
Limited Arbitrage is Necessary and Sufficient
for the Existence of a Competitive Equilibrium

by

Graciela Chichilnisky, Columbia University

December 1991, Revised December 1992

Discussion Paper Series No. 650

1 - •-



Limited Arbitrage is Necessary and Sufficient for the Existence
of a Competitive Equilibrium

Graciela Chichilnisky*
Columbia University

dedicated to Kenneth Arrow

December 1991, revised December 1992

Abstract

A condition of limited arbitrage is defined on the endowments and the preferences
of the traders in an Arrow-Debreu economy. It bounds the diversity of the traders in
the economy, and the gains from trade which they can afford from initial endowments.
Theorem 1 shows that limited arbitrage is necessary and sufficient for the existence
of a competitive equilibrium, when consumption sets are either positive orthants or
the whole euclidean space. The results apply therefore to market economies with or
without bounds on short sales. Theorem 6 establishes that an Arrow - Debreu economy
has a competitive equilibrium if and only if every subeconomy with N +1 traders does,
where N is the number of commodities. Limited arbitrage has been shown elsewhere
to be equivalent to the contractibility of spaces of preferences, and therefore, by the
results of Chichilnisky and Heal [12], to be necessary and sufficient for the existence
of social choice rules defined on individual preferences over allocations, rules which are
continuous, anonymous and respect unanimity.
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1 Introduction

In a world with finite resources, there will generally be conflicting opinions about how the
resources should be allocated among different individuals, leading to the classical resource
allocation problem.

One widely used solution is provided by markets. A market solution assigns one com-
modity vector x, € RN to each individual, and distributes the available resources among
the H traders in a way which is individually optimal and which clears all the markets,
Yixi — ft- When markets are competitive as in the Arrow and Debreu specification [4],
then a market allocation is called a competitive equilibrium and is Pareto efficient under
classical assumptions, Arrow [1], Debreu [23]. Efficiency is a major virtue of such market
allocations, and is principally what makes them desirable. The efficiency of a competitive
equilibrium is quite general. For example, it does not depend on the concavity of preferences
nor on the specification of the consumption or the production sets.

In order to allocate resources following market forces, a necessary precondition is the
existence of a competitive equilibrium. The classical theorems of Arrow and Debreu [4] and
of McKenzie [33], [35] established formal sufficient condition for the existence of a compet-
itive equilibrium. This led to a large and productive literature dedicated to extending and
refining the conditions under which a competitive equilibrium exists, reviewed for example
in Arrow and Hahn [3] and more recently in McKenzie [34].

The conditions which are sufficient for the existence of a competitive equilibrium can
be restrictive, such as for instance the requirement that each trader should own a strictly
positive amount of each good in the economy. Arrow and Hahn have described this condition
as "unrealistic" [3], Chapter 4, page 80. Yet without this or similar conditions an otherwise
well behaved economy, with continuous and concave preferences, positive endowments and
positive orthants as consumption sets, may fail to have a competitive equilibrium. The
simplest example of this failure was provided in Arrow and Hahn [3], Chapter 4, page
80, for a two good, two person pure exchange economy, but the problem is quite general
applying to economies with production and with any number of individuals and of goods.

Other concepts of market equilibrium have been considered to solve the problems of
non-existence of a competitive equilibrium, such as that of a quasi-equilibrium, introduced
in Debreu [21], or of a compensated equilibrium studied in Arrow and Hahn [3]. These are
related but different concepts, which differ from the competitive equilibrium in that they
relax one of main conditions: either the condition of utility maximization by the agents, or
else the market clearing condition. In a quasi-equilibrium allocation the traders minimize
costs rather than maximizing utility. At a compensated equilibrium allocation there may be



excess supply in some markets. From a practical point of view, these concepts of equilibrium
have the advantage that their existence is ensured under general conditions. However, from
the point of view of resource allocation they are less satisfactory: quasi-equilibrium or
compensated equilibrium allocations are not generally Pareto efficient. This limits their
value from the point of view of welfare. For this reason in this paper we concentrate on
competitive equilibrium allocations.

Classical formalizations of markets assume that the consumption sets of the individuals
are bounded below, an assumption motivated by the inability of humans to provide more
than a fixed number of hours of labor per day. However, it can be argued that such
restrictions on trading should not be imposed exogenously but should, instead, be derived
from the individuals' characteristics and behavior, for example from the characteristics of
endowments and preferences. For otherwise, the market equilibrium will inevitably depend
on the chosen bounds, and there is often little reason to choose one bound over another.
Furthermore, the trading of financial instruments does not involve naturally exogenous
limits on the quantities of the assets traded. Short trading, for example, involves contracts
to deliver assets in quantities which may exceed initial endowments. Actually, in the Arrow-
Debreu [4] specification of a pure exchange market, the demand function of a trader may
involve contracts to deliver amounts in excess of his/her initial endowments, or even in excess
of the total endowments of the economy. The same is true in Arrow-Debreu economies with
production where the contracts in equilibrium typically exceed the initial endowments of the
economy. Despite all this, the Arrow-Debreu formulation limits the quantities to be traded
in each market by bounding them below by an exogenously chosen bound. With such
bounds, individual consumption sets are then positive orthants, or translates of positive
orthants. This has the technical advantage that the demand function is always well defined
when preferences are concave and all prices are positive. In such cases, the consumption
vectors which are within the budget sets of a trader define a compact set. This compactness
ensures the existence of a demand vector at all positive prices, which maximizes utility
within the budget set, the existence of which is questionable without compactness.

Despite the technical advantages of defining trading bounds exogenously, there are at
least two substantial reasons for removing these bounds, as already mentioned. One is
that any exogenously given limit on the quantities traded is artificial and in many cases
suffices to determine the equilibrium. For example, when preferences are linear, such bounds
determine by themselves the market equilibrium. Choosing the bounds is then tantamount
to choosing the market allocation exogenously. This is not satisfactory, since the aim of
the theory is to explain prices endogenously, from the functioning of markets. The second
reason is that in the trading of financial assets, physical limitations are less natural than
those imposed by the scarcity of human time. The literature on financial markets therefore
allows any amount of short trading quite generally, examples are Hart [28], Werner [42] and
Chichilnisky and Heal [17]. For these reasons, here we shall include such cases along with
the standard cases. The consumption sets of the traders in our Arrow-Debreu markets will
be either positive orthants as in the classical theory, or the whole Euclidean space. The
latter case thus allows any short trading, without exogenous bounds. In both cases the
condition of limited arbitrage is shown to be necessary and sufficient for the existence of a
competitive equilibrium.

The condition of limited arbitrage has somewhat different economic interpretations when



any short trade is allowed than when they are not. But in both cases it involves the non-
empty intersection of "dual cones" defined from the traders' preferences at their initial
endowments, and it has the same mathematical formulation. From the economic view-
point, as already mentioned, limited arbitrage limits the diversity of the traders and their
potential gains from trade. It seems useful to mention another interpretation of limited
arbitrage, from the mathematical viewpoint, an interpretation which is not necessary for
the results presented in this paper, but which provides additional motivation. The non-
empty intersection of the cones is equivalent to a contractibility condition on the spaces of
preferences (Appendix, Theorem 7): this is a topological condition which ensures that all
traders can be continuously deformed into one. Contractibility is therefore a form of simi-
larity of preferences, this time in a topological formulation, as was pointed out in Heal [29].
The connection between non-empty intersection of asymptotic cones, and the contractibility
property of spaces of preferences is what allows us to connect the existence of a competitive
equilibrium with the existence of social choice rules: this is because is has been already
established that the contractibility of the space of preferences is necessary and sufficient for
the existence of social choice rules, Chichilnisky and Heal, [17].

1.1 Arbitrage and Equilibrium

Welfare economics and finance have each evolved their own equilibrium concepts. In wel-
fare economics, this is the competitive equilibrium: in finance, it is the absence of arbitrage
opportunities. These concepts emerged independently and were intially seen as quite dis-
tinct. However, in the 1980s researchers in both areas began to investigate the connections
between the two concepts. The first explicit study of the arbitrage-equilibrium relationship
was Kreps [31]: subsequently Werner [42], and Nielsen [37] developed this theme further.
In fact Hart's 1974 paper on securities markets [28] contained many of the elements needed
to understand the arbitrage-equilibrium relationship. His approach was developed by Ham-
mond [27] and Page [38]. Green covered related topics in a temporary equilibrium framework
[26].

The absence of arbitrage opportunities (a no-arbitrage condition) is clearly necessary for
the existence of a competitive equilibrium. If arbitrage opportunities remained, the traders
could not be maximizing their utility at the equilibrium allocations. The condition of
no-arbitrage is an equilibrium condition, one which must be satisfied at an equilibrium allo-
cation. This condition does not help to evaluate the economy's ability to reach a competitive
equilibrium, which is the problem we study here, in the sense that only after an equilibrium
allocation is found one can verify this condition. It remains therefore to give conditions on
the primitives of the economy, such as the traders' endowments and preferences, which are
both necessary and sufficient for the existence of a competitive equilibrium, and which hold
both for economies with and without bounds on short sales. This is accomplished in this
paper: we provide a geometric condition on initial endowments and preferences - limited
arbitrage - which is necessary and sufficient for the existence of a competitive equilibrium.
The condition is valid with and without bounds on short sales, and has an additional useful
property: it has been linked with the existence of social choice rules in Chichilnisky [18],
thus providing a clear connection between equilibrium theory and social choice theory.

Results in this direction are in Werner [42], and in Chichilnisky and Heal [17], who



obtained sufficient conditions for existence of a market equilibrium which are related to no-
arbitrage. Their conditions are however too strong to be necessary in general; these works
are compared with the results of this paper in Section 5.2 below. Chichilnisky and Heal
deal with finite and infinite dimensional economies, with or without bounds on short sales.
Werner's work is instead only finite dimensional, and is restricted to economies without
bounds on short sales, for otherwise his conditions are redundant. However, economies
with bounds on short sales can behave very differently from those without such bounds.
One important difference between the two types of economies is that the Pareto frontier of
an economy without bounds on short sales, which describes the Pareto efficient utility values
for the traders, may not be a bounded closed set. Instead, with bounds on short sales the
Pareto frontier is always closed and bounded, Arrow and Hahn [3]. In other words, without
bounds on short sales it may be possible to obtain infinite utility even if the total resources
of the economy are bounded. Typically this failure prevents the existence of a competitive
equilibrium. There exist many examples of economies where this problem arises, some of
which are discussed below in Section 3.1, see also Chichilnisky and Heal [17]. In Theorem 1
we establish that our limited arbitrage conditions ensure inter alia that the Pareto frontier
is closed and bounded. A second difference between the two types of economies is that
a pseudo equilibrium is always a competitive equilibrium in an economy without bounds
on short sales, but this is typically not true in economies with bounds on short sales. In
the latter case, the boundary behavior of the economies is very important to decide the
existence of a competitive equilibrium, as discussed in Sections 3.2 and 5.1 below.

Our paper extends this literature. We work with a weaker condition than no arbitrage,
the condition of limited arbitrage, a condition introduced in the context of social choice
theory by Chichilnisky [18]. This is a condition on the primitives of the economy: the
initial endowments and preferences of the traders. Limited arbitrage limits, but does not
rule out, arbitrage opportunities. We prove that a competitive equilibrium exists if and
only if arbitrage opportunities at the initial endowments are, in a precise sense, limited.
The equilibrium concepts used in economics and finance are therefore fully equivalent in
the context of limited arbitrage. In our context, therefore, this equivalence contrasts with a
conjecture of Dybvig and Ross [25] to the effect that "absence of arbitrage is more primitive
than equilibrium, since only relatively few rational agents are needed to bid away arbitrage
opportunities".

1.2 The Existence of a Market Equilibrium

Market allocations have always been considered a practical solution for the resource allo-
cation problem. One reason for this is that markets are viewed as having equilibria very
generally, while other forms of allocation, such as that provided by social choice theory, has
always stressed paradoxes and non-existence results. Kenneth Arrow's work, which devel-
oped fundamental insights into the two theories, appeared to provide fuel for this viewpoint.
Arrow's impossibility theorem for social choice [2] led to a large literature focusing on the
difficulties of finding acceptable social allocations. Instead, Arrow's result on existence of
a market equilibrium with Debreu [4] led to more and more general existence theorems
which reinforced our view of market equilibrium allocations as being always available. In
all fairness, Arrow and Debreu did discuss the problems of non-existence of a competitive



equilibrium created for example by the discontinuity of uncompensated demand when some
prices are zero (Arrow and Debreu [4], Sections 4 and 5, and Arrow and Hahn [3], Chapter
4, 1) provided examples of standard market economies with no competitive equilibrium.
Nevertheless, the results on existence of an equilibrium took precedence in the literature.

1.3 Social Diversity and the Non-Existence of a Competitive Equilibrium

What is interesting about Arrow and Hahn's example [3] of the non-existence of a competi-
tive equilibrium is that it arises due to sharp interpersonal differences between the traders,
measured in terms of their endowments and their preferences. Such differences emerge, for
example, when some traders have zero endowments of some goods, a situation which Arrow
and Hahn find quite realistic ([3], Chapter 4, p. 80). It is notable that the social choice
literature has also focused on interpersonal diversity as a reason for the non-existence of
social choice rules. Prominent examples are the work of Black [5][6], Pattanaik and Sen
[39], and Chichilnisky and Heal [12]. These works offer conditions for resolving social choice
problems by limiting the diversity of the individual preferences, which is usually called a
"domain restriction" on preferences. Domain restrictions are simply a way of limiting the
diversity of individuals. The issue of existence of universal social choice rules - a problem
which in its more general form has no solution - is turned into the question: for what so-
cieties can the social choice problem be resolved? Or: how much diversity can a society
function with?

Black's singlepeakedness condition restricts diversity and solves the problem proposed
by Condorcet's [20] paradox of majority voting; Pattanaik and Sen [39] do the same, finding
domain restrictions which assure the existence of majority rules satisfying Arrow's axioms
of social choice, and Chichilnisky and Heal [12] find domain restrictions which are neces-
sary and sufficient for the existence of social choice rules which satisfy the axioms of [10].
Although these works deal with somewhat different axioms, they all find similar solutions
involving the restriction of individuals' diversity.

As already pointed out, different but related restrictions of individual diversity are
implicit in the conditions for existence of a competitive equilibrium which developed in
order to resolve Arrow's example of non-existence of a competitive equilibrium: Arrow
and Debreu's conditions require the endowments of any household being desired, indirectly
or directly, by others, so that their incomes cannot fall to zero [4]. Other such conditions
include the requirement that preferences should have indifference surfaces which never meet
the axis, Debreu [21], a condition which, as we show in Section 5, requires a form of
similarity of preferences, McKenzie's irreducibility condition [33][34][35], and the resource
related ness condition in Arrow and Hahn [3], both of which require explicitly that the agents
should desire the goods held by others in the economy, again a requirement of similarity
of preferences. These conditions are somewhat different, but they all have the same effect:
to restrict the diversity of individuals' preferences and endowments. They are discussed in
more detail in Section 5.1. The issue of the universal existence of market equilibrium - a
problem which in its more general form has no solution - is turned into the question: for
what societies can market equilibrium allocations be found? Or: how much diversity can a
society function with?

The aim of this paper is to introduce a restriction on individual diversity, limited arbi-



trage, and to prove that it is necessary and sufficient to ensure the existence of a competitive
equilibrium in Arrow-Debreu exchange economies (Theorem 1). Theorem 6 proves that lim-
ited arbitrage only needs to be satisfied for subsets of N + 1 traders, where N is the number
of commodities in the economy: an Arrow-Debreu economy has a competitive equilibrium if
and only if every sub economy with N + 1 traders does. The condition of limited arbitrage
has an additional interest: as already mentioned it can be interpreted as a contractibility
condition (Theorem 7 in the Appendix), a topological condition which, when applied to
spaces of preferences, has been shown to be necessary and sufficient for the existence of
social choice rules, Chichilnisky and Heal [12].

Limited arbitrage is defined on the exogenous parameters of the economy: the individ-
uals' preferences at their initial endowments. This limited arbitrage assumption also links
the concept of an equilibrium used in the general equilibrium literature to that of non-
arbitrage used in the finance literature, and in this sense it unifies three forms of resource
allocation: the allocation provided by a competitive equilibrium, the allocation provided by
social choice and the allocation and prices provided by no-arbitrage conditions.

The following sections provide definitions, a formal statement of the theorems, and their
proofs. The conclusions summarize the results, and an Appendix provides background
results.

2 Definitions and Examples

Consider an Arrow-Debreu pure exchange private market economy E. There are N > 1
commodities, and the consumption space is X. X is either the positive orthant R+ or all of
the Euclidean space RN. R++ denotes the interior of R+. For any two vectors x,y € RN,
denote x > y -t> V: xx> y,, x > y <s> x > y and for some i,x, > J/t, and x » y <2> Vi,
i , > yt. The economy E has H > 2 individuals indexed by h = 1...H; each has a non-zero
initial endowment in RN, 0,^ > 0, where Q =Ylh=i ^h >> 0 is the total endowment of
the economy. Some individuals may have zero endowments of some goods. Each individ-
ual has a preference ph over private consumption, which is continuous, quasiconcave and
monotonically increasing: if x > y then x yp> y.

We may also consider more general specifications of the consumption set X. For exam-
ple, we will discuss consumption sets A' which are translates of the positive orthant,

A' = {v € RN :v>w for some w £ RN},

and convex sets X C R1^ which are bounded below and satisfying x £ X, y > x => y £ X,
see Chichilnisky and Heal [17].

In the case X = i?£', we require that if an indifference surface corresponding to a
positive consumption bundle x intersects a boundary ray r C dX, all indifference surfaces
of other bundles preferred to x intersect r. A boundary ray r in R+ is a set which contains
all the positive multiples of a vector v 6 dR+ : r = {w 6 -R+ : 3A > 0 s.t. w = At'}.
Included here are therefore all standard preferences used in the literature such as: Cobb-
Douglas, CES utilities and all other preferences with the indifference surfaces corresponding
to positive consumption contained in the interior of A', Int(X), (Debreu [21]); it includes also
linear preferences, piecewise linear preferences, Leontief preferences without substitution,



continuous increasing and quasi-concave utilities with indifference surfaces which intersect
the boundary of the positive orthant (Arrow and Hahn [3]), as well as all smooth utilities
defined on a neighborhood of X which are transversal to its boundary dX, Smale [40].

When X = RN the preferences ph are represented by a smooth (C2) utility functions
uh:RN -+ R [23], 3 e, K > 0 : ||2?u*(z)|| > £ and \\D2uh(x)\\ < K for all x € # n , and the
directions of the gradients of each indifference surface which is not bounded below define
a closed set1. This includes preferences having indifference surfaces which are contained in
the interior of a translate of the positive orthant, as well as preferences whose indifference
surfaces are not contained in the interior of any translation of the positive orthant, such
as for example, linear preferences or preferences which have partially linear indifference
surfaces; it includes preferences which are extensions to Rn of Cobb-Douglas or CES utilities
defined on a closed subset of the strictly positive orthant, and preferences which may or not
be transversal to the boundary of the positive orthant.

A market economy is defined by E = {X, Qh,Ph, h — 1.../7}, X = R^ or X = R+.

The space of allocations is XH = {(xl...xH) € RNH : xh € A'}.

The space of feasible allocations is T = {(X\...XJJ) £ XH :

A k — trader sub-economy of E is an economy consisting of a subset of k < H traders in
E, each with the endowments and preferences as in E:

F= {A',pA,ft*,/i€ J C {l...H},cardinality(J) = k}.

Two topological spaces A' and V are homeomorphic, denoted X »s Y, if there exists a one
to one map F \ X — Y with a continuous inverse F~l : Y —* A', i.e. F~1(F(x)) = x
Vi€ X.

A connected topological space Y is a topological space which cannot be expressed as the
union Y = A \J B of two subsets, A and B, each of which is simultaneously open and
closed in Y.

This formalizes the notion that any element y £ Y may be connected to any other z £ Y
through a continuous path in the space Y.

A topological space Y is called contractible when there exists a continuous deformation of
the space through itself into one of its points. Formally, Y is contractible when there
exists a continuous map

F : Y x [0,1] — y, and a point z0 6 Y s.t.
V* € V, F(z,0) = z and F(z,\) = zo.

Examples of contractible and non-contractible spaces. If a space A' is homeomorphic to
a contractible space }\ then A* is contractible. All convex sets are contractible spaces, but

1A set is bounded below if ail its elements are larger than a given vector.



contractible spaces may not be convex, such as a "star shaped" set in RN, or a non-convex
set which is homeomorphic to a convex set see Figure 1.

Figure 1
A contractible star shaped set, a contractible non-convex set,

and the "torus" T = S1 x 5 1 , which is not contractible.

A disconnected space is not contractible. Any contractible space X is connected, but the
converse is not true: the unit circle 5 1 is a typical example of a connected space which is not
contractible, another is the "torus" in Figure 1, which is the product of the unit circle with
itself T = S1 x S1. A product of contractible spaces is contractible. A product of spaces
which are not contractible, is not contractible. A discussion of the role of contractibility
in public decision making is in Heal [29]. It was shown in Chichilnisky [10][ll] that the
space of all smooth preferences defined on Euclidean choice spaces is not contractible. The
space of all linear preferences defined on Euclidean space RN is not contractible either:
this space is the union of the sphere SN~l and the vector {0}. The space of all smooth
preferences defined on Euclidean space for which there exists a one dimensional subspace
which intersects transversely all the indifference surfaces of each preference, is contractible
(Chichilnisky [9]). It turns out that contractibility is a crucial condition for the existence
of social choice maps: for example, if P is any manifold of preferences, then a social choice
rule $ : Pk —> P satisfying desirable axioms exists VA: > 2 if and only if P is contractible
(Chichilnisky and Heal [12]). We shall show here that contractibility, which is closely
connected to our condition of limited arbitrage, is also a crucial condition for the existence
of a competitive equilibrium, see also Appendix Theorem 3.

The set of supports to individually rational efficient resource allocations of the economy

S(E) = {v e RN : 3 (xi...xH) € T with xh >Ph Slh V/i = 1,...#, , ^
and Vz^ € X, zh >Ph xh =>< v,z- xh >> 0}. ^ '

This is the set of prices which support those feasible allocations which all individuals prefer
to their initial endowments; the allocations are efficient because they the vectors z — x^
are supported by the same v. An element v of S(E) is called a support for the allocation
x = (xi...xH) € T.

Consider now a utility representation u^ for each preference p^, with u/^O) = 0. The
utility possibility set of the economy E is the set of all possibility utility values which
individuals can obtain from feasible allocations:

U(E) = {{U\...UH) £ R : Uh. = Uh{xh), where (arj...x//) € T and ,~\
V/i = I...H Uh'.X —* R represents the preference p/J .

The Pareto frontier of the economy E is the subset of vectors in the utility possibility
set which are not dominated in the order of RH :

= {(Ul...UH)€U(E): - 1{W,...WH) € U(E) :
V/i = 1...H, Wh > Uh and Wh > Uh for some h € {1...

Consider an economy E = {A',p/,, fi^/i = I...H}.
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2.1 Case 1: X = RN

Consider a preference p* in E and an initial endowment vector ft*€ X.

The asymptotic preferred cone of p*€ E at the initial endowment ft* is:

A(ph, ft*) = {y € RN : VA > 0, (ft* + Ay) >Ph ft*, , ,
and Vz € X, 3A > 0 s.t. (ft* + Ay) XPh 2} V '

Figure 2
The asymptotic preferred cone .4(p*,ft*) of a preference

Ph over X = R2 translated to the endowment ft*

Relationship of A{ph,£lk) with other cones in the literature. The cone ,4(p*,ft*) is
related to Debreu's [21] "asymptotic cone" corresponding to the preferred set of p* at the
initial endowment ft*, in that along any of the rays of A(p*,ft*) utility always increases.
This cone has also a similarity with the "recession" cone introduced by Rockafeller and
used for example in Werner [42]. However, the similarity with those cones ends here,
because along the rays in ,4(p*,ft*) not only does utility increase forever, but it increases
beyond the utility level of any other vector in the consumption space X. In ordinal terms,
the rays of the asymptotic cone ,4(p*,ft*) intersect all indifference surfaces corresponding
to bundles preferred by ph to ft*. This condition is not necessarily satisfied by Debreu's
asymptotic cones [21], nor by Werner's "recession" cones [42]. Related conditions appear
in Chichilnisky [8][9]; otherwise there appear to be no precedents in the literature for such
cones.

Note that the cone /l(p*,ft*) depends on the initial endowments as well as on the
preferences. It is defined by rays or "directions" from the initial endowment vector ft*. As
the endowment ft* varies, the cone ;4(p*,ft*) may also vary. This differs from the cones
used in other works, such as e.g. Werner, which are assumed to be the same at all vectors
in the consumption set ([42], Assumption A3 and Proposition 1).

The dual cone of A{ph, ft*) is defined by

(5)D(ph,Qh) = {z 6 X : Vy € A{ph, ft*), < *, y >> 0.}

Figure 3
The dual cone £)(/>*, ft*) of the preference p* in Figure 2,

translated to the initial endowment ft*

Examples of dual cones. The dual cone D(/)*,ft*) of a linear preference p* which is
defined by its gradient vector, G 6 RN, is the vector G itself. The dual cone of a preference
Ph with asymptotic preferred cone /l(p*,ft*) = A"^, is the same as its asymptotic preferred
cone, i.e. D(ph,Qtl) = X+. The dual cones of an increasing preference may contain vectors
with some negative coordinates, but will not contain strictly negative vectors. In general,
the larger is the asymptotic cone, the smaller the dual cone, and reciprocally the smaller
the asymptotic preferred cone, the larger the dual cone.
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2.2 Case 2: X = %

The asymptotic preferred cone A(ph, Qh) of the hth individual in the economy E, is defined
as in (4) above:

A(Ph,nh) = {y e X : VA > 0, (fi/> + Ay) £ X, {Slh + Ay) yPh ftfcl f

and Vz € X, 3A > 0 s.t. (ft* + Ay) XPh z}. l J

Figure 4
The asymptotic cone A(pi,fti) of the preference p\

is the positive orthant R\ minus the positive part of the vertical axis.

When X = R+ the boundary dual cone is defined as:

dD(ph,Qh)= {qe R%: if Vp € S (£ ) 3/i s.t. < p,Qh >= 0,
then <? e 5 ( £ ) , and Vv € A(ph,Qh), < 9, v » 0}.

Figure 5
Figure 5a illustrates the boundary dual cone dD{pi,Sl\)

of the preference p\ on A' = R\ in Figure 4, translated to Qj.
In this economy Vp € S(£) :3/i : < p, Qi >= 0, because all preferences are as p\ ,

and dD{p\,Q.\) is the one-dimensional cone defined by the vector v.
Figure 5b illustrates another economy, with a different preference
P2 which increases in the second coordinate. Here dD(p2,£l2) — 0-

The interpretation of dDk is as follows. / / all supports in S(E) assign some trader h
zero income, then dDh consists of all those supporting prices at which only limited
increases in utility can be afforded from initial endowments.

The boundary dual cone dDh is the whole consumption set X when S{E) has a support
assigning strictly positive income to all individuals. Note that if for all prices in S{E) some
trader has zero income, then this trader must have a boundary endowment.

Figure 5a illustrates the boundary dual cone of the preference in Figure 4, in an economy
where for all i = I...H, the preferences satisfy p, = p\ which is indifferent in the second
good, and the endowments are as illustrated. Since 17, is in the interior of A' and p, is
indifferent in the second good, then the only possible price in S(E) is the vector v. Since
Hi only owns the second good, then for every price in 5 ( £ ) , there exits one individual
with zero income, namely trader 1. The asymptotic cone A(p,, ft,-) is the positive orthant
minus the vertical axis of coordinates, for all t. In this economy, for all t the boundary
dual cone dD(pt, Qt) is the half-line spanned by the vector v, because v has strictly positive
inner product with all positive vectors including those with second coordinate equal to
zero. Figure 5b illustrates a different economy. It has the same number of traders as the
economy in 5a. The endowments and preferences of its traders are the same as those in
Figure 5a except for the preference of trader P2, which is now strictly increasing in the
second coordinate as illustrated. Here the asymptotic cone A(p2,£l2) ls t n e whole positive
orthant R\, and the dual cone d-D(p2,ft2) = 0, because v is the only vector in 5 ( £ ) , and
< v,y >= 0, Vy = (y , ,0)€
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A competitive equilibrium of the economy E = {X,fl/,,p/,,/i = I...H} consists of a price
vector p* £ R+ and a feasible allocation (x\...xm

H) € T such that x*h optimizes ph, over the
budget set

A pseudo-equilibrium of the economy £ = {Jf,Qj|,pj|,/i = 1...H] consists of a price
vector p* £ .#+ and a feasible resource allocation (zj...x^) G T such that V/i = 1...ZT,
1/ >p/,z£ =*• < P*'!/ >>< P*>zh > • This implies that the allocation (x\...x^j) minimizes
costs at p*.

A pseudo-equilibrium need not be a competitive equilibrium, because a cost minimizing
allocation may not maximize utility within the corresponding budget set. However, when
V/i...i7, < p", !)/»>> 0, then a pseudo-equilibrium is also a competitive equilibrium, Arrow
and Hahn [3].

3 Limited Arbitrage: Definition and Examples

Our next step is to define limited arbitrage, to discuss its meaning, and provide examples.
We shall consider two cases separately. Case 1 is when the consumption set of the market
economy E = {X,p/,, ft/,, h — I...H] is A' = RN, so that there are no bounds on short
sales, and Case 2 is when the consumption set A' = R+. The limited arbitrage condition
is somewhat different in these two cases, although in both cases it involves the non-empty
intersection of dual cones. In addition, we discuss the interpretation of limited arbitrage for
more general consumption sets and provide a geometric interpretation as a transversality
condition.

3.1 Limited arbi trage without bounds on short sales, X = R1^

Consider a market economy £ = {X,Qh-Ph-,h — l—H), where X — RN. E satisfies limited
arbitrage iff

H

(LA) f |

This condition can be interpreted as follows: there exists a price p at which only limited
(or bounded) increases m utility are affordable from initial endowments for all traders.

Examples: economies which do not satisfy the limited arbitrage condition in this case
are those where the individuals have different linear preferences, Figure 6, and also those
represented in Figure 7. In Figure 6 the asymptotic preferred cones of the preferences are
half spaces, and the dual cones are the two gradient vectors defining the preferences. Clearly,
if the preferences are different these dual cones do not intersect. In Figure 7, each two dual
cones intersect, but the three dual cones do not intersect, and the economy violates limited
arbitrage. This figure illustrates the fact that the union of the dual cones may fail to be
contractible: indeed, this failure corresponds to the failure of the dual cones to intersect, as
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proven in Theorem 7 in the Appendix.

Figure 6
X = R2. Two different individuals with different linear preferences.

Limited arbitrage fails, and the economy has no competitive equilibrium.

Figure 7
X = R3. Every two trader subeconomy satisfies limited arbitrage, but

in the economy as a whole limited arbitrage fails.
There is no competitive equilibrium.

3.2 Limited Arbitrage with bounds on short sales X = R+

Consider now a market economy E = {X,Q.h,ph,h = 1...H}, where X = R%.

The limited arbitrage condition is now

H

(SLA) f)dD(Ph,nh)j:Q (8)

where the boundary-dual cones dD(ph,&h) are defined in Section 2.

This condition ensures that if all supporting prices in S(E) assign zero income to some
trader, there is one at which only limited (or bounded) increases in utility are affordable
from initial endowments.

Examples: An example of an economy with X = R+ which does not satisfy limited
arbitrage in this case is illustrated in Figure 8. As shown in Figure 5b aboye, in this
economy the dual cone of the first trader is empty, dD(pi,Q,\) = 0, so limited arbitrage as
defined in (8) is violated. This economy has no competitive equilibrium.

Figure 8
X = R\.The boundary dual cones do not intersect

and limited arbitrage fails.
The economy has no competitive equilibrium.

This is similar to an example in Arrow and Hahn [3]

Examples of economies which satisfy limited arbitrage and of preferences which do not.
When the consumption set is X = i?+, limited arbitrage is always satisfied when all indif-
ference surfaces through positive consumption bundles are contained in the interior of A",
R++ (Debreu [21]). Examples of such preferences are those given by Cobb-Douglas utilities
or by CES utilities with elasticity of substitution a <1. This is because all such preferences
have the same asymptotic preferred cone, namely the positive orthant, and therefore their
dual cones always intersect. Since their asymptotic preferred cones are identical, these pref-
erences are very similar to each other on choices involving large utility levels. This is a form
of similarity of preferences.

Economies where the individual's initial endowments are strictly interior to the con-
sumption set X always satisfy the limited arbitrage condition in the case A" = i?+, since
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in this case V/i, dD{p^Q.h) = R+ for all /i = 1...JJ. This is because all individuals have
non-zero income at any supporting price in S(E).

When X = i2}f the limited arbitrage condition may fail to be satisfied when some
trader's endowment vector Q/» is in the boundary of the consumption space, dX, and at all
supporting prices some trader has zero income: Vp £ S(E) 3h such that < p, Q/, >= 0. This
case is illustrated in Figure 8; it is a rather general case which may occur in economies with
many individuals and with many commodities. When all individuals have positive income
at some price p £ S(E), then limited arbitrage is always satisfied since by definition in this
case V/i, dD{ph,£lt) = 72? for all h = I...H.

We shall now define limited arbitrage for subsets of traders in the economy E. When
X = RN, we say that the economy E satisfies limited arbitrage for any subset of k traders,
when for any subset K C {1...77} of cardinality k < H

(LA) p| D{pk,nk)*V. (9)

When X = R+ the definition is

(LA) 0 dD(Pk,nh)^Q. (10)
A6A'

Theorem 8 in the Appendix establishes that a market economy E has limited arbitrage if
and only if it has limited arbitrage for any subset of k traders, where k < N + 1, where N
is the dimension of the commodity space.

3.3 Limited Arbitrage as a Transversality Condition

We now discuss more general consumption sets and how to interpret the limited arbitrage
condition geometrically as a transversality condition.

For example, consider the consumption set X which is a translate of a positive orthant,
as defined in Section 2. In this case, the dual cones 3D are no longer defined in terms of
individuals with zero income at supporting prices in S(E), but rather in terms of individuals
whose endowments have minimal income at those prices, i.e. the minimal income possible
in the economy. Limited arbitrage then requires that within the set of supporting prices
in S(E) giving an individual's endowment minimal value there exists a price at which only
bounded increases of utility are possible from initial endowments for all traders.

More generally the condition of limited arbitrage applies to any convex consumption set
X C R1^ which is bounded below and has the property that y £ X and z > y => z £ X, used
for example in Chichilnisky and Heal [17]. For simplicity, assume that either X is a translate
of a positive orthant or else that the boundary of A', dX, is a manifold of dimension Ar — 1.
For example, dX could be defined locally by a smooth function / : RN — R. Consider the
gradient vector GdX(y) of the function / which defines dX in a neighborhood of y £ dX,
and let H(GdX(y)) be the line in RN defined by the vector GdX(y). We say that a vector
v is transversal to H(GdX{y)), denoted vTH (GdX(y)) when the vector v is linearly
independent of the subspace 77; otherwise v is not transversal to 77, denoted v H 77. We
say that all supports v £ S(E) are not transversal to an individual endowment fi/i, when
Vu £ S(E), v H H (GdX{Qh)). The limited arbitrage condition is now defined as follows.
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{LA) If Vg € S(E), q H H(GdX{£lh)), then there exists a price p € S(E) such that
<p,v >> 0 Vu € A(ph,Slh), for all /i € {l

The interpretation of this condition is that if every support in S(E) fails to be transversal
to some individual endowment, there is a supporting price at which only bounded increases
in utility are affordable for all traders from initial endowments. Limited arbitrage can
therefore be viewed as a transversality condition on the economy E.

Figure 9
A more general consumption space in R2.

Limited arbitrage as a transversality condition.

4 Competitive Equilibrium and Limited Arbitrage

This section provides the main results linking the existence of a competitive equilibrium
with the condition of limited arbitrage. Theorem 1 is proven in several steps, formalized in
lemmas 2 to 5.

Theorem 1 Consider an economy E = {X,ph,flh,h = I...H], where H > 2, X = RN or
X = R» and N > 1.

Then the following two properties are equivalent:
(a) the economy E has limited arbitrage
(b) the economy E has a competitive equilibrium

Proof: The strategy of the proof is as follows. First we prove that limited arbitrage
is necessary for the existence of a competitive equilibrium. This is Lemma 2.. Next we
establish that limited arbitrage is sufficient for the existence of a competitive equilibrium.
The proof of sufficiency has two parts. The first is the proof of existence of a pseudo
equilibrium; for this we use a fixed point argument on the Pareto frontier of the economy.
This requires in turn to prove that the Pareto frontier of the economy is homeomorphic to
a simplex, a property which may fail to be satisfied in general. Lemma 3 establishes that
limited arbitrage implies this property of the Pareto frontier. Lemma 4 then establishes
the existence of a pseudoequilibrium. Finally, using limited arbitrage we prove in Lemma
5 that the pseudo equilibrium is also a competitive equilibrium.

Lemma 2 Limited arbitrage is necessary for the existence of a competitive equilibrium in
the economy E of Theorem 1.

Proof: Let the utility function Uh '• X —> R represent the preference pk € E, i.e.Vx,y 6
A', Uh{x) > u^iy) <=> x yPh y. By appropriate renormalization we can assume without loss
of generality that u/^O) = 0 so that Uh(Slh) > 0, and that SupX£x{uh(x)) = oo. Now assume
that (a) is not true, and consider the case A' = RN first. Then

H

( ) n h ) = Q, (11)
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which implies that for all y € RN, there exists an h 6 {I...H} and a vector v(y) € A(ph,
such that:

oo(uh(n/l + Av(y)) = oo.

Consider now a competitive equilibrium described by a price p* and an allocation (x^.. . i^).
By (12) for some A > 0,

uh(Qh + Xv(y)) > uh(x"h) and < p*, Xv(y) >< 0,

contradicting the fact that x* is an equilibrium allocation. Therefore no competitive equilib-
rium exists when (12) is true: limited arbitrage is necessary for the existence of a competitive
equilibrium when X = RN. Consider next the case X = R%. Assume first that Vg £ S(E)
3 h G {1...H} s.t. < q,Qh >= 0. Then if limited arbitrage is not satisfied

H

f) <d, (13)

which implies that

Y<? € Rs, 3h and v(q) € A(ph,Qh) : , ,
< q,Qh >= 0, and VA > 0, < q,\v{q)>< 0. l '

Since v{q) 6 A(ph,&h)
lim (uh{Qh + \v(y))= oo. (15)
\—oo

Consider now a competitive equilibrium price p" and the corresponding allocation {x^...xjj).
Then p" € 5 (£ ) , and (14) and (15) imply that 3h s.t. for some A > 0,

Mfifc + At'(y)) > uh{x'h) and < p",Au(y) >< 0,

contradicting the assumption that p" and (x\...x"H) define a competitive equilibrium.
It remains to consider the case where 3<7 € S{E) such that V/i € {I...H} < q,£lk >^ 0.

But in this case by definition flJLi dD{ph,Qh) ^ 0 since V/i € {1..JJ} dD{ph,Slh) = R%,so
that limited arbitrage is always satisfied. This completes the proof that limited arbitrage is
necessary for the existence of a competitive equilibrium, when A' = R^' and when A' = R+.

Limited arbitrage is sufficient for the existence of a competitive equilibrium. For this
result we will utilize the standard method - introduced by Negishi [36] - of proving first
the existence of a quasi-equilibnum as defined in Section 2, using a fixed point theorem on
the Pareto frontier P(E). The quasi-equilibrium is subsequently shown to be a competitive
equilibrium, thus completing the proof. The proof must address two practical difficulties in
applying this strategy, one when the consumption set A* = RN, and a different one when
A' = R+. Both difficulties are resolved by the limited arbitrage condition. The problem is as
follows: when X = R* the Pareto frontier P[E) may fail to be bounded and closed, because
the utility obtained by the traders from their initial endowments may not attain a maximum
over feasible allocations when there are no bounds on short sales. This failure leads to the
non-existence of a competitive equilibrium in well known cases; this problem of existence
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appears also in economies with infinitely many commodities, but when commodity spaces
are infinite dimensional it can appear even if the consumption set is the positive orthant,
see the examples in Chichilnisky and Heal [17]. In practical terms, the problem is that the
Pareto frontier may not be homeomorphic to a unit simplex, a property which is essential
in the proof of existence of a quasiequilibrium. The role of the limited arbitrage condition
in this case is to ensure that the Pareto frontier is bounded and closed; together with the
quasi concavity of preferences this implies that the Pareto frontier is homeomorphic to a
unit simplex so that standard existence arguments can be invoked.

A more standard difficulty arises when the consumption set is X=R+. Here the Pareto
frontier is always closed and bounded and a quasi-equilibrium exists. However, in this case
the quasi-equilibrium may fail to be a competitive equilibrium. This is the type of problem
which the conditions of resource relatedness and of irreducibility are meant to circumvent.
The problem arises only when some individual has zero income at the quasi-equilibrium
allocation and is illustrated in Figure 8 above. In this case, minimizing costs may not imply
maximizing utility so that a quasi-equilibrium may fail to be a competitive equilibrium. This
second potential failure of existence is also ruled out by the condition of limited arbitrage.

Lemma 3 The Pareto frontier of the economy E in Theorem 1, P(E), is homeomorphic
to a unit simplex, when X = RN and when X = BJ+.

Proof: Consider first the case A' = RN. We shall show that the Pareto frontier is a closed
bounded set in RH. Define the set FQ of feasible and individually rational allocations:

FQ = {z € RNH :z = (xi+ Slx...xH + ft//},
w h e r e £ £ 1 xh < 0 and V/i, uh{xh + Qh) > uh(£lh) > 0}

Let A denote the unit simplex in RH, and define the set Sr of utility vectors which are
collinear with a given element r = (ri...rn) € A,

Sr = {(U^UH) € RH : V/i = 1..J5T, Uh = uh{zh), where z = (*i...z//) € FQ

and 3u > 0 s.t. u.Uh — r/J

Figure 10 illustrates the set Sr\

Figure 10
The set Sr

We shall now prove that limited arbitrage implies that Sr is bounded for all r € A. Consider
first the case where r >> 0. Assume that 5 r is not bounded. Then there exists a sequence
denoted {zn}n=i,2... = {(z?...zft)}n=1,2... C FQ such that (w1(x5l)...w//(x^)) is in Sr and
for some h € {l...^'},limn_oo tz/,(i£) = oo. Let z% = a:JJ - H .̂ We may assume that Vn
ZLiW ~ &h) = ULi *? = 0. Since r » 0, if 3h : limbec uh(x

n
h) = oo, then V/i=l...H

limn_oo Uh(z%) — oo. For all h £ {1...H}, let a^ be a point of accumulation of the sequence
of vectors { ( ^ / | | ^ | | ) } ; this sequence has such a point because it is contained in the unit
sphere SN~l C RN. Note that Q^ 6 A(ph,&h.)- Now let a£ denote the projection of the
vector z% on the line in RN defined by the vector a^, and consider a subsequence {zm} of
{zn} satisfying

liiri | | z r - a n | = 0.
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The set S in utility space



Then

E **m=Js. E «ff = E •»•
/u=l

In particular Vq e RN < q,ah >= l im m _ o o <g,^_ 1 ajj1 >= 0. Since ah € i4(p&,ft), this
implies that there exists no q € RN such that < q, y >> 0 for all y € A(p^, £1 )̂, so that

contradicting the limited arbitrage condition. Therefore limited arbitrage implies that Sr

must be bounded V r >> 0.
Now assume that r € <?A, so that r^ = 0 for some /i = 1...H. We may assume that

r^ ^ 0 for some /i, for otherwise the ray 5 r is clearly bounded. Then we may approximate
r by a sequence of rays {rk}k=\,2... C A , such that Vfc, rk>> 0, and for which a proof
similar to the previous case applies. There exist a sequence {xk}k=i,2... C FQ such that V/:,
(ui(zi)...u//(z{^)) is maximal in Srk. In particular, if z% = x^ - H/,, then VA: J^fLj ^ =
52^=i (zX ~ ^'i) = 0- ^o r any ^ ^et Qh ^e a P o m t °^ accumulation of the sequence of vectors
(4/lk/JII) C SN~* C RN. By definition, ah € A{ph,nh)- Let a j denote the projection of
the vector z* on the line in RN containing the vector Q^. Consider now a subsequence {zm}
of {zk} satisfying

Then
// H H

0 = lim V rj1 = lim V a ^ V afc.
h=l / i=l / i=l

Since Q^ € ^1(̂ ,̂17 )̂ this implies that there exists no q 6 RN such that < q,y >> 0 for all
y € i4(pfc,ftfc) and all /i, i.e.

contradicting limited arbitrage. Therefore limited arbitrage implies that Sr must be bounded
for all r 6 A. This in turn implies that the utility possibility set U(E) C RH is bounded.

We now complete the proof that the Pareto frontier P{E) is bounded and closed when
X = RN by proving that limited arbitrage implies that P{E) is closed. For any r £ A,
let v = (v\...Vf{) € R% satisfy v = Supy^SrV'y w e know that such a t; exists because the
utility possibility set U(E) is bounded. To prove that P(E) is closed it suffices to show
that there exists an allocation (Z\...ZH) G FQ such that v =(ui(z1)...u//(z//)). Consider a
sequence {zn} C FQ such that: Un

 =(UI(Z?)...UH(Z%)) € Sr*, Un is maximal in the set 5 r ,
limn{rn} = r, and limn U

n = r. Since U(E) is bounded, and each utility UH is monotonic,
there exists a vector of utility values (Ul...UH) = (wi(j/i)...u//(y;/)) € RH, where (yi-..y//)
may or not be a feasible allocation, such that limn-^ Un = v. It is straightforward to see
that since limn U

n = v and v is optimal in 5 r , the directions of the gradients of the sequence
of the utilities define a Cauchy sequence, i.e.
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Define now the sequence {sE}n=i,2...where «£ = Guh(z^)/\\uh(z^)\\ € SN~l C RN. Since
SN~l is compact, V/i there exists a point of accumulation of {sjj}n=i,2...» denoted s^. Since
for all /i, uh(z%) — uh(yh), then V €> 0,3T and 3 tof € # N such that u/̂ tuJJ) = vfc and

I <e for n > T.

The sequence {GU\(ZI)...GUH{2H)} consists of gradients of efficient utility levels and it
converges to {si.. .s//}, SO by the assumptions on the utilities u^ V/i there exists a vector
ZK € u]il{vh) € RN such that Gu^z/,) = XhSh. for some Xh, > 0. Furthermore, Ylk=i zh —
^2h=\ &h i s o t n a t

 (ZI-~2H) € FQ. Since (v\...Vf{) = {U\{Z\)...U}J{ZH)) we have completed
the proof that the Pareto frontier P{E) of the economy E is closed, as we wished to prove.
We have shown that limited arbitrage implies that when X = RN the set P(E) is closed
and bounded. Therefore the proof that P(E) is homeomorphic to the unit simplex A € RH

is now standard from the quasi concavity of the preferences, see for example Arrow and
Hahn [3]. For the case A" = R+, their proof establishes directly that this Pareto frontier is
always homeomorphic to the unit simplex.

Lemma 4 Limited arbitrage implies the existence of a pseudo equilibrium in the economy
E of Theorem 1.

Proof: In view of Lemma 3, it is now standard to establish that a quasi-equilibrium
always exists, either when A' = RN or X = #+ : for completeness we provide now a formal
proof of existence of a quasi-equilibrium which works equally for these two cases next:'

Define the set
H

T={yeRH :£<//> = 0}.

For each r >> 0 in A let (x1(r)...x//(r)) £ FQ now denote the feasible allocation which
gives the greatest utility vector collinear with r :

in the vector order of RH, and ^^ i (a r t ( r ) — fi,) = 0. Such an allocation always exists
because VrA Sr is bounded and closed; it defines a non-zero utility vector which depends
continuously on r. Now let

P(r) — {p ^ P : p supports x(r)}.

By standard arguments, P(r) is not empty, see e.g. Chichilnisky and Heal [17], Lemma 3.
Define now a map 9 : A —<• T :

>: p € P(r)}

V?(r) is a non-empty convex valued correspondence, YlH=\ */i = 0 if 2 € < (̂r)> and

0 6 v?(r) <=> (x",p*) is a quasi-equilibrium of £ ,
where r = r(x*) and p" £ P( r ) .
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The next step is to show that <p is upper semi-continuous, i.e. if r n —• r, zn € ¥>(rn),
zn —• z then z 6 -P(r). Consider the feasible allocation x(r), where r = limn(rn). Let t> be
any other allocation satisfying UA(V&) > w/,(x^(r)), where x/i(r) is the A-th coordinate of the
vector x(r) and VH is the h-th coordinate of the vector v. Let zn € <f(rn) and p n € P(rn).
Since rn -> r, eventually Uh(vh) > u^(x^(rn)) so that < pn,r/» > > < pn,xh(r

n) > = <
p n , n^ > ~2£» where zj| is the /»-th coordinate of zn : this follows from the definitions of
zn and p n . Let {pn} be a sequence of vectors such that p n € P(rn). The set P is compact
and \Jr P{r) is closed; therefore |J r P(r) is compact as well. There exists therefore a vector
p € P and a subsequence {pm} of {pn} such that < pm,Vh >—• < p, v/j >, so that in the
limit < p,Vh. >>< p.Clh > -Zh- Since this is true for all such v, it is also true for t?
satisfying Uh(vh) > «/l(x/l(r)) and in particular for v = x so that < p,Xh > > < p, ilh > —*h
implying that z € y?(r) 2LS w e wished to prove. The proof of existence of a quasi-equilibrium
is completed by showing that <p has a zero. For all r € A define 0(r) = r + <p(r). The
map 6 : A C A is non-empty, upper semi continuous, convex-valued correspondence and
it satisfies appropriate boundary conditions. By Kakutani's fixed point theorem, 0 must
have a fixed point r* which is a zero of the map <p. The allocation x* — x"(rm) and a price
p* € P(r*) define a quasi-equilibrium of the economy E.

The proof of existence of a quasi-equilibrium just provided is equally valid when X = RN

or when X = # + . Therefore to complete the proof of the theorem it remains only to show
that the quasi-equilibrium is a competitive equilibrium.

Lemma 5 Limited arbitrage implies the existence of a competitive equilibrium in the econ-
omy E of Theorem 1.

Proof: In view of Lemma 4 it suffices to prove that a quasi equilibrium is a competitive
equilibrium. Consider first the case A' = R^. Then V/i = 1...H there exists an allocation in
X of strictly lower value than x* at the price pV Therefore by Lemma 3, Chapter 4, page
81 of Arrow and Hahn [3], the quasi-equilibrium is also a competitive equilibrium. This
establishes the existence of a competitive equilibrium when limited arbitrage is satisfied and
X = RN.

Now consider the case X = R+. We have shown that when limited arbitrage is satisfied
the economy E has a quasi-equilibrium consisting of a price p* and an allocation xm. It
remains to show that the quasi-equilibrium is also a competitive equilibrium.

First note that if at the quasi-equilibrium (p*,x") every individual has a positive income,
i.e. V7i = 1...H < p",fi* >> 0, then by Lemma 3, Chapter 4 of Arrow and Hahn [3] the
quasi-equilibrium is also a competitive equilibrium. Furthermore, since the quasi equilib-
rium p" € S(E), then the set S(E) ^ $. To prove existence we consider two cases: first, the
case where V7i, < q, v >> 0. In this case, by the above remarks, (p*,x*) is a competitive
equilibrium.

The second case is when V<7 € S{E) 3 h 6 {1...H} s.t. < p*,Qh > = 0, a case where the
vectors p* and Q^ must have some zero coordinates. The limited arbitrage condition in this
case implies

3qm € S(E): V/i, <qm,v»Q{oranv€A(ph,Qh). (16)

Let x" = x\...xm
H be the allocation in T supported by the vector qm defined in (16). Then

by definition, V/i, x£ >Ph fi/, and q* supports x".
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Recall that any h minimizes costs at x*h because q* is a support. Now, (qm,xm) can
fail to be a competitive equilibrium only when for some h < qm,xh

l > = 0, for otherwise
the cost minimizing allocation is also utility maximizing in the budget set Bh(qm) = {w €
X :< 9*, w > = < q*,Clh >} . It remains therefore to prove existence when < q*,x^>= 0 for
some h. Since by the definition of S(E), x* is individually rational, i.e. uh(x*h) > ^ ( f i ^ ) , it
follows that when < qm,xm

h > = 0, then < qm,£lh > = 0, because q* is a supporting price for
xm. If V/i, Uh(xl) - 0 then x\ 6 # # + , and by the monotonicity and quasi-concavity of u^,
any vector y € Bh(qm) must also satisfy Uh{y) = 0, so that x\ maximizes utility in Bh{q*),
which implies that (qm,x~) is a competitive equilibrium. Therefore (q*,x*) is a competitive
equilibrium unless for some /i, u/i(ar£) ^ 0,. Assume then that (q*,xm) is not a competitive
equilibrium. Then for some h, Uh(xm

k) / 0, and therefore an indifference surface of a positive
commodity bundle of u^ intersects dX at x\ £ dX. Let r be the ray in dX containing x*h. If
w € r then < qm,w > = 0, because < q*,x*h > = 0. Since u/i(z£) > 0, by the assumptions on
Uh, all other indifference surfaces of u^ with higher utility intersect r, so that r C A(pr, x*h).
Define now the ray 5 = {v : 3w G r : v — {x*h — Qr) -j- w}. The ray s C dX; s C A(ph, Ct^)
and Vr € 5 < ^", t; > = < qm, (x*h - Qr) + tx; > = 0. But this contradicts the choice of q" as a
supporting price satisfying (16) since

3h and y € A{ph,Uh) such that < q*,y>= 0. (17)

The contradiction between (17) and (16) arises from the assumption that (qm,xm) is not
a competitive equilibrium. Therefore (<?*,z*) must be a competitive equilibrium, and the
proof of the theorem is complete.0

4.1 Sub economies and Similar Preferences

Having completed the proof of the main result which establishes that limited arbitrage is
necessary and sufficient for the existence of a competitive equilibrium, it seems useful to
point out that the condition of limited arbitrage need only be satisfied on subeconomies
with no more traders than the number of commodities plus one. This is the next theorem,
which also requires a definition of spaces of preferences similar to those in the market E.

Consider a market economy E as in Theorem 1, A' = RN . Then a smooth preference a
defined over allocations for k < H traders, i.e. over Xk, is called similar to a preference of
trader h in position j , when Vi £ A'r, the j — th coordinates of the gradient of <7, denoted
D(Tj satisfy

The interpretation of this condition of similarity is that the preference a increases in
the direction of that of the trader h in position j for choices with large utility values. We
say that Pe is a space of preferences similar to those in the subset of traders 0 C I...H in
the market E when it consists of preferences which are similar to those of some trader i in
the set 9, in some position j :

^ P ^ V i 6 Xkyj = 1...*, DGJ(X) € |J Dh(ph,nh).
hee

Theorem 6 Consider a market economy E as in Theorem 1. The following five properties
are equivalent:
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(a) E has a competitive equilibrium
(b) Every sub economy of E with at most N + 1 traders has a competitive equilibrium
(c) E has limited arbitrage
(d) E has limited arbitrage for any subset of traders with no more that N + 1 members.
(e) For any space of preferences Pg similar to those of a subset 6 of market traders

in E, there exists a continuous anonymous social choice map <f> : (P$)r —• Pe respecting
unanimity, for any r < N + 1.

Proof: The proofs that (a)«»(c) and that (b)«*>(d) follow directly from Theorem 1. That
(c)*>(d) follows from Theorem 7 in the Appendix. Finally (c)<«>(e) follows from Theorem
2 of Chichilnisky ([18]).<>

5 The Problem of Existence of Competitive Equilibrium

It seems useful to situate the results of the previous section in the context of the literature
on the existence of a competitive equilibrium, and to discuss how the limited arbitrage
assumption resolves the problem of non-existence.

5.1 Related Literature with Bounds on Short Sales

As already pointed out, not all Arrow-Debreu exchange economies have a competitive equi-
librium, even when all individual preferences are smooth, concave and increasing, and even
when the consumption sets are positive orthants. We have illustrated in Figure 8 of Section
3 the simplest example of a market with continuous concave and increasing preferences over
X = R+ which has no competitive equilibrium as provided originally in Arrow and Hahn
[3], Chapter 4, p. 80, in a market with two goods and two individuals. The problem is
however quite general and it occurs in economies with any number of individuals and of
goods. All that is required is that some individual j with an interior endowment Qj should
have no taste for one of the goods, say good N, and that another trader t should only own
such a good, i.e. Q, = (0...0,z;v). Then any supporting price for the good N in S(E) must
be zero, and the individual t will always have zero income at all supporting prices in S(E).
Then, if any individual in the economy strictly prefers N no competitive equilibrium exists.

We discussed the example in [3] because it is based on the diversity of endowments and
preferences of the individuals in the economy: this diversity leads to a failure of continuity
of the demand function. With a discontinuous demand, a competitive equilibrium generally
fails to exist. " This discontinuity will necessarily occur in some part of the price space,
except in the unrealistic case in which the household has a positive initial endowment of all
goods'" (quote from Arrow and Hahn, Chapter 4, p. 80, [3]).

While discussing related literature with bounds on short sales, however, it seems de-
sirable to indicate why we have chosen the concept of a competitive equilibrium over and
above all other related equilibrium concepts which appear in this literature, some of which
yield existence of an equilibrium under more general conditions. Of course, other concepts
of market equilibrium could be utilized to define a market allocation, such as for example
quasi-equilibrium which was first introduced by Debreu [24], or compensated equilibrium,
as denned in Arrow and Hahn [3]. These are closely related, but different, definitions.
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They define allocations where individuals minimize cost rather than maximizing utility as
in a quasi-equilibrium, or which could have excess supply, as in a compensated equilibrium
When prices and all individuals' incomes are strictly positive, these concepts agree with the
competitive market equilibrium (Arrow and Hahn [3], Chapter 4). These allocations have
the advantage that they always exist when preferences are continuous and concave and
the individuals' consumption sets are positive orthants, a property that the competitive
equilibrium does not share.

However, as Arrow and Hahn point out, the conditions that all prices are strictly positive,
or that all individuals should have strictly positive endowments of all goods is unrealistic
([3], Chapter 4, p.80, para.4), so that quasi-equilibrium or compensated equilibrium allo-
cations will not be competitive equilibrium allocations in general. This technical issue has
major welfare implications. Economies with a competitive equilibrium stand alone in terms
of their welfare properties. This is because quasi-equilibrium or compensated equilibrium
allocations do not generally have the Pareto efficiency property that the competitive equilib-
rium has. Therefore the main justification for using market allocations, which is efficiency,
would be lost unless we remain within the confines of a competitive equilibrium. For this
reason we concentrate here on competitive equilibrium allocations.

The problems of non-existence of a competitive equilibrium are somewhat different when
the consumption set A' is the whole Euclidean space - i.e. when there are no bounds on
short sales - than when the consumption set X is the positive orthant. Consider first the
case when X = RN. In this case, the limited arbitrage condition ensures that individuals,
who must typically be diverse in order to achieve gains of trade, are not too diverse. For
example, there must exist a degree of consistency between individuals' asymptotic cones
at the initial endowments: a price hyper plane must exist leaving all these cones to one
side, the same for all traders, so that from initial endowments, no individual can afford
allocations which lead to unbounded utility at these prices. Figures 6, 7 and 8 illustrate
this point, and show when this condition of limited arbitrage fails. The case when the
consumption space is A' = R'+ is somewhat different. Figure 8 illustrates a failure of the
limited arbitrage condition in this case.

As already indicated none of the economies of Figures 6, 7 or 8 have a competitive equi-
librium. Conditions are therefore needed to rule out such economies. The conditions should
be defined on the exogenous data which identify the economy, namely on the endowments
Qh and on the preferences p^ of the individuals h — I...H. The limited arbitrage condition
defined above is therefore a good candidate, because it provides a necessary and sufficient
condition for existence of a competitive equilibrium which is defined on these exogenous
data of the economy £ , namely on endowments Sl^ and on preferences p^. What limited
arbitrage does is to limit precisely the degree of diversity among the agents of the economy
so that market equilibrium will exist.

Indeed, as already indicated, for economies with consumption bounded below, i.e.
A" = i2+, such limits on diversity are implicit in Arrow's resource relatedness [3] and in
McKenzie's irreducibiiity condition [33][34][35]. All these conditions ensure that the endow-
ments of any household are desired, directly or indirectly, by others, so that their incomes
cannot fall to zero. In this case our limited arbitrage condition is always satisfied.

Irreducibility and resource relatedness conditions work by ensuring that at a quasi-
equilibrium or at a compensated equilibrium, all individuals' incomes are strictly positive,
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or strictly larger than the minimum possible income. When individuals' incomes axe all
positive, or not minimal, all the notions of equilibrium coincide. The problem of maximiz-
ing utility subject to a budget constraint, which is the competitive equilibrium condition,
is then identical to that of minimizing the cost of an allocation with a certain utility level,
which is the condition which defines a compensated equilibrium. Thus a quasi equilibrium,
which always exists when preferences are concave and continuous and the commodity space
is the positive orthant, is also a competitive equilibrium.

The key to the conditions of Arrow, Debreu and McKenzie is to eliminate minimum
income allocations. Yet traders with zero or minimum income do not by themselves rule out
the existence of a competitive equilibrium. An allocation where some individuals have zero,
or the minimum possible, income, reflects a real problem: the fact that some individuals are
considered worthless, they have nothing to offer that others want. Such a situation could be
a competitive equilibrium. It seems realistic that markets could lead to such allocations: one
observes them all the time in city ghettos. Our condition of limited arbitrage brings out the
issue of diversity by focusing on. the problem of zero or minimal income individuals. It does
not attempt to rule out individuals with minimum income; instead, it seeks to determine
if society's evaluation of their worthlessness is shared. Individuals are diverse in the sense
of not satisfying limited arbitrage, when someone has minimal income - which requires in
turn that some individuals have minimal quantities of some goods - and, in addition, when
there is no agreement about the value of those who have minimal income.

In sum: our condition of limited arbitrage is geometric in nature: it admits an interpre-
tation as a transversality condition. It bounds the extent of diversity among the market's
traders, but it does so in a different way than irreducibility [33][34] [35] and resource related-
ness [3]. The latter two are only applicable to economies where the consumption is bounded
below, or where there is a bound on short sales. Instead, limited arbitrage is applicable both
to this case and also to the case where neither consumption nor short sales are bounded
below. Irreducibility and resource relatedness are sufficient conditions for the existence of
a competitive equilibrium but not necessary, while limited arbitrage is necessary as well
as sufficient for the existence of a competitive equilibrium, Theorem 1. Limited arbitrage
is necessary as well as sufficient either when the markets have bounds on short sales or
when they do not. Irreducibility and resource relatedness work for the case of bounded
consumption sets by ensuring that all individuals' endowments are desired by others so
that none will have zero income. Limited arbitrage works differently: in the bounded case,
by ensuring sufficient similarity of preferences that even when some individuals may have
endowments of zero or minimal value, a competitive equilibrium still exists. We have ex-
tended this to more general consumption spaces, and given it a geometrical interpretation
as a transversality condition.

Finally we consider the condition that indifference surfaces of preferences of positive
consumption bundles should be in the interior of the positive orthant, Debreu [21]. This
condition has also a simple geometric interpretation: it implies that the set of directions
along which the utilities increase without bound from initial endowments is the same for
all traders. This condition implies that all individuals agree on choices with large utility
values, again a form of similarity of preferences.
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5.2 Related Literature Without Bounds on Short Sales
It may be useful to situate our conditions in the context of other conditions which exist in
the literature. We have already referred to three such conditions, resource relatedness, irre-
ducibility and the condition that the indifference surfaces of non-zero consumption vectors
are in the interior of the positive orthant. All these conditions are sufficient for the existence
of a competitive equilibrium, but only in economies with bounds on short sales, i.e. when
the consumption set is the positive orthant. We shall add here two more conditions, which
apply to economies with no bounds on short sales, i.e. when the consumption set is the
whole Euclidean space: no-arbitrage and Condition C. These two latter conditions help
to clarify the connection of our results with those in the finance literature, which defines
equilibrium mainly from non-arbitrage conditions.

The first three conditions and Condition C of Chichilnisky and Heal [17] are sufficient
for the existence of a competitive equilibrium, but not necessary. Condition C requires that,
if along a sequence of allocations the utility of one of the traders increases beyond bound,
then there exists another trader whose utility eventually decreases below the level of this
trader's initial endowment along this sequence. The condition of no arbitrage is necessary
for an equilibrium but it is not generally sufficient. None of these conditions has been used
to show the existence of social choice rules. Indeed, to our knowledge, no other condition
exists on preferred sets at initial endowments which is both necessary and sufficient for the
existence of a competitive equilibrium, or which is necessary and sufficient for the existence
of social choice rules.

Condition C defined in Chichilnisky and Heal [17] applies to economies without bounds
on short sales, where the consumption set is the whole Euclidean space; instead our limited
arbitrage condition applies to economies with or without bounds on short sales. Condition
C is sufficient for the existence of a competitive equilibrium but it is not necessary. Formally,
the asymptotic preferred cone used here to define limited arbitrage is strictly contained in
general in the set of unbounded feasible allocations which appears in Condition C. This
makes our condition of limited arbitrage strictly weaker than Condition C.

Werner [42] uses a condition of no-arbitrage, which requires the existence of a price at
which no increases in utility are possible at zero costs. His condition is related to, but quite
different from, our condition of limited arbitrage. There is a geometric difference which
has major practical implications. Formally, our cones defining limited arbitrage consist of
rays which intersect every indifference surface of an individual's preference corresponding
to utility values above that of the initial endowment. Instead, the "recession" cones used
by Werner to define no-arbitrage generally do not satisfy this condition [42]. This formal
difference leads to substantial differences in results, and it allows ours to be considerably
stronger. As shown above, our condition depends on endowments as well as preferences:
with the same preferences, our economy will satisfy limited arbitrage for certain initial
endowments of the traders and not for others. Therefore, for the same individual preferences,
our market economy will have a competitive equilibrium for some individual endowments
and not for others: this seems natural. Indeed, one expects that the similarity of individuals
should be defined in terms of their endowments as well as in terms of their preferences. The
existence of a competitive equilibrium should also generally depend not only on individuals'
preferences, but also on their endowments, and this is precisely what limited arbitrage shows.

25



In contrast, Werner's cones are assumed to be the same at every allocation ([42], Assumption
A3 and Proposition 1), so that in particular his condition depends on preferences but does
not depend on endowments. No-arbitrage requires the existence of a price at which no
individual can make positive utility increases at zero costs, a condition which must be
verified in principle at all allocations [42]. Our condition of limited arbitrage requires,
instead, that there should exist a price at which only finite utility increases are achievable at
zero cost from initial endowments: limited arbitrage needs only be satisfied at one allocation,
the initial endowment. Werner's condition is binding only when consumption sets are not
bounded below and it is always satisfied otherwise ([42], Section 6, p. 1414) while, as already
pointed out, limited arbitrage is binding whether consumption sets are bounded below
or not. Furthermore, the no-arbitrage condition is sufficient, but it is not necessary, for
the existence of a competitive equilibrium unless preferences have no linear half-subspaces
in their indifference surfaces: this eliminates linear and piecewise linear preferences, see
Theorem 1 [42]. In contrast, such preferences are included in our framework. No-arbitrage
is neither necessary nor sufficient for the existence of a competitive equilibrium when the
consumption sets are bounded below; in such cases it is always satisfied. Instead, limited
arbitrage is binding, and necessary as well as sufficient, in all cases: when consumption sets
are bounded below and when they are not.

6 Limited Arbitrage and Social Choice

It seems desirable to explain at this point the link between the existence of social choice
rules and the existence of a competitive equilibrium. Consider a space PE of preferences
which are similar to those of the traders in E, as defined in Chichilnisky [18]. These are
preferences which increase in the directions defined by the asymptotic preferred cone of
some trader in the economy £", see Theorem 6 above. From Chichilnisky and Heal [12] we
know that a social choice rule on this space of preferences exists if and only if the space
of preferences PE is contractible - as defined in Section 2. This condition of contractibility
means that there exists a continuous way of deforming the preferences through the space
PE, SO that at the end of this process we have complete unanimity. With contractibility of
the space PE we are assured of the existence of a social choice map satisfying the required
axioms2 and therefore we are assured of a resolution to the resource allocation problem
from the point of view of social choice. But contractibility is a restriction on diversity, no
more and no less. It tests whether there is a way of deforming continuously our space of
individual preferences into itself so that at the end of this deformation all the individuals
have identical preferences. For a discussion of the role of contractibility in public decision
making see e.g. Heal [29]. Thus we are back at the source of the problem of resource
allocation in market economies: individual diversity.

Theorem 1 establishes precisely the degree of diversity which is necessary and sufficient
to solve the allocation problem in markets - limited arbitrage. Elsewhere [18] we have shown
that this same degree of diversity is needed to solve the allocation problem with social choice
rules. In other words, necessary and sufficient conditions for the existence of a competitive
equilibrium - limited arbitrage - are also necessary and sufficient for the existence of social

'The axioms used are continuity, anonymity and respect of unanimity.
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choice rules. As formulated here, the two problems of resource allocation, by markets and
by social choice, are therefore equivalent. Indeed, in Chlchilnisky [18], Theorem 3, we have
also shown that market allocations are always social allocations.3 Theorem 6 above proves
that we only need to restrict the degree of diversity to subsets of at most N + 1 traders,
where N is the number of commodities in the economy.

7 Conclusions

We have shown that limited arbitrage is a necessary and sufficient condition for the existence
of a competitive equilibrium in Arrow-Debreu economies with or without bounds on short
sales. The same condition - limited arbitrage - was shown elsewhere [18] to be necessary
and sufficient for the existence of a continuous anonymous social choice map respecting
unanimity on the space of all preferences which are similar to those of the traders in the
economy E. In this particular sense, the results of this paper and of [18] unify two forms of
resource allocation, by markets and by social choices, which have developed separately and
remained quite separate until now.

We have chosen competitive equilibrium allocations - and no other forms of equilibrium
- because of the Pareto efficiency of competitive equilibrium, a property which is generally
lost in weaker forms of market equilibrium, such as quasi-equilibrium and compensated
equilibrium.

The interpretation of the limited arbitrage condition is somewhat different when short
trades are bounded and when they are not, although mathematically they are very similar.
In the former case it measures social agreement about allocating minimal value to the
endowments of certain members of society, and this agreement, clearly, must include those
same individuals to which society assigns minimal value. It may seem surprising that such
an agreement could exist. In the case that it does not, both forms of resource allocation
break down: the competitive market has no competitive equilibrium, and the social choice
map does not exist.

The connection between the existence of a competitive equilibrium and the manipulation
of market games would be a natural extension of these results. This could follow from the
connection between the existence of social choice maps and the manipulation of games,
Chichilnisky [15]. It also seems possible to extend the results of this paper to economies
with production. Issues of survival and underemployment in market economies are also
directions in which to extend the inquiry of this paper. Finally, recent results show that it
is possible to develop algorithms for computing a competitive equilibrium from the limited
arbitrage condition (Chichilnisky and Eaves [19]).

8 Appendix

The following results, Theorems 7 and 8, have not been used, and are not needed, in estab-
lishing that limited arbitrage is necessary and sufficient for the existence of a competitive
equilibrium, which is Theorem 1. They have an auxiliary role. Theorem 7 below is used to

I.e. allocations that maximize a social ordering derived from individual preferences by a social choice
rule, over the set of feasible allocations.



link the condition of limited arbitrage to the contractibility of spaces of similar preferences,
a condition which is necessary and sufficient in the existence of social choice functions, see
Chichilnisky and Heal [12] and which is used in Theorem 6. Theorem 8 is used in Theorem 6
in proving that for the economy E to have a competitive equilibrium limited arbitrage must
only be satisfied on subsets of at most N +1 traders, where N is the number of commodities
in the economy. This condition simplifies the requirements of verifying limited arbitrage,
restricting this to subsets of at most N + 1 trades in the economy.

Theorem 7 Consider a family U = {{/,},=!...// of convex sets in RN, H, N > 1.

H
Then f] Ut• ± 0 <* | J U3 is contractible,VJ C {1...H}.

This is also true of acyclic families, which are those families \J = {Ui}i=\...H consisting of
acyclic sets (i.e. the sets U, have zero homology), such that the intersection of any subfamily
is either acyclic or empty.

Proof: This theorem was originally proved in Chichilnisky [13]; see also Chichilnisky
[14] for the proof. Theorem 3 implies Helly's theorem [30] and the Knaster-Kuratowski-
Marzukiewicz theorem [14]- the latter of which implies in turn the Brouwer's fixed point
theorem.0

Theorem 8 Consider a family [_\ = {ft}»"=i...// of convex sets in RN H,N > 1. Then

H
p | 6 \ ^ 0 if and only iff] Vx±%

for any subset of indices J C {I...H} having at most N + 1 elements.

In particular, an economy E as denned in Section 2 satisfies limited arbitrage, if and only
if it satisfies limited arbitrage for any subset of k < N + 1 traders, where N is the number
of commodities in E.

Proof: See Chichilnisky [14].0
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