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Abstract

The paper establishes a clear connection between equilibrium theory and social choice theory
by showing that, for a well defined social choice problem, the conditions which are necessary
and sufficient to solve this problem are the same as the conditions which are necessary and
sufficient to establish existence of a competitive equilibrium. We define a condition of limited
arbitrage on the preferences and the endowments of an Arrow-Debreu economy. This bounds the
utility gains that the traders can afford from their initial endowments. Theorem 2 proves that
limited arbitrage is necessary and sufficient for the existence of a social choice rule which allocates
society's resources among individuals in a manner which depends continuously and anonymously
on their preferences over allocations, and which respects unanimity. Limited arbitrage is also
necessary and sufficient for the existence of a competitive equilibrium in the Arrow - Debreu
economy, with or without bounds on short sales, Theorem 7. Theorem 4 proves that any market
allocation can be achieved as a social choice allocation, i.e. an allocation which is maximal among
all feasible allocations according to a social preference defined via a social choice rule which is
continuous, anonymous and respects unanimity.
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1 Introduction
In a world with finite resources, there will generally be conflicting opinions about how resources
should be allocated among the members of society. This leads to the classical resource allocation
problem, perhaps the most basic and challenging problem in economics. An acceptable, agreed
solution to the resource allocation problem holds a society together, providing a "social contract".

An allocation is a distribution of endowments across individuals. It consists of H vectors x, in
RN, one for each individual. A feasible allocation is one adding up to the total resources available to
the economy, Ylisi x« = ft- The resource allocation problem consists of finding a feasible allocation
with desirable or acceptable properties.

One widely used solution to the resource allocation problem is provided by markets. The market
solution finds a feasible allocation which is individually optimal and which clears the markets. Each
individual initially owns a vector of commodities Q{ G RN, i = I...H, and has a preference pi over
his/her private consumption. Society's resources are the sum Q =^Z» ^«- The allocation chosen is
one where individuals maximize their preferences within their budgets and all markets clear. When
markets are competitive, as in the Arrow-Debreu specification, then a market allocation is Pareto
efficient under classical assumptions. Efficiency is a major virtue of market allocations, and is
principally what makes them desirable.

A different solution to the resource allocation problem is provided by social choice rales. These
are rules for deriving a social preference as a function of individual preferences, for example through
voting. They are "universal" in the sense of Kant [28]: the principle followed to derive the social
preference must apply consistently a priori to all societies with all sorts of endowments and indi-
viduals. The social preference ranks allocations by their social desirability. An allocation which is
optimal among all feasible allocations according to a social preference derived via a social choice
rule which satisfies desired axioms, is called a social allocation.

This paper establishes a clear connection between equilibrium theory and social choice theory by
showing that, for a well defined social choice problem, a condition which is necessary and sufficient to
solve this problem - limited arbitrage - is the same as the condition which is necessary and sufficient
to establish the existence of an equilibrium (Theorems 2 and 7)1. Theorem 4 strengthens this
connection by establishing that a market allocation can always be realized as a social allocation.

The first problem of resource allocation is to establish the existence of solutions: the existence of
social choice rules and the existence of a market equilibrium. Each market trader has a preference
over private consumption, leading naturally to a preference over allocations of resources in society.
We consider a universe consisting of all preferences which are similar to those of the traders, and

1 Comments and suggestions from Andreu Mas Colell,Geoff Heal, Eric Maskin, Myrna Wooden, three anonymous
referees and the participant* of several seminars in Europe and the U.S. are gratefully acknowlegded



ask whether a social choice rule in this universe exists satisfying adequate axioms. Preferences are
similar when they have similar views on choices of large utility values: a preference p is similar
to another <r when p increases in all those directions of large utility gains for c, and only in those
directions.

Theorem 2 shows that a social choice rule exists on spaces of preferences similar to those of the
traders, if and only if the preferences and the endowments of the traders satisfy a limited arbitrage
condition. Furthermore, this same condition is necessary and sufficient for ensuring the existence of
a competitive equilibrium of the economy, Theorem 7, Chichilnisky [17]. Having connected the two
problems of existence of resource allocations, it remains to connect the allocations themselves. This
is achieved in Theorem 4, which shows that the two forms of resource allocation are closely related:
any market allocation can be achieved as a social allocation.

The role of the limited arbitrage condition is to restrict the diversity of the traders in the economy.
In economic terms, it bounds the potential gains from trade, by defining a price at which only limited
increases in utility are affordable from initial endowments. In mathematical terms, limited arbitrage
is the non-empty intersection of a family of cones, and, as shown in Theorem 5 in the Appendix, it
is in fact identical to a topological condition: the contraciibiliiy of spaces of preferences. But the
contractibility of spaces of preferences is a restriction on the diversity of the preferences, no more
and no less. Furthermore, contractibility was shown elsewhere to be necessary and sufficient for the
existence of continuous anonymous social choice rules respecting unanimity, Chichilnisky and Heal
[20]. Therefore limited arbitrage provides a clear connection between equilibrium theory and social
choice. By restricting social diversity, it ensures the existence of a social choice rule and also of a
competitive equilibrium.

While a market allocation is desirable by virtue of its efficiency, a social allocation is desirable
by virtue of its ethical properties. To ensure such properties, the rule that derives social preferences
from individual preferences must satisfy certain ethical axioms. Equal treatment, or anonymity,
is one axiom. Respecting unanimity is another: it means that when all individuals agree on the
ranking of all possible allocations, society will adopt this common preference. These two axioms,
plus a condition of continuity to assure statistical tractability, were first proposed in Chichilnisky
[11], [12]. These axioms are an alternative to Arrow's [2] classic axioms of social choice, and. as
shown in Section 8.2, are not comparable with his. Arrow's axioms work best for finite sets of
choices. Our resource allocation problem, however, requires choosing among an infinite number of
choices, indeed a Euclidean set of choices: the space of all possible allocations. Here the axioms of
[12] seem better suited. These axioms, which have been developed in several directions in the last
decade [5],[6],[33],[13], have a useful property: there are simple necessary and sufficient conditions
on the domain of preferences which ensure the existence of a social choice rule, Chichilnisky and
Heal [20]. Such results, which are not available with Arrow's axioms, are key for the understanding
of the connection between market allocations and social allocations.

1.1 Efficiency and Social Ethics
Between the two forms of resource allocation, by markets and by social choice, stand two wedges, one
is intellectual and the other practical. The intellectual wedge is based on a separation of efficiency
and of ethical concerns Economics treats these two issues separately. It regards markets as a
practical representation of positive economics, the way things are. Social choice, which is associated
with ethical concerns, falls into the rubric of normative economics, the way we may want things
to be. This wedge has succeeded in keeping the literature on these two forms of allocation quite
separate, and almost antagonistic to each other.

The second wedge is practical, although practical concerns are sometimes a reflection of intellec-
tual beliefs. Market allocations have always been considered more practical than social allocations,
although in reality all modern democracies use both side by side at all times. One reason for this
is that markets are viewed as having equilibria very generally, while social choice theory has always



stressed paradoxes and non-existence results. Kenneth Arrow's work, which developed fundamental
insights into the two theories, appeared to prjvide fuel for this viewpoint. Arrow's impossibility
theorem for social choice [2] led to a large liteiature focusing on the difficulties of finding acceptable
social allocations. Instead, Arrow's result on existence of a market equilibrium with Debreu [4] led
to more and more general ex.stence theorewis which reinforced our view of market allocations as
being always available. In ail fairness, Arn>.v and Debreu discussed the problems of non-existence
of a competitive equilibrium created by the discontinuity of uncompensated demand when some
prices are zero ([4], Sections 4 and 5) and Arrow and Hahn ([3], Chapter 4, 1) provided examples of
standard market economies with no competitive equilibrium. Nevertheless, the results on existence
of an equilibrium took precedence in the literature.

1.2 Social Diversity and Resource Allocation
What is interesting about Arrow ani Hahn's example [3] of the non-existence of a competitive
equilibrium is that it arises due to sh' p interpersonal differences between the traders, differences in
their endowments and in their prefe.eaces. Such differences emerge, for example, when some traders
have zero endowments of some gocds, a situation which Arrow and Hahn find realistic ([3], Chapter
4, p. 80). It is notable that the so ial choice literature has also focused on interpersonal diversity as
a reason for the non-existence of s cial choice rules. Prominent examples are the work of Black [7][8],
Pattanaik and Sen [34], and Chi:hilnisky and Heal [20]. These works offer conditions for resolving
social choice problems by limiting the diversity of the individual preferences, which is usually called
a "domain restriction" on preferences. Domain restrictions are simply a way of limiting the diversity
of individuals. One is turning, the issue of existence of universal social choice rules - a problem which
in its more general form has no solution - into the question: for what societies can the social choice
problem be resolved? Or: how much diversity can a society function with?

Black's singlepeakednesi condition restricts diversity and solves the problem proposed by Con-
dorcet's [21] paradox of majority voting; Pattanaik and Sen [34] do the same, finding domain re-
strictions which assure the existence of majority rules satisfying Arrow's axioms of social choice,
and Chichilnisky and Heal [20] find domain restrictions which are necessary and sufficient for the
existence of social choi.e rules which satisfy the axioms of [11]. Although these works deal with
somewhat different axioms, they all find the same type of solution: a restriction of individuals'
diversity.

As already pointed out, similar restrictions of individual diversity are implicit in the conditions
for existence of a competitive equilibrium which developed in order to resolve Arrow's example
of non-existence jf a competitive equilibrium: Arrow and Debreu's conditions on endowments of
any household bsing desired, indirectly or directly, by others, so that their incomes cannot fall to
zero [4], prefer* i ~es with indifference surfaces which never which never meet the axis, Debreu [22],
MacKenzie's i re lucibility condition [30][31][32], and the resource relatedness condition in Arrow and
Hahn [3]. These conditions are somewhat different, but they all have the same effect: to restrict the
diversity of individuals' preferences and endowments. This is discussed further in 6.1 and 8.1 below.

1.3 Unifying Two Approaches to Resource Allocation
The aim oi this paper is to show that a restriction on individual diversity which is necessary and
sufficient to secure the existence of a market allocation, is the same as that which is necessary and
sufficient to secure the existence of a social allocation. The condition of limited arbitrage introduced
in Chichilnisky [17], which is defined on individual preferences at their initial endowments, unifies
the two problems.

Limited arbitrage is the non-empty intersection of a family of cones; it admits also an interpre-
tation as a contractibility condition of spaces of preferences over allocations which are similar to
those of the traders (Theorem 5). The term similarity of preferences refers to a form of agreement



on choices of large utility values. Formally, a space of preferences similar to those in the market
consists of preferences which increase in those directions which give unbounded utility gains to some
trader in the market, and only those directions. Lemma 1 establishes that the gradients of similar
preferences are in the union of a family of cones, each cone consisting of vectors having positive inner
products with directions of unbounded utility increases. If the union of these cones is contractible,
then the social choice problem on spaces of similar preferences has & solution. Indeed the social
choice problem has a solution when, and only when, this union is contractible: this is Theorem 1
in Chichilnisky and Heal [13]. But the union of these cones is contractible if and only if their inter-
section is non empty: this is Theorem 5 in the Appendix. Furthermore, the non-empty intersection
of the dual cones is limited arbitrage, by definition. Therefore social choice rules exist if and only
if the limited arbitrage condition is satisfied (Theorem 2). Limited arbitrage is also necessary and
sufficient for the existence of a competitive equilibrium (Theorem 7). Limited arbitrage provides
therefore a clear link between the problem of existence of social choice rules and that of existence
of a competitive equilibrium. In this sense, the two problems of resource allocation, the existence
of market allocations and of social choice rules, are one and the same. One problem admits a so-
lution when and only when the other one does. Theorem 3 proves that the condition of limited
arbitrage need only be required on subsets of traders with cardinality smaller than the dimension of
the commodity space. Theorem 4 proves that a market allocation is always a social allocation.

The following sections provide definitions, a formal statement of the theorems, and their proofs.
The conclusions summarize the results, and an Appendix provides background results.

2 Definitions and Examples
Consider an Arrow-Debreu pure exchange private market economy E. There are N > 1 commodities,
and the consumption space X is either the positive orthant X = R+ — {y = (yi-yN) € Rs :
Wil/i > 0}» o r all of the Euclidean space X = Rs. For vectors x,y € Rs we use the standard
notation: i > y o Vi, i , > y,, r > y o x > y and for some i,x, > y,, and x >> y <=> Vi,x,- > y,.
R++ = {y € R" : Vi,y, >> 0} The economy has H > 2 traders indexed by i = 1...H. Each has
a non-zero initial endowment vector Q, € R+', where Q, may have some coordinates equal to zero.
Each trader has a preference px over private consumption in X, which is concave and monotonic.
When pi prefers x to y we write x yp> y; x yPi y means that x is strictly preferred to y by p,-. The
preferences of the traders are monotonic: Vz, y (E X, if x > y then Vi, x yPi y.

Yli=i ^« = ^ a r e ^ne ' ° ' f l ' endowments of the economy.

The space of allocations is XH = {(zj . . .x/ /) £ RSH : x, € X).

A market economy is therefore defined by E — {X,Q,,pt, i = 1...H).

A k — trader sub-economy of E is an economy consisting of a subset of k < H traders in £ , each
with their endowments and preferences:

F= {X,pJtQjJe J C {L..H},cardmahty{J) = k}.

The space of resource allocations or feasible allocations is T = {zi...x# € XH : ]T»=i z, = ft).

In order to compare market allocations and social allocations we shall consider preferences which
are either defined over private consumption, namely over the consumption set X, or preferences
which are defined over resource allocations for the H individuals of the economy, namely over the
set XH. The preferences in a market economy E are defined over private consumption, over the
space X. Instead, the preferences which are the arguments of social choice rules are defined over
allocations, of commodity vectors across the individuals in the economy, i.e. over XH.



We consider smooth preferences, as defined in Debreu [24], see also Chichilnisky [11]. A smooth
preference defined on private consumption, i.e. on X , is one which can be represented by a smooth
utility function. When X = R+ the utilities are defined either in the interior of X, Int(X) or on a
neighborhood of X. Without loss of generality we assume that the utility value of zero consumption
is zero. In Debreu [24] a smooth preference is identified by the normal directions to its indifference
surfaces. At each point x 6 X the normal direction to a preference p is defined by the gradient vector
of the utility function u which represents the preference, normalized to have length one, denoted
p(x) = Du(x)/\\Du(x)\\. A standard topology for spaces of smooth preferences defines the proximity
of two preferences p and a by the uniform proximity of the preferences' normals, i.e. by the sup
norm on the normals, see Chichilnisky [11], Supx$xl|p(*) — <r(^)||- Such a topology will be utilized
here. A similar definition is given for smooth preferences over allocations.

When A' = H'£ our preferences may have all indifference surfaces corresponding to positive
utility values contained in R++, or they may instead have indifference surfaces which intersect the
boundary of the positive orthant. In the former case the preferences are smooth in R++, and in the
latter they are smoothly defined on a neighborhood of R*. The former is a standard specification of
preferences which includes Cobb-Douglas utilities, CES utilities with elasticity of substitution <r < 1
and the classical preferences considered in Debreu [22] and in Arrow and Debreu [4]. The latter
case includes preferences whose indifference surfaces intersect the boundary of the positive orthant,
such as CES utilities with elasticity of substitution a > 1, and the type of preferences considered in
Arrow and Hahn [3]. In this latter case, we assume that the utilities representing the preferences are
transversal to the boundary of the positive orthant so that if u(y) > 0 for y G dX, then Vz € dX,
<Du(x),z >>€> 0, where < .,. > indicates the standard inner product in R'w, see e.g. Smale [35].
A simple interpretation of this transversality condition is that when a boundary vector x € dX has
a positive utility, u(x) > 0, then the ray of boundary vectors it defines achieves all utility levels
higher than u(x).

When X = R1* we assume that the set of gradients of an indifference surface is closed in R'w. This
is not required when X = R+.

Examples of market economies E without a competitive equilibrium. The endowments and pref-
erences in our market economy E follow a general specification and therefore, without further con-
ditions, E may have no competitive equilibrium. An example is a two-person economy with two
different linear preferences, each defined over the consumption set X = R2 as illustrated in Figure
5 below; such an economy has no competitive equilibrium. The economy of Figure 5 has no lower
bounds for its consumption set X, which means that there are no bounds on short sales. Figure
6 provides a different example: a two-person economy with consumption set X = R\, and with
endowments and preferences as illustrated. Even though the consumption set in the example of
Figure 6 is X = R^. and therefore bounded below, so that there are bounds on short sales, this
economy has no competitive equilibrium. This is discussed further in Section 6.1.

Two topological spaces X and Y are homeomorphic, denoted X as Y, if there exists a one to one
map F : X — Y with a continuous inverse F~ l : Y —• X, i.e. F" I(F(x)) = x Vx € X.

A connected topological space Y is a topological space which cannot be expressed as the union
Y = A (J B of two subsets, A and B, each of which is simultaneously open and closed in Y.

This formalizes the notion that any element y € Y may be connected to any other : 6 V through
a continuous path in the space Y.

A topological space Y is called contractible when there exists a continuous deformation of the space
through itself into one of its points. Formally, Y is contractible when there exists a continuous
map

F : Y x [0.1] — Y, and a point zQeY s.t
Vz € Y, F(z,0) = z and F(z, 1) = zo.



Examples of contractiblc and non-contractibU spaces. If a space X is homeomorphic to a con-
tractible space Y, then X is contractible. All convex sets are contractible spaces, but contractible
spaces are generally not convex. Examples of contractible spaces which are not convex are the "star
shaped" spaces, or non-convex spaces which are homeomorphic to convex sets, see Figure 1:

Figure 1
A star shaped space, a contractible non-convex space

and the torus 5 1 x S1 which is not contractible.

A disconnected space is not contractible. Any contractible space X is connected, but the converse is
not true: the space of all non-zero linear preferences on R? is the unit circle 5 1 (Chichilnisky [11],[12]),
which is a typical example of a connected space which is not contractible. Another example of a
space which is not contractible is the space of preference profiles of two individuals with non-zero
linear preferences on R2 each: this is the "torus" , which is the product of the unit circle with
itself 5 1 x S1 (Chichilnisky [11],[12]). A product of contractible spaces is contractible. A product
of spaces which are not contractible, is not contractible. A discussion of the role of contractibility
in public decision making is in Heal [26]. It was shown in Chichilnisky [11][12] that the space of all
smooth preferences defined on Euclidean choice spaces is not contractible. The space of all linear
preferences defined on Euclidean space RN is not contractible either: this space is the union of the
sphere 5 N - 1 and the vector {0},Chichilnisky[ll],[12]. The space of all smooth preferences defined
on Euclidean space for which there exists a one dimensional subspace which intersects transversely
all the indifference surfaces of each preference, is contractible; this was proved in Chichilnisky [10].
This result will be used later in this paper.

It turns out that contractibility is a crucial condition for the existence of social choice maps: it
has been proved that a social choice rule $ : Pk —* P satisfying desirable axioms exists VAr > 2 if
and only if P is contractible, Chichilnisky and Heal [13].

The set of supports to individually rational efficient resource allocations of the economy E =
{ A \ n , , P l , i = l . . . tf}is:

S{E) = {v € Rs : 3(xi...xH) € T with x, >Pi Qt, i = 1...H, . ,
and Vr 6 X, x >Pt z, =• < v, x - X{ >> 0}. ^

This is the set of prices which support those feasible and efficient allocations which all individuals
prefer to their initial endowments.

2.1 Asymptotic Preferred Cones and Dual Cones

C o n s i d e r a n e c o n o m y E — {X, p t , Qt1 i — I . . . H ) .

2.1.1 The case X - Rs

Consider a given preference p, in E and an initial endowment vector fi,E A' .

The asymptotic preferred cone of p,G E at the initial endowment ft,, A(pi,Qt),is:

-4(p.. a ) = {y € RN : VA > 0, (ft, + Ay) yp> Qt,
and V.- 6 X, 3A > 0 s.t. (Q, + Ay) yPt z) K ]

Figure 1
Example : The asymptotic preferred cone A(pi,Q;) of a

preference px in the market economy E translated to the initial endowment
The consumption set is A' = R-.



Figure 1

Examples of contractible and non-contractible sets

Star Shaped: contractible

Contractible set
homeomorphic to a

convex set.

The torus T = S xS is not contractible.
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Relation with other asymptotic and recession cones: Our asymptotic preferred cone A(pi,Qi) is
related to Debreu's [22] definition of the "asymptotic cone" corresponding to the preferred set of />,•
at the initial endowment Qi, in that along any of its rays utility always increases. A(pi, fi,) has also a
similarity with the "recession" cone introduced by Rockafeller and used e.g. in Werner [37]. However,
the similarity with those cones ends here, because along the rays in A(pi,Qi) not only does utility
increase forever, but it increases beyond the utility level of any other vector in the consumption
space X. In ordinal terms, the rays of the asymptotic preferred cone A(pi,Q{) must intersect all
indifference surfaces of the preference pi corresponding to bundles preferred to Qi. This condition is
not necessarily satisfied by Debreu's asymptotic cones [22], nor by Werner's "recession" cones [37].
For example, there are increasing preferences on R? in which the cone A(pi,Qt) is different from
Debreu's: consider a strictly concave and increasing preference having indifference surfaces which
asymptote to a fixed line. Related conditions appear in Chichilnisky [9][10]; otherwise there appear
to be no precedents in the literature for cones such as A(p,-,Q,).

Note also that the asymptotic preferred cone A(pi,Qi) depends on the initial endowments as well
as on the preferences. It is defined by rays or "directions" from the initial endowment vector Qi.
As the endowment Q, changes, the cone A(pi,Q{) varies. This differs from cones used in other
works which are assumed to be the same at all vectors in the consumption set (e.g. \Verner[37],
Assumption A3 and Proposition 1).

The dual cone of A(p,, Q.) is defined by

D ( P l , Q , ) = { z e X : V y € A ( p i , Q , ) , < z , y » Q.} ( 3 )

Figure 3
Example : The dual cone D(pi,Qt) of the preference p, £ E of Figure 2
translated to the initial endowment Qi. The consumption set is X = R2.

To simplify notation we shall also denote:

Ai = A{Pi,Qt)

and

2.1.2 The case X = R%.

The asymptotic preferred cone of the i-th individual in the economy E in this case is similar to the
case X = RN, as defined as in (2):

t) = {yeX :V\>0, \y£X, ( ^ + Ay)
and Vz 6 X, 3X > 0 s.t. (Qi + Ay) >, , z}. (4)

In this case, the cone A(pi,Qi) can only contain strictly positive vectors, or positive vectors with
some zero coordinates, i.e. A(pi,Qi) C R+-

When X = R+ the boundary dual cone is defined as:

<p , f i ,>=0 , ,„
then q € S{E) and < qtv » 0 Vv 6 A{pitQi)}. K >

Examples of boundary dual cones: The boundary dual cone dD{ is the whole consumption set
X when there is at least one support in S(E) which assigns non-zero income to some individual j .
But if all supports in S(E) assign some ; zero income, then dD{ consists of all those prices which
assign individual t zero income and at which allocations in Ai have strictly positive cost. In this
latter case, therefore dD(pitQi) = S(E)f[D(pi,Qi).

8



To simplify notation we shall also denote

and
dDi

A preference p, in the market economy E is called private because it is defined over individual i's
(private) consumption set X. However, for any number r > 2 of individuals, pt also defines a public
preference, one which is defined over the space Xr of allocations for r individuals: we say that an
allocation (x\...xr) E Xr is preferred by individual i in position j € {l—»*} to another (yi...yr) G Xr

if and only if i's preference p, prefers Xj € A' to y; € X. We may therefore consider a preference
over private consumption p, as a preference defined over all allocations in Xr and positions j , using
for it the same notation when the meaning is clear from the context.

Let Y be a topological space, [29]. If Z C Y the interior of Z, denoted Int(Z) is the largest
open subset of Y which is contained in Y. Cl(Y) denotes the closure of V which is the smallest
closed set containing Y. A continuous map / : Yk —• Y is called symmetric if it is invariant under
the permutations of its arguments, i.e. /(yi-.-yt) = f{yri . . . / f J where * is a permutation of the set
{l...k}. Assume that V is a Hausdorff space [29]. If [/, V are two open neighborhoods of x 6 Y,
U C V, U ^ V, a continuous map v :Y —* R is called a partition of unity for Y, U, V, if: Vy € Y — V,
v(y) — 0, Vy € U, v(y) = 1, and Vy £ V, 1 > v(y) > 0 . Such partitions of unity always exist in
Hausdorff spaces, [29] Using a partition of unity we may construct new maps from given maps,
having specific values, as follows. For any map f : Y —* Z and for any y E Y, z € Z, and open
neighborhood U of y £ Y, there exists a continuous map g : Y —* Z such that g(y) — z and
g[x) = f(x) Vr € A' — U. If the map / is symmetric, g can be constructed to be symmetric also.

2.2 Competitive Equilibrium and Market Allocations
A competitive equilibrium of the economy E = {X,Qt,pl}i = I...H) is a price vector p* 6 /?+ and a
feasible resource allocation (x]...x'H) € T such that x* optimizes p,- over the budget set

Bi(p') = {xeX:< x,p' > = < fi,,P* >}•

When our economy E has a market equilibrium, a market allocation is the allocation (x\...xm
H)

defined by a competitive equilibrium of E, and is therefore Pareto efficient (Arrow [1], Debreu [23]).

2.3 Social Choice and Social Allocations
We shall first define the social choice problem in general terms, and then specialize it to the case of
social allocations in a market economy E.

2.3.1 Social Choice

Consider a general topological space \ consisting of preferences over the space of allocations Xh for
A' > 2 individuals. The preferences in \ need not be those of a market economy. Each individual
has a preference i c , 6 ^ , i = 1...A'. A profile of individual preferences is a list of preferences for the
K individuals, i.e. a A'—tuple of preferences in the space \, denoted (K\...KK) € X^-

The social choice problem is defined on any space of preferences \ &s the problem of finding for
all K > 2 a map <f> : \K —> \ such that

{Al) 4> is continuous

(A2) <$> is anonymous, i.e. O(K\ ...KK) = <?(7r(«i)--7'"(«A:)) for any permutat ion ir of the set {1. . .A}.
and



( . 4 3 ) 0 respects unanimity, i . e . <J)(KI...KK) — K i f K , = KJ = K f o r a l l i , j 6 { 1 . . . A * } .

The axioms for social choice (A\),(A2),(A3) were introduced in Chichilnisky [ 11 ][ 12]. A com-
parison between these axioms and Arrow's classic axioms of social choice is in Section 8.2.

It was proven in Theorem 1 of Chichilnisky [11] that these three axioms are generally inconsistent,
in the sense that when x is the space of all smooth preferences defined on Euclidean choice spaces,
there exists no map <f> satisfying these three axioms. The result is valid whether or not the preferences
admit satiation, but extreme cases such as the case where the social preference $(K\...KK) is indif-
ferent among all possible resource allocations are eliminated on the grounds that they do not resolve
the allocation problem, Chichilnisky [12]. Note, however, that when respect of unanimity (A3) is
replaced by a Pareto condition, the impossibility result of Chichilnisky (1980) holds even when the
total indifference between all choices is allowed as the social preference. The Pareto condition is
that if all preferences in a profile prefer one choice y to a second choice r , then so should the social
choice map.

2.3.2 Social Allocations

We may now define a social allocation. Consider any space x °f preferences over the space of
allocations Xr\ there are r > 2 individuals, each with a preference «,- € X, » = l...r. The preferences
in x may or may not be part of a market economy. When a social choice map <t> '• xr ~~ X exists
satisfying the three axioms: continuity (.41), anonymity (^42), and respect of unanimity (.43) it
defines a social allocation for the space of preferences x as follows:

For each profile of individual preferences (<i...Kr) € Xr a social allocation is a resource allocation in
Xr which is optimal within the set of feasible allocations T according to the social preference
<£(*!.../cr) € X- Such a resource allocation is located by a social choice rule which satisfies the
three ethical axioms (Al)(/*2), (.43).

3 Limited Arbitrage: Definition and Examples
Our link between the existence of market allocations and social allocations will be provided by the
condition of limited arbitrage. Our next step is therefore to define this condition, to discuss its
meaning, and to provide examples. We shall consider two cases separately. Case 1 is when the
consumption set is X = RN, and Case 2 is when the consumption set X = R+. The limited
arbitrage condition is somewhat different in these two cases, although in both cases it involves the
non-empty intersection of dual cones. We shall also discuss more general consumption spaces, and
provide an interpretation of the limited arbitrage condition in such cases.

3.1 Limited Arbitrage without bounds on short sales: X = RN

Consider a market economy E — {X,Q{,pi,i = I...H}, where X = RN. E has limited arbitrage iff

H

(LA) p|ZKp,,rt,)*0. (6)

This condition can be interpreted as follows: there exists a price p at which only limited (or
bounded) increases in utility are affordable from initial endowments. This interpretation illustrates
the connection between limited arbitrage and the concept of no-arbitrage which is used frequently
in the finance literature.
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Examples: economies which do not satisfy the limited arbitrage condition in Case 1 are those
where the different individuals have different linear preferences, Figure 4, and also those represented
in Figure 5. In both examples, the economy has no competitive equilibrium.

Figure 4
Two linear preferences t = 1,2 over the consumption set X = R2.

The asymptotic preferred cones >4, are half spaces.
The dual cones D{ are the two gradients.

The limited arbitrage condition is not satisfied,
and the economy has no competitive equilibrium.

Figure 5
Three preferences over X = R3.

The dual cones are Di,D? and D$ as indicated.
Each two person subeconomy satisfies limited arbitrage

but the three person economy does not because the three
dual cones do not intersect.

3.2 Limited arbitrage with bounds on short sales: X = R+

Consider now a market economy E = {A\ 0,,p,, t = 1...//}, where now X — R+ .

The limited arbitrage condition when A' = R+ is:

H

(8LA) r |0D(p,,a)#8 (7)

where the d - dual cones dD{p,, Q,) are defined in Section 2.

The interpretation of this condition is that if all supporting prices m S(E) assign some trader
zero income, then there is one at which only limited (or bounded) increases m utility are affordable
from initial endowments.

Examples: An example of an economy which does not satisfy limited arbitrage in Case 2 is
illustrated in Figure 6.

Figure 6
A two person economy with consumption set X = R^.. S(E) = {v}.

All supporting prices in S{E) assign individual one zero income, < v,fii > = 0.
There exists no price in S(E) having a positive inner product

with the asymptotic preferred cones of both traders,
because the cone A(pi,Q\) contains the vertical axis, since p\ increases in the second
coordinate. Limited arbitrage is not satisfied, and there is no competitive equilibrium.

Examples: In Case 2, when the consumption set is X = i?^, limited arbitrage is always satisfied by
preferences whose indifference surfaces corresponding to positive consumption bundles never intersect
the boundary of X. Examples of such preferences are Cobb-Douglas utilities or CES utilities with
elasticity of substitution a <1 . All such preferences have the same asymptotic preferred cone,
namely the positive orthant, and therefore their dual cones always intersect. Since their asymptotic
preferred cones are identical, these preferences are very close indeed on choices involving large utility
levels. Similarly, economies where the individuals' initial endowments are strictly interior always
satisfy this condition too, since in this case dD(p,,Q,) = X = R% for all i = I...H.

The limited arbitrage condition may fail when Vp 6 S(E) some trader's endowment vector ft, is
in the boundary of the consumption space A' = R%, and this trader has zero income < p,Q, >= 0.
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Otherwise, limited arbitrage is always satisfied since by definition #D(p,-,Oi) = X = R+ for all
i = 1...H.

We shall now define limited arbitrage for subsets of traders in the market E.
The economy E satisfies limited arbitrage for any subset of k traders, when for any subset K C

{1...H} of cardinality k< H,
Case 1 (X = R») :

(LA) ClDip^n,)?!. (8)

n,)**. (9)

Theorem 6 in the Appendix establishes that an economy satisfies limited arbitrage if and only if
it satisfies limited arbitrage for any subset of at most N -f 1 traders, where N is the number of
commodities in the economy. This implies that the economy E has a competitive equilibrium if and
only if every subeconomy of N + 1 traders does, [18].

3.3 Limited Arbitrage with more general consumption sets
We may consider also more general cases of economies where there exist lower bounds on the con-
sumption sets, but these bounds are not zero. For example, we may consider consumption sets which
are translates of positive orthants in commodity space,

X = { v e R s : 3 w € R s w i t h v > w ) .

In this case the limited arbitrage condition has a similar interpretation but is not restricted to
prices in S{E) which assign some individual's endowment zero value: it applies instead to cases
where Vp 6 S(E) some individual has endowments of minimal value. The interpretation of limited
arbitrage is now as follows: among those prices in S(E) which assign some individual minimal
value, there must exist one at which only bounded increases of utility are affordable from initial
endowments.

4 Similarity and Social Diversity

Consider a market economy E = {A',ft,,p,, t = 1...//}. Each preference p, in E is defined over i's
private consumption set X. However, as we saw in Section 2, p, also defines a preference over all
allocations in Xr for any number of individuals r > 1 : an allocation (ri-..x r) 6 Xr is preferred by
individual i in position j to another (t/i-.t/r) if and only if p, prefers Xj to y;-. We may therefore
consider pi as a preference defined over allocations, using for it the same notation when the meaning
is clear from the context. Our next task is to define spaces of preferences which are similar to those
of the market's traders.

We aim to define precisely what is meant by preferences being similar, and to show how to define
populations of individuals having preferences similar to those in the market E. The purpose is to
formalize the concepts of similarity and diversity by taking the preferences and endowments in the
economy E as a benchmark.

An essential characteristic of the agents is their "asymptotic preferred cones" over allocations,
as defined in Section 2. These cones are made of rays along which the individuals' utilities increase
without bound from the initial endowments. A geometric interpretation of similarity is that a
preference a is similar to another preference p when a increases along those directions which give p
unlimited utility gains, and only along those directions. In particular, a preference <r is not similar to
another p if - and only if- there exist a direction along which p can achieve unbounded increases in
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utility, yet along the same direction, o^s utility decreases. Intuitively the preferences p and <r should
not be considered similar in this latter case.We shall therefore consider a universe of preferences in
which individuals' preferred directions are similar to those of the individuals in the market in the
sense that their gradients have positive inner products with the asymptotic cones of some trader in
the economy E.

Consider first the case X — Rs. Let TJ be any concave, smooth preference defined over allocations
in Xr, r > 1. Note that, in general, a preference over allocations may not be monotonic. We seek to
formalize the notion that T] IS similar to the preference of trader i in the market E if it agrees with
the preference pi of i on important choices. A geometric interpretation of this concept of similarity
is as follows: the preference rj must increase in the directions of individual i's asymptotic cone. This
is formalized in the following definition of similarity to the preference of trader i.

Let the normal to the indifference surface of the preference TJ at the allocation £ E Xr be denoted
Grj(^); it is an iV x r vector indicating the direction of increase of preference TJ at the social allocation
£ 6 Rr. This normal always exists and is unique because the preference r\ is smooth (Debreu [24])

When X = R*,an individual preference T] over resource allocations in Xr xs said to be similar to
the preference of trader i of the economy E — ( X , p , , Q , , i = I...H] in position j when:

where D(p,-,Q,-) is the dual cone of individual i defined in 2, Section 2. This means that the
gradient of rj has a strictly positive inner product with the vectors of the asymptotic cone A{pi, Q,)
of individual i in position j , as defined in Section 2.

When X = R+ the definition of similarity to the preference of trader i is the same as in (10),
but replacing the cone D(pi,j) in (10) by the boundary dual cone dD(pi,j) defined in Section 2.
The cone dD(pi,j) is the analog of the dual cone D(pi,j) for the case X = R+. Formally,

When X = R'+ , a preference TJ over resource allocations in Xr is said to be similar to the preference
of trader i of the economy E = {X,pi, Q,,» = I...H) in position j when:

Note that a preference which is similar to an increasing preference, need not be itself increasing: all
that it is required for similarity in (10) is that the gradients be in the dual cone Di, and the vectors
in the dual cone D(pi,Q,) of an increasing preference pi need not be positive.

4.1 Private and Public Preferences
We shall say that an individual's preference 77 is private when it is indifferent to the consumption of
anyone else, and that it is public otherwise. When a preference is private and the individual occupies
position j € {1.••**}, then its normal GT](^) G R1* has only N non-zero components, those in position
;', indicated Grf{£). A private preference is therefore similar to that of an individual i in the economy
E in one position j . By contrast, if a preference is not private, it may in principle be similar to
those of different individuals t in different positions j = l...r. The results of this paper apply equally
well when we consider solely private individual preferences, or when individual preferences are either
private or public. When the space of preferences consists solely of private preferences, the concept
of respect of unanimity must be modified slightly. We consider here spaces consisting of preferences
which are either private or public.

We may now define similarity of a preference with respect to a set A1 of traders in the economy
E (as opposed to similarity to the preference of a trader i in position j , which was defined in (11)
and (10):
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A private preference q over resource allocations in Xr is similar to those of a set of traders
K C {I...H} in the market economy E if:

V£ € Xr, 3i e K and 3 ; € {1—r} *•<• V is similar to p, in position j . (12)

When the preference rj is public, we have:

V£ e Xr and V; € {l. . .r}, 3t € K s.i. 77 is similar to pi in position j . (13)

The next step is to define spaces of preferences PE which consist of preferences similar to those of
a subset of traders in the market E. The intuitive notion is that of a class of preferences PE defined
over allocations in XH where each preference in PE is similar to the preference of some trader i
within a subset of traders of E. Formally, consider the space of allocations for r > 2 individuals,
Xr, where X — RN or A' = R+ . Let ; denote possible positions, j = l...r :

A space of preferences PE over allocations Xr consists of preferences similar to those preferences of
a set of traders K C {I...H} tn the market economy E — {X,pi,Qt,i = I..H}, for X — Rs

or X=R+ when:

T] € PE <—> T] is a preference similar to those of the set of traders K. (14)

The space of preferences P E consists therefore of either private or public preferences over allo-
cations in X r; in either case, its preferences are similar to those of the subset K of traders in the
market economy E.

Note that the preferences in a space PE need not be increasing even when all the preferences in
the market are increasing. Similarity only requires that the gradients of preferences in PE be in the
dual cones of some preference in the set of traders A', and the dual cones of increasing preferences
may contain vectors which are not positive.

5 Social Allocations in a Market Economy
We shall now specialize the social choice problem described in Section 2.3 to the case of social
allocations in a market economy.

Consider a market economy E = {X,p,,Q,,i = \..H). Let PE be a space of preferences over
resource allocations in Xr, r > 2 consisting of preferences which are similar to those of A' traders
in the economy E as defined in (14). A social choice map 4> assigns to each profile of r individual
preferences in Xr another preference in PE, the social preference over allocations, 4>(K\...Kr) = 6.
Each Kj is a preference similar to the preference of an individual a in E and so is 6 = 4>{K\...Kr).

5.1 Example: A Classical Social Welfare Function
An example of the type of social choice map we consider here is provided by the classical "social
welfare function" which assigns to each profile of individual utilities over private consumption a
utility over allocations as described in the following. In this standard example, each individual
i = I...H has a utility function u, : X — R, where A' = RN or X = R%. The social preference \V
over allocations in XH is defined for each allocation (zi.. .r//) G XH by:

H

(x l). (15)
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Note that the gradient of the function W : RNH —* R at an allocation (zi...Xf{) is a vector in RNH,
while each individual utility u, has a gradient in RH at the vector r,-. Indeed, the gradient of the
function W is a vector of H iV—dimensional gradients, those of the H individuals. In particular,
the gradient of the function W is not the sum or any convex combination of the gradients of the
individuals i = I...H.

The construction of the social welfare function W of (15) is cardinal, in the sense that it is defined
over profiles of individual utilities, and yields asocial utility function W(r1...x//). However, the social
welfare function of (15) can be used to define a social choice map in ordinal terms, namely a map
from profiles of individual preferences to social preferences. Consider a profile of private preferences
(*i •••*//). where Ki is a private preference over allocations in XH. Then Vt Kj is induced by a utility
function over private consumption u,(/c,) : X —* R. We may now define the social preference over
allocations in XH corresponding to the profile of preferences («i•••*#), the preference 0(«i• ••*#),
as follows. The normal of 0(*i-..KH) at an allocation £ =(xl...Xfj) € XH is defined as the vector

where GjW is the normalized gradient of W{X\...XH) with respect to Xj, i.e.

and V;, A; 6 /?+. The role of the real numbers A;- in (16) is to normalize the right hand side of the
expression (16) so that it defines a vector of length one as it corresponds to the normal of a smooth
preference defined in Section 2 (Debreu [22]). Expressions (15) and (16) define a map from profiles
of private preferences over allocations in XH, into preferences over allocations in XH:

(Ki...KH)-e(Kl...KH) (17)

Clearly, the definition in (17) is the ordinal version of the cardinal construction in (15).
The interest of the social welfare function 0 defined in (17) is that it provides an example of

the type of structure for social choice with which we work in this paper. The similarities with our
framework are as follows: G is defined over profiles of private preferences over allocations, and it
assigns to such a profile another preference over allocations which is typically a public preference.
If the preferences in the profile (K\...KH) are those of a market economy E — {X,K{, f2,,t = I...H},
then the social preference assigned to this profile 0(*i...KH) is similar to those of the traders in E
as defined in (14) above. Furthermore, the map 8 is continuous on its arguments and it respects
unanimity. Therefore the map 0 satisfies many of the properties required of our social choice
functions.

The differences with our framework are as follows: firstly, 0 is defined solely on private pref-
erences, while we allow social choice maps which are more general, defined over both private and
public preferences over allocations. Secondly, the map 0 , by its construction, is not anonymous.
Indeed, the map 0 assigns individual i a dictatorial power over the tth position in the allocation.

5.2 Example: The Convex Addition of Gradients

As pointed out in 5.1, the gradient of the classical welfare function W defined in (15), (16) is
neither the sum nor the convex combination of the individual utilities' gradients. A natural question
is whether a construction based on the sum or a convex combination of the individual utilities's
gradients could yield an adequate social preference. Such construction would have the advantage
that it is defined generally, without reference to additional conditions such as limited arbitrage. The
following example shows that such a construction, although appearing to be natural, typically does
not work. Indeed we argue below that it only works properly when the limited arbitrage condition
is satisfied.
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Consider for example an economy with two agents each with a linear utility defined on the
consumption set X — R?. The two utilities axe different. Figure 7 illustrates. The asymptotic
preferred cones A\>Ai of the two linear preferences are the two half spaces as indicated in Figure
7, and the corresponding dual cones D\, D? are the two gradient vectors. Since the two vectors are
different, the dual cones do not intersect, and limited arbitrage is violated. Now consider the linear
preference p over allocations in Ft7 x R} with gradient (D3, D3), where Dz is a convex combination
of D\ and Di as shown in Figure 7,

A$ = ADi + (1 - A ) D 2 , 0 < A< 1.

A problem arises because even though the initial endowment allocation (^1,^2) is strictly preferred
by both individuals to the allocation denoted (61,62) in Figure 7, the social preference p prefers,
instead, (6U62) strictly to (Qi,ft2)

Figure 7
Both individuals prefer allocation (fh.f^) t 0 (^1.^2)

but the social preference with gradients equal to the convex combination
of the gradients D\ and Di prefers (61,62) to (^1,^2) instead.

This property of p contradicts the standard Pareto condition which requires that when everyone
strictly prefers a given allocation to another, so should the social preference. The reason for this
contradiction is that the two dual cones do not intersect. When the dual cones intersect, then
a vector in this intersection defines the gradient of a linear preference which respects the Pareto
condition: this follows directh from the definition of dual cones. Otherwise, no preference exists
respecting the Pareto condition.

Another way of looking at the same problem is that the social preference defined by the addition
of the two gradients is not similar to the preferences with gradients D\ and D2, as defined in Section
4. Therefore the addition of gradients cannot define a map from profiles of similar preferences into
similar preferences as required

This example shows that the convex sum of gradients cannot be used generally as a way of
defining appropriate social choice rules: the preference with gradients D3 — XD\ + (1 — A)Z>2,
0 < A < 1, is not an adequate social preference for the profile (Di, D?).

The only possibility of respecting the similarity of preferences or the Pareto condition, would be
to assign the social preference with gradient equal to either D\ or to D2 to the profile (£>i, £?2)- This
would respect the similarly condition, and would define a continuous, anonymous social choice map
respecting unanimity on the space of preferences PE = {Di,Di}. But this is possible only because
the space PE is a discrete case consisting only of two elements, the two linear preferences. In the
general case in which the space PE is connected, a continuous anonymous social choice rule satisfying
unanimity exists if and only if PE is contractible, as proved in Chichilnisky and Heal [13]. And, as
shown in the Appendix Theorem 5, limited arbitrage is actually equivalent to the contractibility of
the spaces of preferences.

Our next step is to extend and refine the classical welfare function W defined in (15). The
welfare function W is a cardinal construct, while we wish to provide an ordinal one: a social choice
map defined over profiles of private and public preferences over allocations, preferences which are
similar to those of a market economy E. We seek an anonymous social choice map, a requirement
that neither W in (15) nor its ordinal counterpart 0 in (17), satisfy. Theorem 2 establishes that this
task can be accomplished when the preferences in the market economy E satisfy limited arbitrage,
and therefore when the market E has a competitive equilibrium, and only then.

Assume now that a social choice map <f> with the desired properties (A\)(A2)(AZ) exists. The
existence of a social choice map 0 solves the resource allocation problem from the point of view of
social choice:
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We say that the social allocation problem is resolved for preferences similar to those of the market
E — {X, pi, ft,, i = 1..H} when for any space of preferences PE over allocations in Xr similar
to a set of traders K C {1...H} in E there exists a continuous anonymous social choice map
4> '• {PEY —* PE respecting unanimity.

Consider a market economy E = {X, /?,, ft,, * = l . .#} having a social choice map 4>: (PE)H —> -PE
satisfying the axioms (A\)(A2)(A2) on the space of preferences PE similar to those of the economy
E.

A social allocation for £ is a feasible allocation of E which is optimal in the space of feasible
allocations T = {ri. . .x# : £ T » = ft} according to the social preference <I>{P\...PH)-

6 Comparing the two resource allocations problems
Given a market economy E = {X, ft, ,/>,, i = 1...//"} the marire* allocation problem is solved whenever
there exists a market equilibrium for E. To resolve the market allocation problem we must therefore
give conditions which assure the existence of competitive equilibrium: when the competitive equi-
librium does not exist, the social contract based on market allocations fails to deliver acceptable
resource allocations.

6.1 Existence of Market Allocations
We know that not all Arrow-Debreu exchange economies have a competitive equilibrium, even when
all individual preferences are smooth, concave and increasing, and even when the consumption sets
are positive orthants. The simplest example of a market with continuous concave and increasing
preferences over X = R+ which has no competitive equilibrium is provided in Arrow and Hahn
[3], Chapter 4, p. 80, in a market with two goods and two individuals, but the problem is quite
general and it occurs in economies with any number of individuals and of goods. The example in
[3] is based on the diversity of endowments and preferences of the individuals in the economy, which
leads to a failure of continuity of the demand function. With a discontinuous demand, a competitive
equilibrium generally fails to exist. Arrow and Hahn say: " This discontinuity will necessarily occur
in some part of the price space, except in the unrealistic case in which the household has a positive
initial endowment of all goods" (Chapter 4, p. 80, [3]).

Of course, other concepts of market equilibrium could be utilized to define a market allocation,
such as for example quasi-cquihbrium which was first introduced by Debreu [25], or compensated
equilibrium, as defined in Arrow and Hahn [3]. These are closely related but different definitions;
they define allocations which could have excess supply, or where individuals minimize cost rather
than maximizing utility. When individuals' incomes are strictly positive, these concepts agree with
the competitive market equilibrium (Arrow and Hahn [3], Chapter 4); these allocations have the
advantage that they always exist with continuous concave preferences and with positive orthants as
consumption sets.

However, as Arrow and Hahn point out, the condition that all individuals should have strictly
positive endowments of all goods is unrealistic ([3], Chapter 4, p. 80., para. 4), so that quasi-
equilibrium or compensated equilibrium allocations will not be competitive equilibrium allocations
in general. But the competitive equilibrium stands alone in terms of its welfare properties. Quasi-
equilibrium or compensated equilibrium allocations are not generally Pareto efficient. Therefore the
main justification for using market allocations, which is efficiency, would be lost unless we remain
within the confines of a competitive equilibrium. For this reason we concentrate here on competitive
equilibrium allocations.

The problems of non-existence of a competitive equilibrium are somewhat different when the
consumption set X is the whole Euclidean space - i.e. when there are no bounds on short sales -
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than when the consumption set X is the positive orthant. Consider first the case when X = Rs.
In this case, the limited arbitrage condition defined in the next Section ensures that individuals,
who must typically be diverse in order for gains of trade to exist, are not too diverse in the sense
that a competitive equilibrium still exists. This is Theorem 7 below; indeed this theorem proves
that limited arbitrage is necessary and sufficient for the existence of a competitive equilibrium. For
example, there must exist a degree of consistency between individuals' asymptotic cones at the initial
endowments: a price hyper plane must exist which leaves all these cones to one side, so that from
initial endowments, no individual can afford allocations which lead to unbounded utility at these
prices. Figures 4, 5 and 6 in Section 3 illustrate this point, and show when this condition of limited
arbitrage fails.

The case when the consumption space is X — R% is somewhat different. Figure 6 in Section 3
illustrates a failure of the limited arbitrage condition in this case. None of the economies of Figures
4, 5 or 6 have a competitive equilibrium. Conditions are therefore needed to rule out such economies.
The conditions should ideally be on the exogenous data which identify the economy, namely on the
endowments Q, and on the preferences p, of the agents t = 1...H. The limited arbitrage condition of
Chichilnisky [18] - defined in Section 3 - is therefore a good candidate, because it provides a necessary
and sufficient condition for existence of a competitive equilibrium which is defined on these exogenous
data of the economy E: endowments Q, and preferences /?,-. Limited arbitrage limits precisely the
degree of diversity among the agents of the economy to one at which market equilibrium will exist.
This is Theorem 7.

Indeed, for economies with consumption bounded below, .V = R%, such limits on diversity are
implicit in Arrow's resource relatedness [3] and in McKenzie's irrcducibiliiy condition [30][31][32].
All these conditions ensure that the endowments of any household are desired, directly or indirectly.
by others, so that their incomes cannot fall to zero. In this case our limited arbitrage condition is
always satisfied.

Irreducibility and resource relatedness conditions work by assuring that at a quasi-equilibrium
or at a compensated equilibrium, all individuals' incomes are strictly positive. When individuals'
incomes are all positive, all the notions of equilibrium coincide. The problem of maximizing utility
subject to a budget constraint, which is the competitive equilibrium condition, is then identical to
that of minimizing the cost of an allocation with a certain utility level, which is the condition which
defines a compensated equilibrium. Thus a compensated equilibrium, which always exists when
preferences are concave and continuous and the commodity space is the positive orthant, is also a
competitive equilibrium.

The key to the conditions of Arrow, Debreu and McKenzie is to eliminate zero income alloca-
tions. Yet zero income does not rule out the existence of a competitive equilibrium; there may be
economies with a competitive equilibrium in which some consumers have zero income. Furthermore
an allocation where some individuals have zero income reflects a real problem: the fact that some
individuals are considered worthless, that they have nothing to offer that others want. Such a situ-
ation could clearly arise at a competitive equilibrium. Indeed, it seems realistic that markets could
lead to such allocations; we observe them all the time in city ghettos. Our condition of limited
arbitrage brings out the issue of diversity by focusing on the problem of zero income individuals. It
does not attempt to rule out the case of individuals with zero income; instead, it seeks to determine
if society's evaluation of their worthlessness is widely shared. Individuals are diverse in the sense
of limited arbitrage when they have sufficiently different endowments that someone's income could
be zero - which requires that some individuals have zero quantities of some goods - and in addition
when there is no agreement about the worthlessness of those who have zero income. With more
general consumption sets as discussed above, the issue is the worthlessness of those having minimum
income, which may or not be zero.
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6.2 Existence of Social Allocations
Within the same market economy E = {X,Qi,pi,i = 1...H], we may resolve the iocial allocation
problem when we can find a social choice rule <f> satisfying the required axioms (Al)(A2)(AZ). $ must
be defined on a space of preferences which contains those of the market E and is otherwise large
enough to satisfy Kant's universality criterion. The problem has generally no solution because a
social choice rule satisfying the required axioms may not exist. Therefore a social contract promising
a solution which satisfies the ethical principles agreed and having a completely universal domain of
preferences, may not deliver. Again, conditions are needed. Here, as in the case of the market
equilibrium, the conditions should be on the exogenous data which identify the economy E, namely
on the individuals' endowments ft, and their preferences /?,.

We know that the space of all smooth preferences over allocations in XH is too large: the three
axioms of continuity, anonymity and respect of unanimity are inconsistent in that case and no social
choice rule satisfying them exists, Chichilnisky [11]. We must therefore search for a universe of
preferences and endowments in which a social choice rule <f> does exist. Such a universe must contain
the preferences of our economy E, and we shall require that it should consist of individuals who
share the essential characteristics of the economy E. The motivation is to compare the types of
restrictions needed for existence of a competitive equilibrium with those required for the existence
of a social choice map.

Consider a space PE of preferences which are similar to those of the traders in E. From Chichilnisky
and Heal [13] we know that a social choice rule on this space of preferences exists if and only if the
space of preferences PE is contradible, as defined in Section 2. This condition of contractibility
simply means that there exists a continuous way of deforming the preferences through the space PE,
so that at the end of this process we have complete unanimity. With contractibility of the space x
we are assured of the existence of a social choice map, and therefore we are assured of a resolution
to our resource allocation problem.

But contractibility is a restriction on social diversity, no more and no less. It tests whether
there is a way of deforming continuously our space of individual preferences into itself so that at
the end of this deformation all the individuals have identical preferences. A discussion of the role of
contractibility in limiting social diversity and in public decision making is in Heal [26]. Thus we are
back at the source of the problem of resource allocation in markets: individual diversity. As before,
we shall focus on the degree of diversity which allows a solution to the resource allocation problem
to exist, this time, at the social choice level.

Theorem 2 in Section 7 shows that the degree of diversity which is necessary and sufficient to
solve the allocation problem in markets - limited arbitrage - is the same as that needed to solve
the allocation problem with social choice rules. In other words, Theorem 2 shows that necessary
and sufficient conditions for the existence of a competitive equilibrium - limited arbitrage - are also
necessary and sufficient for the existence of social choice rules. The former conditions are on the
diversity of preferences at the initial endowments. The latter restrict our universe of preferences to
be similar to those of the market traders, at their initial endowments. Theorem 2 proves that when
the market has an equilibrium, the social choice map exists and when the market does not have a
competitive equilibrium, the social choice rule does not exist. As formulated here, the two problems
of resource allocation, by markets and by social choice, are therefore equivalent. Theorem 4 proves
that market allocations are always social allocations.

7 Linking Markets, Arbitrage and Social Choice

This section provides the main results linking the two forms of resource allocation: by markets and
by social choices. The following preparatory lemma describes the geometrical structure of spaces of
preferences PE which are similar to those in a set A' of traders of the economy E.
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Lemma 1 Consider a market economy E — {X,Pi,Qi,i = I..H}, where X = RN or X — R+. Let
PE be a space of preferences over allocations for r individuals Xr which are similar to those of a set
K C {I...H} of traders in E. Then when X — RN at each allocation £ 6 Xr and for each position
j = l...r, the normals to the indifference surfaces of all preferences in PE define the set

NK(PE) = { | J D(Pi,Qt)} U {0} = NK U {0} C RN. (18)

Furthermore, when every two-trader sub economy of E satisfies limited arbitrage, then VK" C {I...H}
the set NK is connected. The set NK is contractible^ K C {I...H} if and only if the market economy
E satisfies limited arbitrage. When X — R+ all the above statements hold replacing NK by the set

Proof: Since PE consists of preferences over allocations in Xr which are similar to those of the
subset K of traders in the economy E, and these preferences may be private or public, then by
definition (14)(12)(13)( 10), at each £ 6 Xr the gradients in the set NK(PE) define the set

{{jD(Pl,nt)}{J{o}cRs.

The next step is to establish that the set NK is connected. The condition of limited arbitrage
for any subset of two traders in the s tatement of this Lemma, is that is that for any two traders l,j
in E

This implies that the set

NK =

is connected.
Finally we study the contractibility of the set NK- Theorem 2 in Chichilnisky [18], see also

Theorem 5 in the Appendix, establishes that if {C,} ; = i . .v is a family of convex sets and L C J then

\J}€LCj is contractible VL C J
~ V L C / , r\j€LCj *%.

Since the dual cone V; D(pj, Q;) is a convex set, the second statement in (19) is equivalent to the
condition that E has limited arbitrage. The first statement, in turn, states that the set NK is
contractible. Therefore Theorem 5 in the Appendix implies that limited arbitrage is satisfied if and
only if VAT C { l - # } , the set NK is contractible.O

The following result links the resolution of the social allocation problem with the resolution of
the market allocation problem. A minimal restriction, that every two traders have limited arbitrage,
is now imposed in the market economy E to eliminate somewhat pathological economies where no
two traders can reach a competitive equilibrium, or those economies where the spaces of preferences
similar to those of the traders are discrete or very disconnected:

Assumption (C\): every two-trader sub economy of E has limited arbitrage.
The role of this condition is to ensure that the set of gradients NK is connected: this was shown in

Lemma 1. Note that (Cl) is rather mild: it certainly does not imply that NK is contractible, nor that
the economy E satisfies limited arbitrage, nor that E has a competitive equilibrium. For example,
Figure 4 illustrates an economy where every two dual cones intersect and thus (Cl) is satisfied,
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but the economy of Figure 4 does not satisfy limited arbitrage, and does not have a competitive
equilibrium.

We shall explain intuitively the role of the limited arbitrage condition in the existence of social
choice rules. A condition which is necessary and sufficient for the existence of social choice rules is
that the space of preferences should be contractible, Chichilnisky and Heal [13]. Therefore to show
the existence of social choice rules on preferences similar to those of the market E we must show
that the space of such preferences is contractible. This we do using the condition of limited arbitrage
and Theorem 5 in the Appendix.

The condition of limited arbitrage is the non-empty intersection of dual cones, as defined in
Section 3. However, Theorem 5 in the Appendix proves that the dual cones intersect if and only
if their union is contractible. And, by Lemma 1, the union of the dual cones is precisely the space
where the gradients of the preferences similar to those of the market "live". In other words: the
proof that limited arbitrage is necessary for the existence of a social choice rule derives from the
results of Lemma 1 above, from Theorem 1 of Chichilnisky and Heal [13], and from Theorem 5 in
the Appendix. It may be worth mentioning here that preferences which are similar to those in the
market E are not necessarily increasing, and that, furthermore, a space of preferences consisting of
increasing preferences may not admit social choice rules because it may have "holes" and therefore
may fail to be contractible. For a geometrical example see Figure 5 in Section 3.For the sufficiency
part we need to use additional results: in particular those in Chichilnisky [10]. The result that
a competitive equilibrium exists if and only if E satisfies limited arbitrage is Theorem 7 in the
Appendix; note that condition (Cl) is not necessary for the equivalence of limited arbitrage and the
existence of a competitive equilibrium.

T h e o r e m 2 Consider an economy E = {X,pitQlti= 1...J/}, H > 2, X = RN or X = R+, K > 1
satisfying ( C l ) .

Then the following three properties are equivalent:
(a) ike economy E has limited arbitrage
(b) the economy E has a competitive equilibrium
(c) there exists a continuous anonymous social choice map <f> : (PE)T —* PE respecting unanimity

on any space PE of preferences over allocations which are similar to those of a set K C {1--H} of
traders in the market E, for all K C {1...H} and all r > 2.

Proof: The equivalence between (a) and (b) is in the Appendix, Theorem 6, see also [18].
We shall now establish the equivalence between (a) and (c).
Consider Case 1, when the consumption set X = RN. We first show that limited arbitrage is a

necessary condition for the existence of the social choice map <$> for all K C {1...H} and all k > 2
satisfying the three axioms (A\)(A2)(A3).

Assume that such a social choice map <t> exists for all r > 2. Let LPE be the subspace of
PE consisting of all its linear preferences, i.e. those preferences within the space PE which are
representable by linear utility functions having their gradients, in each position j = l...r, contained
in the set NK U{0} C RN • Let in : LPE —• PE denote the inclusion map. Note that each preference
v € LPE is uniquely identified by the normal Nu £ RNT to one of its indifference surfaces: by
linearity all such normals are the same. Therefore

LPE*(NKV{Q}Y, (20)

i.e. the space of linear preferences LPE is homeomorphic to the product space (NK U {0})r. Now
consider an allocation (€. XK and define the map ir : PE — LPE SO that

TT{K) = Kit

where K^ £ LPE is the linear preference over allocations in Xr having as its gradient in RSr the
vector GK{Z\) which is the normal to the indifference surface of the preference K at £. Both maps in
and 7r are continuous in their domains.
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By assumption, there exists a social choice map $ : (PEY —* PE for any r > 2, satisfying the
three axioms. Now consider for any r > 2 the map induced by the composition of in and <f>, defined
by:

- LPE%

The map 0 : (LPEY -* LPE, is continuous, anonymous and respects unanimity by construction,
because 0 satisfies these three properties. Since by (20) Vj, LPE « {NK U {0})r. ^ defines a map
A : [{NK U {0})r]r — (NK U {0})r for all r > 2 satisfying the three axioms (Al)(A2)(AZ). Since A
is continuous and respects unanimity, it maps each connected component of the space (NK U {0})r

into itself. In particular, the restriction of the map A to the connected component [(NKYY °f
[(NK U { 0 } ) 7 \ denoted \/(NKY, maps [(NK)r]r into (NKy, i.e. A/(NKY : [(NKYY -(NKY,

and it satisfies the three axioms (Al)(A2)(A3). By Theorem 1 of Chichilnisky and Heal [13] such a
map A exists if and only if the space (NKY ls contractible for all r > 2; this in turn is true if and
only if the space NK is contractible - see Section 2. Therefore the contractibility of the space NK is
necessary for the existence of the social choice map <j>. But Theorem 5 in the Appendix proves that
NK is contractible for all A' C {1..-H} if and only if the limited arbitrage condition (6) is satisfied.
This completes the proof of necessity of limited arbitrage.

We now turn to the proof of sufficiency of limited arbitrage. By definition, limited arbitrage
implies the existence of a non-zero vector v 6 R'w in the intersection of all the dual cones:

H

ve f] D(Pi,n%).

Furthermore, by definition of the space PE, all the indifference surfaces of any preference in PE
must intersect the ray defined by the vector {v...v) in the space of allocations X'Wr. Therefore the
conditions required in Chichilnisky [10] for the existence of a social choice map <t> : {PEY ~* PE
satisfying the three axioms {A\){A2){AZ) are satisfied for the space PE- This completes the proof
of sufficiency of limited arbitrage.

Case 2. Here X — /?£. The proof in this case is the same replacing the set of gradients .V# by
the set

K

The following result establishes that the existence of an equilibrium and of a social choice map
in Theorem 2 requires only that the limited arbitrage condition be satisfied on subsets of at most
iV + 1 traders, where N is the number of commodities in the economy:

Theorem 3 Consider an economy E as in Theorem 2. The following four properties are equivalent:
(a) The market economy E has a competitive equilibrium
(b) Every sub economy of E with at most N + 1 traders has a competitive equilibrium
(c) E has limited arbitrage
(d) E has limited arbitrage for any subset of individuals with no more than N + 1 members.
(e) For any space of preferences PE similar to those of a subset K of market traders, there exists

a continuous anonymous social choice map 4> : (PEY ~* PE respecting unanimity, for all r <N + 1.

Proof: The proof that (a)<»(c) and (b)<*(d) follows directly from Theorem 7 in the Appendix.
That (c)o(d) follows from Theorem 6 in the Appendix. The proof that (c)o(e) follows from
Theorem 2.0

Theorem 4 Consider a market economy E = {X,pi,Qi,i = I...H}. Any market allocation (x\...x)j) 6
Int(XH) of E is also a social allocation for E.
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Proof: When & market allocation for E exists, E has a competitive equilibrium described by a
price vector p* and an allocation (z\...x*H) £ XH which is individually optimal within the budget
sets and which clears all the markets. We shall show that if this market allocation {x\.~x*H) is
interior to XH, then it is also a social allocation. This means that any space of preferences PE
defined over allocations for the H traders, namely on XH, and consisting of preferences which are
similar to those of the H traders in the economy E — {X,pi,Qi,i = 1...H}, admits a social choice
map * : (PE)H —- PE satisfying the axioms (Al)(A2)(AZ), and such that (x\...x*H) optimizes the
social preference V(p\ --PH) over the set of all feasible allocations T of the economy E.

Since a market equilibrium exists, by Theorem 2, there exists a social choice map 4>: {PE)H —* PE
satisfying the three axioms {Al){A2) and (A3), for the 6pace of preferences PE similar to the H
traders in the economy E. By Theorem 2 we also know that limited arbitrage is satisfied, i.e.
Hi l i D(PiyQ\) T̂  0. since by assumption E has a competitive equilibrium.

We now use a partition of unity on the space PE as defined in Section 2 in order to define a
modification of the social choice map <p, called ^ , which also satisfies the three axioms, and according
to which the equilibrium allocation is optimal within all feasible allocations for the social preference
V(PI---PH)- Note that by the results of Chichilnisky [10] the space PE is contained in a manifold
which is the inverse image under a smooth retraction of a linear space, the space spanned by the
vector (v...v) £ RNH, where v € C^Li D(Pi,&i)- Therefore the space PE is HausdorfT and we can
therefore apply a partition of unity

Let U be the set of preference profiles in PE consisting of the profile (pi...ptj) and of all its
permutations,

U = M{(p», •/>»«)}. *°r a " permutations * of the set {1...H}}.
r

The set U consists of finitely many points in (PE) \ U is disjoint from the diagonal A(PE)H —
{(K\...KH) £ {PE)H : V»,j K, = K ; ) , because the profiles in U consist of private preferences each
defined over a different position. Since (PE)H is contained in a manifold, it is a Hausdorff space.

We shall now construct a new social choice map * with the desired properties by using a partition
of unity for (PE)H . as defined in Section 2. Using this partition of unity we modify the map
<t> : (PE) —* PE to obtain another continuous anonymous map xp : (PE) —> PE, which differs from
<f> only in an open neighborhood 8(U) of the set U, and is otherwise identical to <p. Within the set U
the new map fi/ satisfies:

*(p,. . .pw) = ¥(/>„. ../>,„) = Kp. (21)

for all permutations ir of the set of indices {I...H}, where in (21) /cp. is the linear preference over
allocations in XH with gradient vector (AiL>u1(x*)...A//Du//(xJ/)), for some vector (\\...XH) £ R+ >
Dui(x') is the gradient of u, at (x*) for a utility u, which represents pt, and where

if (KX...KH) $ B(U). The map

* : (PE)H - PE

satisfies the three axioms by construction. We shall now show that the competitive equilibrium
allocation (x"...x^) £ XH is a social allocation for the economy E with the social choice map ^ .
Since the allocation (x\...x'H) £ lnt(XH) by the assumptions of the Theorem and is the equilibrium
allocation corresponding to the price vector p*, there exists a vector (Aj.-.A^) £ /?+, such that:

\V(x\...x'H) = A/ar(Tl...rH)€T W(x,...xH) (22)

H

where W(xi...xH) = ^ A,"u,(x,),
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and where the utility u, : X — R represents the preference />,-. Now choose the vector (A^.-A/f) in
the definition of ^ following (21) to be the vector (AJ...AJ,) in (22). Then, with this definition of
(A1...A//), the allocation (x\...x'H) maximizes the social preference ^(pi...pn) over the feasible set
T. The allocation (x\...xm

H) £ XH is therefore a social allocation for the social choice map tf and
the economy E, as we wished to prove.0

8 Related Literature

8.1 Irreducibility, Resource Relatedness and No Arbitrage
It may be useful to situate our conditions in the context of the literature. We shall refer to three
other main conditions which have been used in various ways to prove the existence of a competitive
equilibrium: resource relatedness, irreducibility and no-arbitragt. None of these conditions has been
used to show the existence of social allocations. Indeed, to our knowledge, no conditions exist in the
literature linking the properties of endowments and preferences in a market economy to the problem
of social choice.

While our condition of limited arbitrage - defined in Section 3 - bounds the extent of diversity
among the market's traders, it does so in a different way than irreducibility and resource relatedness
do. The latter are only applicable to economies where the consumption is bounded below, or where
there is a bound on short sales. Instead, limited arbitrage is applicable both to this case and
also to the case where neither consumption nor short sales are bounded below. Irreducibility and
resource relatedness are sufficient conditions for the existence of a competitive equilibrium, while
limited arbitrage is necessary as well as sufficient for the existence of a competitive equilibrium [18].
Limited arbitrage is necessary as well as sufficient for the existence of a competitive equilibrium,
either when the markets have bounds on short sales or when they do not, while irreducibility and
resource relatedness apply only when consumption is bounded below.

When there is a bound on short sales, irreducibility and resource relatedness work by ensuring
that all individuals' endowments are desired by others so that none will have zero income, see e.g.
Arrow and Hahn [3], Chapter 4. Limited arbitrage works differently: by ensuring sufficient similarity
of preferences that even when some individuals may have zero endowments a competitive equilibrium
still exists.

Werner [37] defines a condition of no-arbitrage, which requires the existence of a price at which
no increases in utility are possible at zero costs. His condition is different from our condition of
limited arbitrage. There is a formal difference in the definitions of both conditions which has major
practical implications, as follows. The cones defining limited arbitrage consist of rays which intersect
every indifference surface of an individual's preference, while the "recession" cones used by Werner
to define no-arbitrage generally do not satisfy this condition [37]. This formal difference leads to
substantial differences in results, as is discussed in the following. In addition, the definition of our
condition depends on endowments as well as preferences: with the same preferences, our economy
will have a competitive equilibrium at some individual endowments and not at others. Indeed, one
should expect that the existence of a competitive equilibrium should depend not only on individuals'
preferences but also on their endowments, and this is precisely what limited arbitrage shows. Instead,
Werner's cones are assumed to be the same at every allocation ([37], Assumption A3 and Proposition
1), so that his condition of no-arbitrage is independent from the initial endowments. No-arbitrage
requires the existence of a price at which no individual can make positive utility increases at zero
costs, a condition which must be verified in principle at all allocations. Our condition of limited
arbitrage requires, instead, that there should exist a price at which only finite utility increases arc
achievable at zero cost from initial allocations: limited arbitrage needs only be satisfied at one
allocation, the initial endowment.

Another difference is that Werner's condition is binding only when consumption sets are not
bounded below and it is always satisfied otherwise ([37], Section 6, p. 1414) while, as already
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pointed out, our limited arbitrage condition is binding whether consumption sets are bounded below
or not. The difference in conditions allows to obtain stronger results on the existence of a competitive
equilibrium in Chichilnisky [18]. The no-arbitrage condition in [37] is sufficient, but it is not necessary
for the existence of a competitive equilibrium. The necessity requires that preferences have no linear
half-subspaces in their indifference surfaces. This eliminates linear and piecewise linear preferences,
see Theorem 1 [37]; by contrast such preferences are included in our framework. Furthermore, no-
arbitrage is neither necessary nor sufficient for the existence of a competitive equilibrium when the
consumption sets are bounded below; in such cases it is always satisfied. Instead, limited arbitrage is
binding, and necessary as well as sufficient, in all cases: when consumption sets are bounded below
and when they are not.

8.2 Comparison with Arrow's axioms
It seems worth comparing our axioms with Arrow's [2] classic axioms of social choice. Arrow's
axioms are more suitable for finite set of choices, such as voting among a finite set of n candidates.
Instead, we are choosing here among an infinite set of choices, namely among the set T of all feasible
allocations in Euclidean space.

The three axioms (A1)(A2)(AZ) are different from Arrow's [2]; indeed, they are not comparable
with his axioms. The anonymity condition (A2) is stronger than Arrow's non-dictatorship axiom,
because the former requires equal treatment while the latter eliminates only extreme inequality of
treatment. Respect of unanimity (A3) is strictly weaker than his Pareto condition, since respect of
unanimity is only binding when all preferences within a profile are identical. Instead, the Pareto
condition applies to any profile of preferences which, equal or not, prefer a given choice x to another
y. Finally, Arrow does not consider continuity (,41) as we do, and we do not require Arrow's axiom
of independence from irrelevant alternatives, an axiom which has been somewhat controversial. In
other words: neither set of axioms implies the other.

Continuity is required here on the grounds of statistical tractability: it implies that the sampling
of populations' preferences will approach the true distribution provided the grid of observations in
the sample is fine enough. The continuity axiom makes this formulation of social choice better suited
to continuous sets of choices and to connected sets of preferences. This is because when the space
of preferences is discrete or finite - as it would be when there are finitely many choices - then the
space of preferences is itself finite and therefore continuity is a vacuous requirement. Recent work by
Baigent [5][6] and by Nitzan [33] has extended the axiom (Al) of continuity to one of "proximity"
of preferences, a concept which is appropriate for discrete spaces of preferences and for preferences
over finitely many choices. Using "proximity" instead of "continuity", and preserving the other
two axioms - anonymity and respect of unanimity - Baigent [5][6] proved the impossibility results
of Chichilnisky [11] for the case of finitely many choices. Chichilnisky [14] has recently shown the
connection between the existence of social choice rules and the manipulation of non cooperative
games.

What makes the axioms used in this paper particularly well suited for our problem is that they
lend themselves naturally to the study of preferences and choices similar to those which are studied
in market economics. Furthermore, with these axioms there exist simple necessary and sufficient
conditions for resolving the social choice paradox, Chichilnisky and Heal [13]; this is not true for
Arrow's axioms.

9 Conclusions
Theorem 2 established that limited arbitrage is a necessary and sufficient condition for the existence
of social choice maps on spaces of preferences similar to those of a market economy. The same
condition - limited arbitrage - is shown in Theorem 7 to be necessary and sufficient for the existence
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of a competitive equilibrium in a market economy. Furthermore, Theorem 3 established that a
market allocation is always a social allocation. In this sense, the results of this paper unify two
forms of resource allocation, by markets and by social choice, which have developed and remained
separate until now.

We have chosen competitive equilibrium allocations - rather than other concepts of market equi-
librium - because of the Pareto efficiency of competitive equilibrium. This property is generally lost
in weaker forms of market equilibrium, such as quasi-equilibrium and compensated equilibrium.

Similarly we have concentrated on three axioms of social choice: continuity, anonymity and
respect of unanimity, introduced in [11], which are particularly well suited for problems where the
choices are elements in Euclidean space. Arrow's [2] classic axioms appear to be better suited for
problems with finitely many choices.

This choice of axioms has allowed us to use the necessary and sufficient "domain" restrictions
for a resolution of the social choice paradox proven in Chichilnisky and Heal [13], namely the con-
tractibility of the space of preferences. We have also utilized the necessary and sufficient conditions
for the non-empty intersection of a family of sets in Theorem 5, Chichilnisky [ 15][ 16]: these require
the contractibility of the union of all subfamilies of these sets. The circle closes because the limited
arbitrage condition, which is necessary and sufficient for the existence of a competitive equilibrium,
is defined as the non-empty intersection of a family of convex sets, the "dual cones" of the traders
of a market economy. This requires, in turn, contractibility. Thus we have linked limited arbitrage,
which is needed for the existence of a market equilibrium with the contractibility of the space of
preferences which is needed for a resolution of the social choice problem.

The results presented here apply equally to the case of Arrow-Debreu economies having as con-
sumption sets the positive orthant, and to those having as consumption sets the whole Euclidean
space, but they have a somewhat different interpretation in these two cases. In the case where
there are no bounds on short sales, so that the consumption space is the whole Euclidean space, the
condition of limited arbitrage is described precisely by the existence of a price which makes unaf-
fordable for all players those allocations which could bring them unbounded utility increases from
their initial endowments. This limits the diversity of preferences and endowments in the economy.
This direction, in turn, is used as in Chichilnisky [10], to define a social choice map from individual
preferences into social preferences which can rank all feasible allocations and yield a socially optimal
allocation.

In the second case, when consumption is bounded below so that the consumption set is the
positive orthant, limited arbitrage limits the diversity of endowments and preferences in a modified
form. In this case, the results relate to the conditions of irreducibility and of resource relatedness
which Arrow and Debreu [4] and McKenzie [30] introduced to prove the existence of a competitive
equilibrium in economies where consumption is bounded below. Their conditions place also limits
of diversity and eliminate the possibility that some individuals have zero or minimal income. Lim-
ited arbitrage means, instead, that among all supporting prices which assign zero income to some
individuals, there is always one which makes un affordable those allocations leading to unbounded
utility from the initial allocation. This price defines also a direction which intersects transversely
all the indifference surfaces of all the traders in the market, and yields a way to construct a social
choice map.

The limited arbitrage condition is somewhat different when there are bounds on short sales than
when such bounds do not exist, although mathematically it is very similar. When consumption sets
are positive orthants, limited arbitrage measures social agreement about allocating zero values to
the endowments of certain members of society. This agreement must include those same individuals
to whom society assigns zero value. It may seem surprising that such an agreement could exist. In
the case that it does not, both forms of resource allocation break down: the competitive market has
no competitive equilibrium, and the social choice map as defined here does not exist.

When short sales are bounded below, but the consumption sets have more general specifications,
such as translates of the positive orthant, the limited arbitrage condition is no longer restricted to
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individuals with zero value. It applies to individuals having endowments of minimal value. In this
case, the limited arbitrage condition requires that within the set of prices assigning an individual's
endowment a minimum value, there should exist one price at which only bounded utility should be
attainable from initial endowments.

An extension of the results provided here could elucidate the connection between the existence of
a competitive equilibrium and the manipulation of social games. Such results could follow from the
connection between the existence of social choice maps and the manipulation of games, Chichilnisky
[14]. It seems also possible to extend the results of this paper to economies with production. Issues
of survival and underemployment in market economies are obvious directions in which to extend the
inquiry of this paper. Finally, recent results show that it is possible to develop useful algorithms for
computing a competitive equilibrium from the limited arbitrage condition (Chichilnisky and Eaves
[20]).

10 Appendix

Theorem 5 Consider a family \J = {£/,},=!...„ of convex sets in R71 n,m> 1. Then

U, ^ 0 if and only if M Uj is contractible

VJ C {l . -n}

This theorem was proved in Chichilnisky [15]; see also Chichilnisky[16]. Theorem 5 implies
the Helly's theorem [27] and the Knaster-Kuratowski-Marzukiewicz theorem.[16]-the latter of which
implies in turn the Brouwer's fixed point theorem.

T h e o r e m 6 C o n s i d e r a family | J = {Ui}l = i...n of convex s e t s in R m n , m > 1 . Then

n

f |C/,^0 if and only if f| I/, ^ 0

for any subset of indices J C {l...n} having at most m+1 elements. In particular, a market economy
E as defined in Section 2 with n traders and m commodities satisfies limited arbitrage if and only
if every sub economy of E with at most m + 1 traders satisfies limited arbitrage.

For a proof see Chichilnisky [16].0
The following theorem links the existence of a competitive equilibrium with the condition of

limited arbitrage, see also Chichilnisky [18].

Theorem 7 Consider an economy E — {X,ph,Slh,h — 1...J/}, where H > 2, A' = Rs or X — /?+
and N > 1.

Then the following two properties are equivalent:
(a) the economy E has limited arbitrage
(b) the economy E has a competitive equilibrium

Proof: The strategy of the proof is as follows. First we prove that limited arbitrage is necessary
for the existence of a competitive equilibrium. Next we establish sufficiency. The proof of sufficiency
has two parts. The first part is the proof of existence of a pseudo equilibrium; for this we use a
fixed point argument on the Pareto frontier of the economy. This requires in turn to prove that the
Pareto frontier of the economy is homeomorphic to a simplex, a property which we establish using
limited arbitrage. Finally, using limited arbitrage we prove that the pseudo equilibrium is also a
competitive equilibrium.
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We prove first the necessity of limited arbitrage. Let the utility function UH : X —» R represent the
preference p\ G E, i.e.Vr,y G X, u^(x) > u*(y) <=> x >-Pk y. By appropriate renormalization we can
assume without loss of generality that u*(0) = 0 so that u^(Q^) > 0, and that Supt^x{uh{x)) = oo.
Now assume that (a) is not true, and consider the case X — RN first. Then

H

= B, (23)

which implies that for all y E Rs, there exists an h G {I...H} and a vector v(y) E ^(p/v.Q/,) such
that:

< y,^(y) >< 0, and
l imx- 3o(^(n*+A«'(y))=oo. l j

Consider now a competitive equilibrium described by a price p" and an allocation (x\...x'H). By (24)
for some A > 0,

uh(Qh + Ai-(y)) > uh{x'h) and<p*,At,(y) >< 0,

contradicting the fact that z' is an equilibrium allocation. Therefore no competitive equilibrium
exists when (24) is true: limited arbitrage is necessary for the existence of a competitive equilibrium
when X = Rs. Consider next the case X = R%. Assume first that V<? € S{E) 3 /i € {I...H} s.t.
< q, Qh >= 0. Then if limited arbitrage is not satisfied

P) 0, (25)

which implies that
Y<7 6 / ? ' \ 3/i and v(q) G 4 ( ^ , 0 * ) :

< g, QH >= 0, and VA > 0, < q, \v(q) >< 0. [ '

Since v(q) £A(ph,Q>)
lim (ufc(ft* +Au(y)) = oo. (27)

\-~oo

Consider now a competitive equilibrium price p* and the corresponding allocation (x[...x'H). Then
p ' G S(£), and (26) and (27) imply that 3/i s.t. for some A > 0,

uh(Qh + Au(y)) > «*(*;) and<p' ,Au(y) >< 0,

contradicting the assumption that p* and (x\...x'H) define a competitive equilibrium.
It remains to consider the case where 3q G S(E) such that V/i G {I...H} < q,Qh >:fi 0. But in

this case by definition f]"=l dD{ph,tth) j : 0 since V/» G {l.../f} dD{ph,Qh) = flj, so that limited
arbitrage is always satisfied. This completes the proof that limited arbitrage is necessary for the
existence of a competitive equilibrium, when X — RN and when X = R+.

The next step is to prove that limited arbitrage is sufficient for the existence of a competitive
equilibrium. For this we will utilize the standard method - introduced by Negishi - of proving first
the existence of a quasi-cquilibnum as defined in Section 2, using a fixed point theorem on the Pareto
frontier

P(E) = {(UL-.UH) G RH : Uh = tifc(zO where (Xl...xH) G T
and - 3{Vi...VH) : Vh - uh{yh), (yi-.y/*) G T with VA, Vh > Uh, Vh > Uh for some A}.

The quasi-equilibrium is subsequently shown to be a competitive equilibrium, thus completing the
proof. The proof must address two practical difficulties in applying this strategy, one when the
consumption set X = RN, and a different one when X = R+. Both difficulties are resolved by
the limited arbitrage condition. The problem is as follows: when X = R1* the Pareto frontier
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P{E) may fail to be bounded and closed, because the utility obtained by the traders from their
initial endowments may not attain a maximum over feasible allocations when there are no bounds
on short sales. This failure leads to the non-existence of a competitive equilibrium in well known
cases; this problem of existence appears also in economies with infinitely many commodities, but
when commodity spaces are infinite dimensional it can appear even if the consumption set is the
positive orthant, see the examples in Chichilnisky and Heal [19]. In practical terms, the problem is
that the Pareto frontier may not be homeomorphic to a unit simplex, a property which is essential
in the proof of existence of a quasiequilibrium. The role of the limited arbitrage condition in this
case is to ensure that the Pareto frontier is bounded and closed; together with the quasi concavity of
preferences this implies that the Pareto frontier is homeomorphic to a unit simplex so that standard
existence arguments can be invoked.

A more standard difficulty arises when the consumption set is X=R%. Here the Pareto frontier
is always closed and bounded and a quasi-equilibrium exists. However, in this case the quasi-
equilibrium may fail to be a competitive equilibrium. This is the type of problem which the conditions
of resource relatedness and of irreducibility are meant to circumvent. The problem arises only when
some individual has zero income at the quasi-equilibrium allocation and is illustrated in Figure 8
above. In this case, minimizing costs may not imply maximizing utility so that a quasi-equilibrium
may fail to be a competitive equilibrium. This second potential failure of existence is also ruled out
by the condition of limited arbitrage.

Consider first the case A' = Rs . We shall show that the Pareto frontier is a closed bounded set
in RH. Define the set Fa of feasible and individually rational allocations:

Fa = {z £RNH :z = (x, + Q I - * H

£?=i r* ^ ° a n d V/l ' u^x '» + fi*) ^ UhiVh) > 0}

Let A denote the unit simplex in RH, and define the set Sr of utility vectors which are collinear
with a given element r = (rj^.r//) £ A,

Sr - {{VX...VH) € RH : V/i = 1...H, Uh = Uh(zh), where z - (*i...*//) £ Fn
and 3v > 0 s.t. t / . ^ = n,}

We shall now prove that limited arbitrage implies that S r is bounded for all r £ A. Consider first
the case where r >> 0. Assume that Sr is not bounded. Then there exists a sequence denoted
{*n}n=i.2 = { (*? . . .4 )} n =i , : C -ffi such that (ui(r")...ti//(x^)) is in 5 r and for some h £
{l. . . / /},l imn_o o uh{xn

h) = oc. Let ^ = z£ - fih. We may assume that Vn J3f= 1(zJ - fifc) =

E i L i zh = °- S i n c e r >> 0. l f 3h '• l i mn-oo UA(*A) = CXD, then V/i=l...H l imn^^ uh(z^) = oc.
For all h 6 {1...//}, let a* be a point of accumulation of the sequence of vectors {(z£/HrJJil)}"'
this sequence has such a point because it is contained in the unit sphere 5 i V - 1 C Rs• Note that
(*h € A{ph,&h )• Now let a£ denote the projection of the vector z£ on the line in Rs defined by the
vector Oh, and consider a subsequence {zm} of {zn} satisfying

l i m ||-J^ — Q A*II = 0-

m —oo

Then

0 = lim Y"*zm= lim Y > o m = V ' Q h .
Awl n= 1 n « l

In particular Vg 6 /?-v < q,Qh > = limm—oo<9, Ylh=i QT > = 0- Since a/, £ / l (p/ , , f i ) , this implies
that there exists no q £ flN such that < q,y >> 0 for all y £ A(ph,Qh), so tha t

H
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contradicting the limited arbitrage condition. Therefore limited arbitrage implies that Sr must be
bounded V r >> 0.

Now assume that r E <9A, so that r̂  = 0 for some h = X...H.. We may assume that r^ ^ 0 for
some h, for otherwise the ray 5 r is clearly bounded. Then we may approximate r by a sequence of
rays {r*}*-!^... C A , such that VJr, r*>> 0, and for which a proof similar to the previous case
applies. There exist a sequence {xk}k = i,2. . C Fa such that Vfc, (ui(x*)...u/f(z^)) is maximal in 5r*.
In particular, if *£ = r£ - Qh, then Vfc J2"-\ ZJ = £ ? = i ( r " ~ n*) = °- F o r a ny h l e t Q* b« a P o i n t

of accumulation of the sequence of vectors (**/||^||) C Ss~l C RN• By definition, a*, E A(ph,tth.)-
Let a£ denote the projection of the vector z* on the line in RN containing the vector ctj. Consider
now a subsequence {zm} of {:k} satisfying

Then
H H H

0= lim V r ^ = lim V Q ^ = y^aA.
m — co ^—' m — oo ^—' " ^

* = 1 * = 1 /» = !

Since a^ 6 ^(p>,,il^) this implies that there exists no g 6 Rs such that < q,y >> 0 for all
y£A(ph,Qh),le.

H

contradicting limited arbitrage. Therefore limited arbitrage implies that Sr must be bounded for all
r E A. This in turn implies that the utility possibility set U(E) C RH is bounded.

We now complete the proof that the Pareto frontier P(E) is bounded and closed when A* = /?v by
proving that limited arbitrage implies that P{E) is closed. For any r E A, let v = (V\...VH) E /?+ sat-
isfy v = Supyzs, y; • we know that such a v exists because the utility possibility set U{E) is bounded.
To prove that P{E) is closed it suffices to show that there exists an allocation {Z\...ZH) 6 Fci such
that t; =(ui(zl)...uH(zH))- Consider a sequence {zn} C Fn such that: Un =(u1(zjl)...u//(c^)) E 5 r . ,
Un is maximal in the set 5 r , limn{rn} = r, and lima U

n = v. Since U(E) is bounded, and each
utility UH is monotonic, there exists a vector of utility values {Ul...UH) — ("i(yi)-..u#(y/f)) E RH,
where (yi...y/f) may or not be a feasible allocation, such that limn_0O Un = v. It is straightforward
to see that since limn U

n = v and v is optimal in Sr, the directions of the gradients of the sequence
of the utilities define a Cauchy sequence, i.e.

Define now the sequence {s)J}n=i,2...where *£ = Guh{z^)/\\uh(z^)\\ E 5yv~1 C RN. Since 5^~1

is compact, V/i there exists a point of accumulation of {s^Jnsi^.... denoted s/,. Since for all h,
, then V E> 0, 3T and 3 w% E /2N such that u*(u;£) = vA and

The sequence {Gui(z^)...Guf{(z'^)} consists of gradients of efficient utility levels and it converges to
{si...sn}, so by the assumptions on the utilities ti* V/» there exists a vector r* € vj^l(vh) E i?" such
that Guh(zh) = AA«A for some Xh > 0. Furthermore, £ * s l zj = J^jj^j Q* , so that (21-..^) € Fn-
Since (ui.-.v/f) = (ui(*i)...u#(z//)) we have completed the proof that the Pareto frontier P(E) of
the economy E is closed, as we wished to prove. We have shown that limited arbitrage implies that
when X = RN the set P(E) is closed and bounded. Therefore the proof that P(E) is homeomorphic
to the unit simplex A E RH is now standard from the quasi concavity of the preferences, see for
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example Arrow and Hahn [3]. For the case X = R+, their proof establishes directly that this Pareto
frontier is always homeomorphic to the unit simplex. It is now standard to establish that a qnasi-
equilibrivm always exists, either when X = RN or X = R+ : for completeness we provide now a
formal proof of existence of a quasi-equilibrium which works equally for these two cases next:

Define the set
B

4=1

For each r >> 0 in A let (*i(r)...x#(r)) £ Fn now denote the feasible allocation which gives the
greatest utility vector collinear with r :

))),.

in the vector order of RH, and 53,_i(x,-(r) — fli) = 0. Such an allocation always exists because
Vr E A, Sr is bounded and closed, ll defines a non-zero utility vector which depends continuously
on r. Now let

{ p | | p | | }
P(r) = {p€P:p supports x(r)}.

By standard arguments, P{r) is not empty, see e.g. Chichilnisky and Heal [19], Lemma 3. Define
now a map y> : A —• T :

<p{r) = {< p, 0, - n(r) > ... <p,nH~ *H{r) > p € P{r)}

<p(r) is a non-empty convex valued correspondence, Y2h=\ z/i = 0 if z € ¥>(r)> and

0 6 <f(r) o (**»P*) is a quasi-equilibrium of E,
where r = r(x') and p* € P(r).

The next step is to show that if is upper semi-continuous, i.e. if rn —• r, zn € y?(rn)> zn — z
then z 6 P(r) . Consider the feasible allocation r(r) , where r = limn(f*

n)- Let v be any other
allocation satisfying u^(is) > uj^x^r)), where Xh{r) is the A-th coordinate of the vector x(r)
and Vh is the A-th coordinate of the vector v. Let zn 6 ^»(rn) and pn € -P(̂ *n)- Since rn —» r,
eventually u*(t;fc) > tiA(rA(rn)) so that < pn,vh > > < pn ,x^(rn) > = < p" ,^ , , > - z£ , where ẑ  is
the A-th coordinate of zn : this follows from the definitions of zn and p n . Let {pn} be a sequence
of vectors such that pn € P(rn) . The set P is compact and (Jr P(r) is closed; therefore |J r P(r)
is compact as well. There exists therefore a vector p € P and a subsequence {pm} of {pn} such
that < pm,v>k >—< p,v>, >, so that in the limit < p,v^ >>< p,Qh > —Zh- Since this is true for
all such v, it is also true for v satisfying u/,(i;fc) > ti/,(i/>(r)) and in particular for v = x so that
< p, Xh > > < p,fth > —ZH implying that z € y(r) as we wished to prove. The proof of existence of
a quasi-equilibrium is completed by showing that \p has a zero. For all r € A define 0(r) = r + tp(r).
The map 6 : A C A is non-empty, upper semi continuous, convex-valued correspondence and it
satisfies appropriate boundary conditions. By Kakutani's fixed point theorem, 6 must have a fixed
point r* which is a zero of the map <p. The allocation x* = x*(r*) and a price p* € P( r*) define a
quasi-equilibrium of the economy E.

The proof of existence of a quasi-equilibrium just provided is equally valid when X = RN or
when X = R+. Therefore to complete the proof of the theorem it remains only to show that the
quasi-equilibrium is a competitive equilibrium.

Consider first the case X = R*. Then V/i = I...H there exists an allocation in X of strictly lower
value than x* at the price p \ Therefore by Lemma 3, Chapter 4, page 81 of Arrow and Hahn [3], the
quasi-equilibrium is also a competitive equilibrium. This establishes the existence of a competitive
equilibrium when limited arbitrage is satisfied and X = RN.
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Now consider the case X = R.%. We have shown that when limited arbitrage is satisfied the
economy E has a quasi-equilibrium consisting of a price p ' and an allocation z*. It remains to show
that the quasi-equilibrium is also a competitive equilibrium.

First note that if at the quasi-equilibrium {p* , z") every individual has a positive income, i.e. V7i
= I...H < p ' , 0 * > > 0, then by Lemma 3, Chapter 4 of Arrow and Hahn [3] the quasi-equilibrium
is also a competitive equilibrium. Furthermore, since the quasi equilibrium p* € S(E), then the set
S(E) ^ 0. To prove existence we consider two cases: first, the case where V/i, < q,v > > 0. In this
case, by the above remarks, (p',z*) is a competitive equilibrium.

The second case is when V<? £ S(E) 3 h € {I...H} s.t. < p",fl& > = 0, a case where the vectors
p* and Qj> must have some zero coordinates. The limited arbitrage condition in this case implies

3qm € S{E) : W», < f l " , i / » 0 f o r a l l t ; € i 4 ( p h , f i f c ) . (28)

Let x* = x\...x'H be the allocation in T supported by the vector g* defined in (28). Then by definition,
V/J, x'h >pk {1^ and q* supports x*.

Recall that any h minimizes costs at x\ because q* is a support. Now, (q',xm) can fail to be
a competitive equilibrium only when for some h < q*,x\ > = 0, for otherwise the cost minimizing
allocation is also utility maximizing in the budget set Bs(qm) = {w € X :< q"tw > = < q',Qh >}•
It remains therefore to prove existence when < q',x\ > = 0 for some h. Since by the definition of
S(£"), x" is individually rational, i.e. us{x\) > us{Qs), it follows that when < g",z£ > = 0, then
< q' ,Qs > = 0, because q' is a supporting price for xm. If V/», u*(x£) = 0 then x*h € dR+, and by the
rnonotonicity and quasi-concavity of u/», any vector y € B\{qm) must also satisfy un(y) — 0, so that
x\ maximizes utility in Bh(q'), which implies that (q',xm) is a competitive equilibrium. Therefore
(q',xm) is a competitive equilibrium unless for some /», u^(x\) ^ 0,. Assume then that (q',x*) is
not a competitive equilibrium. Then for some h, u*(r£) ^ 0, and therefore an indifference surface
of a positive commodity bundle of us intersects dX at x*h 6 dX. Let r be the ray in dX containing
x\. If w € r then < qm,w > = 0, because < <7*,r£ > = 0. Since u/,(r£) > 0, by the assumptions on
UH, all other indifference surfaces of us with higher utility intersect r, so that r C A(pr,x'h). Define
now the ray 5 = {v : 3w 6 r : v — {x\ - Qr) + w}. The ray a C dX\ s C A(ps,Qs) and Vv € 5
< q'tv > = < q',(x\ — &r) + u> > = 0. But this contradicts the choice of q' as a supporting price
satisfying (28) since

3h and y G A(ph, Qs) such that < g*, y > = 0. (29)

Since the contradiction arises from the assumption that (q*,x*) is not a competitive equilibrium,
(q*, x') must be a competitive equilibrium, and the proof of the theorem is complete.O
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