to the second. At each harmonic

power level, 100 test windows are generated with a random fundamental frequencies

near 440 Hz, the nominal fundamental frequency given to each estimator. Each

window has added broadband white Gaussian noise so the composite signal to noise

ratio is -20 dB. Each noisy window is then evaluated by each estimator three times,

once with both harmonics, once with just the first harmonic, and once with just the

second harmonic.

Figure 5.1 shows the results of the test using the Bayesian estimator. As can be

seen, the tests using a single harmonic struggle when that harmonic disappears into

the noise, but combining the harmonics provides a consistently good estimate. The

same pattern is true for the template estimator (figure 5.2), although the estimates

are not as good overall as the Bayesian estimates.

5. Frequency estimation 49

0 0.01 0.02 0.03 0.04
0

10

20

30

40

harmonic power (0.5 Ai
2)

m
ed

ia
n

er
ro

r(c
en

ts
)

Combined harmonics (Bayesian estimation)

both harm.
just harm. 1
just harm. 2

00.04 0.010.03 0.02
2nd harm.
1st harm.

Figure 5.1: The Bayesian estimate on two harmonics as power shifts
from the first harmonic to the second. The blue line with crosses
represents the results using both harmonics for frequency estimation,
the green line with circles represents the results using just the first
harmonic, and the red line with triangles represents the results using
just the second harmonic.

5.5.2 Experiments with multi-track data

Multi-track recordings, where a single line is recorded on each track, offer a simple

way to get truth data for pitch tracking in polyphonic recordings. For these tests,

the data consists of a multi-track recording2 [17] of the opening to Guillaume de

Machaut’s Kyrie in Messe de Nostre Dame (c. 1365). Each of the four voices has

been recorded individually and has been labeled with accurate start and stop times

for each note. Overall, there are about 1000 windows in notes for each track.

YIN [16], a well known fundamental frequency estimation algorithm, has been

run over each individual tracks to obtain truth data. For comparison purposes, the

Bayesian and template algorithms are run over the individual tracks as well as on

2Thanks to Johanna Devaney for providing these recordings.

5. Frequency estimation 50

0

10

20

30

40
m

ed
ia

n
er

ro
r(c

en
ts

)
Combined harmonics (template estimation)

both harm.
just harm. 1
just harm. 2

0 0.01 0.02 0.03 0.04

harmonic power (0.5 Ai
2)

00.04 0.010.03 0.02
2nd harm.
1st harm.

Figure 5.2: The template estimate on two harmonics as power shifts
from the first harmonic to the second. Once again, the blue line
with crosses represents the results using both harmonics for frequency
estimation, the green line with circles represents the results using just
the first harmonic, and the red line with triangles represents the results
using just the second harmonic.

the full mix. The YIN algorithm actually permits specification of a frequency search

range, so YIN is also run on the full mix for comparison using the same guided search

range that the other algorithms use.

Figure 5.3 shows histograms of the frequency estimation errors relative to the

truth data from YIN and table 5.1 summarizes these results. The Bayesian estimator

agrees substantially with YIN when run on the individual vocal lines (blue line). In

93% of windows, the Bayesian estimator is within 10 cents of YIN’s frequency. When

run on the complete mix (green line), the Bayesian estimator still manages to get

the frequency within 10 cents of the correct frequency 69% of the time.

The template algorithm is less accurate. When run on the individual lines, it is

only within 10 cents 86% of the time (purple line). That being said, the granularity

5. Frequency estimation 51

of the template frequency estimate is on the order of a few cents, so some of these

errors are simply rounding errors. When run on the mix, the template algorithm

still fairs worse than the Bayesian estimator and is only within 10 cents in 58% of

windows (black line).

Not unsurprisingly, the YIN estimate is way off in the multi-track environment.

Given that YIN is only designed to work on single pitches, it is somewhat surprising

that YIN worked at all. An obvious base line for comparison is to simply guess

the nominal note frequency as the fundamental frequency in every window. This

f0 estimator only gets within 10 cents of the correct frequency in 4% of windows,

where as YIN gets 21% of windows. So YIN is clearly able to find the fundamental

frequency in at least some cases.

Figure 5.4 shows a 5 second excerpt from the recording. The top plot shows a

spectrogram of the triplum or top line by itself with the YIN truth data overlaid in

red. The bottom plot shows a spectrogram of the full mix with the YIN (red), Bayes

(blue), and template (purple) full-mix estimates. For the most part, the estimates

are actually all very close initially. Even the vibrato at about 8.5 seconds is traced

out. But then at about 9 seconds, YIN starts to struggle. Note that when YIN fails

to find the correct harmonic, it fails in an unpredictable fashion. In contrast, the

Bayes and template algorithms seem to fail by finding the wrong harmonic. For the

Bayes estimator this is clear just after 9 seconds, and for the template estimator

after 9.5 seconds.

5. Frequency estimation 52

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

200

400

600

800

1000

Cents from correct frequency

N
um

be
r o

f w
in

do
w

s
in

 b
in

Histograms of frequency estimation errors

Prob (single)
Prob (mix)
Template (single)
Template(mix)
Yin (mix)

Figure 5.3: Histogram of frequency estimation errors relative to the
truth data from YIN. Note that substantial counts lie outside of the
range of this plot. Each estimate is run on the individual lines and the
full mix.

RMSE (Hz) RMSE (cents) % within % within
10 cents 50 cents

Bayes (single) 0.743 4.77 92.9 98.9
Bayes (mix) 4.15 24.8 69.2 91.4
Template (single) 0.823 5.19 86.4 99.7
Template (mix) 3.6 21.1 58 92.6
YIN (mix) 31.1 162 21 45.9
f0 8.45 49.7 3.88 52.4

Table 5.1: Summary of estimate results from multi-track experiments.
The results are relative to the truth data generated by YIN from
the single track recordings. The Bayes and template estimate errors
are given for both the individual lines and the full mix. The f0

estimate basically uses the nominal note frequency as the estimate in
all windows. The high errors for this estimate are partly due to the
fact that the singers are all slightly flat relative to the A440 tuning
standard, although they are in tune relative to one another.

5. Frequency estimation 53

fre
qu

en
cy

 (H
z)

time (s)

Spectrogram of triplum track: YIN (red)

5 6 7 8 9 10
200

300

400

500

600

700

dB

10

20

30

40

time (s)

fre
qu

en
cy

 (H
z)

Spectrogram of combined trackes:
YIN (red), Bayes (blue), Template (purple)

5 6 7 8 9 10
200

300

400

500

600

700

dB

10

20

30

40

Figure 5.4: Frequency estimates against a spectrogram of a 5 second
excerpt. The top plot shows the spectrogram of a the triplum line
with the YIN truth data. The bottom plot shows the spectrogram of
the full mix along with the YIN, Bayes, and template estimates.

5. Frequency estimation 54

5.6 Discussion

In table 5.1, the template estimator actually has a slightly lower root mean square

error (RMSE) than the Bayes estimator. This is simply because the Bayesian

estimator has the freedom to converge on frequencies far away from the nominal

note frequency during optimization. These really far off estimates do not happen

very often, but they increase the mean error. Fortunately, these extreme outliers

are easy to identify and ignore. In these rare cases, either the window could be

completely ignored or some other estimate, such as the nominal note frequency, could

be substituted.

Otherwise, the clear winner here is the Bayesian estimator. This is not terribly

surprising since it incorporates a lot of information into its estimates including

local noise, harmonic phase, and amplitude. In comparison, the template matching

algorithm is very crude and so the fact that the template matching algorithm works

less well is not unexpected.

Having said that, the template estimator has some major points in its favor. First

of all, it is an order of magnitude faster to run than the Bayesian estimator. What

takes a day with the Bayesian estimator takes an hour with the template estimator,

making the template estimator much more practical for larger data sets. Secondly,

the Bayesian estimator does not scale well to multiple harmonics. Scaling up to three

harmonics from two makes the optimization routine much less likely to converge.

The template algorithm, however, takes more or less the same time whether it uses

1 harmonic or 12. So if higher harmonics are expected to be of use, the template

algorithm can easily take advantage of these harmonics. For example, if a singer is

performing with orchestral accompaniment, then using harmonics that fall in the

singer’s formant, a well known peak in the voice at around 3 kHz [46], may improve

estimation.

5. Frequency estimation 55

So the decision to use the Bayesian estimator or template estimator really depends

on the task. The Machaut recording used to test the estimators is actually quite

difficult. Even though there are only four parts, these four parts are more or less

equally loud and the parts are relatively close together. This means that that

interfering harmonics are a very real problem because they are nearby and they

are prominent. Furthermore, the voices are all about a quarter step flat relative to

the A440 tuning standard, which makes it difficult for the estimators to distinguish

between the correct but flat note and a nearby note’s harmonic that looks like it

could be the correct note, but sharp. In this case, using the Bayesian estimator may

make sense because of its generally higher accuracy.

Some data sets, however, are a great deal easier. If the task is to pull out a

soloist against background accompaniment, the solo voice will tend to be much more

prominent and louder than the accompaniment. In this case, the template estimator

is probably a better choice because it will do a reasonable job of finding the soloist

and it will be much more efficient than the Bayesian estimator. This is indeed the

case for a Gilbert and Sullivan data set used in chapters 8 and 9, where the estimator

is needed to pull out a soprano soloist. So for this data set, the template estimator

will be used.

Ideally, it would be nice to compare these two algorithms to prior work. Un-

fortunately, this is difficult to do because there aren’t really any algorithms that

have tried to do guided frequency estimation before. A somewhat similar task is

the Music Information Retrieval Evaluation eXchange (MIREX) 2010 audio melody

extraction task3. Here, the task is to report the melodic pitch in every frame that

contains melody. One statistic reported is the percentage of frames in which the

3The task is described at http://www.music-ir.org/mirex/wiki/2010:Audio_Melody_

Extraction. The results are reported at http://www.music-ir.org/mirex/wiki/2010:MIREX2010_
Results

http://www.music-ir.org/mirex/wiki/2010:Audio_Melody_Extraction
http://www.music-ir.org/mirex/wiki/2010:Audio_Melody_Extraction
http://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results
http://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results

5. Frequency estimation 56

reported melodic pitch is within 50 cents of the truth data. The five algorithms

tested ranged from 61.8% to 89.6% accurate, depending on the data set and the

algorithm. These are somewhat below the 91.4% (Bayes) and 92.6% (template)

reported in table 5.1, but then then the comparison is not completely straightforward.

Apart from the fact the the MIREX competetion used completely different data,

the algorithms described in this thesis use score information, whereas the melody

extraction algorithms obviously have to pick a note frequency without this guidance.

5.7 Summary

Music recordings offer the promise of large, environmentally valid data sets. Since

Western music is almost entirely polyphonic, the best approaches to using music

recordings have to be willing to deal with polyphony. This chapter addresses the

problem of exact frequency estimation in a polyphonic context. Unconstrained

polyphony is difficult to deal with, so this chapter takes the approach of using

aligned electronic scores to provide good information on the approximate pitch being

performed.

Two different algorithms are presented which hone in on the exact pitch in a

frame using the note frequency as a guide. The first approach is Bayesian. It finds

the best frequency by maximizing a probability distribution whose prior is a function

of the note frequency. The second approach finds the best frequency by finding the

best match to a frequency template. In both cases, multiple harmonics are used in

order to improve the pitch estimate.

Both algorithms have their strengths. The Bayesian algorithm is somewhat more

accurate, but also much more time consuming. The template algorithm is much

simpler and faster, but not as accurate. For difficult cases, the Bayesian approach’s

higher accuracy may be important. In less difficult cases, where the voice whose

5. Frequency estimation 57

frequency is being estimated is quite prominent, the speed of the template algorithm

may be more important. For the remainder of this thesis, the template algorithm is

used because it provides sufficient accuracy for the data sets used and much greater

speed.

58

Chapter 6

Initial harmonic amplitude

estimation

In the previous chapter, the best frequency estimates for a short window in a note

was estimated based on the note’s nominal pitch using two approaches. The Bayesian

approach actually estimated the harmonic strengths as well as the fundamental

frequency. Unfortunately, this approach is very time consuming and does not scale

well to be used with many harmonics. If most of the interesting information is in

harmonics under about 4000 Hz, this translates to about 9 harmonics for A4, which

would simply require far too many iterations to converge. The template approach,

in contrast, is much faster, but only estimates the fundamental frequency and does

not even attempt to estimate the harmonic strengths.

So, some new technique is needed to estimate these harmonic strengths. The

amplitude estimates promise to be more difficult than the frequency estimates because

there is less information to work with. The frequency estimates rely on multiple

harmonics to inform the estimate of the fundamental frequency. So the relatively

short 23 ms windows and their attendant poor frequency resolution in the Fourier

6. Initial harmonic amplitude estimation 59

domain are less of a problem than they might be otherwise. In contrast, there is

nothing in particular linking the amplitude estimate of one harmonic to the amplitude

estimate of another harmonic and so they must all be estimated separately.

The rest of this chapter is organized as follows. Sections 6.1 to 6.3 cover three

different methods for estimating the harmonic amplitudes, section 6.4 covers experi-

ments and results, section 6.5 discusses the results of the experiments, and section 6.6

summarizes the chapter.

6.1 Energy estimation

This method estimates the magnitude of a harmonic from its energy. Consider a

simple sinusoid,

z(t) = A cos (2πft+ φ) , (6.1)

where A is the amplitude, f is the frequency in Hz, and φ, the phase, is pulled

uniformly at random from (−π, π]. The average energy of z(t) is A2

2 :

Eφ
(
z(t)2

)
= A2Eφ

(
cos(4πft+ 2φ) +

1

2

)
(6.2)

=
A2

2
+A2Eφ (cos(4πft+ 2φ)) (6.3)

=
A2

2
. (6.4)

If z(t) is discretized and windowed with a rectangular window of length N , then

1

N

∑
n

z[n]2 ≈ A2

2
, (6.5)

as long as the window is sufficiently long and the sampling rate is sufficiently high.

6. Initial harmonic amplitude estimation 60

Recall from section 5.1 that the model for a harmonic signal is

x[n] =
∑
i

hi[n] (6.6)

where each harmonic is modeled as a sinusoid with frequency ωi in radians per

second for harmonic i,

hi[n] =

 Ai cos (ω · i · n+ φi) −N
2 + 1 ≤ n < N

2 − 1

0 n = N
2 ,

(6.7)

So, the energy in a single harmonic in a rectangular window of length N is approxi-

mately ∑
n

hi[n]2 ≈ NA2
i

2
(6.8)

and, using Parseval’s equality,

∑
k

|Hi[k]|2 ≈ N2A
2
i

2
(6.9)

where Hi[k] is the DFT of hi[n]. So, one approximation for Ai is

Ai ≈
1

N

√
2
∑
k

|Hi[k]|2. (6.10)

Except, of course, that the harmonics are added together so |Hi[k]| is not directly

available. But recall from equation (5.7) that the DFT of hi[n] is essentially the sum

6. Initial harmonic amplitude estimation 61

of two periodic sinc functions weighted by Ai,

Hi[k] =
Ai
2

(
ejφiFN

2
−1

(
2πk

N
− ωi

)

+ e−jφiFN
2
−1

(
2πk

N
+ ωi

))
,

(6.11)

where

FM (θ) = 2 cos

(
θ · M

2

)
sincM+1

(
θ

2

)
− 1. (6.12)

Notice that most of the energy in equation (6.11) is centered around 2πk
N ≈ ωi and

2πk
N ≈ −ωi. Sticking with just the sinc function in the positive frequencies, for

kh,i = {k|k ≈ ωiN
2π },

∑
k∈kh,i

|Hi[k]|2 ≈ 1

2

∑
k

|Hi[k]|2 ≈ N2A
2
i

4
. (6.13)

So,

Ai ≈
1

2N

√ ∑
k∈kh,i

|Hi[k]|2 ≈ 1

2N

√ ∑
k∈kh,i

|X[k]|2. (6.14)

The question is how to pick kh,i to get as much energy as possible from the current

harmonic without getting too much energy from neighboring harmonics. One solution

is to simply look half the fundamental frequency on either side of the harmonic. For

example, if the fundamental frequency is 400 Hz, look at the 200 - 600 Hz range for

the first harmonic, the 600 - 1000 Hz range for the second harmonic, etc. In other

words,

kh,i =

{
k |ωi− ω

2
≤ 2πk

N
≤ ωi+

ω

2

}
. (6.15)

6. Initial harmonic amplitude estimation 62

Therefore, if Y [k] is the DFT of a window of the actual data, the final estimate for

each Ai is

Âi =
1

2N

√ ∑
k∈kh,i

|Y [k]|2. (6.16)

Now, one obvious problems with equation (6.16) is that it will include a lot of

noise energy because the estimate uses the absolute value of the DFT. The best fit

estimate in section 6.2 tries to address this issue.

6.2 Best fit estimation

A best fit approach can try to get around some of the limitations in the energy-based

approach. Recall that in section 5.1, the harmonic model is windowed using a Hann

window, rather than a square window, which yields,

Xw[k] =
∑
i

(
1

2
Hi[k] +

1

4
Hi[k − 1] +

1

4
Hi[k + 1]

)
. (6.17)

This time, again look at the positive frequencies kh,i = {k|k ≈ ωiN
2π }. Once again,

note that only one of the two sinc functions in equation (6.11) has much energy here,

so

Hi[k ∈ kh,i] ≈
Ai
2
ejφiFN

2
−1

(
2πk

N
− ωi

)
(6.18)

and taking the absolute value yields

|Hi[k ∈ kh,i]| ≈
Ai
2

∣∣∣∣FN
2
−1

(
2πk

N
− ωi

)∣∣∣∣ . (6.19)

6. Initial harmonic amplitude estimation 63

Since the energy in the other harmonics is also nearly zero around the current

harmonic,

|Xw[k ∈ kh,i]| ≈
Ai
2

∣∣∣∣∣
(

1

2
FN

2
−1

(
2πk

N
− ωi

)
+

1

4
FN

2
−1

(
2π(k − 1)

N
− ωi

)

+
1

4
FN

2
−1

(
2π(k + 1)

N
− ωi

))∣∣∣∣∣,
(6.20)

combining equations (6.17) and (6.19). Ai is now simply a multiplier and everything

else can be calculated from the known frequency estimate, ω, for the window. If

Yw[k] is the DFT of a window from the actual recording, windowed using a Hann

window, then

Ai ≈
|Yw[k ∈ kh,i]|
|Xn[k ∈ kh,i]|

(6.21)

where |Xn[k]| is simply equation (6.20) without Ai.

Now, Ai could be estimated from the single k closest to the harmonic, but

averaging usually gives a better estimate,

Âi =
1

C

∑
k∈kh,i

|Yw[k]|
|Xn[k]|

, (6.22)

where C is the number of indexes in kh,i. But since the magnitude of the DFT drops

off reasonably quickly around the harmonic frequency, a weighted mean makes more

sense,

Âi =
1∑

k∈kh,i w[k]

∑
kh,i

(
|Yw[k]|
|Xn[k]|

· w[k]

)
(6.23)

where the weights w[k] are proportional to the expected strength of the signal at k,

w[k] =
|Xn[k]|∑
kh,i
|Xn[k]|

. (6.24)

6. Initial harmonic amplitude estimation 64

Once again, the question is how to pick kh,i. The weights are nearly zero more

than a couple of indexes away from the harmonic frequency, ωiN2π , so picking the three

ks closest to the harmonic frequency allows the estimate to use the most energetic

components of the DFT.

This best fit estimate should have less of a noise problem that the energy estimate.

The three largest DFT values near the harmonic frequency should have the highest

signal to noise ratios (SNRs) and therefore the noise should be less of a problem.

6.3 Heterodyne solution

Taking a completely different approach based on the time domain signal, recall once

more that the harmonic model is essentially a simple sinusoid over a short window,

but for the entire time span of the note, the frequency, ω[n], is a function of time

and so

hi[n] = Ai[n] cos

(
n∑
k=0

(ω[k]i) + φi

)
. (6.25)

Forming the analytic signal for hi[n] yields

ha,i[n] = hi[n] + jĥi[n] = Aie
jφiexp

{
j

n∑
k=0

(ω[k]i)

}
, (6.26)

where ĥi[n] is the Hilbert transform of hi[n]. To demodulate,

hd,i[n] = ha,i[n] · exp

{
−j

n∑
k=0

(−ω[k]i)

}
= Aie

jφi . (6.27)

Since the amplitudes are strictly positive,

Ai = |hd,i[n]|. (6.28)

6. Initial harmonic amplitude estimation 65

Now, the actual signal is made up of the sum of many harmonics,

x[n] =
∑
i

hi[n] (6.29)

and so the analytic signal will be

xa[n] = x[n] + jx̂[n] =
∑
i

(
Aie

jφiexp

{
j

n∑
k=0

(ω[k]i)

})
. (6.30)

If the goal is to estimate the amplitude of harmonic `, A`[n], then

xd,`[n] = xa[n] · exp

{
−j

n∑
k=0

(ω[k]`)

}

= A`e
jφ` +

∑
i 6=`

(
Aie

jφiexp

{
j

(
n∑
k=0

(ω[k]i− ω[k]`)

)})
.

(6.31)

Note that only the desired harmonic, h`[n] has been moved to base-band. So a simple

low pass filter will isolate A`[n] and the final estimate will be

A`[n] ≈ |lowpass(yd,`[n])|, (6.32)

where yd,`[n] is the actual signal demodulated for harmonic `.

There is one small problem with equation (6.32), namely that it requires knowledge

of the fundamental frequency, ω[n]. Recall that the frequency estimates from

section 5.4 are made on a per-window basis. Since the frequency does not change

much from window to window, ω[n] can be reasonably estimated by interpolating

between window values using a cubic spline for smoothness.

6. Initial harmonic amplitude estimation 66

6.4 Experiments and results

Getting truth data for amplitudes from actual recordings would be difficult, so the

experiments are all performed on simulated data with added white Gaussian noise.

For both tests, a single five-second note is synthesized with a 44.1 kHz sampling

rate. Since the amplitude estimates are calculated on a per-window (energy, best-fit)

or per element (heterodyne) basis, the estimates are essentially independent of each

other across time and so one long note is equivalent to many shorter notes.

In order to have at least a little frequency modulation, the frequency track for

the note is a ramp around the nominal frequency, A4 = 440 Hz. Starting from a half

step below A4, 415 Hz, the frequency increase linearly to the same distance above

A4, 465 Hz (figure 6.1).

The note is synthesized with eight harmonics and the amplitude of each harmonic

is piece-wise linear, with the junctions at the second marks (figure 6.1). The

magnitudes of the junction points are chosen uniformly at random between 0.5 and

1.

The window size is set to 1024 elements (23 ms) and the distance between

consecutive windows is set to 512 elements (12 ms) for the energy and best fit

estimations. The heterodyne algorithm works on the entire time domain signal rather

than on individual windows, but needs fundamental frequency estimates, which are

provided on a per-window basis. The heterodyne algorithm also requires a low-pass

filter. For this experiment, a linear phase filter with 601 taps (14 ms) and a cutoff of

fifth the minimum voice pitch is used.

To make comparisons with the other estimates easier, the heterodyne amplitude

estimates are only examined in the middle of each window. Five seconds of 23-ms

windows with 8 amplitudes and 12 ms between estimates works out to about 3400

amplitude estimates for evaluation.

6. Initial harmonic amplitude estimation 67

0 1 2 3 4 5
410

420

430

440

450

460

470
Frequency track

fre
qu

en
cy

 (H
z)

time (s)

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1
Amplitude tracks

m
ag

ni
tu

de

time (s)

Student Version of MATLABFigure 6.1: Note frequency and harmonic amplitudes. The top
plot shows the note frequency ramp and the bottom plot shows the
piece-wise linear harmonic amplitudes.

6.4.1 True frequency experiment

In the case of real data, the fundamental frequency would first need to be estimated,

but for this initial test, all the algorithms are given the true fundamental frequencies

for the middle of each window. Figure 6.2 shows the percent error averaged over

6. Initial harmonic amplitude estimation 68

all windows and all harmonics at different SNRs. There is essentially no difference

between the three methods, which have about 15% error at an SNR=-3 dB and

about 7% error at SNR=3 dB. Although the energy estimate appears to perform a

little better than the other methods, the difference is well within a single standard

deviation of the means of the errors. In the absense of noise (right-most points),

the heterodyne and best-fit solutions have very little error. The energy solution is

off by about 1.5%, which may be at least partly due to the fact that it consistently

underestimates the energy for each harmonic since it only calculates energy over a

limited frequency range.

-3 -1.5 0 1.8 3 inf
0

5

10

15

20

25

30

SNR (dB)

m
ea

n
er

ro
r (

%
)

Amplitude estimate errors (true frequency)

best fit
energy
heterodyne

Figure 6.2: Amplitude estimation results using the true frequency.
Each line represents the mean, with the vertical bars indicating one
standard deviation. Results are reported as a percentage of the average
magnitude of the harmonic amplitudes. The ‘inf’ or infinite SNR case
is the test signal without noise.

6. Initial harmonic amplitude estimation 69

6.4.2 Estimated frequency experiment

In this experiment, the fundamental frequency is estimated in each window using

the template matching solution described in section 5.4 so the experiment is more

realistic. For this frequency estimation, the window size is 1024 element (23 ms at

44.1 kHz sampling rate), the hop size between windows is 512 (12 ms), the first three

harmonics are used, and 100 linearly spaced frequencies tested between two half steps

below the nominal note frequency and the same number of Hz above. Figure 6.3

shows that on the whole, the frequency estimates are very good. The frequency

errors in the no-noise case (right most point) are almost entirely a result of the fact

that the template matching algorithm only searches over a fixed number of frequency

values. As figure 6.4 shows, the amplitude estimation errors hardly move when the

algorithms use these estimated frequencies rather than the true frequencies, so the

small frequency errors are unimportant.

-3 -1.5 0 1.8 3 inf
0

0.5

1

1.5

2

2.5

3

SNR (dB)

m
ea

n
er

ro
r (

H
z)

Mean frequency estimation error

Figure 6.3: Frequency estimation error.

6. Initial harmonic amplitude estimation 70

-3 -1.5 0 1.8 3 inf
0

5

10

15

20

25

30

SNR (dB)

m
ea

n
er

ro
r (

%
)

Amplitude estimate errors (estimated frequency)

best fit
energy
heterodyne

Figure 6.4: Amplitude estimation results using the estimated fre-
quency. Once again, each line represents the mean, with the vertical
bars indicating one standard deviation. Results are reported as a
percentage of the average magnitude of the harmonic amplitudes. The
‘inf’ or infinite SNR case is the test signal without noise.

6.5 Discussion

Although the frequency errors are at worst about 0.3% (1.5 Hz/440 Hz), the worst

amplitude errors are quite substantial for all three estimates at about 15%. Not only

are the mean errors quite large, the spreads around the means are also large. As

mentioned in the opening section of this chapter, the noise affects the amplitude

estimates more because there is simply less information about the amplitudes in each

window than there is about the fundamental frequency. Of course, it is reasonable to

suspect that amplitude estimates across time should be quite slowly varying. Time

smoothing to improve amplitude estimation is addressed later in chapter 8.

For now, sticking with estimates that are not smoothed across time, all three

estimates presented here seem to perform very similarly. Computationally, however,

the best fit estimate requires much less overhead. In equation (6.21), Y [k] has

6. Initial harmonic amplitude estimation 71

already been calculated in order to estimate the fundamental frequency. In contrast,

the energy estimate works on the DFT of a rectangular-windowed signal and the

heterodyne estimate requires that each harmonic’s base-band signal be filtered.

6.6 Summary

The Bayesian algorithm from the last chapter simultaneously estimates fundamental

frequency and harmonic amplitudes. Unfortunately, this algorithm converges too

slowly to be useful for large data sets. Instead, the template matching algorithm

from the last chapter is used to estimate the fundamental frequency, meaning that

the harmonic amplitudes must be estimated separately. This chapter addresses

the question of finding the harmonic amplitudes using the template fundamental

frequency estimates as a guide.

Three approaches are taken to estimating the harmonic amplitudes, all of which

assume that harmonics are mostly isolated in frequency. The energy-based estimate

assumes that all the energy in the DFT it finds near a harmonic frequency can

be attributed to that harmonic. The best fit estimate picks amplitudes Ai so that

equation (6.20) fits to the absolute value of the DFT near the harmonic amplitude.

Finally, the heterodyne estimate moves the harmonic to baseband, filters out all the

other harmonics, and uses the absolute value of the result as the amplitude estimate.

All three approaches struggle similarly with noise, which will be addressed in

chapter 8, but computationally, the best fit algorithm requires the fewest calculations.

So this is the estimate that will be used in future chapters.

72

Chapter 7

Discarding bad data

Previous chapters have covered algorithms for finding the fundamental frequency of

a note given a nominal note frequency and for finding harmonic amplitudes given

the fundamental frequency. The problem is that these algorithms do not always

work. If the frequency estimate is off, then the amplitude estimates will just be

noise. So making sure that the fundamental frequency has been correctly estimated

is important.

The alignment of the notes to the midi does not always produce the ideal

alignment, even if done by hand. Recall from section 2.4 that the Gilbert and

Sullivan data set labels a single boundary between notes, i.e. one note’s offset is the

next note’s onset, unless there is a definite break between notes, in which case a

separate note offset is notated. This work is really interested in the sustained vowels

in words, however, rather than the entire word, consonants and all. Since there is

only one boundary annotated between notes, some of the time allocated to a note

will invariably include the consonants at the beginning or end of the syllable.

Furthermore, some notes are just too quiet in comparison to the orchestra to be

found regardless of how well the score is aligned. So even when tracing a solo, which

7. Discarding bad data 73

should stand out from the orchestra, some notes will invariably be lost.

Figure 7.1 shows the spectrograms and frequency track for a poorly captured

note. The top plot shows that the frequency track jumps around and clearly has not

managed to fix on the soloist. In the bottom plot, the spectrogram shows that the

note harmonics are sometimes obscured by the more powerful orchestra. This note

was relatively low and short, which perhaps accounts for the difficulty. In contrast,

figure 7.2 shows the same information for a well-captured note. The middle section

of the note (green) is smooth and shows the vibrato very nicely, while the beginning

and end of the note have poor frequency tracks. Interestingly, the word being sung

is ‘lot.’ The ‘t’ at the end is obviously unvoiced and so there is no solo frequency

track to find. The ‘l’ however, is voiced, but is not nearly as loud as an open vowel.

These examples illustrate a general principal, that frequency tracks should be

smooth and have regular vibrato. This principal extends to the entire data set that

these notes were taken from (section 2.4). The rest of this chapter will explore how

to calculate features for smoothness (section 7.1) and vibrato (section 7.2), and how

to classify the data based on these features (section 7.3). Experiments performed are

presented (section 7.4), a discussion of the results is given (section 7.5), and finally a

brief summary is given (section 4.5).

7. Discarding bad data 74

29.6 29.7 29.8 29.9 30 30.1 30.2 30.3
340

360

380

400

420

time (s)

fre
qu

en
cy

 (H
z)

Badly calculated frequency track

time (s)

fre
qu

en
cy

 (H
z)

Badly calculated frequency track

29.6 29.8 30 30.2 30.4
0

1000

2000

3000

4000

5000
dB

-20

-10

0

10

20

30

Student Version of MATLABFigure 7.1: Sample of a bad note frequency track. The top plot shows
just the frequency track in isolation. The frequency jumps around over
a wide range of frequencies and shows no evidence of vibrato. There are
also a substantial number of frequency estimates at the bottom edge of
the search range (≈ 350 Hz), indicating that the algorithm could not
find anything substantial closer to the nominal note frequency. The
bottom plot shows the same frequency track against the spectrogram
it was calculated from. The note is partly obscured by the orchestra,
particularly under 3000 Hz. For both plots, the window size is 1024
elements (∼ 23 ms) and the hop size between windows is 512 elements
(∼ 12 ms).

7. Discarding bad data 75

39.5 40 40.5 41 41.5
540

560

580

600

620

640

660

680

time (s)

fre
qu

en
cy

 (H
z)

Smooth frequency track with vibrato

time (s)

fre
qu

en
cy

 (H
z)

Smooth frequency track with vibrato

40 40.5 41 41.5
0

1000

2000

3000

4000

5000
dB

-20

-10

0

10

20

30

Student Version of MATLABFigure 7.2: Sample of a good note frequency track. The top plot
shows the frequency track. The green portion is the part that has
been labeled as good. As can be seen, the frequency track is smooth
and shows definite evidence of vibrato. The bottom plot shows the
frequency track against its associated spectrogram. Throughout the
good portion of the note, the harmonics are clearly visible. For both
plots, the window size is 1024 elements (∼ 23 ms) and the hop size
between windows is 512 elements (∼ 12 ms).

7. Discarding bad data 76

7.1 Measuring pitch track smoothness

The smoothness feature should be very local in scope to catch quickly varying values.

A simple three point ratio can show how the current value compares to its neighbors:

s[n] =
2 · f [n]

f [n− 1] + f [n+ 1]
(7.1)

where s is the local smoothness, n is the time index, and f is the measured frequency.

This measure, along with the vibrato measure in the next section, will be used in

section 7.3 to classify portions of pitch tracks as good or bad.

7.2 Measuring vibrato

Measuring the vibrato in a note is considerably more complicated that measuring

pitch track smoothness because the model needs to capture longer term trends.

7.2.1 The vibrato model

To simplify the model, the frequency tracks for the notes are first normalized so that

they are centered around zero,

fn[n] = f [n]−middle(f [n]) (7.2)

where fn[n] is the normalized frequency track, f [n] is the original frequency track,

and middle(f [n]) is the middle frequency of f . This middle frequency is essentially

the mean of f with a few points removed. Recall from section 5.4 that f [n] is the best

frequency at time n out of a range of frequencies near the nominal note frequency.

When the pitch information in a particular window is very weak, the algorithm

often ends up selecting an extreme frequency at the edge of the frequency range

7. Discarding bad data 77

(figure 7.1). These extreme frequencies can really throw off the mean, so they are

removed first. Let R = {n | f [n] is not an extreme value}. Then,

middle(f [n]) =
1

|R|
∑
n∈R

f [n]. (7.3)

The simplest model for vibrato in this normalized frequency track is a sinusoid,

vs[n] = As cos

(
2πfs,v
r

n+ φs

)
, (7.4)

where vs[n] is the voice pitch frequency in Hz at time index n in windows1, As is

the amplitude of the vibrato, fs,v is the frequency of the vibrato in Hz, r is the

sampling rate of the raw frequency estimates in Hz, and φs is the phase of the vibrato.

Unfortunately, real vibratos do not fit this simple model very well. In practice, the

frequency of the vibrato modulates slowly, so a better model would be

vFM [n] = As cos

(
2π

r

n∑
k=0

fv[k] + φ

)
, (7.5)

where fv, the instantaneous frequency, is a slowly varying vibrato frequency and φ is

the initial phase. The amplitude of the vibrato also tends to change across the note,

so a reasonable model of real world vibrato is

vAM [n] = A[n] cos

(
2π

r

n∑
k=0

fv[k] + φ

)
, (7.6)

where A[n] modulates the amplitude of the vibrato.

Estimating all the parameters of equation (7.6) at once would be difficult, par-

ticularly in light of the ‘slowly varying’ constraint for fv[k]. It is much easier to fit

1Recall that each pitch track estimate is made over a short window of the recording. As explained
later in section 7.4, the windows for experiments in this chapter are 1024 samples (23 ms at 44.1
kHz sampling rate) and the hop between windows is 512 samples (12 ms).

7. Discarding bad data 78

parameters for each model and then improve the fit with the next model. Figure 7.3

shows a single note fitted to each of these models. The top plot shows the simple si-

nusoid model (section 7.2.2), which fails to capture many of the details of the vibrato.

The middle plot shows the same model after frequency modulation (section 7.2.3).

Here the peaks and troughs of the vibrato model line up much better with the

peaks and troughs of the raw frequency track. Finally, the amplitude modulation

(section 7.2.4) in the bottom plot produces a model that fits the vibrato sections of

the note reasonably well.

7.2.2 Estimating the vibrato parameters for the simple vibrato

model

For equation (7.4), the single vibrato frequency fs,v, single amplitude As, and phase

φs need to be estimated. Let Fn[k] be the DFT of the normalized frequency track,

fn[n]. The estimate for fs,v is then simply calculated from the peak value of Fn[k]

in the 4 - 7 Hz range.

f̂s,v =
kmax
r

(7.7)

where

kmax = {k | Fn[k] = max (Fn[kvibrato])} (7.8)

where kvibrato is simply the set of indexes of Fn in the 4 - 7 Hz range. Obviously, the

frequency resolution of Fn[k] can be quite low if the pitch track is short, meaning

that f̂s,v may not be very accurate. Recall, however, that the vibrato frequency will

be adjusted for the frequency modulation (FM) model in equation (7.5). As detailed

below in section 7.2.3, the FM vibrato frequency will be permitted to take on the full

range of frequency values, not just the quantized frequencies used in this estimate.

7. Discarding bad data 79

Once f̂s,v is known, the phase can simply be estimated from this peak as

φ̂s = ∠Fn[kmax]. (7.9)

To estimate As, the the DFT of vs[n] (equation (7.4)) is needed. Note that if

As = 1, then the DFT of vs[n] is

Vs,norm[k] =
1

2
ejφsZN

(
2πfs,v
r
− 2πk

N

)
+

1

2
e−jφsZN

(
−2πfs,v

r
− 2πk

N

)
(7.10)

where

ZN (ω) = ej
ω(N−1)

2 sincN

(ω
2

)
(7.11)

and

sincN (γ) =


sin(γN)
sin(γ) if γ 6= π, 2π, . . .

N otherwise
. (7.12)

Since As is simply a constant multiplier in equation (7.4), the general equation for

the DFT of vs[n] is

DFT (vs[n]) = Vs[k] = As · Vs,norm[k] (7.13)

Once f̂s,v and φ̂s have been calculated, the ratio

ratio[k] =
|Fn[k]|
|Vs,norm[k]|

(7.14)

will equal As if the data, Fn[k], perfectly fits the model, Vs[k]. Because the data

will not in general fit the model, the estimate Âs can be calculated with a weighted

7. Discarding bad data 80

average

Âs =
1∑

kest
w[k]

∑
kest

ratio[kest] · w[kest]

 (7.15)

where kest = {kmax − 1, kmax, kmax + 1} and the weights are calculated based on the

magnitude of the theoretical signal

w[k] =
|Vs,norm[k]|2∑
kest

Vs,norm[k]
(7.16)

7.2.3 Estimating the frequency modulation

The instantaneous frequency of the vibrato should be slowly varying. So the instan-

taneous frequency fv[n] is modeled as a piece-wise continuous linear function where

each piece is three wavelengths of fs,v, the single approximate frequency found for

the simple model (section 7.2.2).

The best fv[n] should decrease the distance between fn[n] and vFM [n], but it

should not vary far from fs,v. Define the distance between fn[n] and vFM [n] as

d =
∑
kdist

|Fn[kdist]− VFM [kdist]| (7.17)

where Fn[k] is the DFT of fn[n], VFM [k] is the DFT of vFM [n], and kdist is the set

of three indexes that are closest fs,v. The task then is to minimize equation (7.17)

by changing the anchor points or ends of the pieces of fv[n] and the phase φ. An

analytic solution to this problem is not clear, but the Nelder-Mead simplex algorithm

[31] can iteratively find the solution. The initial estimate for φ is φs and for the

frequency anchor points, fv,s.

7. Discarding bad data 81

7.2.4 Estimating the amplitude modulation

At this point, the FM-model’s peaks and troughs should roughly line up with the

peaks and troughs of the frame-based estimates, fn[n]. The problem is that the

peaks and troughs may not go high or low enough because the amplitude is fixed to

a single value. So, for this model, A[n] takes on a single value per peak/trough so as

to minimize the square error between fn[n] and vAM [n].

Suppose that y[n] ≈ Ax[n], where A is picked to reduce the square error:

E(A) =
∑
n

(y[n]−Ax[n])2 (7.18)

Taking the derivative of E(A) with respect to A and setting that derivative equal to

zero yields

A =

∑
n y[n]x[n]∑
n x[n]2

. (7.19)

So, if {nz} is the set of indexes associated with a particular peak or trough (i.e.

the set of indexes between successive zero-crossings), then

A[nz] =

∑
fn[nz] · vn[nz]∑

vn[nz]2
(7.20)

where

vn[n] =
vFM [n]

As
= cos

(
2π

r

n∑
k=0

fv[k] + φ

)
(7.21)

will give this least-squares solution.

7. Discarding bad data 82

20.5 21 21.5 22 22.5
450

500

550

600

fre
qu

en
cy

 (H
z)

Vibrato model estimates

raw
simple

20.5 21 21.5 22 22.5
450

500

550

600

fre
qu

en
cy

 (H
z)

raw
FM

20.5 21 21.5 22 22.5
450

500

550

600

time (s)

fre
qu

en
cy

 (H
z)

raw
AM/FM

Student Version of MATLABFigure 7.3: Vibrato models example. The top, middle, and bottom
plots show the simple (equation (7.4)), frequency modulated (FM)
(equation (7.5)), and amplitude modulated (AM/FM) (equation (7.6))
models fit to a note. In each case, the blue line shows the raw frame-
based frequency estimate and the green dotted line shows the best
model found.

7. Discarding bad data 83

7.3 Classification

The kinds of problems that tend to affect frequency estimates tend to either cause

problems over the entire note, as is the case with notes that are too quiet in

comparison to the rest of the orchestra, or they tend to cause problems at just the

beginning and end of notes, as is the case with consonants. So a typical frequency

track for a note with some good data starts with noise, settles into a stable vibrato

pattern, and then ends with noise (figure 7.2, top plot). A typical frequency track for

a note without any good data is just noise throughout. This can be summarized in a

state machine (figure 7.4) where notes with good data start on the left and move

right and notes without good data never leave the first state.

bad data good data bad data

Figure 7.4: Frequency track state machine.

Setting up the problem probabilistically means calculating probabilities for each

state given the measured frequency track. Once these probabilities are set up, the

optimal solution is the Viterbi path. Since the smoothness and amplitude features

have no obvious inherent distributions, distributions were picked that seemed to fit

the truth data (section 2.4) well. Note that in all cases, the two ‘bad data’ states

are modeled with the same parameter values.

7. Discarding bad data 84

7.3.1 Calculating smoothness likelihoods

The smoothness feature (equation (7.1)) is modeled as a normal distribution with a

mean µ and variance σ for the good and bad data states. So the likelihood is

Ls(s[n]) =
1√

2πσ2
e

(s[n]−µ)2

2σ2 (7.22)

where σ and µ are estimated separately for each state using the sample variance and

mean of the truth data.

7.3.2 Calculating vibrato model likelihoods

The vibrato likelihood is calculated over the vibrato magnitude values estimated

in equation (7.20). Occasionally, the calculated A[n] is negative or zero when the

frequency curve is not a good match for the model. The likelihood of occurrence for

these non-positive values is modeled as a Bernoulli distribution where

LA,B(A[n] is in state ‘x’ | A[n] <= 0) = px (7.23)

and ‘x’ is either good data or bad data and px is estimated from the truth data.

Positive-valued amplitudes are modeled as gamma distributions:

LA,G(A[n] | A[n] > 0) = A[n](k−1) e
−A[n]
θ

Γ(k)θk
(7.24)

where k and θ are estimated using maximum likelihood estimates from truth data.

7. Discarding bad data 85

In order to calculate the likelihood over all the values in A[n], the two likelihoods

must be combined. For state x ∈ {good, bad}, this gives

LA(A[n]) =

 px if A[n] <= 0

(1− px)LA,G if A[n] > 0
(7.25)

7.3.3 Combining likelihoods

The smoothness features and the vibrato magnitude features hopefully provide

different kinds of information about the overall likelihood that a particular frequency

measurement is good or bad. For simplicity, assume the features are independent, so

Lc(s[n], A[n]) = Ls(s[n]) · LA(A[n]). (7.26)

7.3.4 The Viterbi path

Equations (7.22), (7.25) and (7.26) calculate likelihoods of data in particular states,

but the Viterbi path algorithm also requires prior probabilities,

Pr(f [0] is in state x), (7.27)

and transition probabilities,

Pr(f [n+ 1] is in state x | f [n] is in state y). (7.28)

These can also be estimated from the truth data. There are three states - {bad, good, bad}.

Notes can either begin in the first state, bad, or the second state, good. Notes that

start with good data start in the second state, all other notes start in the first state.

So the prior is zero for the third state. Notes can transition from one state to the

7. Discarding bad data 86

next state or stay in the same state, but they cannot go back to a previous state. So

many of the transition probabilities are also zero. The non-zero values are estimated

directly from the numbers in the truth data, as described below.

7.4 Experiments and results

There are three defined distributions: one over vibrato magnitude, one over frequency

smoothness, and one that combines the two (equations (7.22), (7.25) and (7.26)).

The question is which distribution does the best job of distinguishing between the

vibrato and non-vibrato sections. To answer this question, the distributions are

tested on a subset of the Gilbert and Sullivan data set (section 2.4).

Recall that the Gilbert and Sullivan data set consists of arias whose soprano lines

have been hand-aligned with a midi score. For the purposes of this these experiments,

the frequency tracks for the notes in ‘Sorry her lot’ from H.M.S. Pinafore were then

calculated using the algorithm described in section 5.4 with the window size set to

1024 samples (23 ms at 44.1 kHz sampling rate) and the hop size between windows

was set to 512 samples (12 ms). The first three harmonics were used to calculate the

frequency estimate. The frequency search region around each nominal note frequency

from the MIDI was set to two half steps (i.e. 200 cents) down from the nominal note

frequency and an equal number of Hz above the nominal note frequency. A hundred

linearly-spaced frequencies in this range were tested for the best fit.

For truth data, all the notes that were at least half a second long were hand

labeled for good and bad data. These 110 notes were labeled by looking at the

frequency track and making a somewhat subjective decision about what looked

reasonable (i.e. was smooth and had vibrato) and what did not.

With this truth data in hand, the three distributions are tested using 10-fold

cross validation. In each of the 10 folds, 11 samples are held out for testing and

7. Discarding bad data 87

naive vibrato mag. smoothness combined

accuracy (%) 63 (4) 77 (6) 74 (9) 78 (5)

precision (%) 69 (8) 84 (7) 75 (8) 85 (6)

recall (%) 80 (5) 86 (6) 93 (6) 87 (6)

Table 7.1: 10-fold cross validation results. Each column represents a
different classification scheme. The accuracy, precision, and recall are
calculated for each fold. Each box has the mean across the 10 folds
and the standard deviation in parentheses.

99 samples are used to calculate distribution and Viterbi parameters. As a straw

man, the results from the three distributions are compared to a ‘naive’ classifier.

Obviously, most of the notes start with bad data, move to good data, and end with

bad data. So labeling the first few windows as bad, the middle windows as good, and

the last windows at bad will give a pretty good level of classification without even

looking at the actual note data. This is essentially what the ‘naive’ classifier does

after first calculating the average proportions of state one (bad), state two (good),

and state three (bad) from the truth data.

The test results are all calculated with reference to the desired second state (good)

over window-level labels. Table 7.1 shows the results for these four classifiers. The

naive classifier does surprisingly well with 63% accuracy, but all the probabilistic

approaches work better. Furthermore, the approaches that use the vibrato magnitude

estimates clearly out-perform the smoothness-only estimate. The combined estimate

seems to be a slight improvement on the vibrato magnitude-only estimate.

This cross-fold validation does not tell the entire story. Ideally, the classifier

should get as many correct data points as possible (recall) while maintaining a

sufficiently high precision. A simply way to change the precision of classifiers is to

manipulate the likelihoods before the Viterbi path algorithm is run. If the good

state’s likelihood is multiplied by a number less than 1, the Viterbi algorithm will

7. Discarding bad data 88

tend to be more conservative about picking this state and thus will raise the precision.

A multiplier greater than 1 should make the Viterbi algorithm less cautious and thus

will raise the recall.

Figure 7.5 shows the results of manipulating the good state likelihood, testing

and training over all the truth data. As expected, the combined likelihood classifier

is consistently better than the other classifiers, although it is not much better than

the vibrato magnitude-only classifier. At 90% precision, the combined classifier has

about 82% recall to the vibrato magnitude-only classifier’s 77%.

50 60 70 80 90 100
50

60

70

80

90

100

precision (%)

re
ca

ll
(%

)

Precision vs. recall

AM magnitude
smoothness
combined

Figure 7.5: Precision vs. recall for good frequency data detection.

7.5 Discussion

Only two features - vibrato magnitude and smoothness - are presented in this chapter.

Other features were tried, but did not work as well. As mentioned earlier, the frame-

based frequency estimates often pick edge values when there isn’t anything to find

near the note frequency. A true-or-false feature was tried based on whether or not

7. Discarding bad data 89

the frequency estimate in a window was an edge value. In the end, the number of

windows with edge estimates was simply to small to make this feature very useful.

It might seem strange that the vibrato magnitude estimates were used as a

feature rather than some kind of fit or distance between the frequency track and

the vibrato model. The problem is that the vibrato model could often fit the noise

reasonably well, especially if the ‘bad’ data was near the mean frequency and the

vibrato magnitude could be made close to zero. Instead, the magnitudes themselves,

when they are reasonably large, are a much better indication that the model has

found a genuine vibrato pattern.

Both the vibrato magnitude-only classifier and the combined classifier do a

reasonable job of classification. Given the relatively small data set, it is hard to

firmly say that the combined classifier is better. It requires more parameters and

features. Furthermore, the differences in the means from the 10-fold cross validation

test are smaller than the standard deviations. Most of the strength of the combined

classifier clearly comes just from the amplitude estimates.

The truth data also has limitations. It was labeled by making a subjective decision

about whether the frequency tracks made sense. Figures 7.1 and 7.2 show two obvious

examples, but some other notes were much more difficult label, particularly at the

boundaries between good and bad data. So it is not clear that the truth data itself is

accurate to within a few percent.

Having said that, however, the combined classifier does have a few things going

for it. First, there are only four extra parameters, so the danger of over fitting seems

very small. Secondly, the combined classifier does consistently seem to out perform

the amplitude-only classifier, at least on average. The combined classifier also takes

into account the kind of features that were used initially to create the truth data.

So at best, the combined classifier is a genuinely better classifier and at worst, it

7. Discarding bad data 90

should do no worse than the AM magnitude-only classifier.

7.6 Summary

The frequency estimates from section 5.4 are not always correct. When these incorrect

frequency estimates are used to estimate harmonic amplitudes (chapter 6), the result

is simply noise. This chapter outlines an algorithm for estimating which frequency

estimates in a note are reliable.

Two features are used to estimate reliability, smoothness and vibrato magnitude.

The smoothness feature essentially makes the assumption that the fundamental

frequency of the voice should not change drastically from one frame to the next. The

vibrato magnitude feature essentially shows how well the frequency estimates across

a note match to the typical characteristics of vibrato in western classical singing.

Once the features have been calculated, frame-level likelihoods are calculated for

both the ‘good’ and ‘bad’ states. Finally an HMM is used to calculate the frame

level labels for each note based on the likelihoods.

The vibrato magnitude feature is much better at distinguishing good from bad

data than the smoothness feature, but the two features combined seem to do the

best job. So, both are used to label the data before it is used in the next chapter.

91

Chapter 8

Estimates of vowel

characteristics

Previous chapters have discussed estimating the fundamental frequency of a note

(chapter 5), using that fundamental frequency to make a localized estimate of

harmonic amplitudes (chapter 6), and finally deciding which parts of the note as

whole are most likely to have good data (chapter 7), but recall that the localized

harmonic amplitude estimates are prone to error. In a single short window, the

amplitude is estimated from a few DFT coefficients and so the noise can have a

significant effect on the estimate.

The obvious solution to the problem of localized noise is to average across time.

Unfortunately, a simple average of the absolute harmonic amplitudes will not work

because the note as a whole may get louder or softer. This chapter discusses two

models for improving and normalizing the harmonic amplitude estimates across all

the available data. Sections 8.1 to 8.3 develop the models. Section 8.4 discusses

estimate reliability. Section 8.5 contains experiments on simulated data. Section 8.6

discusses the models and their uses. Finally, section 8.7 summarizes the chapter.

8. Estimates of vowel characteristics 92

8.1 Developing vowel models from the source-filter model

The source-filter model for the vocal tract (section 2.1) holds that the vocal folds

produce the excitation signal which is filtered by the vocal tract. So a signal yk(t) at

time k in a window of length T seconds, can be modeled as

Yk(jΩ) = Hk(jΩ)Xk(jΩ) (8.1)

where Hk(jΩ) is the filter and Xk(jΩ) is the source excitation. For simplicity, assume

that the filter Hk(jΩ) essentially does not change with time, since the notes are

being sung and held on a single vowel, i.e. Hk(jΩ) = H(jΩ).

The excitation pattern, or vocal fold source, can be modeled as a sum of harmonic

sinusoids. If Ei(kT) is the (positive, real) magnitude of the ith harmonic, constant

across frame k, and Ωf (kT) is the fundamental frequency, also constant across frame

k, then the Fourier Transform of the excitation pattern consists of symmetric delta

functions at multiples of the fundamental frequency,

|Xk(jΩ)| =
NH∑
i=1

Ei(kT) (δ(Ω− i · Ωf (kT)) + δ(Ω + i · Ωf (kT))) (8.2)

where NH is the number of harmonics. Around each harmonic frequency, i.e. for

Ω ∼ i ·Ωf , the Fourier Transform of yk(t) consists of a delta function weighted by

the filter and the magnitude of excitation harmonic,

|Yk(Ω ∼ i · Ωf)| = |H(jΩ)| · Ei(kT) · δ(Ω− i · Ωf (kT)). (8.3)

This presents a problem because if only |Yk(Ω ∼ i · Ωf)| can be measured, there is

an inherent ambiguity between the magnitude effect of the filter, H(jΩ), and the

magnitude of the excitation pattern Ei(kT).

8. Estimates of vowel characteristics 93

To get around this difficulty, assume that the excitation frequency is at least

constant across harmonics, if not across time, i.e. Ei(kT) = E(kT):

|Xk(jΩ)| = E(kT)

NH∑
i=1

(δ (Ω− i · Ωf (kT)) + δ (Ω + i · Ωf (kT))) (8.4)

and so

|Yk(Ω ∼ i · Ωf)| = |H(jΩ)| · E(kT) · δ(Ω− i · Ωf (kT)). (8.5)

Now E(kT) represents a time-varying energy curve that might be thought of as the

breath energy. Since the glottal source is not actually made up of equally energetic

harmonics, this assumption will push the glottal harmonic strength patterns into

the ‘filter’ H(jΩ), which will now become something very similar to the composite

transfer function used by Mellody, Herseth, and Wakefield in [34].

The question is how to model H(jΩ). During the course of a note, the singer

will sweep out a small range of frequencies around the nominal note frequency, Ω0

and so a small section of H(jΩ) will also be swept out near each harmonic of Ω0.

One possible ‘log model’ uses exponents so everything becomes linear in the log

domain and assumes

|H(jΩ)| ≈ |H(ji · Ω0)| exp

{
(Ω− Ω0)

∂ log |H(ji · Ω′)|
∂Ω′

∣∣∣
Ω′=Ω0

}
for Ω ∼ i · Ω0,

(8.6)

where |H(ji · Ω0)| is the gain for each harmonic and ∂ log |H(ji·Ω′)|
∂Ω′

∣∣∣
Ω′=Ω0

is the local

log slope. In the log domain this becomes,

log |H(jΩ)| ≈ log |H(ji · Ω0)|+ (Ω− Ω0)
∂ log |H(ji · Ω′)|

∂Ω′

∣∣∣
Ω′=Ω0

for Ω ∼ i · Ω0.

(8.7)

8. Estimates of vowel characteristics 94

So this model essentially assumes that the filter can be modeled in the log domain

as a line around each harmonic with a harmonic gain and local slope.

Another possible model is in the linear domain,

|H(jΩ)| ≈ |H(ji · Ω0)|+ (Ω− iΩ0)
∂|H(ji · Ω′)|

∂Ω′

∣∣∣
Ω′=Ω0

for Ω ∼ i · Ω0, (8.8)

where |H(ji · Ω0)| is again the gain, and ∂|H(ji·Ω′)|
∂Ω′

∣∣∣
Ω′=Ω0

is now the local slope in

the linear domain.

These two models are further explored in section section 8.2 (log model) and

section 8.3 (linear model).

8.2 Log model

To convert equation (8.7) from the continuous domain to the discrete domain, note

that during the initial frame-based amplitude estimation (section 6.2), the measured

amplitudes are effectively trying to estimate

Ai(kT) =

∫ i·Ωf (kT)+ε

i·Ωf (kT)−ε
|Yk(jΩ)|dΩ (8.9)

If the average value |H(ji · Ω0)| = gi and the local log-slope ∂ log |H(ji·Ω′)|
∂Ω′

∣∣∣
Ω′=Ω0

= si,

then combining equations equations (8.5), (8.6) and (8.9) and calling Ai(kT) = Ai[n],

E(kT) = E[n], Ω = f , and Ω0 = f0 yields

logAi[n] = logE[n] + log gi + si · i (f [n]− f0) . (8.10)

The question is how to best selection E[n], gi, and si so that Ai[n], the model

amplitudes, best fit Mi[n], the noisy measured amplitudes. The least-squares solution

to this problem is relatively straightforward, but unfortunately, this model does not

8. Estimates of vowel characteristics 95

yield a unique solution for E[n], gi, and si. Note that

logE[n] + log gi = log (E[n]gi)

= log

(
1

m
E[n] ·mgi

)
= log

(
1

m
E[n]

)
+ log (mgi) ,

(8.11)

which essentially means that there is trade off between putting energy in the un-

derlying energy curve and putting energy in the individual harmonic gains. Note

further that

logE[n] + si · i (f [n]− f0) = (logE[n]− a(f [n]− f0)) + ((si +
a

i
) · i (f [n]− f0)).

(8.12)

So there is a subtle trade off between the slope and the underlying energy curve as

well.

These two degrees of freedom present a problem. The trade-off between the

gains, gi, and the energy curve, E[n], is relatively easy to deal with because it

is simply a scaling problem. One of the gains can be set to a constant for the

purposes of solving equation (8.10) and then the gains and energy curve can be

normalized later to something sensible. The slope and energy curve trade-off is more

difficult. Really what is happening here is that changing the slopes moves some of

the vibrato in (f [n]− f0) into the energy curve. If the energy curve is supposed to

be a slowly-varying function, then all the vibrato variation should be captured by

the slopes. Enforcing this constraint in equation (8.10) is much more difficult.

8. Estimates of vowel characteristics 96

Note, however, that if E[n] is known, then the log model becomes a very simple

linear equation with gains gi, slopes si and no extra degrees of freedom,

logAi[n]− logE[n] = log gi + si · i (f [n]− f0) . (8.13)

So if E[n] can be estimated, the the least squares solution to log gi and si is simply

a polynomial best fit.

8.2.1 Estimating the underlying energy curve

E[n] represents the breath energy or dynamic intensity, so it should be slowly varying

relative to the vibrato. The most obvious way of estimating this curve is to use a

low pass filter. Looking back at the model in equation (8.10), note that

∑
i

logAi[n] =NH logE[n] +
∑
i

log gi

+
∑
i

(si · i(f [n] + f0))

(8.14)

Now suppose that

f [n]− f0 = fc + fz[n] (8.15)

where fz[n] = f [n]− f0 − fc and fc = mean(f [n]− f0). So, essentially fz[n] is the

vibrato undulation centered around zero and fc is a constant offset. Recall that f0 is

simply the nominal note frequency and may not actually be the center frequency.

Now

∑
i

logAi[n] =NH logE[n] +
∑
i

log gi

+
∑
i

si · i · fc +
∑
i

si · i · fz[n]

(8.16)

8. Estimates of vowel characteristics 97

where
∑

i si · i · fz[n] is the only term that contains quickly varying vibrato. So,

low-pass filtering will yield

L[n] ≡ lowpass(
∑
i

logAi[n]) ≈NH logE[n] +
∑
i

log gi

+
∑
i

si · i · fc
(8.17)

where
∑

i log gi +
∑

i si · i · fc is simply some currently unknown constant and essen-

tially,

L[n] ≈ NH logE[n] +NH log c = NH log cE[n]. (8.18)

This is very close to giving an estimate for E[n] as it is only off by a constant

multiplier. For now, let’s call this the unnormalized estimate for E[n],

log Êu[n] =
1

NH
L[n] (8.19)

and worry about normalizing later to get rid of the constant (section 8.2.2).

Since in practice filters have a finite time support, not all of E[n] can be estimated.

In particular, for a linear phase filter of length Nf ,
Nf−1

2 data points on either end

of E[n] are lost. So the trick is to come up with a filter that is as short as possible,

but removes the vibrato. A standard low-pass linear phase filter is probably a bad

choice because one with an appropriately sharp cutoff will be too long.

Although the filter needs to be essentially a low-pass filter so that it can remove

noise as well the vibrato, the most energetic part of the frequency spectrum that

needs to be removed is the vibrato. Suppose, for the sake of argument, that the

8. Estimates of vowel characteristics 98

vibrato wavelength is exactly Nv windows1 long. A moving average filter with

uniform gain 1
Nv

and length Nv will exactly cancel out the vibrato and will remove a

fair amount of high frequency noise.

Remember that vibrato is usually about 6 Hz. In order to capture the frequency

detail of the vibrato, the time between frequency and amplitude estimates has been

set to about 12 ms. This works out to roughly 14 windows per vibrato cycle, which

means a loss of about 7 points on either end of the note after filtering. A general low

pass filter would have to be much longer to attenuate the vibrato frequency as well.

Figuring out the vibrato frequency is not a problem as that has already been

taken care of in chapter 7, where a model of vibrato is used in each note to remove

badly estimated data. The question is what do about the fact that the vibrato rate

is not completely constant and the fact that the vibrato wavelength is not usually

an integer multiple of the inter-window time. In practice, (section 8.5) the moving

average filter only needs to be approximately the correct length in order to produce

sufficiently accurate results. So, the filtered can be set to

fv[n] =
1

Nv

Nv∑
i=1

δ[n− i− 1] (8.20)

where Nv is the odd integer closest to the average vibrato wavelength in the note.

8.2.2 Normalizing the gains and energy curve

The initial energy curve estimate Êu[n] (equation (8.19)) needs to be normalized.

One way to approach this normalization is to trade energy between the energy curve

and the gains. As noted previously, log
(

1
mE[n]

)
+ logmgi = logE[n] + log gi. One

1Recall that the pitch track estimates are made for short windows. For the experiments in this
chapter, the window length is 1024 samples (23 ms at a 44.1 kHz sampling rate) and the hop between
windows is 512 samples (12 ms) (section 8.5.1).

8. Estimates of vowel characteristics 99

simple normalization is to say that

∑
i

g2
i = 1. (8.21)

Normalizing the gains in this way has the advantage that it makes gains comparable

across notes.

So let us suppose that the log model (equation (8.10)) has been solved with

parameters Eu[n], gu,i, and si, where the energy curve and gains are both off by

some constant. If gi = mgu,i and therefore E[n] = 1
mEu[n], then

∑
i

g2
i =

∑
i

(mgu,i)
2 = 1 (8.22)

and the normalization factor m is

m =
1√∑
i g

2
u,i

. (8.23)

8.2.3 Summary

The complete steps for estimating the log model parameters are

1. Estimate the unnormalized energy curve Eu[n] values using equation (8.19)

with the measured amplitudes Mi[n] ≈ Ai[n].

2. Find the least squares best fit to equation (8.13) of the gains gu,i and slopes si

using Êu[n] from the previous step and measured amplitudes Mi[n] ≈ Ai[n].

3. Calculate the normalizing factor m (equation (8.23)) to normalize ĝu,i and

Êu[n] to ĝi and Ê[n].

8. Estimates of vowel characteristics 100

8.3 Linear model

To convert the linear model (equation (8.8)) from the continuous domain to the

discrete domain, call the the average value |H(ji · Ω0)| = gi and the local slope

∂|H(ji·Ω′)|
∂Ω′

∣∣∣
Ω′=Ω0

= si. Then combining equations equations (8.5), (8.8) and (8.9) and

once more calling Ai(kT) = Ai[n], E(kT) = E[n], Ω = f , and Ω0 = f0 yields

Ai[n] = E[n] (gi + si · i (f [n]− f0)) , (8.24)

For this model, there is once again a trade off between the energy in E[n] and

the energy in the gains and slopes,

E[n] (gi + si · i (f [n]− f0)) =
1

m
E[n] (mgi +msi · i (f [n]− f0)) . (8.25)

Furthermore, finding a simple solution to equation (8.24) is difficult because taking

the log no longer separates the energy curve, gains, and slopes nicely. But, as with

the log model, knowing E[n] makes solving for the least squares solution to the gains

and slopes extremely easy since

Ai[n]

E[n]
= gi + si · i (f [n]− f0) . (8.26)

So once again, the best way to solve for E[n], gi, and si is to first estimate the

underlying energy curve.

8. Estimates of vowel characteristics 101

8.3.1 Initial estimate of the energy curve

As with the log model, the underlying energy curve should be slowly varying. To

disentangle this slowly varying signal from the rest of the signal, consider

∑
i

Ai[n]2 =
∑
i

(E[n] (gi + si · i(f [n]− f0)))2 (8.27)

= E[n]2
∑
i

(c+ highpass[n]) (8.28)

(8.29)

where c is some constant and highpass[n] is a high frequency signal involving the

vibrato. So, when equation (8.29) is low pass filtered,

lowpass

(∑
i

Ai[n]2

)
≈ E[n]2

∑
i

c (8.30)

Similar to the log model, equation (8.30) can be used to estimate E[n] to within a

constant multiplier,

Êu[n] ≈

√√√√lowpass

(∑
i

Mi[n]2

)
, (8.31)

which can then be normalized later. Once again, the question is how to design the

low pass filter. This time, since Mi[n] is squared, the vibrato is also squared. This

effectively means that highpass[n] contains energy at both the vibrato frequency

and twice the vibrato frequency2. Fortunately, the moving average filter described

in equation (8.20) is actually a comb filter that best attenuates integer multiples of

the lowest frequency 1/Nv.

2Essentially, the vibrato is a sinusoid plus an offset. Note that (cos(x) + a)2 = cos2(x)+2a cos(x)+
a2 = 1

2
cos(2x) + 1

2
+ 2a cos(x) + a2.

8. Estimates of vowel characteristics 102

8.3.2 Normalizing the gains, slopes, and energy curve

Estimating the energy curve using equation (8.31) yields Êu[n]. Recall that equa-

tion (8.25) shows that if E[n] is off my a constant multiplier, gi and si will be off

by the inverse of that multiplier. So, using the unnormalized estimates Êu[n] in

equation (8.26) to estimate the gains and slopes will yield unnormalized estimates

ĝu,i and ŝu,i (equation (8.25)). In other words,

ĝi = m · ĝu,i (8.32)

ŝi = m · ŝu,i (8.33)

Ê[n] =
1

m
Ê[n] (8.34)

where m is a constant multiplier.

The question is how to pick m. Once again, normalizing the gain energy to sum

to one would allow easy comparison between gains calculated on different notes. So,

if
∑

i g
2
i = 1, then ∑

i

g2
i =

∑
i

(mgu,i)
2 = 1. (8.35)

Solving for m gives

m =
1√∑
i g

2
u,i

. (8.36)

8.3.3 Summary

The complete steps for the linear model are

1. Calculate the energy curve estimate Êu[n] using equation (8.31).

2. Estimate the gains and slopes using equation (8.26) and the standard polynomial

least-squares equations.

8. Estimates of vowel characteristics 103

3. Calculate m (equation (8.36)) to normalize the energy curve, gains, and slopes.

8.4 Estimate reliability

While it is simple to measure errors when truth data is known, it is obviously useful

to be able to estimate how good the gain and slope estimates are in the absence of

truth data. In other words, it is useful to have ‘error bars’ on the estimates. Since it

is not necessarily immediately obvious what those error bars should be, this section

develops a definition for error bars based on a probability model of the noise.

8.4.1 Log model

Starting with the log model, recall that

logAi[n]− logE[n] = log gi + sii · (f [n]− f0). (8.37)

Let’s define norm(Ai[n]) ≡ logAi[n]− logE[n] as the amplitudes normalized by the

energy curve, which should yield a simple straight line when plotted against f [n].

Note that after calculating estimate Ê[n] from the noisy measured amplitudes Mi[n],

the idea is that

logMi[n]− log Ê[n] ≡ norm(Mi[n]) ≈ log ĝi + ŝii · (f − f0). (8.38)

where the “≈” is in the least-squares sense. So, define a set of points

pĝi,ŝi [n] ≡ norm(Mi[n])− (log ĝi + ŝii · (f − f0)) . (8.39)

If the model fit the data perfectly, then pĝi,ŝi [n] would be zero for all time instants

n and harmonics i. Of course, since the amplitude estimates are noisy, the points

8. Estimates of vowel characteristics 104

pĝi,ŝi [n] are unlikely to really be zero, but the numbers should be close to zero if the

model is a good fit to the data.

Modeling the noise in p as a Gaussian would yield

pĝi,ŝi [n] ∼ N(0, σ2
i), (8.40)

where the mean of the Gaussian is zero since the gain has been subtracted out and

the variance, σ2
i , indicates the spread of the data for a particular harmonic. The log

likelihood of a data point under this model would then be

LL(pĝi,ŝi [n]) = −1

2
ln(2πσ2

i)−
1

2σ2
i

pĝi,ŝi [n]2. (8.41)

Now, for each harmonic i, there are N points. The average log likelihood of all these

points under the Gaussian assumption would be

LL(pĝi,ŝi [n]) =
1

N

N∑
n=1

LL(pĝi,ŝi [n])

= −1

2
ln(2πσ2

i)−
1

2Nσ2

N∑
n=1

pĝi,ŝi [n]2.

(8.42)

This average log likelihood by itself is not terribly useful since it merely measures

how well the measured amplitudes fit to the model. It does not directly measure

how good a gain or slope estimate is.

One way to think about how good the gain or slope estimates are is ask how much

they would have to change in order to reduce the likelihood in a meaningful way.

In other words, look at how the log likelihood changes when one of the parameters

changes

LL (pg̃i,ŝi [n])− LL (pĝi,ŝi [n]) = lnα (8.43)

8. Estimates of vowel characteristics 105

for a new gain g̃i or

LL (pĝi,s̃i [n])− LL (pĝi,ŝi [n]) = lnα (8.44)

for a new slope s̃i.

Now, getting ‘error bars’ for the gains and slopes is simple. First, estimate σi for

each harmonic from pĝi,ŝi [n] using the sample variance. Then, select an appropriate

α, 0 < α ≤ 1, and solve equation (8.43) or equation (8.44) for g̃i or s̃i. The solutions

to these equations are quadratic, and so there will be two solutions to g̃i for each ĝi

estimate and two solution to s̃i for each ŝi, which makes perfect sense. One solution

will be higher than the estimate and one will be lower. Additionally, since these

equations are based on reducing the average log likelihood rather than just the log

likelihood, the number of points will generally not affect the size of the error bars.

The solutions to equations (8.43) and (8.44) are of the form,

0 = (c̃i)
2 ·

N∑
i=1

zi[n]2 + c̃i ·2
N∑
i=1

ri[n]zi[n]+

N∑
i=1

ri[n]2−
N∑
i=1

pĝi,ŝi [n]2−2σ2N lnα (8.45)

where c̃i is the parameter being estimated. If the gain is being estimated, then

c̃i = log g̃i and

ri[n] = logMi[n]− log Ê[n]− ŝii · (f [n]− f0) (8.46)

zi[n] = −1. (8.47)

If the slope is being estimated, then c̃i = s̃i and

ri[n] = logMi[n]− log Ê[n]− log ĝi (8.48)

zi[n] = −i · (f [n]− f0). (8.49)

8. Estimates of vowel characteristics 106

8.4.2 Linear model

The story here is very similar. Recall that

Ai[n]

E[n]
= gi + sii · (f [n]− f0). (8.50)

So, for the linear model, define norm(Ai[n]) ≡ Ai[n]
E[n] and for the estimated amplitudes

Mi[n]

Ê[n]
≡ norm(Mi[n]) ≈ ĝi + ŝii · (f [n]− f0). (8.51)

Now the set of points that should be close to zero are defined as

pĝi,ŝi [n] = norm(Mi[n])− (ĝi + ŝii · (f [n]− f0)) . (8.52)

Once again, noise can be modeled as a Gaussian,

pĝi,ŝi [n] ∼ N(0, σ2
i). (8.53)

The log likelihood and average log likelihood can be defined exactly as they were in

the previous section (equations (8.41) and (8.42)) and the reduction in the average

log likelihood (equations (8.43) and (8.44)) can again be calculated. The same

quadratic form for the error bars holds (equation (8.45)), but the details are slightly

different. For the gains, c̃i = g̃i,

ri[n] = Mi[n]− E[n]ŝii · (f [n]− f0) (8.54)

zi[n] = −E[n] (8.55)

8. Estimates of vowel characteristics 107

and for the slopes, c̃i = s̃i,

ri[n] = Mi[n]− E[n]ĝ − i (8.56)

z[n] = −E[n]i · (f [n]− f0). (8.57)

8.5 Experiments and results

Because it is unclear how to get truth data from real recordings, these experiments

all use simulated data with noise. Since the log and linear models make different

assumptions about the nature of the data, they must also use different simulated

data. However, in both cases, the simulated data is combined with white Gaussian

noise to achieve different SNRs.

8.5.1 Creating the simulated voices

In both cases, the frequency track f [n] is simulated as

f [n] = f0 +As cos
(

2πv
n

r
+ φv

)
(8.58)

where f0 is the note frequency in Hz, v is the vibrato rate in Hz, r is the sampling

rate in Hz, φv is the vibrato phase in radians, and As is the amplitude of the vibrato.

For simplicity, f0 is set to 440 Hz (A4), As is set to two half steps down from f0, v

is set to 6 Hz, and φv is pulled randomly from (0, 2π).

Also in both cases, the underlying energy curve, E[n], needs to be low frequency.

So, the simulated E[n] consists of a simple line with a gentle random slope,

Es[n] = mE ·
n

r
+ bE (8.59)

8. Estimates of vowel characteristics 108

wheremE is between−0.25 and 0.25, r is the sampling rate, and bE is 2·max
(
|mE · nr |

)
to make sure Es[n] is positive and never too small.

The length of each simulated clip is set to one second with a 44.1 kHz sampling

rate. Nine harmonics, which is the number that fit under 4000 Hz, are simulated.

The gains, gi, are linearly spaced between 1 and 0.2 and then normalized so that∑
i g

2
i = 1 for both the log and linear model. The slopes, si, are set so the maximum

deviation is between 0% and 20% of log gi (log model) or gi (linear model) given the

range of frequencies in i(f [n]− f0).

Once the harmonic amplitudes Ai[n] are calculated using equation (8.10) or

equation (8.24), the AM-modulated FM signal

x[n] =
∑
i

Ai[n] cos (2πi · y[n]) (8.60)

where

y[n] =

n∑
k=0

(
f [n]

r

)
. (8.61)

In each experiment, the SNRs are varied from -3 dB to 3 dB. At each SNR level,

ten simulated one-second tracks are created. Frequency estimates for each track

are calculated using the algorithm described previously in 5.4 and the amplitude

estimates from the algorithm described in 6.2. For frequency estimation, the window

size is set to 1024 (23 ms) and the hop size is 512 (12 ms). A hundred fundamental

frequencies, linearly spaced from two half steps below the nominal note frequency to

the same number of Hz above, are tested using all nine harmonics in order to find

the best fundamental frequency estimate.

8. Estimates of vowel characteristics 109

8.5.2 Results and discussion from the log experiments

Just to get a feeling for what the data looks like, figure 8.1 shows a plot of the

amplitudes simulated for the first track in the first experiment. Figure 8.2 shows a

plot of the first harmonic of this first track along with the raw estimated harmonic

amplitudes and the smooth amplitudes. In this experiment, the SNR is -3 dB. For

the most part, the smoothed amplitudes track the truth data pretty well, in spite of

the fact that the raw estimates are pretty noisy.

10 20 30 40 50 60 70
-25

-20

-15

-10

-5

0

n

dB

Sample harmonic log amplitude tracks

Figure 8.1: Plot of sample amplitudes generated for a single log
model experiment. The top line represents the first harmonic, which
is the most powerful. The second line from the top is the second
harmonic, and so on. Note that the top four harmonics have a negative
slope, the middle harmonic has a slope of zero, and the bottom four
harmonics have a positive slope.

The amplitude estimates for the log model, which are calculated from the Ê[n], ĝi,

and ŝi estimates, are reasonably close to the truth (figure 8.3). Even with a low SNR

of -3 dB, the mean errors are within about 2% of the true values. Unsurprisingly,

8. Estimates of vowel characteristics 110

10 20 30 40 50 60 70
-10

-8

-6

-4

-2

0

2

4

n

dB
Log of first harmonic estimates using the log model, SNR = -3 dB

truth
raw (20 ⋅ log10(M1[n]))

log estimate

Figure 8.2: Plot of the calculated first harmonic amplitudes for the
first track at SNR = -3 dB using the log model.

the error of log the model estimates with respect to the truth data goes down as a

function of SNR.

Looking at the parameters themselves, however, the picture is more mixed.

Figure 8.4 shows the same error information for the parameters themselves. The

gains around each harmonic, gi, are estimated to within 5% of their true values. The

slopes, si, and the energy curve, E[n], however, seem to be way off target except in

the no-noise case.

Figure 8.5, which gives a more detailed picture of the errors from the energy-based

estimate, sheds some light on where the errors are coming from. In all cases, the

error goes down as SNR goes down, but this is to be expected.

Consider the energy curve (top right). Here, the vertical axis is n, the time index.

Notice that errors are actually spread out pretty evenly across time. In contrast,

the largest slope errors (middle right) seem to be associated with the largest slopes,

8. Estimates of vowel characteristics 111

-3 -1.5 -0.46 0.41 1.1 1.8 2.3 2.8 Inf
0

0.5

1

1.5

2

2.5
Log amplitude - log(A) - mean error

SNR (dB)

%

Figure 8.3: Plot of the mean error of the log amplitudes for the log
model. The mean is take across all iterations, all harmonics, and all
time points relative to the square root of the mean energy of the signal.
The error bars represent the standard deviation in this mean calculated
across iterations. The last point on the right shows the errors when
there is no added

which are associated with the lowest and highest harmonics. Finally, consider the

gain errors (middle left). These errors are clustered around the highest harmonics,

which also have the lowest gains. Interestingly, this is the pattern that plays out

in the amplitude errors (top left), although the amplitude errors are lower than

any of the other parameter errors. Recall that the normalization step ensures that

the sum of the squares of the gains is one and pushes off the other energy into the

underlying energy curve. If this normalization step is off, both the energy curve

and gain estimates will have high errors even though the amplitude errors will not

change. As far as the slopes are concerned, it is perhaps not all that surprising that

large slope errors do not seem to have much of an effect on the amplitude errors.

8. Estimates of vowel characteristics 112

-3 -1.5 -0.46 0.41 1.1 1.8 2.3 2.8 Inf
0

20

40
Log energy curve - log(E) - mean error

SNR (dB)

%

-3 -1.5 -0.46 0.41 1.1 1.8 2.3 2.8 Inf
0

5
Log center gain - log(g) - mean error

SNR (dB)

%

-3 -1.5 -0.46 0.41 1.1 1.8 2.3 2.8 Inf
0

50
Slope - s - mean error

SNR (dB)

%

Figure 8.4: Plots of the mean error of the parameters of the log
model. The mean is take across all iterations, all harmonics (gc, s) or
all time points (E) relative to the square root of the mean square of
the true values. The error bars represent the standard deviation in
this mean calculated across iterations.

The slopes can essentially do two things; they can change the phase of the amplitude

relative to the fundamental frequency and they can change the ‘peakiness’ of the

amplitude. Altering the ‘peakiness’ of the amplitude estimate is simply not going to

cause large amplitude errors in the same way that the other parameters can cause

8. Estimates of vowel characteristics 113

errors.

The bottom two plots in figure 8.5 show the mean sizes of the ‘error bars’ from

section 8.4 with α = 0.95. Ideally, the error bars would track the actual errors well.

In reality, the gain and slope error bars roll off much more slowly than the true

error. However, they do seem to capture the general trends reasonably well, so they

should make a reasonable proxy to the actual error when the actual error cannot be

calculated.

8. Estimates of vowel characteristics 114

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Log amplitude - log(A)
mean error

-3 0 3
2
4
6
8

%

0
2
4
6

SNR (dB)

n

Log energy curve - log(E)
mean error

-3 0 3

20
40
60

%

20

40

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Log gain - log(g)
mean error

-3 0 3
2
4
6
8

%

5
10
15

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Slope - s
mean error

-3 0 3
2
4
6
8

%

0

50

100

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Log gain - log(g)
 error bars

-3 0 3
2
4
6
8

%

0

10

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Slope - s
 error bars

-3 0 3
2
4
6
8

%

0

200

400

Figure 8.5: The top four plots are plots of the mean error of the
amplitudes and parameters of the log model using just the energy-based
estimates. The bottom two plots show the mean size of the ‘error bars’
calculated with α = 0.95. This time, the mean is take only across
iterations, but the normalization is the same as in figures 8.3 and 8.4.

8. Estimates of vowel characteristics 115

0 10 20 30 40 50 60 70 80
-3

-2

-1

0

1

2

n

dB

Log of energy curve estimates using the log model, SNR = -3 dB

truth
E estimate

Figure 8.6: Plot of the calculated energy curve for the first track at
SNR = -3 dB.

8. Estimates of vowel characteristics 116

8.5.3 Results and discussion of the linear model experiments

Figures 8.7 and 8.8 once again give a feel of the kind of data produced by the model.

Figure 8.7 shows a set of simulated harmonic amplitude tracks from a single test and

figure 8.8 shows just the first harmonic amplitude track from the same test along

with the raw amplitude measurements M1[n] and the linear model estimates.

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

m
ag

ni
tu

de

Sample harmonic amplitude tracks

Figure 8.7: Plot of sample amplitudes generate for a single linear
model experiment. The top line represents the first harmonic, which is
the most powerful. The second line from the top is the second harmonic,
and so on. Once again, the top four harmonics have a negative slope,
the middle harmonic has a slope of zero, and the bottom harmonics
have positive slopes.

As with the log model, the amplitude estimates for the linear model are reasonably

close to the truth (figure 8.9) and under 3% at an SNR of -3 dB. Once again, the

error of the model with respect to the truth data goes down as a function of SNR.

8. Estimates of vowel characteristics 117

20 40 60 80 100 120 140
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

m
ag

ni
tu

de
First harmonic estimates using the linear model, SNR = -3

 truth
raw (M1[n])

estimate

Figure 8.8: Plot of the calculated first harmonic amplitudes for the
first track at SNR = -3 dB using the linear model.

Looking at the parameters themselves, however, the picture is different from

the log model. Figure 8.10 shows the same error information for the parameters

themselves. All the parameters are reasonably estimated, although the slopes still

have the highest error.

Figure 8.12 shows the error information broken out across time (energy curve) or

harmonics (amplitudes, gains, and slopes). This picture for the linear model is very

similar to the picture for the log model. Energy curve errors are spread more or less

evenly across time. Gain errors are concentrated around the less energetic higher

harmonics, and slope errors seem to be worst around larger slopes. The bottom two

plots, which show the error bars, are once again not perfect proxies for the actual

error, but they do at least capture the trend of larger errors for higher SNRs.

8. Estimates of vowel characteristics 118

-3 -1.5 -0.46 0.41 1.1 1.8 2.3 2.8 Inf
0

0.5

1

1.5

2

2.5

3
Amplitude - A - mean error

SNR (dB)

%

Figure 8.9: Plot of the mean error of the amplitudes for the linear
model. The mean is take across all iterations, all harmonics, and all
time points relative to the square root of the mean energy of the signal.
The error bars represent the standard deviation in this mean calculated
across iterations. The last point on the right shows the errors when
there is no added noise.

Figure 8.12 once again shows the errors in estimating the amplitudes and param-

eters across iterations. The pictures is somewhat different in the linear model. Once

again, the error tends to go down with higher SNRs. But this time, it seems that the

middle harmonics are better estimated than the higher-energy lower harmonics. The

slopes in the synthetic data are kept the same through all the tests. The slopes si run

from negative to positive with the middle harmonics slopes smaller than the outer

harmonic slopes. It appears that this model is better able to calculate parameters

when the slope is small.

Once again, the bottom two plots show the error bars for the gains and slopes.

The error bars do not capture all the detail of the actual errors, although they do

at least seem to capture the SNR trend. The error bars actually seem to work less

8. Estimates of vowel characteristics 119

well over all for the linear model than they did for the log model. Note that the

gain errors actually go down for the higher harmonics even though that is where

the errors are concentrated. Having said that, the most interesting information is in

strong harmonics, not weak ones. So as long as the SNR trend is shown reasonably

well, the error bars should have some value.

8. Estimates of vowel characteristics 120

-3 -1.5 -0.46 0.41 1.1 1.8 2.3 2.8 Inf
0

5

10
Energy curve - E - mean error

SNR (dB)

%

-3 -1.5 -0.46 0.41 1.1 1.8 2.3 2.8 Inf
0

5

10
gain - g - mean error

SNR (dB)

%

-3 -1.5 -0.46 0.41 1.1 1.8 2.3 2.8 Inf
0

5

10

15

20
Slope - s - mean error

SNR (dB)

%

Figure 8.10: Plots of the mean error of the parameters of the linear
model. The mean is take across all iterations, all harmonics (gi, si) or
all time points (E) relative to the square root of the mean square of
the true values. The error bars represent the standard deviation in
this mean calculated across iterations.

8. Estimates of vowel characteristics 121

0 20 40 60 80 100 120 140 160

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

n

m
ag

ni
tu

de

Energy curve estimates using the linear model, SNR = -3

 truth
estimate

Figure 8.11: Plot of the calculated energy curve for the first track
at SNR = -3 dB for the linear model.

8. Estimates of vowel characteristics 122

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Amplitude - A
mean error

-3 0 3
2
4
6
8

%

0

5

SNR (dB)

n

Energy curve - E
mean error

-3 0 3

50
100
150

%

0
2
4
6

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Gain - g
mean error

-3 0 3
2
4
6
8

%

0
5
10

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Slope - s
mean error

-3 0 3
2
4
6
8

%

5
10
15
20

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Gain - g
error bars

-3 0 3
2
4
6
8

%

6
8
10
12

SNR (dB)

ha
rm

on
ic

 n
um

be
r

Slope - s
error bars

-3 0 3
2
4
6
8

%

50
100
150

Figure 8.12: Plots of the mean error of the amplitudes and parameters
of the linear model and error. The top four plots show the errors in the
amplitude and parameter estimates. The bottom two plots show the
‘error bar’ sizes with α = 0.95. Although the mean is take only across
iterations, the normalization is the same as in figures 8.9 and 8.10.

8. Estimates of vowel characteristics 123

8.6 Discussion

These models are not good physical models for the voice. The ‘energy’ that comes

into the vocal tract filter from the vocal folds is not necessarily slowly varying, and

the harmonics are certainly not equally energetic. Furthermore, the vocal tract

filter is not necessarily stable across the note, so the slope estimate is not really an

estimate of the local vocal tract filter.

Instead of trying to estimate the vocal tract, these models are really trying

to estimate the parameters of what is important to people listening to the voice.

Listeners obviously cannot measure the glottal pressure or the vocal tract shape.

They are only able to work with what they can hear, which basically involves groups

of harmonically-related frequencies. The absolute loudness of these collections of

frequencies is generally unimportant. It is the relative strengths of the harmonic

frequencies which carries information, and that is essentially what that gains in both

the log and linear models attempt to measure.

It would be interesting to see how the algorithms described in this chapter

compare to other algorithms in the literature for estimating voice characteristics.

Unfortunately, there aren’t really any algorithms that can be directly compared with

the ones described here. LPC (section 2.2.2), for example, has been used to estimate

the vocal tract filter as an all-pole filter. Unfortunately, LPC is unlikely to work

well in the polyphonic case because it would be confused by the other voices. Other

algorithms would undoubtedly suffer for the same reason.

8.7 Summary

This chapter takes the estimates described in previous chapters and synthesizes them

into useful measures of vowels characteristics. Since the raw amplitude estimates

8. Estimates of vowel characteristics 124

from chapter 6 suffer from a great deal of noise, the models in this chapter smooth

across time in order to come up with more reasonable estimates. Both the linear and

log models assume an essentially stable vocal tract filter and a slowly-varying source

energy. After estimating this energy source, they then estimate the gain associated

with each harmonic and a slope near the harmonic, which is swept out by the vibrato.

In the next chapter, these vowel models will be applied to the Gilbert and Sullivan

data set (section 2.4).

125

Chapter 9

Experiments with the Gilbert

and Sullivan Data Set

Chapter 8 demonstrated that the log and linear models can do a reasonable job of

estimating vowel parameters, particularly harmonic gains. This chapter will apply

these models to a real data from the Gilbert and Sullivan data set (section 2.4).

Recall that the set consists of six arias from five operettas. These arias have now

been time aligned with MIDI by hand, the phones have been assigned (chapter 3),

the frequency tracks (section 5.4)1 and initial frame-based amplitudes (section 6.2)

have been calculated, and the bad data has been discarded (chapter 7)2.

The log and linear models from chapter 8 essentially average the frame-based

harmonic amplitude estimates across time after the amplitudes have been normalized

by a per-note energy curve. The question is which data points to average over, for

1As in section 7.4, a window size of 1024 (23 ms at 44100 sampling rate) and hop size of 512
samples (12 ms) are used in order to capture the the vibrato with sufficient accuracy. The first
three harmonics are used to calculate the frequency estimate. The frequency search region around
the nominal note frequency is two half steps down from the nominal note frequency and the same
number of Hz above. A hundred linearly spaced frequencies are tested in this range.

2Based on calculations from the training data, the algorithm’s bias is set for 90% precision
(section 7.4).

9. Experiments with the Gilbert and Sullivan Data Set 126

instance to estimate the spectrum of a vowel. Most simply, the harmonic gains and

slopes can be calculated from the data in a single note. Hopefully the vocal tract

will be reasonably stable and consistent across a single note, so the gain and slope

estimates will not have to deal with too much noise. Unfortunately, an individual

note may be rather short and not provide many data points over which the average

can be calculated.

All the notes sung in a particular operetta are sung by the same soprano. So

another option is calculate gains and slopes across many notes sung on the same

vowel by the same soprano. Recall, however, that singers adjust the location of

vowel formants as the pitch rises, a process called vowel modification (section 2.1.1).

So a sensible approach would be to calculate the gains and slopes for a particular

nominal note frequency (say all C4s or G5s) and vowel (say AY) combination across

all instances of that note frequency and vowel in each operetta. The same soprano

should pronounce the same vowel in a similar manner across the entire operetta, so

the gain and slope estimates should be able to benefit from more data points.

Once again, however, there may not be sufficient data in a single operetta. So

the last option is to calculate the gains and slopes for a particular nominal note

frequency and vowel across all instances of that note frequency and vowel in all

operettas. After all, the reason why we can understand each other is that we all

pronounce the same vowels in similar ways. Furthermore, in a classical music data

set such as this one, the accent should remain reasonably consistent across different

performances with different singers because performance practice dictates a certain

kind of British accent for Gilbert and Sullivan.

The remainder of this chapter will switch between averaging over notes, operettas,

and over all data, depending on what makes most sense for the particular task at

hand. Section 9.1 characterizes the data from the Gilbert and Sullivan data set.

9. Experiments with the Gilbert and Sullivan Data Set 127

Sections 9.2 to 9.4 discuss the harmonic strengths of AA, AH, and IY across different

pitches. Section 9.5 discusses evidence for the singer’s formant. Section 9.6 discusses

the chapter as a whole. Finally, section 9.7 summarizes the chapter.

9.1 Characterizing the data

The log and linear models described in the previous chapter need long, sustained

vowels whose frequency tracks have been captured successfully. Looking at just the

notes with good data (chapter 7), the first and last 200 ms of data are discarded

in order to make sure the voice has settled. Then only notes that have at least 20

data points (232 ms) left after filtering3 are kept. Out of all six arias, this leaves 183

notes distributed across 18 vowels and 18 nominal note frequencies. Figure 9.1 shows

the distribution of data. Some vowels such as AA (/A/ as in father) and AY (/aI/ in

my) are much more popular and have much more data than UW (/u/ as in you).

There is only about a one and a half octave range of frequencies and most of the

data is concentrated in the middle of that range, from about A4 to F5. Obviously,

many notes are missing simply because they are not in the keys of the six arias from

which the data is calculated.

In order to get some idea of the quality of the measurements calculated from the

Gilbert and Sullivan data sets, tables 9.1 to 9.4 show the error bars (section 8.4) for

the first two harmonics for both the log and linear models. Parameters are calculated

across each operetta with one set of gains and slopes per vowel/operetta/nominal note

frequency combination. The median is taken across all nominal note frequencies. Not

unsurprisingly, given the results with test data, the slope values are mostly unreliable

for both the log and linear models. The error bars are of similar magnitudes as

3Recall from chapter 8 that the energy curve estimate for both the log and linear model is found
by filtering.

9. Experiments with the Gilbert and Sullivan Data Set 128

Number of windows

vo
w

el

nominal note (Hz)
F4 (34

9)

G4 (39
2)

G#4
(41

5)

A4 (44
0)

A#4
(46

6)

B4 (49
4)

C5 (52
3)

C#5
(55

4)

D5 (58
7)

D#5
(62

2)

E5 (65
9)

F5 (69
8)

F#5
 (7

40
)

G5 (78
4)

G#5
(83

1)

A5 (88
0)

A#5
(93

2)

C6 (10
47

)
AA
AE
AH
AO
AW
AX
AY
EA
EH
ER
EY
IH
IY

OH
OW
OY
UA
UW

count

0

100

200

300

400

500

600

Figure 9.1: Plot of the distribution of data across notes and vowels.
The counts refer to the number of windows for a particular vowel and
frequency across all six arias. Recall that the notes are chopped up
into windows and that for each window, one raw amplitude estimate
is made for each harmonic.

the slopes themselves, indicating that the calculated slope parameters are probably

mostly noise. Clearly, the data is simply too spread out to calculate a reliable slope.

The gains, on the other hand, seem much more reliable. Recall that the gains have

been normalized so that the sum of the squares of the gains is one. Most of note

energy is generally found in the first couple of harmonics, the harmonics used for

these calculations, so error bars on the order of 1 dB seem reasonable.

Since the data is limited and some vowels are better represented than others, it

9. Experiments with the Gilbert and Sullivan Data Set 129

vowel/op. HMS Mikado Pirates Gondoliers Yeomen

AA 0.99/-0.99 0.83/-3.1 0.73/-1.3 1.3/-1.3

AE 0.82/-1.1 2.5/-0.72 1.1/-1.1

AH 0.82/-1 1.5/-0.81 1.5/-0.8 2.4/-1.2 1/-1

AO 0.95/-0.95 0.97/-0.97 0.81/-0.81

AW 1.1/-1.1

AX 1.2/-1.2 0.74/-1.2 1.2/-1.2

AY 1/-1.1 1.5/-1.6 1.1/-1.1 1.2/-1.2 1.1/-1.1

EA 2.4/-0.68

EH 1.3/-0.98 1.1/-1.1

ER 0.62/-0.62 0.98/-0.98 0.25/-6.4

EY 1/-1.1 1.6/-0.81 2.5/-0.54

IH 0.78/-1.1 1.2/-1.2 1.1/-1.9 0.99/-0.99

IY 0.93/-0.99 1.3/-1.3 0.77/-0.77 1.7/-0.95

OH 0.79/-0.79 0.82/-0.82 1.2/-1.2

OW 0.81/-0.98 1.2/-1.2 1/-1

OY 0.96/-1.1

UA 1/-1 0.67/-0.67

UW 1.4/-1.4

Table 9.1: Median error bars for the log-model gain estimates on the
Gilbert and Sullivan data set. Entries are the median distance above
(positive) and below (negative) the nominal gain in dB for the first
two harmonics. Blank cells indicate there is no data for this particular
vowel and operetta combination. “HMS” refers to H.M.S. Pinafore,
“Mikado” refers to The Mikado, “Pirates” refers to The Pirates of
Penzance, “Gondoliers” refers to The Gondoliers, “Yeomen” refers to
The Yeomen of the Guard.

9. Experiments with the Gilbert and Sullivan Data Set 130

vowel/op. HMS Mikado Pirates Gondoliers Yeomen

AA 0.0031 0.0046 0.0055 0.0077
(0.0014) (0.0059) (0.0036) (0.0029)

AE 0.0033 0.0098 0.0057
(0.0014) (0.004) (0.0038)

AH 0.0037 0.0043 0.0044 0.006 0.0042
(0.0012) (0.0026) (0.0042) (0.0016) (0.0027)

AO 0.0038 0.0058 0.004
(0.0088) (0.0035) (0.0061)

AW 0.0053
(0.0023)

AX 0.0042 0.0042 0.0073
(0.0033) (0.0041) (0.002)

AY 0.0034 0.0062 0.0041 0.0048 0.0031
(0.0014) (0.0025) (0.0026) (0.0016) (0.0016)

EA 0.0041
(0.0022)

EH 0.0051 0.0037
(0.0019) (0.0019)

ER 0.0018 0.0027 0.01
(0.0025) (0.0017) (0.0022)

EY 0.0034 0.003 0.0034
(0.0026) (0.0031) (0.0023)

IH 0.0042 0.0057 0.0094 0.0038
(0.00093) (0.0035) (0.00045) (0.0033)

IY 0.0021 0.0057 0.0027 0.0086
(0.00071) (0.0035) (0.0028) (0.0046)

OH 0.0025 0.0044 0.0079
(0.0028) (0.0027) (0.0019)

OW 0.0031 0.0038 0.0036
(0.0023) (0.0062) (0.0023)

OY 0.0044
(0.0011)

UA 0.0058 0.0044
(0.0042) (0.0071)

UW 0.006
(0.0032)

Table 9.2: Median error bars for the log-model slope estimates on the
Gilbert and Sullivan data set. Entries are the median error bar size for
the slope estimates of the first two harmonics (above) and the median
of the absolute value of the slope for reference (below) in db/Hz.

9. Experiments with the Gilbert and Sullivan Data Set 131

vowel/op. HMS Mikado Pirates Gondoliers Yeomen

AA 0.69/-1.1 2.3/-0.58 0.91/-1 0.95/-1.1

AE 0.7/-1.1 1.2/-1.1 0.96/-1.1

AH 0.72/-0.83 0.88/-1.1 1/-1.4 1.3/-0.84 0.85/-0.87

AO 0.72/-0.83 0.77/-0.94 0.78/-0.64

AW 0.91/-0.92

AX 0.69/-1.5 0.89/-1.2 0.88/-1.2

AY 0.79/-0.98 0.85/-1.2 0.9/-1.2 0.8/-1.4 0.83/-1.1

EA 0.71/-2.5

EH 1.1/-1.1 0.89/-1

ER 0.57/-0.6 0.82/-0.98 0.27/-5.6

EY 0.85/-0.9 0.82/-1.1 0.6/-0.85

IH 0.72/-0.94 1.1/-0.99 2.1/-0.89 0.67/-1

IY 0.68/-1.5 0.86/-1.3 0.64/-0.77 1.1/-1

OH 0.61/-1 0.74/-0.85 0.91/-1.1

OW 0.72/-0.79 0.99/-0.99 0.65/-0.73

OY 0.81/-0.9

UA 0.84/-1 1/-0.66

UW 1.1/-1.3

Table 9.3: Median error bars for the linear-model gain estimates on
the Gilbert and Sullivan data set. Values are calculated in the same
way as in table 9.1. Note that even though this is the linear model,
the results are posted here in dB so they can be compared more easily
with the log model results.

is difficult to draw really meaningful conclusions across all vowels and notes. Instead,

the rest of this chapter will discuss the notes and vowels with the most and best

data. It will also only show the log model results since they are essentially the same

as the linear model results.

9. Experiments with the Gilbert and Sullivan Data Set 132

vowel/op. HMS Mikado Pirates Gondoliers Yeomen

AA 0.00287 0.00336 0.0043 0.00582
(0.000939) (0.00526) (0.00341) (0.00249)

AE 0.00276 0.00747 0.00509
(0.00112) (0.00366) (0.00367)

AH 0.0032 0.00376 0.00447 0.00491 0.00345
(0.000857) (0.00204) (0.00399) (0.000552) (0.00232)

AO 0.00307 0.00482 0.00352
(0.00789) (0.00319) (0.00588)

AW 0.0044
(0.00171)

AX 0.0036 0.00415 0.00686
(0.00275) (0.00357) (0.00184)

AY 0.00295 0.00516 0.00395 0.00383 0.00391
(0.00101) (0.00188) (0.00305) (0.00132) (0.00169)

EA 0.00483
(0.00225)

EH 0.00391 0.00314
(0.00118) (0.00181)

ER 0.00171 0.00247 0.00723
(0.00202) (0.00201) (0.0021)

EY 0.0031 0.00231 0.00275
(0.00203) (0.00254) (0.0017)

IH 0.00394 0.00484 0.00811 0.00327
(0.0011) (0.0043) (0.00113) (0.00211)

IY 0.002 0.00431 0.00247 0.00744
(0.000519) (0.00324) (0.00263) (0.00505)

OH 0.00224 0.00364 0.00567
(0.00218) (0.00269) (0.00164)

OW 0.0038 0.00327 0.00302
(0.00183) (0.00443) (0.000851)

OY 0.0037
(0.00139)

UA 0.00527 0.00512
(0.00336) (0.00793)

UW 0.00513
(0.00297)

Table 9.4: Median error bars for the linear-model slope estimates on
the Gilbert and Sullivan data set. Values are calculated in the same
way as in table 9.2. Note that even though this is the linear model,
the slopes are reported in dB/Hz here so they can be compared more
easily with the log model results.

9. Experiments with the Gilbert and Sullivan Data Set 133

9.2 The vowel AA

The vowel AA is characterized by a first formant somewhere around 600 - 1200

Hz and a second slightly higher formant in the range of 1000-1500 Hz [40]. This

relatively high first formant helps to make AA a popular choice for singing on higher

notes.

Figure 9.2 shows the model parameters for AA calculated across all notes with

the same nominal note frequency in all operettas. Perhaps the most interesting

thing to note from these plots is how the energy is distributed as the pitch increases.

For A#4 and C5, the bottom two plots, the first harmonic is well below the first

formant, so the singers place most of the energy in this second harmonic, which is in

the correct range. As the pitch goes up, the first harmonic enters the region of the

first formant and so the first formant becomes more energetic. On the highest notes,

A#5 and C6, the first harmonic has the lion’s share of the energy.

Now, in this stack of vowel plots, G#5 stands out because it breaks the pattern.

Its second harmonic has slightly more energy than its first harmonic. It is possible

that this anomaly is simply the result of noise. However, it is interesting to break

up the parameter estimates by operetta and thus by singer. Most of this data comes

from notes that are sung either in H.M.S. Pinafore (figure 9.3) or The Gondoliers

(figure 9.4). In H.M.S. Pinafore, there is a clear pattern where the energy moves

smoothly from the second to the first harmonic as the pitch rises. The trade-off

clearly takes place somewhere between C5 and F5. In contrast, The Gondoliers

seems to show that this trade-off happens at a slightly higher frequency, around A#5.

It could be that these two sopranos simply have slightly different vowel modification

strategies. The nominal formants for vowels are relatively wide because different

people pronounce them slightly differently. It makes sense that these differences

would translate into sung vowels as well.

9. Experiments with the Gilbert and Sullivan Data Set 134

0 500 1000 1500 2000 2500 3000 3500
-30

A#4 (466) -15

0
-30

C5 (523) -15

0
-30

F5 (698) -15

0
-30

G5 (784) -15

0
-30

G#5 (831) -15

0
-30

A#5 (932) -15

0
-30

C6 (1047) -15

0

AA
(across all notes and operettas)

frequency (Hz)

no
te

 (H
z)

/ g
ai

n
(d

B
)

Figure 9.2: AA harmonics across all notes in all operettas. Each plot
shows the log model gains (red stars) and slopes (blue lines) for the
vowel AA sung on the note indicated to the left of the plot. The clouds
behind each gain are histograms of the actual points used to calculate
the slopes and gains (raw amplitudes normalized by the energy curve -
equation (8.38)). Black points in the histogram represent at least 5
points.

9. Experiments with the Gilbert and Sullivan Data Set 135

0 500 1000 1500 2000 2500 3000 3500
-30

A#4 (466) -15

0
-30

C5 (523) -15

0
-30

F5 (698) -15

0
-30

G5 (784) -15

0
-30

A#5 (932) -15

0
-30

C6 (1047) -15

0
AA, H.M.S. Pinafore

frequency (Hz)

no
te

 (H
z)

/ g
ai

n
(d

B
)

Figure 9.3: AA harmonics across all notes in H.M.S. Pinafore. As
in figure 9.2, the gains are red stars, the slopes are blue lines, and the
histograms show the points used to calculate parameters.

9. Experiments with the Gilbert and Sullivan Data Set 136

0 500 1000 1500 2000 2500 3000 3500
-30

F5 (698) -15

0
-30

G#5 (831) -15

0
-30

A#5 (932) -15

0
AA, The Gondoliers

frequency (Hz)

no
te

 (H
z)

/ g
ai

n
(d

B
)

Figure 9.4: AA harmonics across all notes in The Gondoliers. As in
figure 9.2, the gains are red stars, the slopes are blue lines, and the
histograms show the points used to calculate parameters.

9. Experiments with the Gilbert and Sullivan Data Set 137

9.3 The vowel AH

The vowel AH (/2/ as in up) is characterized by a first formant somewhere around

600 - 1100 Hz and a second slightly higher formant in the range of 1100-1700 Hz

[40]. So the formants are just a little higher than those for AA.

The gains really follow the same pattern as the AA gains. In figure 9.5, the

energy shifts from higher harmonics to lower harmonics as the pitch increases. At

high pitches, it is hard to imagine that anyone would be able to distinguish between

vowels because they look very, very similar.

9. Experiments with the Gilbert and Sullivan Data Set 138

0 500 1000 1500 2000 2500 3000 3500
-30

F4 (349) -15

0
-30

A4 (440) -15

0
-30

C5 (523) -15

0
-30

C#5 (554) -15

0
-30

D5 (587) -15

0
-30

D#5 (622) -15

0
-30

F5 (698) -15

0

AH
(across all notes and operettas)

frequency (Hz)

no
te

 (H
z)

/ g
ai

n
(d

B
)

Student Version of MATLABFigure 9.5: AH harmonics across all notes in all operettas. As in
figure 9.2, the gains are red stars, the slopes are blue lines, and the
histograms show the points used to calculate parameters.

9. Experiments with the Gilbert and Sullivan Data Set 139

9.4 The vowel IY

The vowel IY (/i/ as in she), in contrast to AA and AH, has a low first formant

at about 150 to 450 Hz and a high second formant at about 2000-3700 Hz [40]. In

figure 9.6, only the lowest note has even the first harmonic in range of the first

formant. So rather than energy shifting between harmonics as the pitch increases,

most of the energy stays firmly in the first formant. Interestingly, because the

formants are better separated than the formants for AH and AA, the second formant

can be seen reasonably clearly.

9. Experiments with the Gilbert and Sullivan Data Set 140

0 500 1000 1500 2000 2500 3000 3500
-30

G4 (392) -15

0

-30

B4 (494) -15

0

-30

C5 (523) -15

0

-30

D5 (587) -15

0

-30

F5 (698) -15

0
IY

frequency (Hz)

no
te

 (H
z)

/ g
ai

n
(d

B
)

Figure 9.6: IY harmonics across all notes in all operettas. As in
figure 9.2, the gains are red stars, the slopes are blue lines, and the
histograms show the points used to calculate parameters.

9. Experiments with the Gilbert and Sullivan Data Set 141

9.5 The singer’s formant

Recall from section 2.1.2 that the singer’s formant is a peak in the voice near 3000

Hz. Depending on the definition, this peak may or may not apply to high voices.

However, for the purposes of this section, the singer’s formant will be defined as a

peak, or local maximum, in a note’s calculated gains (i.e. all gains and slopes will

be calculated across individual notes in this section) between 2500 and 3500 Hz that

is at least -20 dB. Figure 9.7 shows an example of a set of gains from one note that

fits this definition (top) and an example of a set of gains that does not (bottom).

Each of the singers shows some evidence of a singer’s formant (table 9.5), but

different singer’s employ the singer’s formant with quite different frequency. The

soprano from from The Gondoliers has evidence for the singer’s formant in nearly

four-fifths of her notes, while the soprano in H.M.S. Pinafore only uses the singer’s

formant in a third of notes.

Now, some vowels do have a second formant in the region of the singer’s formant.

Given the small size of the data set, it is possible that the differences between the

singers are simply a function of the vowels they happen to be singing. This is a

little difficult to assess because the BEEP dictionary used to generate phones for the

lyrics is in Arpabet, but publications which specify vowel formants tend to use the

International Phonetic Alphabet (i.e. [30, 40]) and sometimes translation between

the two is not completely straightforward. Furthermore, many of the vowels are

diphthongs. Caveats aside, it does not seem to be the case that the appearance of the

singer’s formant in these voices is completely tied to the vowels being sung. Sopranos

sing notes without the singer’s formant on vowels with a high second formant such

as IH (/I/ as in hid) and they sing notes with the singer’s formant on vowels with a

low second formant such as AH. So the use of the singer’s formant seems more tied

to the singer than the vowels the singers are performing.

9. Experiments with the Gilbert and Sullivan Data Set 142

Operetta % of notes with singer’s formant

H.M.S. Pinafore 33

The Mikado 67

The Pirates of Penzance 55

The Gondoliers 79

The Yeomen of the Guard 42

Table 9.5: Percentage of notes with evidence of the singer’s formant
for each Operetta.

Recall from section 2.1.2 that the purpose of the singer’s formant is to help the

singer to be heard over the orchestra, which has limited energy around 3000 Hz.

Traditionally, the formant has been associated with lower voices and lower pitches.

So it is interesting to take a look at the distribution of notes with and without the

singers formant (figure 9.8). Interestingly, there is not much difference between the

distribution of note frequencies with the singer’s formant and without. So, this data

set would tend to agree with Barnes and Davis’s work [6] that use of the singer’s

formant is tied to singers and not to pitch. It also seems to be in direct conflict

with Bloothooft and Plomp’s work [10], which found no evidence of the singer’s

formant for notes whose fundamental frequency was higher than 392 Hz, although

their definition of the singer’s formant was somewhat different from the one used

here.

9. Experiments with the Gilbert and Sullivan Data Set 143

0 1000 2000 3000 4000 5000
-50

-40

-30

-20

-10

0

frequency (Hz)

ga
in

 (d
B

)

Singer's formant in gains

0 1000 2000 3000 4000 5000
-50

-40

-30

-20

-10

0

frequency (Hz)

ga
in

 (d
B

)

No singer's formant in gains

Figure 9.7: Singer’s formant examples. Both plots show the gains
associate with notes from The Pirates of Penzance. The red boxes
outline the region where there needs to be a peak in the gains in order
for the note to have the singer’s formant. The top plot shows the gains
associated with single note that shows evidence of the singer’s formant
and the bottom plot shows gains associated with a single note that
does not.

9. Experiments with the Gilbert and Sullivan Data Set 144

369 412 459 513 572 639 713 795 888 991
0

5

10

15

20

25

30

fundamental frequency (Hz)

pe
rc

en
ta

ge

Fundamental frequency of notes with and without the singer's formant

no singer's formant
singer's formant

Figure 9.8: Histograms of notes with and without the singer’s formant.
The percentages are relative to the individual groups. In other words,
just over 25% of the notes with singer’s formant have a fundamental
frequency around 513 Hz.

9. Experiments with the Gilbert and Sullivan Data Set 145

9.6 Discussion

The Gilbert and Sullivan data set is relatively small, particularly once all the

short notes and notes without vibrato are removed. Ideal data would cover the

{singer, notefrequency, vowel} triple more completely and in more depth. This

would obviously allow more exploration of how the harmonic gains change as function

of singer, vowel, and note frequency.

However, as it stands, the Gilbert and Sullivan data set is large enough to

illustrate the power of the algorithms described in previous chapters to meaningfully

characterize voices pulled from a polyphonic mix.

9.7 Summary

This chapter brings together a group of algorithms described in chapters 3 and 5

to 8 to analyze a set of artistic recordings. This tool set first uses the aligned MIDI

to estimate the exact pitch tracks of each note in the data set. Raw frame-based

harmonic amplitudes are then estimated using these pitch tracks. Parts of the pitch

tracks/harmonic amplitude tracks are then automatically discarded if the pitch track

is not sufficiently smooth or if the pitch track is lacking vibrato. The tool set then

goes back to the MIDI files and translates syllable-aligned lyrics into syllable-aligned

phones, from which each note’s vowel can be easily extracted. With the vowel

information in hand, the tool set can then smooth the raw amplitudes across a single

vowel and nominal note frequency combination.

These smoothed estimates essentially consist of a gain for each harmonic and

a local slope around each harmonic that is swept out by the vibrato. While the

harmonic gains are reasonably estimated from the data, the slopes are more suspect

due to the spread of the data.

9. Experiments with the Gilbert and Sullivan Data Set 146

Several vowels are examined for how the vowel shape changes as pitch changes.

Two of the vowels have relatively high first formants, meaning that it is possible to

see the energy associated with the first formant move to lower-numbered harmonics

as the pitch increases. The last vowel has a low first formant, so the first harmonic

always contains the most energy.

Finally, the singer’s formant is examined. Evidence is found for a singer’s formant

in all five sopranos in the data set, but some singers seem to use the singer’s formant

much more frequently than the others do. This increase in the prevalence of the

singer’s formant cannot be explained away by high second formants in the particular

vowels the singers perform, suggesting that the use of the formant really is tied to

the individual soprano’s technique. Furthermore, even though the singer’s formant

has traditionally been associated with lower pitches, in part because of the way it

was defined by Sundberg (section 2.1.2), the evidence from this data set suggests

that its use is not necessarily tied to pitch.

147

Chapter 10

Conclusions

10.1 Thesis summary

This thesis has explored the problem of extracting the vocal characteristics of singers

in commercial recordings. The initial approach was to look for unobstructed views

of instruments in mostly polyphonic mixes by trying to optimally cancel energy in

each window using a modified comb filter. If the window only contained a single

harmonic voice, the comb filter was generally able to cancel out most of the energy

in the window. Otherwise, the ratio of original to residual energy was much higher

because the filter was unable to remove the majority of the energy. This approach

worked reasonably well, but monophony is simply not very common in recordings. A

large database of music would have been needed to extract enough data for further

processing. There was also the problem that this algorithm only identified sections

with harmonic tones, not the instrument that created the tones. So further processing

would have been required to find just the vocal passages.

The final approach was to tackle polyphony directly. Unfortunately, polyphony

without constraints is very complex problem. If nothing is known about the number

10. Conclusions 148

of voices, the kinds of instruments, or the musical style, then it can be difficult to

constrain the problem of locating the voices sufficiently for an efficient algorithm.

So this thesis approached the problem with extremely good constraints in the form

of an aligned electronic score. This meant that the algorithm knew exactly when

each note for the voice should appear and approximately what its pitch should be.

The task now was simply to home in on the exact pitch of the voice. With the exact

pitch known, the pitches of all the harmonics could be calculated and the harmonic

strengths estimated.

Two approaches were taken to pitch estimation, both of which took advantage of

the presence of multiple harmonics to improve the fundamental frequency estimate.

The first approach was Bayesian. It attempted to find the MAP estimate of not only

the fundamental frequency, but also the amplitudes and phases of the harmonics in

each short window. The second approach was a much simpler template matching

scheme which estimated the fundamental frequency by sliding a harmonically-shaped

template over the DFT of each window. While the Bayesian solution was both more

mathematically elegant and more accurate, it was extremely slow. The template

matching scheme was reasonably accurate and was also at least an order of magnitude

faster, which seemed like an acceptable trade off.

Once the fundamental frequency was known in each window, the amplitudes of

the harmonics were estimated from the DFT coefficients nearest to each harmonic.

Because the estimates were made from so few data points, they were rather noisy.

The solution to this local noise was to smooth the estimates out over time. First

however, the algorithms needed to know which data to use during smoothing. There

was no point in smoothing data calculated from erroneous fundamental frequency

estimates. So, sections of the frequency tracks were first labeled ‘good’ or ‘bad’ based

on their smoothness and whether or not they contained vibrato. Only amplitudes

10. Conclusions 149

calculated with good frequency information were then smoothed across time.

Two models were tested for smoothing the amplitudes, both of which essentially

assumed that the harmonic amplitudes at any moment were a function of an un-

derlying ‘breath’ energy curve, a harmonic gain tied to the vocal tract filter, and a

local slope due to fluctuations in the frequency from the vibrato. These models were

shown to successfully estimate the underlying harmonic gain profiles.

10.2 Future directions

There are several obvious limitations to the approach taken in this thesis. The

approach relies heavily on an accurate score. For some kinds of music, particularly

classical music where musicians work from a score, this may be relatively easy. For

other kinds of music which rely more on improvisation, finding a score, particularly

one accurate enough for this algorithm to use, may be very difficult. However, even

a partial score may be useful. At a minimum, it is not hard to imagine an algorithm

that would be able to at least automatically figure out which pieces of the score are

accurate and which are not.

A second limitation is the requirement that the score be hand-aligned with the

recording in order to have accurate timing information. Fortunately, this limitation

should go away as score-audio alignment algorithms improve.

A more fundamental limitation is that the voice being analyzed needs to be

prominent. If the desired voice is not the loudest harmonic voice in a particular

time/frequency block, this algorithm is liable to latch onto the wrong voice. In very

dense textures with equal voices, such as quartets, this can be a definite problem. The

algorithm currently works much better pulling out a solo in the solo + accompaniment

case because the solo should always be the most prominent voice. One advantage

of the current approach is that it does not need prior models of the voice being

10. Conclusions 150

pulled out, but perhaps in situations where the texture is more dense, some kind of

voice-specific model would be better at differentiating between closely packed voices.

Of course, one advantage of this harmonic-basic approach is that the frequency

and initial harmonic estimates are completely agnostic about what sort of instrument

is creating the harmonic tone. So the frequency and initial harmonic estimates could

be applied to any instrument without modification. While some sort of smoothing

will still be necessary for the harmonics, the voice models presented should also

apply reasonably well to instruments which also have some kind of periodic source

and which also filter this source through the body of the instrument. The only part

of the whole algorithm that may need to be reconsidered is the reliance on finding

vibrato to label frequency track data as ‘good.’

Another possible direction for investigation is singer identification. The harmonic

gains provide a reasonably compact representation of how a singer produces various

vowels on various notes. The singer could be represented in terms of combinations

of these gains. Given that many notes that are nearly the same frequency will

have similar harmonic gains, the dimensionality of the combined representation

could undoubtedly be reduced. The key will be to figure out how to reduce the

dimensions to emphasize the differences between singers rather than merely the

similarity between notes from the same singer.

Finally, it would nice to somehow combine the speed of the template algorithm

and the accuracy of the Bayesian algorithm during the frequency estimation phase.

An easy starting point would be using the template algorithm’s frequency estimate

as the initial frequency estimate for the Bayes algorithm maximization. Since the

template algorithm’s frequency estimate should be closer to the actual frequency

than the current initial estimate, the maximization algorithm should require fewer

iterations to converge. It may also be faster to maximize the individual parameters

10. Conclusions 151

round-robin style rather than doing the joint maximization all at once.

10.3 Potential applications

The methods outlined in this thesis have a variety of possible applications. At a

most basic level, they provide a way of creating a well-labeled data set that can be

used for developing other kinds of algorithms.

Source separation is the problem of dividing a mix into its component parts. This

thesis provides a way of getting extremely good information about some of those

parts. If the algorithm is aimed at the lead voice, then it produces a frequency track

for this voice and harmonic amplitudes across time. The frequency track could be

used to carefully filter out the voice energy as much as possibly from the background.

The frequency track and harmonic amplitudes, along with an artificial phase, could

be used to reconstruct at least the voiced parts of the lead vocals with reasonable

fidelity.

Other possibilities lie in the realm of remixing. Traditionally, remixing starts

with the old multi-track recordings, from which the new mix is created. Sometimes,

however, the old multi-tracks are gone. Sometimes, even if they exist, the individual

multi-tracks contain multiple lines anyway because the old multi-track technology

limited artists to a few tracks. This research offers the potential to do some remixing

directly from when tracks for individual instruments are unavailable.

Musicology research is also an obvious application. Performance practice, the

study of aspects of performing that are not necessarily notated in the music, could

benefit from being able to accurately calculate these aspects of the performance

directly from recordings. For example, accurate frequency tracks could allow for the

exploration of subtle tuning effects. The distribution of energy among harmonics

could allow musicologists to explore tone color changes.

10. Conclusions 152

In short, the algorithms presented in this thesis have potential applications to a

variety of interesting problems in music information retrieval.

153

Bibliography

[1] Gilbert and sullivan archive home page. http://math.boisestate.edu/gas/. URL
http://math.boisestate.edu/gas/. (Cited on page 17.)

[2] I. Arroabarren, M. Zivanovic, X. Rodet, and A. Carlosena. Instantaneous
frequency and amplitude of vibrato in singing voice. In Acoustics, Speech, and
Signal Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE International
Conference on, volume 5, 2003. ISBN 0780376633. (Cited on page 10.)

[3] MIDI Manufacturers Association. Tech specs & info, 2010. URL http://www.

midi.org/techspecs/index.php. Accessed on 2010-11-01. (Cited on page 13.)

[4] B. Atal and M. Schroeder. Predictive coding of speech signals and subjective
error criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing,
27(3):247–254, 1979. (Cited on page 28.)

[5] B. S Atal and M. R Schroeder. Adaptive predictive coding of speech signals.
Bell System Technical Journal, 49(8):1973b•“1986, 1970. (Cited on page 11.)

[6] J. J Barnes, P. Davis, J. Oates, and J. Chapman. The relationship between
professional operatic soprano voice and high range spectral energy. Acoustical
Society of America Journal, 116(1):530–538, July 2004. doi: 10.1121/1.1710505.
(Cited on pages 9 and 142.)

[7] Wilmer T. Bartholomew. A physical definition of ‘good voice-quality’ in the
male voice. The Journal of the Acoustical Society of America, 6(1):25, 1934.
ISSN 00014966. doi: 10.1121/1.1915685. (Cited on page 9.)

[8] A.L. Berenzweig and D.P.W. Ellis. Locating singing voice segments within
music signals. In Proc. IEEE Workshop on Apps. of Sig. Proc. to Audio and
Acous., pages 119–122, Mohonk, NY, October 2001. (Cited on pages 26 and 33.)

[9] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. Enforcing harmonicity
and smoothness in bayesian Non-Negative matrix factorization applied to poly-
phonic music transcription. IEEE Transactions on Audio, Speech, and Language
Processing, 18(3):538–549, 2010. ISSN 1558-7916. doi: 10.1109/TASL.2010.
2041381. (Cited on page 12.)

http://math.boisestate.edu/gas/
http://www.midi.org/techspecs/index.php
http://www.midi.org/techspecs/index.php

Bibliography 154

[10] Gerrit Bloothooft. The sound level of the singer’s formant in professional
singing. The Journal of the Acoustical Society of America, 79(6):2028, 1986.
ISSN 00014966. doi: 10.1121/1.393211. (Cited on pages 9 and 142.)

[11] B. Boashash. Estimating and interpreting the instantaneous frequency of a
signal. i. fundamentals. Proceedings of the IEEE, 80(4):520–538, 1992. ISSN
0018-9219. doi: 10.1109/5.135376. (Cited on page 12.)

[12] Gunilla Carlsson and Johan Sundberg. Formant frequency tuning in singing.
Journal of Voice, 6(3):256–260, 1992. ISSN 0892-1997. doi: 10.1016/
S0892-1997(05)80150-X. (Cited on page 8.)

[13] K.W. Chan and H.C. So. Accurate frequency estimation for real harmonic
sinusoids. Signal Processing Letters, IEEE, 11(7):609–612, 2004. ISSN 1070-
9908. doi: {10.1109/LSP.2004.830115}. (Cited on page 12.)

[14] Perry R. Cook. SPASM, a Real-Time vocal tract physical model controller; and
singer, the companion software synthesis system. Computer Music Journal, 17
(1):30–44, April 1993. ISSN 01489267. doi: 10.2307/3680568. URL http://www.

jstor.org/stable/3680568. ArticleType: research-article / Full publication
date: Spring, 1993 / Copyright B• 1993 The MIT Press. (Cited on page 10.)

[15] Roger B. Dannenberg and Christopher Raphael. Music score alignment and
computer accompaniment. Commun. ACM, 49(8):38–43, 2006. doi: 10.1145/
1145287.1145311. (Cited on page 15.)

[16] Alain de Cheveigne and Hideki Kawahara. YIN, a fundamental frequency
estimator for speech and music. The Journal of the Acoustical Society of
America, 111(4):1917–1930, April 2002. doi: 10.1121/1.1458024. (Cited on
pages 12 and 49.)

[17] Johanna Devaney and Daniel P.W. Ellis. An empirical approach to studying into-
nation tendencies in polyphonic vocal performances. Journal of Interdisciplinary
Music Studies, 2(1-2):141–156, 2008. (Cited on page 49.)

[18] Johanna Devaney, Michael I. Mandel, and Daniel P.W. Ellis. Improving MIDI-
audio alignment with acoustic features. In 2009 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, pages 45–48, New Paltz, NY, USA,
2009. doi: 10.1109/ASPAA.2009.5346500. (Cited on page 15.)

[19] Mark Dolson. The phase vocoder: A tutorial. Computer Music Journal, 10(4):
14–27, 1986. ISSN 01489267. ArticleType: research-article / Full publication
date: Winter, 1986 / Copyright B• 1986 The MIT Press. (Cited on page 12.)

[20] Tuomas Eerola and Petri Toiviainen. MIDI Toolbox: MATLAB Tools for
Music Research. University of Jyväskylä, Jyväskylä, Finland, 2004. URL
www.jyu.fi/musica/miditoolbox/. (Cited on page 14.)

http://www.jstor.org/stable/3680568
http://www.jstor.org/stable/3680568
www.jyu.fi/musica/miditoolbox/

Bibliography 155

[21] Sebastian Ewert, Meinard Müller, and Roger B. Dannenberg. Towards reliable
partial music alignments using multiple synchronization strategies. In Proceedings
of the International Workshop on Adaptive Multimedia Retrieval (AMR), Madrid,
Spain, September 2009. (Cited on page 15.)

[22] Gunnar Fant. Acoustic Theory of Speech Production with Calculations Based
on X-Ray Studies of Russian Articulations. Mouton, The Hague, 2d ed. edition,
1970. (Cited on page 6.)

[23] J. L. Flanagan and L. Cherry. Excitation of Vocal-Tract synthesizers. The
Journal of the Acoustical Society of America, 45(3):764–769, March 1969. doi:
10.1121/1.1911461. URL http://link.aip.org/link/?JAS/45/764/1. (Cited
on page 10.)

[24] T. Higashimoto and H. Sawada. Speech production by a mechanical model:
construction of a vocal tract and its control by neural network. In Robotics and
Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on,
volume 4, page 3858b•“3863, 2002. ISBN 0780372727. (Cited on page 11.)

[25] Elodie Joliveau, John Smith, and Joe Wolfe. Vocal tract resonances in singing:
The soprano voice. Acoustical Society of America Journal, 116(4):2434–2439,
2004. doi: 10.1121/1.1791717. (Cited on page 8.)

[26] Y. E Kim and B. Whitman. Singer identification in popular music recordings
using voice coding features. In Proceedings of the 3rd International Conference
on Music Information Retrieval, pages 13–17, 2002. (Cited on page 28.)

[27] Youngmoo E. Kim. Singing voice analysis, synthesis, and modeling. In David
Havelock, Sonoko Kuwano, and Michael Vorländer, editors, Handbook of Signal
Processing in Acoustics, pages 259–374. Springer New York, 2008. (Cited on
pages 10 and 11.)

[28] M. Kob. Singing voice modelling as we know it today. Acta Acustica United
with Acustica, 90(4):649–661, 2004. ISSN 1610-1928. (Cited on page 10.)

[29] P. Ladefoged and K. Johnson. A course in phonetics, volume 127. Harcourt
Brace Jovanovich New York., 1975. (Cited on page 1.)

[30] P. Ladefoged and I. Maddieson. Vowels of the world’s languages. Phonology:
critical concepts, 2001. (Cited on page 141.)

[31] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright.
Convergence properties of the Nelder–Mead simplex method in low dimensions.
SIAM J. on Optimization, 9(1):112–147, 1998. (Cited on pages 44 and 80.)

http://link.aip.org/link/?JAS/45/764/1

Bibliography 156

[32] Beth Logan. Mel frequency cepstral coefficients for music modeling,. In Proc.
International Symposium on Music Information Retrieval, Plymouth, 2000.
(Cited on page 33.)

[33] S. Matteson and F. L Lu. Vocal inharmonicity analysis: A promising approach
for acoustic screening for dysphonia. The Journal of the Acoustical Society of
America, 125(4):2638, 2009. (Cited on page 11.)

[34] Maureen Mellody, Freda Herseth, and Gregory H. Wakefield. Modal distribution
analysis, synthesis, and perception of a soprano’s sung vowels. Journal of Voice,
15(4):469–482, December 2001. ISSN 0892-1997. doi: 10.1016/S0892-1997(01)
00047-9. (Cited on pages 9, 10, and 93.)

[35] Dayton Clarence Miller. The science of musical sounds. The Macmillan company,
1916. (Cited on page 12.)

[36] D.G. Miller and H.K. Schutte. Formant tuning in a professional baritone. Journal
of Voice, 4(3):231–237, 1990. ISSN 0892-1997. doi: 10.1016/S0892-1997(05)
80018-9. (Cited on page 8.)

[37] Kevin Murphy. Hidden markov model (HMM) toolbox for matlab. Downloadable
software, 2005. URL http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.

html. (Cited on page 31.)

[38] Ian Nabney. NETLAB: Algorithms for Pattern Recognition. Springer-Verlag
London Ltd, London, 2004. URL http://www.ncrg.aston.ac.uk/netlab/.
(Cited on page 33.)

[39] A. Ozerov, P. Philippe, F. Bimbot, and R. Gribonval. Adaptation of bayesian
models for Single-Channel source separation and its application to Voice/Music
separation in popular songs. Audio, Speech, and Language Processing, IEEE
Transactions on, 15(5):1564–1578, 2007. ISSN 1558-7916. doi: 10.1109/TASL.
2007.899291. (Cited on page 12.)

[40] Gordon E. Peterson and Harold L. Barney. Control methods used in a study of
the vowels. The Journal of the Acoustical Society of America, 24(2):175–184,
March 1952. doi: 10.1121/1.1906875. (Cited on pages 7, 133, 137, 139, and 141.)

[41] M. D. Plumbley, S. A. Abdallah, J. P. Bello, M. E. Davies, G. Monti, and
M. B. Sandler. Automatic music transcription and audio source separation.
Cybernetics and Systems: An International Journal, 33(6):603, 2002. ISSN
0196-9722. doi: 10.1080/01969720290040777. (Cited on page 13.)

[42] William Putnam and Julius Smith. Design of fractional delay filters using convex
optimization. Proceedings of the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, Oct. 1997. (Cited on page 28.)

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://www.ncrg.aston.ac.uk/netlab/

Bibliography 157

[43] Christine Smit and Daniel P.W. Ellis. Solo voice detection via optimal cancella-
tion. In Applications of Signal Processing to Audio and Acoustics, 2007 IEEE
Workshop on, pages 207–210, 2007. doi: 10.1109/ASPAA.2007.4393045. (Cited
on page 25.)

[44] Christine Smit and Daniel P.W. Ellis. Guided harmonic sinusoid estimation in
a multi-pitch environment. In 2009 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, pages 41–44, New Paltz, NY, USA, 2009.
doi: 10.1109/ASPAA.2009.5346460. (Cited on page 39.)

[45] J. Sundberg. Vibrato and vowel identification. Arch. Acoust, 2:257–266, 1977.
(Cited on page 10.)

[46] J Sundberg. Level and center frequency of the singer’s formant. Journal of
Voice: Official Journal of the Voice Foundation, 15(2):176–186, June 2001. ISSN
0892-1997. doi: 10.1016/S0892-1997(01)00019-4. PMID: 11411472. (Cited on
page 54.)

[47] J. Sundberg et al. The science of the singing voice, volume 1. Northern Illinois
University Press Dekalb, IL, 1987. (Cited on pages 6 and 7.)

[48] Johan Sundberg. Articulatory interpretation of the ‘singing formant’. The
Journal of the Acoustical Society of America, 55(4):838, 1974. ISSN 00014966.
doi: 10.1121/1.1914609. (Cited on page 9.)

[49] Johan Sundberg. Acoustic and psychoacoustic aspects of vocal vibrato. In
Vibrato, pages 35–62. Singular Pub., 1995. ISBN 9781565931466. (Cited on
pages 9 and 10.)

[50] Johan Sundberg and JG’Aorgen Skoog. Dependence of jaw opening on pitch
and vowel in singers. Journal of Voice, 11(3):301–306, September 1997. ISSN
0892-1997. doi: 10.1016/S0892-1997(97)80008-2. (Cited on page 8.)

[51] Ingo R. Titze. The human vocal cords: A mathematical model. Pho-
netica, 28(3-4):129–170, 1973. ISSN 1423-0321. doi: 10.1159/000259453.
URL http://content.karger.com/ProdukteDB/produkte.asp?Aktion=

ShowAbstract&ArtikelNr=259453&Ausgabe=249786&ProduktNr=224275.
(Cited on page 10.)

[52] R. J Turetsky and D. P. Ellis. Force-aligning MIDI syntheses for polyphonic
music transcription generation. Proc. ISMIR, Baltimore, USA, 2003. (Cited on
page 15.)

[53] E. Vincent and M.D. Plumbley. Low Bit-Rate object coding of musical audio
using bayesian harmonic models. Audio, Speech, and Language Processing,

http://content.karger.com/ProdukteDB/produkte.asp?Aktion=ShowAbstract&ArtikelNr=259453&Ausgabe=249786&ProduktNr=224275
http://content.karger.com/ProdukteDB/produkte.asp?Aktion=ShowAbstract&ArtikelNr=259453&Ausgabe=249786&ProduktNr=224275

Bibliography 158

IEEE Transactions on, 15(4):1273–1282, 2007. ISSN 1558-7916. doi: {10.1109/
TASL.2006.889792}. (Cited on page 12.)

[54] Robert W. Young. Inharmonicity of plain wire piano strings. The Journal
of the Acoustical Society of America, 24(3):267, 1952. ISSN 00014966. doi:
10.1121/1.1906888. (Cited on page 11.)

	1 Introduction
	1.1 Contributions
	1.2 Thesis organization

	2 Background
	2.1 The singing voice
	2.1.1 Vowel formants
	2.1.2 Singer's formant
	2.1.3 Vibrato

	2.2 Modeling the voice
	2.2.1 Physical modeling
	2.2.2 Source-filter modeling
	2.2.3 Sinusoidal modeling

	2.3 MIDI
	2.3.1 Tools for reading MIDI files
	2.3.2 Time alignment

	2.4 The Gilbert and Sullivan data set

	3 Determining vowels from lyrics embedded in scores
	3.1 Calculating syllable to phone alignment
	3.2 Discussion
	3.3 Summary

	4 Solo voice detection
	4.1 Optimal Periodicity Cancellation
	4.2 Classifier
	4.3 Experiments and results
	4.4 Discussion
	4.5 Summary

	5 Frequency estimation
	5.1 Basic signal model
	5.2 Noise model
	5.3 Bayesian estimation
	5.3.1 Defining probabilities
	5.3.2 Finding the maximum

	5.4 Template estimation
	5.5 Experiments and results
	5.5.1 Experiments with simulated data
	5.5.2 Experiments with multi-track data

	5.6 Discussion
	5.7 Summary

	6 Initial harmonic amplitude estimation
	6.1 Energy estimation
	6.2 Best fit estimation
	6.3 Heterodyne solution
	6.4 Experiments and results
	6.4.1 True frequency experiment
	6.4.2 Estimated frequency experiment

	6.5 Discussion
	6.6 Summary

	7 Discarding bad data
	7.1 Measuring pitch track smoothness
	7.2 Measuring vibrato
	7.2.1 The vibrato model
	7.2.2 Estimating the vibrato parameters for the simple vibrato model
	7.2.3 Estimating the frequency modulation
	7.2.4 Estimating the amplitude modulation

	7.3 Classification
	7.3.1 Calculating smoothness likelihoods
	7.3.2 Calculating vibrato model likelihoods
	7.3.3 Combining likelihoods
	7.3.4 The Viterbi path

	7.4 Experiments and results
	7.5 Discussion
	7.6 Summary

	8 Estimates of vowel characteristics
	8.1 Developing vowel models from the source-filter model
	8.2 Log model
	8.2.1 Estimating the underlying energy curve
	8.2.2 Normalizing the gains and energy curve
	8.2.3 Summary

	8.3 Linear model
	8.3.1 Initial estimate of the energy curve
	8.3.2 Normalizing the gains, slopes, and energy curve
	8.3.3 Summary

	8.4 Estimate reliability
	8.4.1 Log model
	8.4.2 Linear model

	8.5 Experiments and results
	8.5.1 Creating the simulated voices
	8.5.2 Results and discussion from the log experiments
	8.5.3 Results and discussion of the linear model experiments

	8.6 Discussion
	8.7 Summary

	9 Experiments with the Gilbert and Sullivan Data Set
	9.1 Characterizing the data
	9.2 The vowel AA
	9.3 The vowel AH
	9.4 The vowel IY
	9.5 The singer's formant
	9.6 Discussion
	9.7 Summary

	10 Conclusions
	10.1 Thesis summary
	10.2 Future directions
	10.3 Potential applications

	Bibliography

