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1 Introduction

The purpose of this paper is to clarify certain issues related to the incidence

of heteroskadisticity in the General Linear Model (GLM); to provide sim-

pler and more accessible proofs for a number of propositions, and to allow

the results to stand under conditions considerably less stringent that
those hitherto available in the literature. A systematic treatment of

the heteroskedasticity problem in the context of the GLM is given in the

very interesting paper by White (1980) and the follow-up paepr by Nicholls

and Pagan (1983). White's context consists of stochastic regressors that are

uncorrelated with the error process, but no lagged dependent variables;
the context in Nicholl and Pagan consists only of lagged dependent vari-

ables, and the error process is assumed to be a martingale difference. If
the underlying difference equation is stable, their dependent variable is also

a martingale difference. Although this may appear to be a generalization

of White's result, in fact it is not, since the admission of "exogenous" (con-

temporaneous) regressors will destroy the martingale difference property of

the ?/-process.

In our paper the context is one of stochastic exogenous and lagged de-

pendent explanatory variables, and an error process as in White. Thus, our

context is a generalization of the White context, but it is at once more

* This is a preliminary draft. Not to be quoted without the author's permission. Com-
ments are solicited.
I would like to thank H. White for an interesting discussion on the subject of this paper.



general and more restrictive than the one in Nicholls and Pagan, in that ours

can accommodate lagged dependent and current exogenous variables, but

the error process is one of independent non-identically distributed random

variables, while in Nicholls and Pagan the error process is one of martingale

differences.

Although a number of the results presented therein had been available

in the statistics literature for some time past, e.g., Eicker (1963), (1967),

Rao (1970), (1973), White's paper is quite important in having introduced

them in the econometrics literature and having employed them in addressing

certain important problems arising in empirical applications. On the other

hand, the presentation is overly complex and constitutes a barrier to the

wider understanding and appreciation of the material contained therein.

2 Formulation of the Problem

Consider the GLM

yt = zt-Po + uu * = 1,2, . . . , T , (1)

or more compactly, y = X(30-\-u , where (30 is the true parameter vector, xt.

is an (n -f 1) -element row vector containing the explanatory variables, y , u

and X are the corresponding observation vectors and matrix, respectively,

etc. The problem is: (a) to establish the strong consistency of the OLS

estimator of (3 and (b) to establish the limiting distribution of the OLS

estimator of /?, when the error process is one of zero mean independent

random variables with

Cov(u) = E = diag(<jj, <r\,..., <rT), (2)

and (c) to produce a (strongly) consistent estimator of the covariance matrix

of the limiting distribution noted above.

Following White (1980), we assume

(A.I) The sequence {zt. = (xt.,nt) : t > 1} is one of independent (but not

necessarily identically distributed) random variables, such that

Mxx = lim ]=E(X'X), E(x'tut) = 0,
X—K3O 1



for all t,* and Mxx is a nonsingular matrix;

(A.2). the sequence {zt. = (xt.,ut) : t > 1} possesses fourth order mo-
ments obeying

E(\ztiztjztkztr\) <cta a£ [0,1).

3 Consistency and Asymptotic Normality of

OLS Estimators

3.1 Strong Consistency

Proposition 1. The OLS estimator of p0 of the GLM of the previous

section, under (A.I) and (A.2), obeys

^(X'xy'X'y, p^p0. (3)

Proof: By Corollary 3, Ch. 3 in Dhrymes (1989), it will suffice to show that

(X X/T) and (X u/T), converge to their respective limits a.c. (almost

certainly). This is so since (3 is a continuous functions of the entities above,

and the limit of the expectation of the matrix is nonsingular by assumption

(A.I). By the same result it will suffice to consider, for arbitrary conformable

7,

t=l

1 The assumption that E(xt.ut) = 0 , for all t, is not quite in character with the

GLM where, almost invariably, we are interested in E(yt\xt.) , as e.g., in forecasting.

The assumption above does not rule out the case E(ut \xt.) = h(xt.) ; when this is so,

we have E(yt \xt.) = Xt.flo + h(xt) . But this is not what we are interested in, nor is

it what is commonly forecast. Thus it would be more in character, if the assumption of

"uncorrelatedness" were framed as

E(ut\xt.) = 0,

Cov(utut' \xt.,xt>.) = of, if t — t

= 0, otherwise.

From a technical point of view, White's assumption makes the derivation of the limiting

distribution of the OLS estimator considerably simpler



By Proposition 22, Ch. 3 in Dhrymes (1989), (especially Remark 11) we

have that the Kolmogorov criterion reduces to

since 2 — a > 1. Hence, by Proposition 22, (X'X/T) ^ Mxx . An entirely

similar argument will show that (X u/T) ^ 0 .

q.e.d.

Corollary 1. If we strengthen the assumption (A.I) by requiring

E(\ztlztJztkztr\) <ctQ ae [0,-),

the result of the Proposition holds for sequences {zt. = (xt.,ut) : t > 1} ,

which are merely uncorrelated nonidentically distributed.

Proof: See Proposition 26, Ch. 3 in Dhrymes (1989).

3.2 Asymptotic Normality

To show the asymptotic normality of the estimator (3 we assume, in addition

to (A.I) and (A.2),

(A.3). For every real conformable vector, 7 , the sequence

{0 — Xt.^fUt '. t > 1} obeys

lim -J2 f _̂ (2dFt(() = 0,

for abritrary integer r , where Ft is the distribution function of (t.

(A.4). The matrix $ is positive definite (nonsingular), where

1 T

$ = lim — y^ E(u2
fxi xt.).

~"°° ± t = l

Remark 1. Our assumptions (A.I), (A.2) are considerably weaker than

the assumptions A.2 through A.4 in White, which involve, inter alia, the



uniform boundedness of E\e^xtiXtj\
1+6, i.e., the uniform boundedness of

(4 + 4:S)th moments.

Moreover, this (White's) assumption ensures that the sufficient condi-

tions for the Liapounov CLT hold, i.e., they imply the Liapounov conditions.

Our assumption (A.3) is also weaker than White's assumptions, since the

Liapounov conditions imply our assumption (A.3), but our assumption does

not imply the Liapounov conditions. Finally, our assumption A.4 is precisely

assumption A.3 (b) in White.

In view of the preceding we obtain

Propos i t ion 2. Consider the model in Eq. (1.1), together with assumptions

A.I through A.4. Then

- (30) - i iV(0,

Proof: We note that

By Proposition 26, Corollary 6 in Ch. 4, Dhrymes (1989)

VT0 - ft) ~ M~X

where (X'u/y/f) - i £. By Proposition 34 in Ch. 4, Dhrymes (1989)

X'u d ^ ., , j X u d /
£, 11 and only it —j= > 7 <f,

y/T

where 7 is an arbitrary (real) conformable vector. By assumption (A.3)

the sequence {(t = xt.^ut : t > 1} obeys the Lindeberg condition; conse-

quently, by Proposition 45 in Ch. 4, Dhrymes (1989)

Thus, we conclude y/T0 - f3o) ~ i\T(O, M~^M^).

q.e.d.

The next problem is to produce (at least) a consistent estimator of for $ .



4 Convergence of the Covariance

Estimator

The proposed estimator for $ is

1 T

where ut = yt - xt.fi = ut - xt.(fi - fio). Thus,

ŵ  = ut — 2xt\fi — fio)ut + (p ~ Po) \xt-xt-)\fi ~ fio) = ut ~~ 2</> î -f (j>tT2-> (6)

and, in the obvious notation, $ = $! — 2$2 + $3 . We have,

Proposition 3. Under assumptions A.I through A.4, and in addition,2

(A.5) Var[(zt.7)2ut
2] < cf\ t > 1, for a G [0,1),

1 T

\xt. *A lim - J] £(u2 .̂a;t.).
l i 1 T

$ = >

Proof: We note that

< T[(fi-fi0) (fi-fio)]

and by Propositions 1, 2, we conclude that the right member above converges

a.c. to the zero matrix. We further note that
' \ (1/2)

The proof of the proposition will be concluded if we show that <!>! converges

a.c. to its limit, $ . But this is ensured, in view of assumption (A.5), by

Kolmogorov's criterion as cited above.

q.e.d.

This concludes the derivation of results in White (1980), under assumptions

equal to or less stringent than those employed by that author.
2 The corresponding assumption in White is that E\(xt.j)

2u^\1+i is uniformly
bounded. In our case we require the existence of the second moment but allow the
latter to grow at the rate ta , so that we have basically similar kinds of restrictive as-
sumptions. Which set one chooses to work with is a matter of taste. In this paper one can
take White's assumptions and prove the same result by relying on a certain SLLN, see for
example Chung (1968), Corollary (ii.) p. 119, as also cited by White.

6



5 Extension to Dynamic Models

In this section we reexamine the model in Eq. (1.1) with two important

changes: first, among the explanatory variables we take yt-\ , and second,

we adopt the framework of footnote 1. Thus, the model is

Vt = Zt-Po + 2/t-iAo + «t, t = 1,2. . . ,T, (7)

so that it is the same model as in Eq. (1.1), except that it is dynamic.

Since here we need greater detail in our exposition we adopt a more formal

framework. Let ( fi , A, V ) be the probability space and let zt. = (#*., yt-i)-

Assumptions made in previous sections on the vector xt. , remain in effect,

except as modified. Moreover, put

Ct = cr(xs. :s<t), Vt = a(us :s<t), t > 1, Co = ( 0 , ft), Vo = ( 0 , 0 ) .

define

At = <T(Ct+iUVt), t>l, Ao = a[C1UVo], (8)

and note that AQ C A\ C A^ • • • •

In this segment of the paper we have the following framework:

(B.I) The sequence {(xt.,Ui) : t > 1} is one of independent (but not neces-

sarily identically distributed) random variables, such that

Mxx = lim ^E(X'X), E{ut\Ct) = 0, E{u]\Ct) = CJ\,

for all t, where Mxx is a well defined nonsingular (positive definite)

matrix;

(B.2) the sequence {xt. : t > 1} possesses fourth order moments obeying

E(\xtixtjxtkxtr\) <cta a e [0,1);

(B.3) the sequence {u] : t > 1} is uniformly integrable;

(B.4) E[{v?t - a]fv\\ <cf, a e [0, | ) , v, = Ej=S Ifa-i-i ;

(B.5) the matrix $ is positive definite (nonsingular), where

1 T

2tE(izt-)' a n d A O G ( - 1



To investigate the problem and at the same time maintain maximal corre-

spondence between the argument here and that in the earlier part of the pa-

per, we adopt the notation yt = zt.90-\-ut , where, evidently, zt. = (xt-iVt-i) •>

5.1 Consistency

Proposition 4. The OLS estimator of 0o of the GLM of the previous

section, under (B.I) and (B.2), obeys

= (ZZ)~1Zy, 0 (9)

where Z = (X, y-\) •

Proof: By the reasons given in the proof of Proposition 1, it will suffice to

show that (Z Z/T) and (Z u/T), converge to their respective limits a.c. .

Since
1 1-Z Z = -
T T

XX

we need only be concerned about X y_\ and y_1y_i , in view of Proposition

1. Define the matrix

1

A

A2

0
1

A

0
0

1

. . . 0

. . . 0

. . . 0D

XT-1 AT-2 AT-3

and note that, solving the difference equation of the model we have

y = (10)

Since

1 , ^
Ty y ~ - A 0 ) 2 T ^

etc., the existence of the least squares estimator is proved, i.e.

4^ l im^f3)>0;
T T—KX> ±



as for its convergence a.c. we note that proving

<^ rprp rp < rp

is exactly the same problem dealt with in Proposition 1, except for the term

v u/T, which has mean zero. Since

v u

is a sequence of zero mean uncorrelated random variables whose variance is

certainly bounded by (B.4), it follows that ip? converges a.c. to zero, and

the strong consistency of the least squares estimator is proved.

q.e.d.

5.2 Asymptotic Normality

We note that
1 T

y/T t=1

and it will suffice to show that, for arbitrary (confomrable) vector 7 the

sequence

%T = ZX*T, (tT = —7=Zt."1Ut, (12)

converges in distribution. We have

Propostion 5. Under assumptions (B.I) through (B.4),

Vf(0 - eo).

Proof: By the discussion just above, it will suffice to show that the sequence

Zf converges in distribution. We note that At, or modified to take account

of division by \JT as Atr , ^ < T, T > 1 is a stochastic basis, i.e. Atr C

>At+i,T C At+i,r+i •> etc. Moreover, ((t,At) is a martingale difference

stochastic sequence, since

E{\Ct\)< 00, and E((t\At-i) = 0.



Moreover, the sequence Zy satisfies a Lindeberg condition, as follows.

Let, for arbitrary integer r ,

AT = {u • |Ctrl > - } , BtT = {OJ : \ut\ > },
r ar

/ / / v l / 2

J
and note that Atx C Btx , CXT ~^ 0 by Propositions 1 and 4. Letting I (A)

denote the indicator function of the set A, we have

t=i

2 2 I ] (13)rp / j \ C'

The convergence a.c. to zero is valid by (B.3) and Proposition 4. Next we

observe that

consequently, by Proposition 21 (i.) in Ch. 5, Dhrymes (1989) we conclude

ZT ^ N(0,7'$7), and Vf(0 - 6o) ~ 7V(0, M~^M~^).

q.e.d.

5.3 Convergence of the Covariance

Estimator in the Dynamic Model

This is by far the most complex issue in the extension. Since we have already

shown that (Z u/T) -1> 0, the arguments given in Proposition 3 apply to

the three components of the estimator

1 T

rr~\ ^ _j t Z' ^' -*- Z • O5 \ /
1 t-\

10



the three components above corresponding to the three components of u2 in

the equation below,

u] = u\ - 2zt.(9 - eo)ut + (§- 0o)'{zt.zt.)(§ - 0o) = u2 - 2<f>tT1 + <j>tT2. ( 15 )

By an argument identical to the one we made in the previous section, $ 3
A, A.

converges a.c. to zero and $2 converges a.c. to zero if $1 converges. Thus,

the (strong) consistency of the estimator of the covariance matrix in Eq. (14)

will be proved, if we prove that $1 converges a.c. to its limit.

Proposition 5. Under assumptions (B.I) through (B.5),

1 T 1 T

<P = "— > u+z+ zf. —> l i m —

Proof: We first recall that zt. = zt. + (0,^) •> a n d consequently,

u2
tz'tzt- = u2

tzt.zt. + u?4(°> vt) + «?(0, vt)'zt. + f 2 j u\.

The first term evidently converges to its limit, by the arguments of Proposi-

tion 3; since the mean of the second and third terms is zero these terms will

converge to zero a.c, if the last term is shown to converge a.c. To do so, note

that we are dealing only with the scalar sequence

T T t-2

t=2 t-2 j=0

and that ST — E{ST) is a sequence of zero mean dependent variables.
Unfortunately, there is no general theorem to which we can appeal for its

a.c. convergence; thus, we resort to first principles. Write

ST - y \v2(u2
t - a2) + a2Av2 - (3(t - 2)1 + a2(3(t - 2)1 = ST

1] + 4 2 ) + 4 3 ) .
t=2

Since 5^ is a sum of zero mean uncorrelated random variables, by (B.3)

and Proposition 26, in Chapter 3 Dhrymes (1989), (S^/T) ^ 0. Next note

that, it being understood that ii-s = 0, for 3 > 0,

oo / T \ , / T

j=0 \t=j+2 ) 3'<3 \t=j+2

11



In both terms we are dealing with sums of uncorrelated random variables;

thus, the sums over the index t, when divided by T, converge a.c. to

zero. Since the sums over j and/or j converge absolutely by (B.5), it

follows again by (B.4) and Proposition 26, in Chapter 3 Dhrymes (1989)

that (SW/T)^0. Hence,

which shows that <t ^ $ .

q.e.d.

Remark 2. The results herein may be easily extended to the case where the

model errors are a stable autoregressive process, in the following sense. If the

model is transformed so that it contains exogenous, lagged exogenous, and

lagged dependent explanatory variables, the error process would be one of in-

dependent nonidentically distributed random variables, and hence amenable

to the analysis of this section. If the model initially contains lagged depen-

dent variables, the same remark would apply if one is not interested in

identifying the autoregressive parameters in the error process. If

one is, nonlinear methods would have to be employed and, while one might

conjecture that the same results would hold, the problem is not so transpar-

ent ab initio.

If all one is willing to specify is that the error process is a martin-

gale difference, i.e., if all one is willing to specify is that E\ut\ < oo and

E(ut\At-i) = 0, one is forced to rely only on martingale convergence

theorems, as in Nicholls and Pagan. The results one obtains, however, limit

the nature of the explanatory variables one may employ. In Nicholls and

Pagan, one has a stable AR model with martingale difference errors. This

immediately implies that the dependent variable process is also a martingale

difference. This simplifies the problem a great deal, but would not admit

exogenous variables unless they were also specified to be a zero mean

martingale difference process. If one did that one would have no diffi-

culty in extending the Nicholls and Pagan results to the case where there are

exogenous variables, lagged as well as contemporaneous. It would appear,

12



however, that such a model would not be very useful in empirical applica-

tions. At least the Nicholls and Pagan result provides an interesting twist to

the VAR model, although it is quite contrary to the stochastic orientation

embodied in the latter.
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