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Abstract

An economy faces an unknown individual risk, such as the health effects of
a recently discovered environmental hazard. Opinions may be widely different
about the distribution of risks across the population. We study financial mar-
kets that suffice to reach efficient allocations in this situation. The problem
is formalized in a general equilibrium economy with incomplete markets for
individual and collective uncertainty. We show that ignorance of the probabil-
ities describing individual risk leads to collective risk. Introducing an array of
mutual insurance policies and of Arrow securities is shown to lead to Arrow -
Debreu competitive allocations. By combining insurance contracts for individ-
ual risks and securities markets for collective risks, the proposed institutional
framework economizes significantly on the number of markets required for effi-
ciency. The computational complexity of a market equilibrium is reduced from
an NP - complete (i.e. intractable) problem to one which depends polynomially
on the number of households.
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1 Introduction
Consider an economy in which each household faces an individual risk with an un-
known probability. Such risks derive, for example, from the effects on health of ozone
depletion, of acid rain, or of air pollution. The risks might be not just unknown
but also unknowable, in the sense that we cannot reasonably imagine repetition of
the harmful events a sufficient number of times to permit estimation of probabilities.
Clearly this is the case with ozone depletion or global warming, which are events that
will only happen once if at all. In such cases, opinions may differ widely about the
magnitudes of the risks to which individuals are exposed. What market structure
would suffice to assure efficient allocations in this situation?

This question is formalized in a general equilibrium model. Each household faces
the risk of being in one of S states (e.g. healthy or sick). It has different endowments
in each state. The risks are unknown, in the sense that no-one knows the true
distribution of affected individuals in the population. A probability distribution is
assigned to each possible frequency distribution over the population. This distribution
over distributions may be different from individual to individual

We have therefore two levels of uncertainty. The first level of uncertainty is collec-
tive: what is the distribution of affected individuals in the economy. The second level
of uncertainty is individual: it is uncertainty about whether a given household is sick
or not. Consider as illustrations the impact of depletion of the ozone layer on skin
cancer, or of acid rain and air pollution on respiratory diseases. There are widely
differing opinions about these impacts, on which there is inadequate information.
In some cases, the inherent uniqueness of the events concerned makes it impossible
to develop a statistical basis for risk assessment. Then the two types or levels of
uncertainty are, firstly, uncertainty about the true impact of ozone depletion, acid
rain or air pollution on individual disease (and therefore about the incidence in the
population as a whole), and, secondly, uncertainty about whether any given person
will develop a disease. It is this ignorance of the basic scientific processes (e.g., the
relation between ozone depletion and skin cancer) that causes the collective risk, i.e.,
uncertainty about the distribution of affected individuals in the population.

We know of course that a complete set of state-contingent commodity markets
would lead to a Pareto efficient allocation. However, this approach may be imprac-
ticable as the number of markets needed with individual risks is shown below to rise
exponentially with the number of agents in the economy. This is because contin-
gent commodity markets are a very cumbersome way of dealing with individual risks:
they require decisions over an exhaustive enumeration of all possible combinations of
individuals and states over the population. We propose an alternative institutional
framework which uses only two types of instruments, and which economizes signifi-
cantly on the number of markets needed. One is a mutual insurance contract to deal
with the individual risk contingent on each possible distribution of harmful effects in
the population. Secondly, we need Arrow securities to deal with the collective risk



induced by ignorance, i.e. the uncertainty about .the overall distribution of adverse
effects in the economy. One Arrow security is needed for each possible distribution
in the population, because to attain Pareto efficiency each possible distribution must
be treated as a separate (collective) state. Depending on the state of knowledge,
these may be limited to a relatively small number of distributions, each described,
for example, by an approximate percentage of affected individuals.

In informal terms, our approach can be described as follows. We group together all
states of the economy which are statistically identical in the sense that the distribution
of agents by individual state (sick, healthy, etc.) is the same in each. We call the
resulting statistical descriptions of the economy statistical states. These describe
precisely the aggregate statistical characteristics of the economy, but leave open the
status of any given individual. We assume that every distribution of risk across
the population having the same statistical description is equally probable. We then
show in Theorem 1 that Arrow-Debreu equilibrium allocations can be supported as
follows. Households buy Arrow securities each of which pays in a specific statistical
state. For each statistical state, the quantity of Arrow securities purchased pays
an amount equal to the expected difference between the value of consumption at
the equilibrium allocation to be supported, and the value of endowments at that
equilibrium. The expectation is conditional on being in the specified statistical state.
So the Arrow securities purchased assure that on average over all possible individual
states in each statistical state, households' budgets balance. Of course, this still leaves
the possibility that in any particular individual state there is a shortfall or excess of
income over expenditure. The role of mutual insurance contracts is then to guarantee
to make good the shortfalls, in exchange for the excesses as premia. The paper
proves that such an intuitively clear procedure can be made to work consistently,
at Arrow-Debreu allocations. We show that markets for Arrow securities clear, and
that insurance contracts of this type are actuarially fair. Theorem 2 then shows that
the problem of reaching an efficient allocation of resources with complete Arrow-
Debreu contingent commodity markets is intractable with respect to the number of
agents in the economy, whereas with the proposed alternative structure this problem
is tractable. A novel theoretical insight into the structure of Arrow-Debreu equilibria
is provided by Propositions 1 and 2. These show that in large economies there are
equilibrium prices which depend only on statistical properties of the economy. These
propositions establish that under certain conditions, equilibrium prices are the same
for all statistically identical realizations of the states of individuals in the economy.
Propositions 1 and 2 are used in establishing Theorem 1.

There are two features of the results which are of general interest. One is the
development of a framework for achieving efficient allocations in the face of individ-
ual risks whose probabilities are unknown. Given rapid changes in technology with
potentially far-reaching environmental impacts and health effects, the problem of pro-
viding insurance against unknown risks is particularly important (Heal [12]). It is a
matter of very active concern in the insurance industry.



The second interesting feature is the way a combination of securities markets
and insurance markets can be used to simplify the institutional structure needed for
dealing with unknown individual risks. The point here is that unknown individual
risks can be resolved into a collective and an individual component. The collective
component refers to the distribution of certain conditions in the population as a whole,
and the individual component, to the probability of a particular person being affected.
Securities markets are used to insure against the collective component, and insurance
contracts are used for the individual components. This is illustrated in Figure 1.
Typically securities markets have not been seen as appropriate for handling individual
risks, and indeed the use of securities markets and insurance markets together has
not previously been studied (except for Cass, Chichilnisky and Wu [3]). Given the
current interest in the insurance industry about its relationship with the securities
industry, a model of value-added interaction between the two is very timely.

The present paper draws on recent findings of Chichilnisky and Wu [4] and Cass,
Chichilnisky and Wu [3], both of which study resource allocation with individual
risks. Both of these papers develop further Malinvaud's [13] [14] original formulation
of general equilibrium with individual risks, and Arrow's [1] formulation of the role of
securities in the optimal allocation of risk-bearing. Our results are valid for large but
finite economies with several types of agents who face unknown risks and who have
diverse opinions about these risks: in contrast, Malinvaud's results are asymptotic,
valid for a limiting economy with an infinite population, and deal with identical
individuals with a known and identical distribution for each. Our results use the
formulation of incomplete asset markets for individual risks used to study default in
Chichilnisky and Wu [4], Section 5.c. The risks considered here are unknown and
possibly unknowable, and each individual has potentially a different opinion about
these risks, while Chichilnisky and Wu [4] and Cass, Chichilnisky and Wu [3] assume
that all risk is known. [3] also assumes a neat separation between individual and
collective risks, so that collective risks are always resolved before individual risks.
There is no interaction between the two types of risk. Our formulation here does not
assume such separation: it does however reduce collective risk to distributions over
proportions of people in each state, i.e., distributions over degenerate distributions.
In addition, we prove here that Arrow-Debreu competitive equilibrium allocations
can always be obtained by introducing an array of mutual insurance contracts and
Arrow securities in an incomplete asset market, while Cass, Chichilnisky and Wu [3]
focus instead on the assets required to decentralize the Pareto efficient allocations of
an economy akin to Malinvaud's [14] market organization type B.

2 Markets for unknown individual risks.

Uncertainty is represented by random variables which describe nature's- moves. Each
realization of a random variable is a state. Collective states are realizations of ran-
dom variables that affect simultaneously all individuals in the economy, such as the



Two alternative proportions A & B
of affected individuals in the
population, i.e., two collective states A & B.

Collective risk:
Arrow security

B

Individual
risk:

Mutual
Insurance

Individual
risk:

Mutual
Insurance

Two possible individual states S and H for each agent,
contingent on the collective state.

Figure 1: the realtionship between individual and collective states, and the use of
securities and mutual insurance contracts.



weather. Individual states are realizations of a random variable that affects one in-
dividual in the economy, such as their health. We assume here that households'
endowments depend on their individual states (healthy or sick) only, implying that
individuals face individual risk.

The markets required to obtain Pareto efficient allocations are very different de-
pending on whether there is collective or individual risk. Insurance is the asset of
choice for allocation of risk-bearing in a large economy with individual risk (see Arrow
and Lind [2], Malinvaud [13] [14], Chichilnisky and Wu [4] and Cass, Chichilnisky and
Wu [3]) while contingent contracts (Debreu [7]) or securities (Arrow [1]) are the assets
used for the same purpose in economies with collective risk. This paper formalizes
the relationship between these two different types of risks, and the assets for dealing
with unknown individual risks.

Standard definitions of individual risk [13] require that as populations increase, the
proportion of people in each state (e.g. sick or healthy) converges to a fixed number
about which there is no uncertainty. This is the law of large numbers. Working in
the limit and assuming known risks ensures that the statistical state is known in his
model, and this is a crucial element in his analysis.

Instead our economy is large but finite, and here no-one knows for sure the true
distribution of risks in the population, i.e., the true statistical state. Furthermore
different individuals may have different opinions about the matter. In this situation,
mutual insurance contracts could be sold at premia contingent on the realization of the
statistical state. However, even if all households purchase such insurance against their
unfavorable states, they still face a remaining uncertainty about the true probability
distribution that governs their contracts, and therefore about the premium they must
pay and the payments which they will receive. They could use such contracts to
insure their individual risks conditional on the statistical state of the economy, and
so still face uncertainty about the statistical state. For each household, this latter
uncertainty is uncertainty about economic variables such as prices, a subject central
to the analysis of Chichilnisky and Wu [4], Chichilnisky, Dutta and Heal [5] and
Chichilnisky, Heal, Streufert and Swinkels [6]. The uncertainty derived from ignorance
is collective rather than individual: it refers to distributions of people across states
in the whole economy, and it affects everyone. It is therefore amenable to Arrow's [1]
or Debreu's [7] treatment of markets for efficient allocation of risk-bearing.

In practical terms, this means that when individual risks are unknown, the econ-
omy has collective as well as individual risks. We construct a market organization
which economizes on the number of assets required to hedge against all risk, con-
sisting of mutual insurance markets to deal with the individual risks, and of Arrow
securities to deal with the collective risk induced by ignorance. We show that this
leads to Arrow-Debreu equilibrium allocations, and thus to Pareto efficiency.

In principle, efficiency requires as many contingent markets as the number of all
collective states cr, namely the number of lists of all possible individuals in all possible
states. Each such list is called a collective state. With H individuals in total, made



up of Hi of each of H types, and S individual states this number is SH, a number
which increases exponentially with the number of people in the economy. Having
NSH contingent markets, one for each good and for each state a, leads to an Arrow-
Debreu model when households act competitively, and to Pareto efficient allocations
when markets clear. However, we shall show that under our assumptions, there is
a large amount of duplication of contingent markets or securities. This duplication
can be avoided by considering, rather than the 5 ^ collective states a 6 f2, statistical
states r which represent the proportions of people of different types who are in different
states. This is an anonymous representation of collective states, which provides the
same economic information without revealing the actual identities of the individuals.
There are A = f]t y'sfi'j statistical states, and S individual states. We show
that under the assumptions made on probabilities and utilities, an array of I mutual
insurance contracts, one for each type i, and one Arrow security for each statistical
state r 6 i ? , will suffice to reach efficient allocations. This economizes substantially
on markets: it decreases the number of markets needed from NSH to N + IA + A.
This is the subject of Theorem 1.

For example, with N goods, 100 individuals of two types, half of each type, and
2 individual states, the number of Arrow-Debreu markets needed to achieve Pareto
efficiency is N2H = N2100, or N spot markets and 2100 Arrow securities markets with
perfect price foresight. Theorems 1 and 2 show that in this example, it suffices to
have N spot markets, plus 2 mutual insurance contracts, and 2809 Arrow securities.
Theorem 2 quantifies this reduction, showing that the computational complexity of
checking for an equilibrium rises exponentially with the number of agents in the
Arrow-Debreu framework, i.e. it is an intractable problem, while in our framework
the same complexity is polynomial so that the problem is tractable. This saving in
the number of markets can be achieved because at every collective state cr leading to
a given statistical state r, i.e. r (cr) = r, the total endowments of the economy are
the same, and there is the same number of individuals of each type in each state,
each with the same endowments and utilities. To prove that efficient allocations can
be achieved with this reduced number of markets, we use crucially the assumption
that endowments depend solely on individual states, and that utilities depend solely
on consumption at a combination of statistical states and individual states. We also
use the fact that every household h of type i has the same probability distribution n*
over collective states, and that all these probability distributions satisfy an anonymity
requirement, defined in Section 3.

3 An Economy with Individual and Collective Risks

The distinction between collective and individual risk is by no means always as clear
cut as may appear from the names. In extreme cases it is simple. One extreme case
is the case of individual risks that are identically and independently distributed: here
collective risk is determined from individual risk and individual risk is the basic risk.



Another extreme case is that of fully correlated risks, as normally considered in the
Arrow-Debreu model. Purely individual or purely collective risks are extreme cases
which help to organize our thinking, just as are pure private goods and pure public
goods in another field. In general we can think of IID individual risks (as considered
in Malinvaud [13]) as one polar case in a continuum that ranges to the other extreme
of fully correlated risks. Cass, Chichilnisky and Wu [3] consider a different case, as
explained above. Uncertainty about the nature of individual risk, which may take
several values, is one cause of collective risk. It is this case that we model here.

Consider an exchange economy with .V consumption goods. There are H house-
holds, divided into types indexed by 2 = 1,..., / and Hi households of type i, so that
H — Y*i H{. Each household faces the same set of S individual states, indexed by
s = 1,..., S. All households of type i have the same utilities and endowments: the lat-
ter depends solely on the household's individual state s, representing individual risk.
Let Zjhtr denote the quantity of good j consumed by household h in collective state cr :
z/u, is an N dimensional vector Zjho.j — 1,..., N and Zh. an NSH dimensional vector
zhai & € H. All consumption vectors are assumed to be non - negative. We now define
the set of collective states, Q = {a : a = a function from {1,..., H} into {1,.. . , 5}}. H
consists of all possible lists of the H individuals' states; it has SH elements. Let
s (h, <T) be the state of individual h in the collective state a. Let r,-, (cr) be the propor-
tion of all households h of type i for whom s (h, a) = s. Then £ , J2s ri* (°") — I- L e t

n (a) = r,i (cr),..., ris (cr) be the distribution of households of type i among individ-
ual states within the collective state cr, and let rs be the proportion of all individuals
in state s. Similarly let r(<j) be the proportion of households of each type in each
individual state, r (cr) = rx (cr),..., ri(a). Let R be the set of vectors r(a) when cr
runs over ft; r — r (cr) £ R is a statistical state. It is called a statistical state because
it is defined only by the total number of individuals in each state for each type, and
does not contain any information about the identities of the individuals themselves.
R is contained in 5 7 , the product of / 5-dimensional simplices, and has Yii ( ' s ^ - i ;
elements.

We assume that collective uncertainty is about statistics. This means that each
possible distribution of risks in the population as a whole, gives measure one to the
set of all states leading to a particular statistical state. When interpreted as a dis-
tribution over statistical states, such a distribution gives measure one to a particular
statistical state, i.e., to a particular set of proportions r (<r) of affected individuals in
the population. It is a point distribution over the set R of statistical states, identi-
fying a particular statistical state. This has the following important implication: an
individuals' probability distribution over possible distributions of risks in the pop-
ulation as a whole, is in fact a distribution over statistical states. This is because
each possible distribution of risks over the population is a statistical state. Figures
2 and 3 illustrate the relationship between collective and statistical states, and the
concentration of the supports on single statistical states.

This is an assumption of convenience only, avoiding the mechanical complexity



Collective states'

t
Statistical state, r.

Figure 2: many collective states give rise to the same distribution of affected
individuals, i.e., to the same statistical state r.

-r: the measure is concentrated at one
statistical state in the product of I
S-dimensional simplices.

Figure 3: possible distributions over statistical states are point distributions.



of dealing with infinite economies. An alternative way of avoiding such complexities
is given in Cass, Chichilnisky and Wu [3], who consider the case of known risks. In
their analysis there is no ignorance of the underlying process. Their collective risk is
given by a distribution not necessarily supported on one proportion. They assume the
process generating the individual states to be such that n^ r = r,-,, and justify this by
reference to a model where "nature (or in the older tradition God) draws randomly
twice: First to determine how many balls to take out of the urn, and then second,
to determine which specific balls are actually withdrawn." This approach requires a
two-stage realization of the underlying random process, with stage one revealing the
statistical state and then stage two revealing each agent's state. Our approach here
allows more general models of uncertainty in which risks are unknown.

We define next probability distributions 11* on the set of all collective states, one
for each type of household, i = 1,...,/ : 11* is type z's probability distribution over
the set of collective states Q, and 11̂  denotes the probability of state cr. Types are
therefore characterized by both probability distributions over collective states and by
the endowments that they have in different individual states.The statements made
about II1 from now on, are valid for all i.

The following anonymity assumption is required:

This means that two distributions which have the same statistical characteristics are
equally likely. Then IT̂  defines a probability distribution II* on the space of statistical
states R\ r,-,, as above, gives the proportions in r of households h of type i which are
in individual state s. IIJ, can be interpreted, as remarked above, as z's distribution
over possible distributions of affects in the population as a whole. Malinvaud [14]
p. 387, para. 1 notes that the probability that a statistical state r obtains and that
simultaneously, for a given household h of type i, a particular state s also obtains is

n;r = n;rtJ with £ i r s r = n; (i)

The probability U\ that, for a given h of type i, a particular individual state 5
obtains is therefore given by

4 The Behavior of Households

Let e\a be the endowment of a household of type i when the collective state is cr and
the individual state is s. Since all households h of type i have the same endowment
in the individual state s, we can write their endowment t\a — e%

s in any collective
state cr with s(h,cr) = .s. Let zl

h be the NSH dimensional vector indicating the



consumption of all goods across collective states of household h of type i. Similarly,
let zx

ha indicate the components of this vector within a given collective state v 6 Q.
Type i individuals are assumed to have the same probabilities 11^ for each <r, and the
same von Neumann-Morgenstern utility:

w (*•) =

where as defined above s(/i,cr) is the individual state s of household h within the
collective state cr. This definition of W* (zl

h) indicates that household h of type i has
preferences on consumption which may be represented by a "state separated" utility
function W% defined from S elementary utility functions U\. Note that in state cr,
U\ — U\{hay The functions U\ are assumed to be C2, strictly increasing, strictly

quasiconcave, and the closure of the indifference surfaces {Ul
s}~ (x) C int (RN+J for

all x € R*- The probabilities 11̂  are in principle different over household types i.
We shall assume like Malinvaud [13] that preferences are separable over statistical

states. This means that the utility of household h depends on a only through the
statistical state r (cr). If we assume further that in state a household h takes into
account only what happens to it, i.e. s(/i,cr), and what frequency distribution r(a)
happens to appear, but nothing else, then the consumption plan can be expressed as
ZCT — V\(K,a) (r(*T))i which in the following is also denoted y*r. The summation with
respect to collective states a can now be made first within each statistical state. To
a particular statistical state r and individual state s for which there is a non - zero
incidence of individuals in individual state s, i.e. rs ^ 0, there correspond a num-
ber of collective states a leading to r (a) = r and s (/i, a) = 5, hence to the same
Ui(hcT) (zha) ~ U* (Vsr) • All individuals of type i have the same probability distribu-
tion over statistical states IPP and thus the same joint and conditional probability
distributions II,,. and IP3/,r for all s,r (though individuals of different types may have
different probabilities). Hence for the household h of type t, W% may also be written
as

w (4) = w (y;r) = £r€BH n; £f=, n,u\ (y;r)
= E« n;ni/rtf •• (y;,) = £ „ nj,tf (£) {}

which expresses the utility of a household in terms of its consumption at individual
state s within a statistical state r. This expression is important in the following
results, because it allows us to represent the utility of consumption across collective
states cr as a function of statistical states r and individual states s only. This underlies
the proof that it suffices to cover individuals against their individual risks 5, and
statistical risks r.



5 Efficient allocations

Let p* be a competitive equilibrium price vector of the Arrow-Debreu economy E
with markets contingent on all collective states (defined below) and let z* be the
associated allocation. We will as usual say that z* is Pareto efficient if it is impossible
to find an alternative feasible allocation which is preferred by at least one agent
and to which no agent prefers z". Let p* and z* be the components of p* and z*
respectively which refer to goods contingent on state <r. Proposition 1 considers
the case when households agree on the probability distribution over collective states,
denoted IT. It follows that they agree on the distribution over statistical states.
It shows that in this case, the competitive equilibrium prices p* and allocations z*
are the same across all collective states a leading to the same statistical state r.1

Define now an Arrow-Debreu economy denoted E, where markets exists contingent
on an exhaustive description of all states in the economy, i.e. for all collective states
(7 6 0 . We therefore have NSH contingent markets. An Arrow-Debreu equilibrium is
a price vector p* = (po) ,pa £ RN+cr £ f2,and an allocation z* consisting of vectors
zh = (zh<r) » zh<r £ RN+, <7 £ Q, /i = 1,.., i / such that for all h, z\ maximizes

Y. uh(zi,) (3)

subject to a budget constraint
p(:m

h-eh)=0 (4)

and all markets clear:

E ) = 0 (5)

Proposition 1 Consider an Arrow-Debreu equilibrium of the economy E, p* = (pi),
z* — (z*), a £ ft. Assume that all households have the same probability distribution
over statistical states, i.e., for all i.j, 11^= IT£ = FT*. Then for every state a leading
to a given statistical state r, i.e., r (a) = r, equilibrium prices and consumption allo-
cations are the same, i.e., there exists a price vectorp* and an allocation z* such that
p*a = p* and z* = z*, where p* £ RN+ and z* £ RNI depend solely on r. Furthermore,
any two households h and k of the same type i have the same equilibrium consumption
vectors, i.e., z*hT - z\T = z1*.

Proof. Consider a\ and <72 with r(ax) = r (o-2) = r. Note that the total endow-
ments of the economy are the same in <7X and 0*2, both equal to sr = YiiHiTise\'
Also, by the anonymity assumption. 11^,= 11^ = II r, where Il r is the probability of
any social state in the statistical state r. We now show that for every household h,
z\ax = z^a^ due to the Pareto efficiency of Arrow-Debreu equilibria. Assume not.

1 Related propositions were established by Malinvaud in an economy where all agents are identical,
and risks are known.
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Let ftr = {a : r(cr) = a}. Let z" = (2^) , and assume there are <T\ and 02 € Hr such
that 2 <̂Ti ^ z^ for some A. Define EZKT = H^efir z£<rllf • This is the expected value
of {z^a) given that the economy is in the statistical state r. Now

so that Ezha is a feasible consumption vector for each h in the aggregate collective
state r. Next we show that by strict concavity, moving for each h and each a from
z\a (which depends on a) to Ezkr (which is the same for all a € 0) , is a strict Pareto
improvement. This is because

Hence by strict concavity of preferences,

/ TT \
-2^Ur2^U \EZhv)

<r€fir

Since ^z^s is Pareto superior to z* with z*h(Tx ^ z*ha^ such a 2* cannot be an equi-
librium allocation. Hence z*hax = z%a7 = z^r for all h = 1,...,//". Note that this
implies that in an equilibrium, household h consumes the same allocation z\r across
all individual states 5, i.e. it achieves full insurance. Since p* supports the equilib-
rium allocation zm, and z"h(Jx = z"h(J7 it follows that p^ = p<,2 when r(<7i) = r(<72),
because utilities are assumed to be C2 and, in particular, to have a unique gradient
at each point which, by optimality, must be collinear both with p*ax and with p*2,
i.e. pm

ai = p*7 = p*. This implies that at an equilibrium, household h of type i faces
the same prices p* at any a with r (a) = r. Since all household h of type i have the
same strictly concave utilities (2), and they face the same prices p* at each a with
r (<j) = r, they will choose the same fully insured consumption bundle z%* — zx* for
all a with r (a) = r. 0 2

We now consider the general case, which allows for II1 ^ IP if i ^ j . Proposition 1
no longer holds, and the households of the Arrow-Debreu economy E may not achieve
full insurance at an equilibrium. However, we show that if the economy is regular and
if there are two individual states, there is always one equilibrium at which prices are
the same at all collective states leading to the same statistical state.

Definition: An economy E is regular if at all equilibrium prices in E the Jacobian
matrix of first partial derivatives of its excess demand function has full rank [9].
Regularity is a generic property [8] [9].

2Note that in the proof of Proposition 1 we did not use the assumption that agents' probability
distributions give measure one to the set of collective states leading a a particular statistical state.
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Proposition 2 An Arrow-Debreu equilibrium allocation of the economy E (pm,zm) is
not fully insured ifUh^ U.k for some households h, k with Uh ^ Uk in 2. In particular,
household h has a different equilibrium allocation across collective states o~\and cr2 with
r (o~\) = r (a2). When E is a regular economy and there are two individual states, one
of the equilibrium prices pm must satisfy p*x = p*2 for all G\G2 with r (<7i) = r (<72).

Proof. Suppose in contradiction that household h of type i is in fact fully insured
so that z^ax — z"hori for all a1 and cr2 with r (<7i) = r ((j2). Household /i's consumption
levels are y\xT and y^ r where S\ = $(h,O\) and s2 = s(h,cr2). By assumption we
have y\xT — yl

Sjr . Now from 2 household /i's marginal rate of substitution between
n*

consumption in states G\ and a2 is n'
l'r • Suppose also that household k of type
»2/r

j ^ i is fully insured. Then by the same argument fc's marginal rate of substitution

between consumption in states o~\ and cr2 is
 M 'r. But if different types have different

probability distributions this is a contradiction as both face the same price vector.
Assume now that E is regular, and that 5 = 2. Consider two collective states a\

and cr2 with r{v\) — r{ci), and such that G\ differs from (72 only on the individual
states of the two households h\ and h2 of the same type i which are permuted,
i.e., s(hx,cri) = s(/i2,<72) and s(/i2,<7i) = s ^ i , ^ ) . Assume that there exists an
equilibrium price for E, p* € RNS , such that its components in states cr\ and a2

are different, i.e. p"ax ^ p"O7. Define now a new price p*c G RNS , called a "conjugate"
of p", which differs from p" only in its coordinates in states &i and o~2i which are
permuted as follows: V <7 / <TU<T2, p

m
c a - p', p*c<Tl = pj2 , and pm

C(TJ = p*t. We shall
now show that p* is also an equilibrium price for the economy E. At p*, household
h\ has the same endowments and faces the same prices in states G\ and a2 as it did
at states <72 and <j\ respectively at price p*; at all other states <7 G H, h\ faces the
same prices and has the same endowments facing p* and facing p". The same is true
of household h2. Furthermore h\ and h2 have the same utilities and probabilities at
<j\ and <J2 because r(o'i) = r(a2) and probabilities are anonymous, and because ^i
and h2 are of the same type i. Therefore the excess demand vectors of h\ in states cri
and cr2 at prices pm equal the excess demand vectors of h2 in cr2 and (7i respectively,
at prices pn

c, and at all other states a £ fi the excess demand vectors of hx are the
same at prices p* and p*. Reciprocally: the excess demand vectors of h2 in G\ and cr2

at prices p" equal the excess demand vectors of h\ in a2 and o~\ respectively at prices
p", and in all other states cr, the excess demand vectors of h2 are the same as they
are with prices p*. Formally:

77 l 7 ) 7x

(Pi) = =h,a7 (P*) , Zh7<r7 (p*) = Zhxt,x

and Vcr 6 H,(7 7̂  (7i,(72 :

Zhxo (P") = Zhl<r (P'c) , 2r/i2<r ( p ' ) = Zh7* (
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The excess demand vectors of all other households h ^ /ii, A2 are the same for
p" and p*. Therefore at p" the aggregate excess demand vector of the economy is
zero, so that p* is an equilibrium. The same argument shows that permuting the two
components p*x, p*2 of a price p" at any two collective states o~\, cr2 leading to the same
statistical state r (<7i) leads from an equilibrium price p* to another equilibrium price
p". This is because if two collective states G\ and <T2 lead to the same statistical state
and there are two individual states S\ and S2 then there is a number k > 0 such that
k households who are in S\ in cri are in 32 in 0*2 and another k households who were
in s\ in (72 are in S2 in <7i, while remaining in the same individual states otherwise.
These two sets of k households can be paired. For every pair of households, the above
argument applies. Hence it applies to the sum of the demands, so that the new price
p" is an equilibrium.

Now consider any regular economy E with a finite number of equilibrium prices
denoted pj,...,p£. We shall show that there exists a j < k s.t. p" assigns the same
price vector to all collective states <7i, <72 with r (<7i) = r {02). Start with p\ : if p\ does
not have this property, consider the first two collective states <Ti,<72 with p\ai ^ P\<T7-

Define p'cl as the conjugate of p, constructed by permuting the prices of the collective
states <7i and a2. If Vj > l,pj = p*cl, then the number of price equilibria is even i.e.
k = 2; since however the number of price equilibria must be odd3, there must exist
p*n with j \ > 1, and p*x ^ p"t. Consider the conjugate of p^ with respect to the first
two collective states <?i, C72 which have different components in pjx, and denote this
conjugate p£Jx. Repeat the procedure until all equilibria are exhausted. In each step of
this procedure, two different price equilibria are found. Since the number of equilibria
must be odd, it follows that there must exist a j < k for which all conjugates of p̂
equal pj: this is the required equilibrium which assigns the same equilibrium prices
Pax — Va7 to all (7\,<T2 with r (di) = r (02), completing the proof .0

6 Equilibrium & incomplete markets for unknown
risks

Consider first the case where there are no assets to hedge against risk, so that the
economy has incomplete asset markets. Individuals cannot transfer income to the
unfavorable states. Examples are cases when individuals are not able to purchase
health insurance. Market allocations are typically inefficient in this case, since indi-
viduals cannot transfer income from one state to another to equalize welfare across
states. In an exhaustive formalization of all uncertainty in this economy states are
described by all possible lists of ail possible people with their states specified, i.e. by
the elements a of the set Q.. Which households will be in each state is unknown; each

3This follows from Dierker (1982) page 807 noting that his condition D is implied by our as-
sumption that preferences are strictly increasing (see Dierker's remark following the statement of
property D on page 799).
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such list <7 can be seen as a different collective state with different probability. Each
individual of type i has a certain probability distribution over all possible collective
states <7, II,. In each collective state a each individual is constrained in the value of
her/his expenditures by her/his endowment (which depends on the individual state
s (h,a) in that collective state). In this context, a general equilibrium of the economy
with incomplete markets Ei consists of a price vector p* with NSH components and
H consumption plans zj with NSH components each, such that if individual h is of
type i, z\ maximizes Wl (zh) as in 1:

E i ( ) (6)

subject to
Pa {zha - eha) = 0 for each <r6ft (7)

and
H

X>*- c*) = 0 (8)
The above economy E[ is an extreme version of an economy with incomplete asset

markets (see e.g. Geanakoplos [11]) because there are no markets to hedge against
risks. There are SH budget constraints in (7).

7 Efficient allocations, mutual insurance &: secu-
rities

In this section we study the possibility of supporting Arrow-Debreu equilibria by
combinations of Arrow securities and insurance contracts, rather than by using state
contingent contracts. As already observed, this leads to a very significant economy in
the number of markets needed. In an economy with no asset markets at all, such as
Ei, the difficulty in supporting an Arrow-Debreu equilibrium arises because income
cannot be transferred between states. On the basis of Propositions 1 and 2, we show
that households can use Arrow securities defined on statistical states to transfer into
each such state an amount of income equal to the expected difference between the
value of Arrow-Debreu equilibrium consumption and the value of endowments. The
expectation here is over individual states conditional on being in a given statistical
state. The difference between the actual consumption-income gap given a particular
individual state and its expected value is then covered by insurance contracts.

Theorem 1 Assume that all households in E have the same probability XI over the
distribution of risks in the population. Then any Arrow-Debreu equilibrium allocation
(p*,z*) of E (and therefore any Pareto Optimum) can be achieved within the general
equilibrium economy with incomplete markets E\ by introducing into Ej a total of
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I.A mutual insurance contracts to hedge against individual risk, and A = f]» ( 'si*1)
Arrow securities to hedge against collective risk. When E is regular and 5 = 2, this
is also true even if households of different types have different probabilities over the
distribution of risks in the population. In a regular economy with two individual states
there is always an Arrow-Debreu equilibrium (p*,2*) in E which is achievable within
the incomplete economy Ei with the introduction of I.A mutual insurance contracts
and A Arrow securities.

Proof. Consider first the case where all households have the same probabilities.
By Propositionl, an Arrow-Debreu equilibrium of E has the same prices p* = p* and
the same consumption vectors zx* = zx* for each i, at each collective state cr with
r (a) = r. Define Q (r) = {a 6 ft : r (a) = r} . The budget constraint 4 is

= 0

Now individual endowments depend on individual states and not on social states, so
that eho — ehs{a) — eh* - furthermore by Proposition 1 equilibrium prices depend on
r and not on cr, so that for each r the equilibrium consumption vector Zho can be
written as ZH,. The individual budget constraint is therefore £ r p* H*(r) izhs — e^,),
where summation over s(r) indicates summation over all individual states s that
occur in any collective state leading to r, i.e. that are in the set ft (r). Let #fi (r) be
the number of collective states in Q (r). As II^ r = r,-, is the proportion of households
of type i in state s within the statistical state r, we can finally rewrite the budget
constraint 4 of the household h as:

i./r(^.-^.)=0 (9)

From 2, the household's maximization problem is therefore: Maximize

,Tuk (y,r)

subject to 9, and the equilibrium allocation z£ = (zx*) solves this problem. Similarly,
we may rewrite the market clearing condition 5 as follows:

Rewriting 5 in terms of statistical states r, and within each r, individual states s we
obtain:

£ £ r,,H, (--;• - 4 ) = 0, Vr 6 iJ (10)

or equivalentiy:
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It follows that the allocation z* maximizes 2
Using these relations, we now show that any Arrow-Debreu equilibrium allocation

z" — (zl
r
m) is within the budget constraints 7 of the economy E[ for each a € H,

provided that for each a £ H we add the income derived from an Arrow security
Ar,r = r (cr), and, given r(cr), the income derived from mutual insurance contracts
ml

sr = »7ii(ff)r(̂ ),5 = 1,...,S. We introduce A Arrow securities and LA mutual in-
surance contracts in the general equilibrium economy with incomplete markets E\.
The quantity of the Arrow security Ar purchased by the ith type of household in
statistical state r, when equilibrium prices are p% is:

The quantity a1* has a very intuitive interpretation. It is the expected amount by
which the value of equilibrium consumption exceeds the value of endowments, condi-
tional on being in statistical state r. So on average, the Arrow securities purchased
deliver enough to balance a household's budget in each statistical state. The balance
is taken care of by the mutual insurance contracts. Note that 10 implies that the total
amount of each Arrow security supplied is zero, i.e., ^ Hid1* = 0 for all r, so that this
corresponds to the initial endowments of the incomplete economy Ei. Furthermore,
for each type i, £ r

 ar" = 0 by 9, so that each household h is within her/his budget in
Ei.

We now introduce a mutual insurance contract as follows. The transfer made by
an individual of type i in statistical state r and individual state s, when prices are p*:

m - = P; ( < - <) - «;• (12)

Note that, as remarked above, ms"r is just the difference between the actual income-
expenditure gap, given that individual state s is realized, and the expected income-
expenditure gap a1* which is covered by Arrow securities. In each statistical state
r, the sum over all i and 6 of all transfers m£ equals zero i.e. the insurance premia
match exactly the payments: for any given r,

E TT» IT •»»»'• — V^ FT' W «" (*i* ~i\ V * U „*• V^ TT1' — fi /19A

ll 5y r i i i77l J r = >^ l l J / r / 2 , p r I 2 r — e^ J — / . **iar ?^ ^s/r ^ \^"/
t,J I,J > '

because E , II^P = 1. Therefore, the {m£} meet the definition of mutual insurance
contracts. Finally, note that with N spot markets, A Arrow securities {ar} and /
mutual insurance contracts {ml

3r}

Pmr US" ~ <) = P'r {yim ~ <) = ^ " r + < » /I4X
V<7 € H with r (o-) = r, 5 = 5 (cr) V ;

so that 7 is satisfied for each a € H. This establishes that when all households have
the same probabilities over collective states, all Arrow-Debreu equilibrium allocation
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z* of E can be achieved within the incomplete markets economy E[ when A Arrow
securities and LA mutual insurance contracts are introduced into Ei.

Consider now the case where the economy E is regular, different types of house-
holds in E have different probabilities over collective states, and 5 = 2. By Propo-
sition 2, we know that within the set of equilibrium prices there is one p* in which
at all collective states a 6 H (/•) for a given r, the equilibrium prices are the same,
i.e. p* = p*. In particular, if E has a unique equilibrium (p*,z*), it must have this
property. It follows from the above arguments that the equilibrium (p*,z*) must
maximize 2 subject to 9. Note however that now for the same r, zl*r may be different
from zJ7r when s ̂  s'. Now define the quantity of the Arrow security AT purchased
by a household of type i in the statistical state r by

(15)

and the mutual insurance transfer made by a household of type i in statistical state
r and individual state 5, by

<r=Pmr{£-e\)-< (16)

As before, £ r a1* = 0 and for any given r, £I,J II*^rftmJJ = 0, so that the Arrow
securities purchased correspond to the initial endowments of the economy Ei and at
any statistical state the sum of the premia and the sum of the payments of the mutual
insurance contracts match, completing the proof. 0

We can now formalize a statement made before about the efficiency of the insti-
tutional structure proposed in Theorem 1 by comparison with the standard Arrow-
Debreu structure of a complete set of state-contingent markets. We use here complex-
ity theory, and in particular the concept of NP completeness. The key consideration
in this approach to studying problem complexity is how fast the number of operations
required to solve a problem increases with the size of the problem.

Definition: If the number of operations required to solve a problem must increase
exponentially for any possible way of solving the problem, then the problem is called
"intractable" or more formally, NP-complete. If this number increases polynomially,
the problem is tractable. Further definitions are in Garey and Johnson [10].

The motivation for this distinction is of course that if the number of operations
needed to solve the problem increases exponentially with some measure of the size
of the problem, then there will be examples of the problem that no computer can
or ever could solve. Hence there is no possibility of ever designing a general efficient
algorithm for solving these problems. However, if the number of operations rises only
polynomially then it is in principle possible to devise a general and efficient algorithm
for the problem.

Theorem 2 investigates the complexity of the resource allocation problem in the
Arrow-Debreu framework and compares this with the framework of Theorem 1. We
focus on how the problem changes as the economy grows in the sense that the number
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of households increases, and consider a very simple aspect of the allocation problem,
which is as follows. Suppose that the excess demand of the economy Z (p) is known.
A particular price vector p" is proposed as a market clearing price. We wish to
check whether or not it is a market clearing price. This involves computing each of
the coordinates of Z (p) and then comparing with zero. This involves a number of
operations proportional to the number of components of Z (p); we therefore take the
rate at which the dimension of Z (p) increases with the number of agents to be a
measure of the complexity of the resource allocation problem. In summary: we ask
how the difficulty of verifying market clearing increases as the number of households
in the economy rises. We show that in the Arrow-Debreu framework this difficulty
rises exponentially, whereas in the framework of Theorem 1 it rises only polynomially.

Theorem 2 Verifying market clearing is an intractable problem in an Arrow-Debreu
economy, i.e., the number of operations required to check if a proposed price is market
clearing increases exponentially with the number of households H. However, under
the assumptions of Theorem 1. in the economy Ej supplemented by I.A mutual in-
surance contracts and A Arrow securities, verifying market clearing is a tractable
problem, i.e., the number of operations needed to check for market clearing increases
only polynomially with the number of households.

Proof. The number of operations required to check that a price is market clearing
is proportional to the number of market clearing conditions. In E we have NSH =
NS^Hi markets. Hence the number of operations needed to check if a proposed
price is market clearing must rise exponentially with the number of households H.
Consider now the case of Ei supplemented by I.A mutual insurance contracts and A
Arrow securities, where A = Yli \'sfi'1)- Under the assumptions of Theorem 1, by
Propositions 1 and 2, we need only check for market clearing in one collective state
associated with any statistical state, as if markets clear in one collective state leading
to a certain statistical state they will clear in all collective states leading to the same
statistical state. Hence we need to check a number of goods markets equal to N.A,
plus markets for mutual insurance contracts and Arrow securities. Now

'Hi + S + l\

s-i r .
where $,• (#,-, S) is a polynomial in Ht of order (5—1). Hence A itself is a polynomial
in Hi whose highest order term depends on (f], Hi)s~l, completing the proof.0

8 Conclusions.
We have defined an economy with unknown individual risks. In this context we
have shown that ignorance of individual risks results in additional collective risks.
Then we established that a combination of Arrow securities and mutual insurance
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contracts can be used to support Arrow-Debreu equilibria in economies with unknown
risks. Furthermore we have shown that this institutional structure is efficient in the
sense that it requires exponentially fewer markets that the standard approach via
state-contingent commodities. In fact, the state-contingent problem is "intractable"
with individual risks (formally, NP - complete) in the language of computational
complexity, whereas our approach gives a formulation that is polynomially complex.
This greatly increases the economy's ability to achieve efficient allocations. Another
interesting feature of this institutional structure is the interplay of insurance and
securities markets involved.

Individual risks whose probabilities are unknown, and indeed possibly unknow-
able, are an important category. They arise from new technologies (nuclear power or
supersonic transport), from newly recognized environmental hazards (such as ozone
depletion or climate change) and from newly recognized diseases (such as AIDS). In
all of these examples, it is clear that there is little common ground on the risks to
which individuals are exposed. In some of these examples the risks are quite unique
and cannot be repeated to provide an opportunity for statistical inference about the
true probabilities.

In examples such as those listed, our analysis implies that insurance companies
issue insurance which depends on the statistical state. That is, they offer individuals
an array of insurance contracts, one valid in each possible statistical state. Insurance
contracts are therefore contingent on statistical states. Within each statistical state,
of course, probabilities are known. Therefore companies are writing insurance only
on known risks, something which is actuarially manageable. Individuals then buy
the insurance that they want between statistical states via the markets for securities
that are contingent on statistical states. Concretely, one would buy insurance against
AIDS by (1) purchasing a set of AIDS insurance contracts each of which pays off
only for a specified incidence of AIDS in the population as a whole, and (2) making
bets via securities markets on the incidence of AIDS in the population. Likewise,
one would obtain cover against an effect of climate change by (1) buying insurance
policies specific to the health risks faced at particular levels of climate change, and
(2) making bets on the level of climate change.
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