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Abstract

In this paper we derive very succinctly the necessary and suffi-
cient (nas) conditions for identification in the general linear struc-
tural econometric model (GLSEM) by use of the Kullback in-
formation apparatus.

1 Introduction

The purpose of this paper is to intoroduce more widely, in econometrics,
the use of Kullback information. We do so in the context of the
standard GLSEM, by showing how the identification problem becomes
almost a routine by product of the convergence properties of the (log)
likelihood function (LF).

2 Formulation of the Problem
and Notation

Consider the standard GLSEM

YB* = XC + U, OYZA* = U, A* = (B*\C')\ Z = (Y, X), (1)

* This is a preliminary version and is not to be quoted except with the explicit
permission of the author



where Y is T x m, X is T x G and contain, respectively, the current
endogenous and predetermined variables of the system; evidently, B*
and C are m x m, G x m, respectively, and contain the unknown
parameters of the model; U is the T x m matrix of the "structural"
errors whose rows are taken to be i.i.d., with1

E(u't.) = 0, Cov(ut) = E > 0.

In this context it is customary to impose

Convention 1. In the i</l equation it is possible to, and we do, set the
coefficient of yi equal to unity.

The convention above allows us to rewrite Eq. (1) as

Y = YB + XC + U = ZA + U, (2)

where

We shall not be very exacting about the assumptions made regarding
the presence or absence of lagged dependent variables, since we do not
focus on the distributional aspects of the problem and, at any rate, these
problems and their solution are, by now, rather well known. 2

In this context, "identification" is obtained by "exclusion restric-
tions", although, of course, more general schemes are possible; the latter
is easily incorporated in our framework, although for simplicity of expo-
sition we shall operate with the "exclusions" option. Consequently, we
have

Convention 2. In the ith equation there are mt- ( < m — 1), and
Gi (<: G) "explanatory" variables, which are endogenous and pre-
determined, respectively.

In order to implement this convention, we introduce the device of se-
lection matrices,3 as follows. Let Ln , be a permutation of mz- of the

1 The simplicity of this specification is retained so as to have exact correspondence
with the historical evolution of this subject.

2 The requisite central limit theorems (CLT) for solving the distributional problems
in the static or dynamic (GLSEM) models, or models with autoregressive errors are
given, respectively, in Dhrymes (1989), Ch. 4, pp. 257ff, and Ch.5, pp. 323ff.
All of the distributional results asserted herein remain valid even if the model is
dynamic (but stable) with i.i.d. structural errors. The minimum requirement is that
(1/VT) ^2t-i(I ® xt) v>t- should obey a martingale difference CLT with a Lindeberg
condition (Ch 5. pp 323ff).

3 The device of selection matrices was first introduced, in this context, by Dhrymes
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columns of the identity matrix Im , and L2 t , a permutation of G{ of the
columns of IQ , such that

= Xx, t = l , 2 , . . . , m . (4)

Giving effect to Convention 2, the ith equation may be written as

y.i = Yi(3.i + Xa.t + Y;n + Xfri + u.i, t = 1,2,..., ro, (5)

where the notation ?/.,, u.t- means the ith column of Y and U, respec-
tively, and /?.,-, 7.t- contain, respectively, the elements in the ith column
of B(b.{) and C(c.i) not known a priori to be zero. Evidently, /?*• and
7*- represent the elements of the two columns, respectively, set to zero
by the prior restrictions. It follows immediately that

b.{ = Lufi.i, c.i = L2a-i, Lub.i = /?.,-, L2ic.i = 7.;. (6)

Define

£ . _ [ £ « 0 1 L * - \ L ' i ° 1 i-i 2 m f71
• " L O L 2 i \ ' L ' ~ [ 0 L ' J ' '-1'2'---'"1' I 7 )

and note that the ith column of A, in Eq. (3) is given by

a-i = ( ' j , i = l , 2 , . . . , m .

The unknown structural parameters of the i*/l equation are rendered, in
this notation, as

S.i = Lid.i, i = 1,2,... ra, (8)

and for the system as a whole we have

8 = L a, a = vec(A), where L = diag(Lj, L 2 , . . . , Lm). (9)

Finally, we append the following standard assumptions:

Al. The error process {ut. : t > 1} is a sequence of i.i.d. random
vectors distributed as iV(0, E) , E > 0 .

A2. If the GLSEM is dynamic, it is stable in the sense that the roots of
its characteristic equation lie outside the unit circle (no unit roots).

A3. The exogenous variables of the system lie in a compact subset !E C
Rs.

(1973). Greater detail regarding their meaning and function may be found in that
reference, as well as in Dhrymes (1978).
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A4. The parameter space, 0 C Rk is compact, i.e. the admissible
values of the elements of A* and E lie in a compact set.

We may thus write the likelihood function of the observations as

L*(0) = (27r)-^T/2)|S|-(T/2)|^/
JB*|(T/2WPr-|)trS-15', whe^O)

S=^A*'MZZA\ MZZ = ̂ Z'Z, 0 = (vec(yO\vec(E)')' (11)

and a zero subscript (or superscript) will indicate the true parameter
vector.

3 Kullback Information and
Minimum Contrast (MC) Estimators

3.1 Kullback Information

In the framework created in the previous section, the probability space(s)
indexed on the parameter 0 will be termed an econometric model.
Basically, this is the probability space ($7, A, V$) which is induced
by the probability space of the error process indexed on the parameter
0, given the space of the exogenous variables E. To avoid excessive
notation we suppress the latter space.4 We have 5

Definition 1. In the context created above, the Kullback information
of V$o on VQ , or, for brevity's sake, of 90 on 0 is defined by

If there exists a dominant measure /j, such that dVe = fe^l1, in the sense
that Ve(A) = fA fed^i, the Kullback information may be rendered as

Remark 1. We note that in the case under consideration, if A £ A,
so that V(A) gives the probability that the dependent variables of the

4 For the excessively purist reader this may be rationalized as an argument condi-
tioned on a specific sequence in S .

5 The discussion of this section in part based on Chs. 2 and 3, vol. II, of Dacunha-
Castell and Duflo (1986).



problem obey Y 6 A, then

V9(A) = I L*{0)d^ (13)
JA

where fi is ordinary Lebesgue measure. Consequently, the Kullback
information expression of Eq. (11) may also be written as

K(0,0O) = jf {T^\ L*(0o)dn = EoL*(0o) - EoL*(0) > 0. (14)

This shows that the Kullback information is a nonnegative function and,
further, that it attains its global minimum when 0 = $0.

3.2 MC Estimators

Definition 2. Consider the probability space (ft, A, V\ and the
econometric model (ft, A, Ve), 0 € Q C Rk, with the "true" param-
eter, #o -, being an interior point of 0 . A contrast function of this
model, relative to 0O , is a function

K : 0 x 0 — > R,

say K(0, 0o), having a strict minimum at the point 0 = 0Q , in the sense
that K(0o, 0O) < K(0,0O), for all 0 <E 0 , 0 ^ 0O .

Definition 3. In the context of Definition 2, let X = {Xt. : t =
1,2,3,..., T} be a sequence of random vectors (elements), and consider
the (nested) sequence of subalgebras 6

A contrast, relative to 0O and K , is a function7

H : j \ f x 0 x f i — > R,

independent of #o, such that

i. for every 0 G 0 , HT(0,U>) is QT -measurable;
6 Basically, the motivation for the sequence of subalgebras is to provide the minimal

probability space on which to describe certain sequences of r.v. Thus, for example,
if we take Q§ — {0, f2} , the trivial a -algebra used to describe "constants", and
QT = a(X\,X2, • • • ,XT) , we will have produced the sequence referred to in the text,
which is quite suitable for studying the samples {X^ : T > 1} .

7 In the description of the function, J\f represents the integers, i.e. M — { 1 , 2 , . . . } .



ii. HT{0, •) converges to the contrast function K(0, 0O), at least in
probability.8

A minimum contrast estimator (MC) associated with H is a func-
tion,

ft-. Afxn —>0,

such that
HT{0T) = wiHT(0).

The definition above makes possible the following important

Theorem 1. In the context of Definitions 2 and 3, suppose, further,

i. 0 C Rk is closed and bounded (compact);

ii. K(0, $o), and HT{0,LO) are continuous in 0;

iii. (identification condition) if K(6l,60) = K(02,0O) then 01 = 02;

iii. letting
cr(6) = sup | HT(0x) - HT(02) |,

there exist sequences {ê ,. : e^ > 0,k > 1}, and {6k : 6^ >
0, k > 1} , both (monotonically) tending to zero with k, such that
the sets Fj^ — {UJ : CT(ST) > £T} obey V(FT) < 2e^, and hence

oo V{FT) = 0 .

Then, every MC estimator is consistent.

Proof: Since K(0,0o) is continuous and K(0,90) — 0 , there exists e > 0 ,
such that

K(0,0O) >2e, for 0 6 B, (15)

where
B = {0: \0-0o | < e } - (16)

Since B is open , 0* = 0 fl B is compact; consequently, there exists a
countable set D , that is everywhere dense in 0* , say

D = {0l; : i> 1}.
8 When a statement like this is made, or when an expectation is taken, we shall

always mean that the operations entailed are performed in accordance with the prob-
ability measure Ve0 •



Moreover, for Ck < e, there exists a finite open cover of 0* , say

N

0 * C | J A-, with A{ = {O:\6-0i \< ek). (17)

Next, note that we can write

HT(0) = HT(Pi) - [HT(9i) - HT(0)].

Consequently, for sufficiently large n , we obtain

HT{0) > HT($i) - | HT{0i) - HT(6) |

inf HT{9) > inf HT(0i) - sup sup | HT(0i) - HT(0) I
*ee* i<i<N deD \ e e \ s

(18)

where 8T < Sk and hence CT(ST) < cr(Sk) - Now if 9T is the MC esti-
mator, i.e. if HT(0T) — inftfee HT(9) we must show that its probability
limit is #o • It is clear that 9? £ B if and only if inf^e* HT(0) < HT(OO) .
This is so since, by the continuity of HT{0) , if the condition above holds,
there exists a neighborhood of 0Q , say N(0o;e) = {6 : | 9 — 0o |< e] ,
such that

in£ HT{0) < HT(0), for 9 € iV(6>0; e),

and it is this type of neighborhood that constitutes the set B. Define
now the sets

BT = {a; : 9T £ 0*}, CT = {a; : infJ//T(<9) - HT{90)] < 0}

DT = W : i n f [ ^ T ( ^ ) - HT(0o)] - cT(6T) < 0}, (19)
l<i<7V

and note that
Bf C CT C

Define the sets

ET = {LV : i m|^[i/T(6'J) - //T(^o)] < CT}, FT = {u; : cT(^T) > eT},

(20)
and note that for CT(ST) <

= {CJ : inf [^T (^)-^T (^ 0 ) ] < cT(ST), and cT(^T) < eT} C

(21)



Since
DT = (DT n FT) U (DT n FT) C ( F T U F T ) , (22)

it follows that

V(BT) < V(ET U FT) < V{ET) + V{FT). (23)

By iii., of the premises of the proposition, V(FT) —> 0, and, by Defini-
tions 2 and 3

- HT{e0)} £ ^ K(9, $i) - K(90,0O) > 2c,

whence we conclude

lim Ve0(ET) = 0, and hence lim V0O(BT) = 0.
n^oo n—>-oo

But his means that l im,^^ VQQ(BT) = 1 , SO that 9? is consistent for

q.e.d.

Corollary 1. In the context of Theorem 1, suppose that

HT(0)-HT(0o) ^ K(0,9o)

uniformly for ^ 6 0 . Then the MC estimator converges to 0O with
probability one, i.e, it is strongly consistent for 0O.

Proof: Proceed as in the proof of Theorem 1, and define the sets B , 0* ,
BTI CT I as defined therein. If the convergence

is uniform in 9 then

inf [HT(9) - HT(9o)] ^ inf K(0,0O) > 2e > 0. (24)

Consequently,

lim CT = C*, obeys 7>(C*) = 0. (25)

Since, by construction, BT C CT , we have that

B* = ImT 5 T C i m CT = C*; (26)
71—>-OO 71—»-OO

hence, in view of Eq. (25) we conclude that V(B*) = 0 . But this means
that the ML estimator,

inf #f(«) = H'T(0T),

obeys 9T £ B with probability one, or that it converges a.c. to the true
parameter #o •

q.e.d.



4 Application to the GLSEM

Let LT(0) = (l/T)L*(9), to be referred to subsequently as LF, and note
that HT{0) = —LT(O) is a constrast in the sense of Definition 3. In
fact if we define

H} = HT(0) - H(0O), (27)

we see that that the ML estimator of 6 is a MC estimator. Using the
results in Ch. 4 Dhrymes (1984), we note that

which is an integrable function and does not depend on 0; more-
over, HT , and hence H? satisfy the conditions of Theorem 1 above. In
Ch. 2 of Dhrymes (1993) it is shown that Mzz converges a.c. (almost
certainly), and we colcude that

Mzz ^ [^ Q]+(no,/)'Mx*(IIo,/) - Mg
z,

Mxx = ^X'X, Mxx
 aA- Mxx. (28)

By the compactness of the parameter space 0 , the stability of the model,
and the assumptions regarding the exogenous variables of the model
H^{0) ^ K(0,0O), uniformly in 0 . Hence, by Corollary 1, we con-
clude that the ML estimator converges a.c. to the true parameter vector,
provided the identification condition in iii. of Theorem 1 is satisfied.

Our next task is to obtain an expression of the contrast function K
and to verify that it is the Kullback information. This last requirement
is obvious, since H^(0,6Q) converges by the Kolmogorov criterion, see
Proposition 22, Ch. 3 Dhrymes (1989), to the limit of EO[H£(0,OO);
hence, the limit is nonnegative and assumes its global minimum at 9 =
0O, as required of contrast functions. As for the form of the Kullback
information, we find

A*'MSZA* ^ So + (A* - AD' [ft
0° J

- A*0)'(n0, I)'MXX(U0, i)(A* - A*0)

0*-1£* - /) + (B^'B;'-1 - 7)E0,

and
(29)



Consequently,

inf #J(0) = LT(0O) - sup LT{0) ^ inf K(0, 0O).

E | -

(30)

But,

K{6, Bo) = -\m- 2
 n 1 o

p0* = (n0, /)'MM(n0, /) . (3i)

Noting that fl0 = BQ ~1TI0BQ~1 and, therefore, that BQ O,QBQ = E o , we
can rewrite the Kullback Information of Eq. (31) as

6) = -l-m - il B*B

(32)

The expression above may be (partially) minimized with respect to E 1 ,
yielding the first order conditions,

whence we obtain

Noting that

-In

2 x ' 2

E = J\

and inserting the minimizer in Eq. (32), we obtain the "concentrated"
Kullback information expression,

*— 1
KK • (33)

Remark 2. Since the expression in the large round bracket is equal to
or greater than unity, it is globally minimized when we take A* = AQ ;
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when we do so the fraction becomes unity, in which case the Kullback
information becomes null. Referring back to the partial minimization
with respect to £ , we see that when the choice A* = AQ is made, the
expression therein implies E = E o . However, in Eq. (33) it is not
transparent that the global minimizer is unique. This is so since
the matrix PQ* is of dimension G + m, but of rank G! Hence, its null
space is of dimension m and thus contains m linearly independent
vectors, say the columns of some matrix No. If J is an arbitrary mxm
nonsingular matrix consider the choice A* = AQ-\- N0J , which implies
P0*(A* — AQ) = PQNQJ = 0. Consequently, the Kullback information
of Eq. (33) does not satisfy the condition in item iii. of Theorem 1,
unless further restrictions are placed on the structure, as indicated in
Conventions 1 and 2. Suppose that in order to make A* admissible the
restrictions required were such that the intersection of the null
space of PQ and the class of admissible structures has AQ as its
only member. Evidently, this would establish identification!

5 Alternative Derivation of the
Identification Conditions for the GLSEM

The preceding discussion affords us a singularly felicitous venue for es-
tablishing the identification conditions for the GLSEM, in a Kullback
information context. In Remark 2 we have established that in order to
have identification, any matrix A* for which the (concentrated) Kull-
back information attains its minimum, must have the property that
A* = AQ , where AQ is the "true" parameter matrix. This means
that a necessary and sufficient condition for identification is that ^ =
(A* - AQ)'PQ(A* - AQ) = 0, for every admissible matrix A*. Not-
ing that, subject to normalization, A* — AQ = Ao — A, where now
A — (B , C ) , B* = I — B, and Ao is the true parameter matrix, we
may rewrite $ in terms of A and Ao ; moreover, since we are dealing
with a positive semidefinite matrix, the condition ty = 0 is equivalent to

Reintroducing the selection matrices Li, and L = diag(Li, L2 , . . . , Lm),
of the preceding sections we note that

a° - a., = Liffi - S.i), trtf = (8° - S)L\lm <8> Po* )L(6° - S).

In this framework a necessary and sufficient condition for identification
of the parameters of the system is that L (7m 0 PQ )L be a positive
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definite matrix. The ith diagonal block of that matrix, however, is of
the form

L\(Y{,I)'Mxx(T{J)Lt = S'{MxxSi,

which is thus required to be nonsingular, i.e. it is required that

rank(5't) = rank(IlLj-, L2l) = mt- + G{, for every i = 1,2,... m. (34)

From Dhrymes (1973), or Proposition 2 Ch. 6 Dhrymes (1978), we note
that these were precisely the conditions for the identification of
the ith structural equation.

Thus, we have derived the necessary and sufficient conditions for the
identification of the equations of a GLSEM, solely in terms of the iden-
tification requirements placed on Kullback Information!
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