
Competition Among Institutions

by
Andrew Caplin, Columbia University

Barry Nalebuff, Yale University, SOM

July 1992

Discussion Paper Series No. 621



July, 1992

COMPETITION AMONG INSTITUTIONS

BY ANDREW CAPLIN AND BARRY NALEBUFF

COLUMBIA UNIVERSITY YALE UNIVERSITY, SOM

Abstract: Economic theory offers two different approaches to the analysis of group
formation and the role of institutions. The general equilibrium approach explores the
influence of the economic environment on the formation of groups. The game theoretic
approach runs in the opposite direction; it explores the influence of institutions on eco-
nomic outcomes. To integrate these approaches we consider situations in which institutions
must compete for members. Our focus is on the fundamental interaction between mem-
berships and policies. The policy that an institution adopts depends on its membership,
while its membership depends on the policies of all the institutions.

We provide the basic elements for a theory of competition among institutions: an ab-
stract definition of an institution and the corresponding equilibrium concepts. We demon-
strate by example, the possibility that an equilibrium may not exist. In the absence of a
general existence result, we pursue three different avenues. We begin with existence results
based on maximization of a utilitarian social welfare function. This places strong restric-
tions on the decision-making process, although it covers a number of interesting political
applications. This is followed by a continuity-based approach. Although quite general, it
relies critically on an assumption that the institutions have certain idiosyncratic features.
To handle cases without idiosyncrasies, we turn to an algebraic approach. Although exis-
tence is established, the result depends on the dimensionality of the problem. Together,
these avenues provide a broad class of models for which equilibrium exists, covering cases
with multiple dimensions, multiple institutions, and general institutional decision-making
processes.
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I . INTRODUCTION

There are two different approaches to the analysis of groups and social institutions
within economic theory. The first approach, developed primarily by general equilibrium
theorists, explores the influence of individual endowments, preferences, and technology on
the formation of groups. Groups are seen as forming in a cooperative manner in response
to efficiency needs, such as the desire to share risk or to provide a service where there are
scale economies.1 While this approach clarifies the influence of the economic environment
on the formation of coalitions, It downplays the influence that social institutions may exert
on economic outcomes.

The second approach to institutions, developed primarily by game theorists and po-
litical scientists, takes the opposite view. An institutional structure is taken as given,
and its implications for economic and political outcomes are then analyzed, typically with
the tools of noncooperative game theory. Specifying the "rules of the game" is seen as
a way of producing institution-specific answers to how economic and social decisions are
made.2 While this approach clarifies the influence of the institution on economic outcomes,
it downplays the influence of the economic environment on the structure of the institu-
tion. These models typically have only one institution to which everyone belongs, so that
membership is exogenously fixed.

We believe that it is important to develop an integrated approach to institutions, one
that allows both for the influence of institutions on economic outcomes and for the influ-
ence of the environment on the institutions. In this paper, we consider situations in which
a set of distinct institutions compete for members. This leads to a fundamental interaction
whereby the policy that each institution adopts depends on its (and others') membership,
and the memberships depend upon the policies of all institutions. While institutional
structure helps to shape outcomes, it is also shaped by the economic environment.

The importance of this form of competition among institutions is illustrated in the
literature on local public goods inspired by Tiebout [1956]. There are several commu-
nities, each of which has a political process for deciding the provision of its local public
goods based on the preferences of its population. Individuals reveal their preference for
the provision of local public goods through their choice of a community. In this setting,
Westhoff [1977] provides a pioneering study of the existence of equilibrium. When com-
munities use majority rule to determine their supply of public goods and preferences are
single peaked, he shows that there exists an equilibrium where each community follows
the preference of its median member and each person belongs to their most-preferred

1 See, for example, Prescott and Townsend (1984).
2 See, for example, Baron and Ferejohn [1987], Austen-Smith and Banks [1988], and Baron

[1991b].



community. Following Westhoff, there has been further work studying the existence of
equilibrium in the context of local public goods. This work includes Epple, Filimon, and
Romer [1984], Epple and Romer [1991], Greenberg [1983], Greenberg and Weber [1986],
Richter [1982], and Rose-Ackerman [1979] .3

The problems considered in the Tiebout model are very special both in the type of
institutions considered, and in the nature and dimensionality of the issue space. The anal-
ysis of institutional competition can be applied to such diverse topics as: the membership
and platforms of political parties (Black [1948], Baron [1991a]); the relationship between
shareholders and corporate policy; the structure of political coalitions such as the EEC
(Casella and Feinstein [1990]); membership of private clubs (Buchanan [1965], Scotchmer
[1983]); and self-selection into contracts (Rothschild and Stiglitz [1976]). The common
thread in these examples is that they all involve situations in which there is an interac-
tion between the membership and the actions of an institution. To cover these cases, we
study institutional competition in a general setting, allowing for multidimensional choice
problems, and a broad class of institutional decision-making processes.

To provide the key elements needed for a general model of competition among institu-
tions, we begin with an abstract definition of an institution and specify two corresponding
equilibrium concepts. We then illustrate by example that an equilibrium might not ex-
ist. Although there is no general existence result, we provide a broad class of models for
which equilibrium exists, covering cases with multiple dimensions, multiple institutions,
and general institutional decision-making processes.

Section 2 provides an example that motivates our approach. Section 3 presents general
definitions of institutions and of institutional equilibrium. Section 4 provides counter-
examples to existence of equilibrium. Sections 5 and 6 develop cases in which existence can
be guaranteed using standard arguments based on optimization and continuity. Section 7
explores the more challenging cases, and uses index theory to provide a result that shows a
surprising role of dimensionality in ensuring existence. Section 8 offers a brief conclusion.
The majority of the proofs are contained in an Appendix.

II . AN EXAMPLE

We develop a simple example that illustrates the interaction between population
characteristics and the decision rules of institutions. The example is motivated by the
common claim that the ability of one community to adopt an egalitarian policy may
depend on whether competing communities have similarly egalitarian policies (see, e.g.,
Stigler[1957]). We show that adoption of an egalitarian constitution in one community

3 In addition, Richter [1982] and Greenberg [1983] consider whether a solution exists to the
social planner's problem of allocating public goods and taxes across jurisdictions while allowing
free mobility.



may either increase or decrease the extent of inequality in society, depending not only on
the policies of other communities, but also on the distribution of characteristics in the
population. Since it is possible to assess this issue only in a framework where individuals
choose among competing institutions, the example provides a motivation for our general
approach.

There are two schools that compete for students through their choice of curricula.

We describe the curriculum of each school by a single parameter, x € [0,1]. For example,

we might think of a: as representing the science content of the curriculum. Prospective

students differ in their preference for x. A student of type a who attends school with

curriculum x has utility —||a — JC||2, so that x = a is type a's most-preferred school

curriculum. Students pick the school based on their anticipation of which school will offer

the most suitable curriculum. Since the population is large, no student believes that his

or her choice of school will influence the curriculum.

Each school responds to its students through one of two different political processes.

"Utilitarian" schools pick x to maximize the sum of their students' utilities, while the more

egalitarian "Rawlsian" schools pick x to maximize the minimum utility of their student

body. The political process each school adopts is taken to be part of the fixed data of the

economy and is commonly understood when students decide which school to attend. In

equilibrium, the population is divided between the schools in such a way that each student

picks the school he or she prefers, correctly anticipating the schools' resulting curricular

choices. We compare the equilibrium outcome in each of three different scenarios: the

case in which both schools are utilitarian; the case in which both are Rawlsian, and the

mixed case with one utilitarian and one Rawlsian school.

We first solve the model for the triangular population distribution of Figure 1. Figure

l(a) illustrates the equilibria for the pure utilitarian and the pure Rawlsian cases. In the

pure utilitarian case, the unique equilibrium involves the two schools locating at 1/3 and

2/3 respectively. The pure Rawlsian case has the schools at 1/4 and 3/4 respectively. In

both cases, the students divide equally between the two schools. The equilibrium in the

mixed case is illustrated in Figure l(b) for the case in which the Rawlsian school locates

to the left of the utilitarian school. Here the unique equilibrium has the schools at roughly

0.2 and 0.6, with the population to the left of 0.4 going to the Rawlsian school and the

larger group to the right going to the utilitarian school.4

4 Let x denote the student who is indifferent between the two schools in the mixed case. Note
that the Rawlsian school locates at f, while the utilitarian school locates at the center of gravity
of the range [x, 1], which is always closer to x than to 1, since more of the population is close to x
than is close to 1. The unique equilibrium value of x 6 (0,1/2) is such that the utilitarian school
locates at 4p, so that the student at x is indeed indifferent between the schools. The precise value
of x is then mechanically derived as the solution to the equation 3x/2 = (3 — 8x s)/(6 — 12x2).
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Comparing the mixed case to the pure Rawlsian illustrates the fact that the switch by

one school to a more egalitarian charter may make society as a whole more egalitarian. In

the mixed case, the worst-off members of society have a curriculum that is (roughly) 0.4

away from their ideal, while this maximum distance falls to 0.25 in the pure Rawlsian case.

However, comparing the pure utilitarian and the mixed case illustrates that one school's

switch to a more egalitarian charter may have the opposite effect; society as a whole

becomes less egalitarian. In the pure utilitarian case, the worst-off member of society has

a curriculum that is 0.33 away from their ideal, as opposed to 0.4 in the mixed case.

The example shows that the ability of one group to achieve an egalitarian social end

can be defeated if other institutions are not similarly egalitarian. However, this conclusion

is not general. To illustrate the fact that population characteristics have an important

independent role in determining the nature of institutions, consider the same issue with

the inverted-triangular population distribution of Figure 2. Figure 2(a) illustrates the

unique equilibrium in the pure Rawlsian case, with the schools at 1/4 and 3/4, as well as

the equilibrium for the pure utilitarian case, with the schools at 1/6 and 5/6. Figure 2(b)

illustrates the unique equilibrium in the mixed case, with the Rawlsian school located at

roughly 0.28 and the utilitarian at 0.84, with the dividing line between the schools located

at roughly 0.56.

1/6 1/4 1/4 5/6



With the inverted triangular distribution, the maximum distance of any student from
their ideal curriculum is 0.33 in the utilitarian case, 0.28 in the mixed case, and 0.25 in the
Rawlsian case. Unlike the triangular case, the welfare of the worst-off member of society
is improved in the move from the pure utilitarian to the mixed case. In fact, the switch
by one school to a more egalitarian charter always increases the utility of the worst-off
member of society.

The fundamental reason for the difference between the triangular and the inverted
triangular cases is that the former is unimodal and the latter is bimodal. A pure utilitar-
ian system involves the two schools locating close to the center for a unimodal population
distribution, but close to the extremes for a bimodal distribution. In the triangular dis-
tribution, any attempt to reduce inequality involves locating closer to the poorly-served
extremes. Picking such a location shrinks the constituency of the more egalitarian school,
which may lead to a greater degree of social inequality. In the inverted triangular case, any
attempt to reduce inequality involves locating closer to the poorly-served center. Picking
such a location tends to expand the constituency of the more egalitarian school, amplifying
the overall reduction in inequality. The example illustrates that in order to understand
the impact of a given institution, one must specify both the institutions' decision rules
and the population's distribution of preferences.

This example uses what may appear to be the natural definition of an institution and
an equilibrium. In abstract terms, an institution selects a policy taking its membership and
those of the competing institutions as fixed. Individuals choose which institution to join
anticipating both the division of the population between institutions and the institutional
policies that will result. Equilibrium is a fixed-point in which the individuals that comprise
the institution like the resulting policy at least as much as the policies of other institutions.
But to cover other examples of institutional competition, such as HoteUing's model of
political competition, we need to consider an alternative definition of an institution and
equilibrium.

The HoteUing location model adapted to political competition concerns the platform
choices of left-wing and right-wing political parties in a winner-take-all election. HoteUing
shows that in equilibrium both parties choose to locate close to the center of the political
spectrum (the position most favored by the median voter). This abandonment of ideol-
ogy is needed to prevent the other party from winning. The general point is that the
equilibrium is based on picking policies to attract members. The institution operates as



it does not so much to appeal to the original members, but rather to appeal to potential
members. In such cases, unlike the school example, it is inappropriate to treat member-
ships as fixed when the institutional choices are made. To model such situations calls for
a definition of institutional equilibrium that gives an important role to the positions that
other institutions adopt.

In order to develop a general model, we analyze both the membership-based approach
and the position-based approach. The next section spells out these two approaches in
detail and provides the corresponding definitions of equilibrium. Following the definitions,
we discuss the applicability of each approach.

Ill . A MODEL

There are m exogenously given institutions. Each institution A; has available a com-
pact set of possible policy positions, Xk G Xk C Rw. The vector of positions is represented
by x € X, where X is the product of the sets Xk- Institutions may be further constrained
in their choice of Xk', the feasible set for a specific group may depend on the composition
and size of its membership. We will make this constraint precise once we have defined the
constituencies below.

Individual preferences vary across the population as summarized by a vector a € JT\
The utility of an a-type joining institution k given choices x is represented by a continuous
utility function U(a, fc, x).5 The distribution of types across society is then represented by a
hyperdiffuse probability measure / on utility parameters a with compact support A C Rn.

Each type a anticipating institution positions x joins the institution k that maximizes
U(a,k,x). Since an individual is an infinitesimal part of an institution, no one person
believes that they can influence the group's position by their action. We denote the
membership of institution k by Sfc(x),6

Sk(x) = {a € A | U(a,k,x) > U(a,j,x) Vj}.

Each institution responds to its membership through a political process. The fea-
sible choices of an institution may be constrained by its membership. For example, an
institution may be constrained to have a balanced budget. A local government of a small
town would then require very high taxes to finance the production of a significant level
of public goods. Another type of constraint on an institution's choice of position occurs
when members are concerned with the group's size. For example, in politics, power is

5 The interaction between an individual and the other members of the institution is restricted
to the variable I. This is not as restrictive as it may first appear; for example, x* could include
the size of the group if that matters to the members.

6 Typically, the set of indifferent individuals will be of measure zero and may be ignored.
Otherwise, we assign individuals equally across the institutions to which they are indifferent.



related to size. In this case, we interpret one of the components of Xk as the institution's
size; production of this good will be constrained by the actual membership. Generally,
given any division of individuals between institutions, we denote the Jfcth institution's set
of feasible choices by Xk(Sk) C Xk.

It remains to define the institutional decision-making process. Here the two alterna-
tive approaches diverge. In the membership-based definition, the institutional decision-
making process of institution k is defined by a policy function, Pk} which maps the mem-
berships of all institutions into the set of feasible positions:7

xk = Pk(Sli...,Sm)i xkeXk(Sk)

An institutional process inputs institutional memberships, determines constraints based

on these memberships, and outputs decisions.

In the position-based definition, the institutional decision-making process of institu-
tion A: is denned by a function, Qk, which maps the membership of the kth institution and
the positions of all rival institutions into the set of feasible positions, where the feasible
set for the Arth institution depends on the rationally anticipated membership given the
fixed position of rival institutions and its own proposed position:

xk = Qk(Sk(x),x-k), xk € Xk(S(xk,x-k)).

In both definitions, the interplay between membership and position leads to a natural
concern with internal consistency. Under what conditions are the institutional processes
consistent with free mobility? For each of the membership-based and position-based mod-
els, we offer the natural definition of an equilibrium.

In the membership-based case, each individual rationally anticipates the membership

choices of others and the resulting institutional policies, and selects the most preferred

institution.

DEFINITION 1 [MEMBERSHIP-BASED INSTITUTIONAL EQUILIBRIUM] : Given the set

of institutional processes, {P i , . . . , Pm}, x* is an equilibrium if and only if

*; = Pfc(5! (x ' ) , . . . ,S m ( s*) ) , fc = [ l , . . . ,m) .

In the position-based case, each individual rationally anticipates the positions that

each institution will take and chooses among institutions based on these anticipated posi-

tions. Given these memberships, the institutions' predicted positions are feasible and no

individual wishes to switch institution.

7 We do not consider the case of policy correspondences.
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DEFINITION 2 [POSITION-BASED INSTITUTIONAL EQUILIBRIUM]: Given the set of
institutional processes, {Qi,..., Qm}, x* is a position-based institutional equilibrium if
and only if

To appreciate the relevance of these concepts, we outline how they apply to a variety
of economic and political settings.8 We close the section with a discussion of the out-of-
equilibrium beliefs that support the membership-based and the policy-based definitions
of an institution.

The membership-based definition has been applied to local public goods by Westhoff
[1977] and Epple, Filimon and Romer [1984]. The policy choices are levels of taxes and
transfers and the levels of supply of various public goods. Individuals take the institutional
processes of the various jurisdictions as given, and determine which community to join
anticipating the level of taxes and public goods that will result. Each community has a
budget constraint; this is reflected in restrictions on the set of feasible tax-transfer systems
within the community. The policy-based definition has also been applied in these settings;
Epple and Romer [1991] consider the case of redistribution by local governments.

The membership-based definition also applies to club formation. A club is a supplier
of a public good in which there are congestion externalities. There are many possible
mechanisms for supplying such goods, ranging from market-based fee-paying mechanisms
to quantity rationing on a first-come, first-serve basis. There are efficiency reasons for
society to divide up into separate clubs. Here, the institutional process may be a written
club charter that specifies how funds are to be raised and rights to use the club good
allocated as a function of the membership. As with the local public good, the need to
finance the facilities restricts the feasible set of policies for a club. The membership-based
definition is relevant here if potential members must pay their fees before participating
in the decision on fund-raising and other allocational issues. A position-based approach
would apply to an entrepreneur who builds a club rationally anticipating a membership
that will be self-financing.

The case of competition among political parties is more naturally phrased as position-
based, as in the Hotelling model. As institutions, a typical political party can be viewed
as having a charter that calls for influencing society in certain directions. But one of the

8 An interesting case that is not covered in the current definitions, but which can be captured
by a minor extension, involves competing corporate charters. Corporations have charters detailing
such issues as their governance structure and how it can be changed. The manner in which
corporate charters compete is in the struggle for investor funds. The primary difference between
this and the other cases is that membership need not be exclusive: an individual can join several
institutions in degrees related to the size of the investments. It is straightforward to amend the
definitions to allow both for multiple memberships, and for varying degrees of membership in each
institution.



usual requirements to have an influence is that the party attract enough members (and
voters) to become a player on the local or national scene. This means that the size of
the party may be an element of the x vector relevant to the decisions of an outsider on
whether or not to join the party. In describing the party's set of feasible positions, its
feasible supply of power depends directly on its membership.9 The policy chosen to attract
members depends on the policies of rival parties.

The definitions of institutional equilibrium also cover standard economic cases of
adverse selection, as in the insurance model of Rothschild and Stiglitz (1976). Consider
two competing mutual-insurance collectives. Constrained to break even, the types of
insurance contract each collective can afford to offer depends on who they attract (and
who they attract determines what they choose to offer). In most models of such insurance
markets, the argument is position based: each collective takes the policy of the other
collective as given in determining its own policy.

The examples suggest that one of the key issues in assessing whether the membership-
based approach or the policy-based approach is applicable is whether the policy selection
stage precedes or follows the final membership decisions. One possible interpretation is
that the membership-based definition applies whenever the choice stage directly precedes
the policy adoption stage, while the policy-based definition is designed for the more com-
mon settings in which the policy is set in order to capture members. In this vein, Epple and
Romer [1991] argue that the policy-based approach is therefore the more widely-applicable
and sophisticated of the two approaches.

We do not share this view. We believe that the membership-based definition is
more widely applicable than the policy-based definition. The fact that policies may be
designed to capture members can provide a rationale for selecting among membership-
based equilibria. There are many settings (especially those involving economic choices) in
which holding to the policy-based definition may not be logically coherent. In the policy-
based equilibrium, each institution takes the position but not the membership of the other
institutions as given. But what happens if the competitors' original positions are no longer
feasible given the resulting policy choices? In such situations, it is not credible to view
institutions as capable of fully committing to a strategy until the final members show up.
It is therefore necessary for each institution to form a conjecture concerning the reaction
of competing institutions when their actual membership gathers. In this spirit, Riley
(1979) and Wilson (1980) argue that an insurance company cannot take the competitors'
contracts as fixed; if a firm steals a competitor's most profitable customers, causing that
firm to lose money, it is not reasonable to assume that the rival will continue to offer this
contract (and this change will influence the profitability of all other contracts).

9 To be fully general, one should allow the feasible set of policies for a given group to depend
not only on its own constituency, but also on the memberships of others, since the size of all
institutions may influence the power that each individually wields.



Whenever the feasible set of policy options is critically influenced by the actual mem-
bers of the institution, it is ultimately necessary to pick a position that is feasible for
the final membership. When anticipating what a rival institution will do, that decision
will ultimately be a function of the rival's membership. Any equilibrium will have to be
based on the true memberships that show up, as in the membership-based definition. If
there are prior stages in which tentative coalitions and institutional decisions are made,
then they may help to select among such membership-based equilibria.10 This critique of
position-based does not mean that we view it as irrelevant: just that it is more likely to
apply in cases where the feasible set is not influenced by membership, as in competition
among ideological institutions.

While these sophisticated thoughts focus around selection of equilibria in the membership-
based case, this leaves unanswered the fundamental issue of whether an equilibrium exists.
The next sections explore the issue of existence. We work primarily with the membership-
based definition and then show how the results extend to the position-based definition.

IV . OVERVIEW OF EXISTENCE

In addressing the fundamental issue of existence, we will focus only on cases where
equilibrium involves different institutions making distinct choices. We are not interested
in trivial equilibria in which all institutions make identical choices and the population is
divided as a matter of indifference in such a way that identical positions are selected.11

We provide two examples to illustrate the fact that there may be no equilibrium.

The first example is adapted from Epple and Romer [1991]. Consider individuals who
differ only in their income level j/, and who are considering which of two towns to live in.
The towns must set a proportionate tax rate, t € [0,1], and also a level of government
transfers, g. The towns are required to balance their budget. In a membership-based
equilibrium, the budget would be balanced based on the current residents, while in the
position-based case, the budget would be based on the rationally anticipated membership
given the tax-transfer of the other town. Each individual cares only about his or her
income net of taxes and transfers,

U(y,g,t) = 1/(1-*) +g.

The (t, g) combination in each town is chosen by majority rule among the current members.

10 There are many different ways in which one might envisage selecting among equilibria, gen-
erally involving some mix of cooperative and noncooperative reasoning. One possible route is to
say that in order to attract new people to a tentatively formed institution, it must be a Pareto
improvement for the current members, a gain for the new members, and remain an equilibrium.
See, for example, Prescott and Townsend (1984) and Bernheim, Peleg, and Whinston (1987).

11 However, identical choice is the relevant case in some economic contexts, such as in a pooling
equilibrium in an insurance market.
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If there is an equilibrium in which the two towns differ, then the town that sets the
higher tax rate must also set the higher level of government transfers; otherwise it will
not attract any inhabitants. Without loss of generality, suppose that the first town sets
the higher level of taxes and transfers. In this case, if a type y is attracted to town 1,
so will all those with lower income levels: the high tax-transfer town attracts the poorest
inhabitants. But anyone in the poor town who has above that town's average income level
will prefer to move to the rich town: they are net losers in town 1 as its richest inhabitants,
and would at worst break even in town 2 as its poorest inhabitants. This implies that the
poorest type of individuals must form a community by themselves, with everyone else in
the second community. Even this will not be an equilibrium unless the second community
chooses to set a zero tax rate. Under majority rule, whenever the median income is lower
than the mean income (both with and without the poorest types), the tax rate will be
positive and hence there will be no equilibrium in which the towns differ.12 This result
holds whether one takes a membership-based or a position-based perspective.

A second (membership-based) example of institutional competition for which no non-
trivial equilibrium exists arises in a political setting. Consider the case of two political
parties choosing platforms where voters have Euclidean preferences and so join the party
whose position is closest to their ideal point. If each party chooses the position favored by
its most counter-clockwise member, the division between the two institutions continues
to rotate counter-clockwise and there is never any stable point. In the figure below, the
initial division of the population into institutions Si and 52 leads to positions X\ and x2,
which in turn leads to the new divisions S[ and S'2.

In the absence of a general existence result, we pursue three different avenues. The
next section develops an existence result based on maximization of a utilitarian social
welfare function. This places strong restrictions on the decision-making process, although
it covers a number of interesting political applications. This is followed by a continuity-
based approach. Although quite general, it relies critically on an assumption that the
institutions have certain idiosyncratic features that are not inherent to the problem. To
handle the cases without idiosyncrasies, we turn to the algebraic approach of Section 7.
Although existence is established, the result depends on the dimensionality of the problem.
Together, these avenues help us understand the non-existence examples and provide a way
forward.

13 There remains the trivial equilibrium in which both towns pick identical tax-transfer schemes
and each type in the population divides evenly between the towns.

11



V . MAXIMIZATION APPROACH

In this section, we open up the black box of the institution's decision-making process
and focus on three specific decision rules: (1) Utilitarianism, (2) Rawlsianism, and (3)
Borda Count. The institutions we consider are best viewed as political parties because we
assume that the feasible set for a group, Xk, is independent of the size or composition of
its membership. The political parties each compete for members through their ideological
positions and voters align themselves with a party as a way of expressing their preferred
position. For each of these three decision processes, we demonstrate the existence of both
a membership-based and a position-based equilibrium.

A utilitarian party will choose a position so as to maximize an additive welfare func-
tion of its members' utilities.

DEFINITION [WEIGHTED UTILITARIANISM]: P f c (5i , . . . ,S n ) is a p-weighted utilitar-
ian decision rule if it chooses xk to maximize

J {a£S

This definition may be extended to include p = oo, 0, —oo through continuity arguments.

This weighted utilitarian objective function is the Hardy-Littlewood generalized mean
function (also known to economists as the CES function). If p = 1, the party's objective is
to maximize the average utility of its members, which is the standard Benthamite version
of utilitarianism.13

THEOREM 1: Consider an m party competition, where each of the parties employs a

common weighted utilitarian objective function to determine the outcome of its political

process. Given Euclidean voter preferences U(a,x) — — \\a — x\\, a € A c /P1, a con-

stant feasible set X(Sk) = Xk, and a general hyperdiffuse probability measure f(a) with

compact support, there exists a (Pareto-optimal) membership-based equilibrium.

PROOF: Consider a social planner with the power to assign voters to parties. Give
this planner the objective function L:

I U(a,xky/(a)
{a€A}

The planner chooses x and assigns the population to parties in order to maximize L. A
solution exists since the objective function is continuous and the feasible set is compact.

13 Note that the party holds its membership constant in the maximization problem, so that
maximizing the average and maximizing the sum are equivalent.
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The result of this optimization must be a membership-based equilibrium. Each person
is in the party they most prefer as otherwise it would be possible to increase the sum
of utilities. Additionally, each party must be mAvimiging the p-weighted sum of utilities
of its members as otherwise the planner could increase the aggregate sum of p-weighted
utilities by varying some Xk- Since this equilibrium is the result of a utilitarian social
welfare maximization, the result must be Pareto optimal. Q.E.D.

The case of weighted utilitarianism is more general than it might first appear. In
particular, it includes a Rawlsian objective function as the limiting case of p = -oo . The
utilitarian summation converges to a "Leontief function" where each party evaluates a
position based on the welfare of its worst-off member.14

It is perhaps more surprising that with Euclidean preferences, weighted utilitarianism
also includes a political decision-making process based on a Borda count. The slight
complication is that an individual must give a score to each of a potentially infinite number
of alternatives. Feld and Groffinan (1988) suggest the following approach. An individual of
type a ranks position x according to the measure of the set of more desirable alternatives,

£(a , x) = / ldy.
•/{y:t/(*,v)>tf(<*,x)}

Low scores are more desirable. These scores are then aggregated across the membership,

£<(z)= I B(a,x)f(a)da.

Each group picks the x which has the lowest aggregate Borda count summing across its
members. An advantage of this Borda count rule is that a winner always exists (unlike
majority rule) and there is no problem of cycles.

When voters have Euclidean preferences and the distribution of most-preferred points
is hyperdiffuse, the Borda count winner is unique. It is defined by

x* - argmax / -||ot - x\\nf(a)da,

where n is the dimensionality of a.15 The Borda count winner is the result of a utili-
tarian decision rule where the Euclidean preferences are given a specific cardinalization,
U(a,x) = -\\a-x\\n.

Similar arguments demonstrate existence for a position-based approach to weighted
utilitarianism. The result of the social planner's optimization must also be a position-
based equilibrium. If one institution was able to improve the sum of its members' utilities,

14 The value of p provides a natural ordering of the party's concern with equality; lower values
of p imply a greater weight on the utility of the less well-off members. More information on this
function can be found in our paper concerning a mean voter theorem; see Caplin and Nalebuff
[1991a].

15 The set of preferred alternatives to x is a ball around a with radius ||x — a||.
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the sum of utilities across society would also rise and this contradicts the fact that the
initial allocation was a maximum for society. This result relies heavily on the fact that
individuals are concerned only with policy choices and not the size of institutions (as the
choice sets are independent of the membership).

The specification of the number of parties, the dimensionality of the issue space, and
the distribution of voter preferences are all quite general. The restriction to Euclidean
preferences in Theorem 1 can certainly be relaxed.16 However, these existence results are
limited in two important respects: all institutions must employ identical decision rules
and the feasibility constraint on the positions an institution can adopt does not depend
on its membership.

VI . CONTINUITY APPROACH

The continuity approach makes the assumption that an individual not only has opin-
ions about the policy that an institution adopts, but also an idiosyncratic view of the
institution. For example, there are those who prefer the Democratic party to the Repub-
lican party, even if the two parties take the same position on all observable issues.17 An
individual now has a type vector (a, c) where the a € JT* component refers to the explicit
policies adopted, and the e € Rm gives the m-vector of institution-specific idiosyncratic
factors,

U(a,e,i,x) = U(a,i,x) + €>.

We make certain simple continuity assumptions. We assume that the utility functions
U(a, i, x) are continuous in x and that the joint density / ( a , e) is hyperdiffuse and has an
unbounded support.

As before, we can define the membership of each institution k by Sk(x):

Sk(x) = {(a,c) e A x Rm | U(a,xk) +efc > U(a,Xj) +€j Vj}.

The proportion of type a individuals who choose to join party k is

gk(a,x) =

Note that / ( a , e) is a joint density, so that we need not assume a and e are independent.18

10 The assumption is used to guarantee that each group will make a distinct choice and that
no group will end up with zero members. More generally, any utility function that ensures that
L is a strictly increasing function of m guarantees that all parties will have distinct positions and
positive membership.

17 This could arise from an incompleteness in the specification of party positions. Parties will
be called upon to take positions in the future and voters must anticipate how parties will make
these decisions. There is clearly room for disagreement.

18 Since probabilities must add up to one, *$2k9k(ai *) = / ( a ) = J /(a,e)<fc.
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Since the utility functions are continuous in 2, it follows that gk(a,x) will also be
continuous in x. Thus each institution's constituency will be a continuous function of the
positions.

The other side of the equation is to consider how institutions choose positions as a
function of their constituency. Since £ has unbounded support, each group will always
have a positive mass. Thus we need not be concerned with the outcome of a decision
rule for a group with no members. The institution's decision process chooses an outcome
from Xk(Sk) based on the preferences of its members. We assume that the decision is
continuous in the weak topology.19 This would be satisfied, for example, if the decision
rule is the expectation of any continuous function.

With these assumptions, one can prove existence of an equilibrium by a standard
application of Brouwer's fixed point theorem. Given any vector of policies x, we identify
the corresponding constituencies, {pi(a, x ) , . . . ,pm(a, x)}. We then input this set of con-
stituencies into the policy functions to produce a new set of positions x'. By assumption,
the domain is compact, and both the mapping from x into constituencies and the map-
ping from constituencies to policies are continuous. Brouwer's theorem then ensures that
a fixed point exists, and it is immediate that such a fixed point constitutes an equilibrium.

The existence argument for a position-based equilibrium is essentially identical. As
in the membership-based case, continuity of the utility functions in x implies that each
institution's membership is a continuous function of the positions. The assumption that
the institution's decision rule, Xk = Qk(Sk(z),x-k), is continuous in the weak topology
allows application of Brouwer's theorem to establish existence. While the continuity of
the decision rule is the same assumption, the meaning is now different since the constraint
sets are allowed to vary with the choice of x*.

There are two reasons to consider this type of an idiosyncratic choice model. In cer-
tain settings, this may be an accurate description of how individuals make decisions. A
second reason is to use the idiosyncratic element as a mathematical device to approximate
the outcome with no noise. We can consider a convergent subsequence of fixed points and
examine the limit as the variance of € approaches zero. If the parties choose distinct posi-
tions in the limiting equilibrium, this solution is also an equilibrium for the problem with
no noise.20 But there is the possibility that as the noise approaches zero, two institutions'
positions will approach each other. It is precisely the case of equal choice that creates
an existence problem when there is no idiosyncratic element. If two or more groups pick

19 The institutions' positions are continuous in the conditional probability distribution of its
membership and in the mass of its membership.

30 Although we must be careful that each institution has positive membership, Si ^ 0. Other-
wise, the outcome of the decision-making process is indeterminate.
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identical positions, there is no way to divide the population while preserving continuity
of the memberships.21 As a result, we must consider an entirely different approach.

VII . AN INDEX THEORY APPROACH

In this section, we consider a general political process for two-party competition while
imposing restrictions on the type of voter preferences. The novel results of this paper are
Theorems 2 and 3, which prove existence of an equilibrium for competition with an odd
number of dimensions.

We restrict individual preferences so that each individual evaluates an institution by
a weighted sum of its perceived benefits. The population differs only in the weights used
to evaluate benefits. The utility benefits are determined by a continuous function t which
maps the tu-dimensions of the position into an (n+l)-dimensional vector of utility benefits.
For example, the value of national defense and the evaluation of a budget deficit may be
complicated functions of the position on taxes and trade barriers. In our framework,
members have a common assessment of the benefits from each position, but differ over
how they value these benefits.

ASSUMPTION Al (LINEAR PREFERENCES): Preferences can be represented in a lin-
ear form:

n
(7.1) U(a,x) =

where U : ZT1 x X *-* R, and the functions tk{x) continuously map the institution's
position into a utility valuation. Furthermore, distinct positions have distinct benefits:
given Xi ̂  Xj,3a s.t. U(a,Xi) ^ U(a,Xj)

Assumption Al is based on Grandmont's [1978] development of intermediate prefer-
ences. The restriction implies a separability of issues in determining individual preferences.
For ease of notation, we define t(x) = (ti(z), •. •, tn(x)) and then represent utility as

The dimensionality of individuals' preferences is determined by the dimensionality of
the a vector. But the components of a are relevant only to the extent that there is any
variation in the population. Thus, we are really interested in the number of dimensions in
which the as differ. The point of A2 is to ensure that there is a zero mass of individuals
in any hyperplane and that any two individuals have distinct preferences. In particular,
this implies that given two distinct institution positions, the set of indifferent individuals
is of measure zero. For convenience, we normalize the total population to unity.

21 In fact, whenever there is the non-existence of an equilibrium without probabilistic choice it
must be the case that the party positions approach each other in the probabilistic choice model
as the noise goes to zero.
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ASSUMPTION A2 (HYPERDIFFUSE DENSITY, DISTINCT PREFERENCES): The prob-
ability density of individuals* utility parameters is hyperdiffuse over its compact support,
A. Within this support, preferences are distinct; for any two elements a and of e A, there
exists some pair (xi,Xj) e X such that type a strictly prefers xt to Xj and type d strictly
prefers Xj toxt.

The linear preference model covers many of the standard utility functions used in
economics and we give two examples below.

• Euclidean Preferences: Each person joins the group whose position is closest to his
or her most-preferred point, a: U(a,x) = — ||z — a||.22

• Linear Preferences: Each person evaluates a position by a weighted sum of the ele-
ments, U(a,x) = a-x. With slight modifications, this covers the CES, Cobb-Douglas,
logit, and probit models (see Caplin and Nalebuff, 1991b).

In the case of linear preferences, we must be careful about the choice of the support A.
Since any monotonic transformation of the utility function leads to the same preferences,
a person of type a and one of type 2a have identical preferences. Thus it is appropriate to
scale the a vector so that it always lies on the unit sphere, A = 51*"1. If all the elements
of a are positive, it is appropriate to scale the a vector so that it always lies on the unit
simplex, A = A"""1.23

The value of the linear utility functions is that we only need consider divisions of the
population defined by a hyperplane. For any two distinct positions £i ,£2, there exists a
hyperplane with the members of institution 1 on one side and those of institution 2 on
the other side. The set of people who choose to join institution 1 over 2 is defined by

Sx(x) = {a € A | a • [t(Xl) - t(x2)] >

This hyperplane has a gradient vector n, which we normalize to unit length, and intercept
6, also normalized:

t{xl)-t(x2)
\\t(x1)-t(x2)\\'

23 These preferences are equivalent to U(a,x,z) = —[z-z — 2 a - z + a - a ] , which is in the linear
form once the irrelevant term (a • a) is removed.

All the as would be positive, for example, if every agrees that a lower budget deficit is a
desirable platform but people differ on the intensity of this preference. This rules out the Euclidean
model in which individuals choose the position closest to their most-preferred point since there in
no longer unanimity about the desirability of movement in any particular direction. The benefits
need not be "goods" as opposed to "bads". For example, one of the as may be the person's income
and the corresponding t could be a tax rate. To convert the bad into a good, we transform the
tax rate into an after tax income rate, so that individuals evaluate a ( l — t) and the position is
viewed as a benefit rather than a cost. The general point is that for each of the n-dimensions of
"benefits," all individuals lie in a half-space and by a reorientation of the benefit we can position
this half-space in the positive orthant without any loss of generality.
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The orientation of the hyperplane tells us which people go to which group. In our
notation, the gradient vector points into the constituency of group 1. Thus we can char-
acterize Si and 52 by (TT,6). This allows us to express the institutions' decision rules as
functions of the dividing hyperplane, Xi = Pi(w, 6).

To prove existence of equilibrium, we need some additional assumptions concerning
the policy functions PJ(TT, 6). The best way to motivate these assumptions is to outline
the structure of the proof of the existence result, Theorem 2.

The first stage of the proof involves the definition of a continuous mapping from the
space of hyperplanes into itself. Note that each hyperplane (TT, 6) defines the member-
ship of the two groups. Given non-empty memberships, the decision processes lead to a
pair of positions P\(n,b) and -F*2(TT,6). Provided these choices are distinct, they in turn
imply a division of the population back into two groups characterized by a new dividing
hyperplane. It is this mapping that forms the basis of our existence proof. In order to
define the mapping, we require that institutions with memberships on opposite sides of a
hyperplane make distinct choices.

ASSUMPTION A3 (DISTINCT CHOICES): TWO institutions whose memberships lie on

opposite sides of a hyperplane will choose distinct positions: PI(TT,6) ^ P2(TT,6).

Two institutions whose memberships lie in opposite half-spaces have quite distinct con-
stituencies. Thus it is not unreasonable to assume they will never choose the same plat-
form. Note that this motivation for A3 uses the assumption that different a-types have
distinct preferences (A2). Otherwise, we might be able to divide the population into two
half spaces and yet find identical preferences in both groups.

As would be expected, one necessary condition for establishing existence of an equi-
librium via a fixed point argument is continuity of the decision-making process.

ASSUMPTION A4 (CONTINUITY): Pi0r,6) is continuous in (TT,6).

This condition may also look innocuous but it has some subtle implications. In particular,
the choice of Xk depends both on the preferences of the group and its constraint set. Thus
our continuity assumption has implications for how X(Sk) varies with (TT, 6 ) . M

We make an additional assumption about preferences and the decision rules in order
to ensure that in any equilibrium both institutions will have strictly positive mass. One
way to ensure this is to assume that groups which are sufficiently small tend to expand.

34 For example, if having a strict majority is of primary importance in an election, this could
induce a discontinuity in a political party's feasible set.
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This would be true if small groups could design a policy that was tailor fitted to their

constituency and the members preferred this custom position to the more anonymous

options from a larger group. A second route is to assume that small groups lose some

members. Following the lines suggested by Westhoff [1977], a town that is too small may

not be viable.25

ASSUMPTION A5 (VIABILITY OF SMALL INSTITUTIONS): There exists a size 1/2 >

\i > 0 such that if one institution has population less than or equal to /i, then given the

position chosen by it and its competitor, at least some type of individual located in the

larger group will prefer affiliating with the smaller group.

ASSUMPTION A5' (CONTRACTION OF SMALL INSTITUTIONS): There exists a size

1/2 > /i > 0 such that if one institution has population less than or equal to /i, then given

the position chosen by it and its competitor, at least some type of individual located in

the smaller group will prefer affiliating with the larger group.

A5 and A5' are joint statements about the decision-making process and the feasibility

constraints. We could reduce either to a statement solely about decision-making process

by requiring the result to hold for any feasible choice made by the two institutions.

With Assumptions A1-A5, we are able to apply index theory to construct a continuous

mapping from the space of hyperplanes to itself that has a fixed point, for cases in which

the dimensionality of the preference space is odd. Unfortunately, the index theorem does

not allow us to discriminate between situations of equilibrium, in which we map back to

the same division, and situations where the orientation of the hyperplane is reversed, so

that all individuals switch institutions. To rule out such reversals, it is enough to assume

that equally-sized institutions never reverse positions. Starting from a position of equal

size, someone in each group must prefer their own institution's position to that of the

rival. Note that this is a very weak form of positive responsiveness of institutions to their

membership.26

2 5 The tax example from Section 3 shows that without one of these assumptions, non-existence
can occur. In that example, a small rich town expands, while a small poor town contracts, so that
neither A5 nor A5' are valid.

2 6 Epple and Romer (1991) construct an example in which all members of one institution prefer
the policy selected by the other, and vice versa, contradicting the spirit of A6. To see how this
can arise, consider a population differentiated by income in which a large poor community sets a
lump sum tax to finance public good supply, and a small rich community finances the public good
with a proportionate tax. Suppose they end up supplying precisely the same amount of the public
good. It is then straightforward to construct an example in which all the richer individuals would
pay less under the lump sum tax scheme, while all the poorer individuals would pay less under the
proportionate tax scheme. In this case, everyone would like to switch communities.
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ASSUMPTION A6 (WEAK PARETO CONDITION): TWO equal-sized institutions never
choose positions in such a way that all members of one group are attracted to the other
group's position: fSi f(a)dot = f^ f(a)da =•

U(a, Pi(n, b)) > U(a, ffe(7r, b)) for some a € Si

and U(a, P2(ir, b)) > U(ct, PI(TT, b)) for some a e S2.

With these assumptions, we are able to establish existence of a membership-based
equilibrium when the preference space has an odd number of dimensions.

THEOREM 2: Under Assumptions A1-A6, there exists a membership-based equilib-

rium for a e /T \ n odd. In this equilibrium, both institutions will have strictly positive

mass.

PROOF: Appendix A.

One curious aspect of this theorem is the role of the dimensionality. To see the
mathematical reason for this, it is convenient to first restrict attention to the cases with
£n+i (x) = 0 so that 6 = 0 and all hyperplanes pass through the origin. Thus our continuous
function TT *-*• n maps from the unit sphere to itself.27 When does it follow that such a
mapping has a fixed point? Unfortunately, there is no general result establishing the
existence of a fixed point.

As we have seen, an example of a political decision rule for which no equilibrium exists
is the rotation process. Each party chooses the position most favored by the most counter-
clockwise member of it party. As a result, the division between the two parties continues
to rotate counter-clockwise and there is never any stable point. One way to summarize
the problem is to go to the surface of the unit sphere and place the orthogonal vector that
points in the "counter-clockwise" direction. Note that this vector changes continuously
along the surface and yet has no zeros. This negative result seems at first to present a
complete roadblock and suggest the need for a new line of reasoning. Remarkably, this
counter-example is a problem only in even numbered dimensions.28

This positive result for odd dimensions is sometimes referred to known as the "hairy
ball" theorem, and is a corollary to the more general Lefschetz fixed-point theorem. The

27 In this example, we will assume that the support of a contains a ball around the origin.
28 The rotation mapping described earlier is not continuous in the dividing line. The problem

occurs when one party contains the entire population. In that case, there is no most counter-
clockwise point. This problem can be fixed by taking the most counter-clockwise point until a
party has 90% of the total mass. Thereafter, we take a weighted average of the center of gravity of
the set and the most clockwise point, where the weight on the center of gravity goes to one as the
party mass approaches one. There may be other potential barriers to existence; see Rose-Ackerman
[1979] and Stiglitz [1977].
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hairy ball theorem states that any continuous vector field on the surface of an odd-
dimensional sphere must have a zero. For example, since the winds on the surface of
the (three-dimensional) earth change direction continuously, somewhere on the earth's
surface there is no wind. Or, more colloquially, if one continuously combs the hairs on the
surface of a odd-dimensional sphere, then somewhere there must exist a cowlick.

Before dismissing the odd-even result as a curious mathematical artifact, it may
help to understand why one cannot simply "fix up" the problem for the even-numbered
dimensions. In particular, it might seem that we could just add another "fake" dimension
(a dimension that no individual cares about), solve the problem in one higher dimension,
and use that fixed point. While any two-dimensional problem can always be embedded in a
three-dimensional setting, it cannot be done while maintaining our continuity assumptions.
Consider what happens when two institutions differ only in the "fake" dimension. At
that point, all individuals are indifferent between the two institutions. How should they
be divided up? While it is possible to split the density in half and give each group
identical memberships, note that with the slightest change in any of the true dimensions,
the resulting composition of the memberships will change in a discontinuous manner.
Consequently, the institutions' positions will change discontinuously and thus the fixed-
point theorem does not apply.

We now briefly indicate how to demonstrate a similar existence theorem for the
position-based model. For simplicity, we replace the t(x),tn+i(x) with x. Thus pref-
erences are C/(a, x) = a-re.29 To demonstrate existence, we maintain A2, strengthen A3 to
include undominated choices, and replace assumptions A4-A5 with their direct analogs.
Again for simplicity, we assume that all the elements of a are positive, a € A""1.

ASSUMPTION B3 (DISTINCT AND UNDOMINATED CHOICES): In two-institution com-
petition, groups whose constituents lie on opposite sides of a hyperplane will choose dis-
tinct and undominated positions: min* \\Qi(Si(xi,X2),X2)— ^2(^2(^1, ^2)^1)— £(!> li • • • 1)11 >
0.30 Since all individuals lie in A""1, if the two positions differ by a unit vector, then all
individuals will prefer one position to the other.

This assumption that institutions do choose undominated positions need only hold
for group of some minimum size, as defined below in B5.

ASSUMPTION B4 (CONTINUITY): Qi(Si(x),x-i) is continuous in (5»,x).

29 The reason for this change is that otherwise we would have to constantly refer to the choice
of t(x) rather than z . It is simpler to relabel the choice of x as that of a t(x) and then adjust the
feasibility constraints accordingly.

30 This assumption extends to include points on the boundary. For any given division S^S} ,
consider all the points (x i , xj) that lead to this division. We assume that even for the limit points

J5
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ASSUMPTION B5 (VIABILITY OF SMALL INSTITUTIONS): There exists a size 1/2 >
/i > 0 such that if one institution has population less than or equal to p, then given the
position chosen by it and its competitor, at least some type of individual located in the
larger group will prefer affiliating with the smaller group.

ASSUMPTION B5' (CONTRACTION OF SMALL INSTITUTIONS): There exists a size
1/2 > fi > 0 such that if one institution has population less than or equal to /i, then given
the position chosen by it and its competitor, at least some type of individual located in
the smaller group will prefer affiliating with the larger group.

The final two assumptions are more distinct from the membership-based counterparts.
First, we replace the assumption that there are no reversals (A6) between equal-sized
institutions with the assumption that equal-sized institutions do not choose to imitate the
position taken by the rival institution. Finally, we add a new assumption that is designed
to bound the space of possible institutional policies.

ASSUMPTION B6 ( N O IMITATION OF EQUALS): Given two equal-sized institutions,

neither adopts the position of its rival:

f f(ot)dot= f f(a)da
JSi JS2

ASSUMPTION B7 (BOUNDEDNESS): There exists R<oo such that

\\xj\\ < (2V^+l)R^\\Qi(Si(xi,xj)1xj)\\ < R, (i,j) = {(1,2),(2,1)}.

We assume that each set Xt contains this (2y/n+ l)R ball.

With these assumptions, we again use the Lefschetz fixed-point theorem to establish

existence of an equilibrium when the preference space has an even number of dimensions.

THEOREM 3: For U(atx) = a • x, A2, and B3-B7, there exists a position-based
equilibrium for a € A1*"1, n even. In this equilibrium, both institutions will have strictly
positive mass.

PROOF: Appendix A.

VIII . CONCLUSIONS

This research is motivated by our desire to integrate institutions more fully into
economic theory. Typically, researchers focus either on the influence of the economic en-
vironment on the structure of institutions, or on the influence of institutions on economic
outcomes. We have explored a model of institutional competition that allows us to focus
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on the essential interactions between the economic environment and the structure of in-
stitutions: the policy that each institution adopts depends on the memberships, and the
memberships depend upon the policies of all institutions.

The theory has potential applications to such diverse topics as: local public finance;
the platforms of political parties; the relationship between shareholders and corporate
policy; the structure of political coalitions such as the EEC; and self-selection into con-
tracts. Although there is no general existence result, this paper provides three of the basic
elements to carry out these applications. First, we offer appropriately abstract definitions
of an institution. Second, we specify the corresponding equilibrium concepts. Third, we
show how a maximization approach, a continuity approach, and an index theory approach
provide existence results for multidimensional competition and institutional decision pro-
cesses other than majority rule.
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X . APPENDIX

This Appendix contains the proofs of Theorems 2 and 3 concerning existence of
membership-based and position-based equilibrium in the model of Section 7. Both proofs
come in four parts. The first part of each proof defines the domain of a mapping. The
second part provides a detailed construction of a continuous mapping from this domain
into itself. The third part involves application of index theory to prove existence of a
variety of fixed points. The final part proves that at least one of the fixed points is an
equilibrium. The index theorems used in the third part of each proof follow as Theorem
4; this theorem was prepared with the assistance of James Munkres.

THEOREM 2: Under Assumptions A1-A6, there exists a membership-based equilib-

rium for a € FT1, n odd. In this equilibrium, both Institutions will have strictly positive

mass.

PROOF: We present the proof in the four stages referred to above.

A. Defining the domain: DM is the compact set of all (TT, b) vectors in 571"1 x R such that
the population on each side of the hyperplane is at least /x, where /i is the value from
A5 that guarantees the viability of small institutions. Since the support of a is compact,
for each n there exists fcminM and fcmaxMj &minM < &m«M, such that the population
division determined by (TT, bminM) = (fi, 1 — /i) and the population division determined
by (7r,6m«x(7r)) = (1 - /x,/i). Both 6minM and 6m«W vary continuously with n. Since
(TT, 6) and (—?r, —6) define the same hyperplane, but with opposite orientation, if (TT, b) is
in the domain, so is (—TT, — 6).1

B. Construction of the mapping: Given (7r, 6), the memberships of the two institutions
are well-defined. The members choose positions X\ = Pi(7r,6),a;2 = 2̂(*•>&)• With A3,
the distinct institutions choose distinct positions, so that X\ ^ X2, and the result of free
mobility is a new division of the population into groups defined by a hyperplane (ir1,6').
However, our mapping is not from (n-,6) to (n',tf). We use TC' with a different intercept
b", which depends on the value of a fixed scale parameter, A € (0,1), in the following
manner.2

To determine the new intercept value, define Mi as the original population of party
i under (7r, 6), and M[ as the population of party i according to (TT*, V). The definition of
the final intercept b" divides into cases depending on the value of M\, M[ and A as follows:

1 Note that 6miB(w) = -l>m«x(-*).
3 While A is presently fixed, in part D of the proof we will consider » sequence of mappings in

which X approaches zero.
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Case 1 (Interior): If /i < Mi + A(M{ - Mi) < 1 - /i, then we define W by taking the TT'
hyperplane and shifting it until the population in party 1 is exactly Mi + A(M{ —Mi).

Case 2 (Boundary): If Mi + A(M{ - Mi) < p, then we set b" = 6mMt(7r/), while if
Mi + A(M{ - Mi) > 1 - /i, then we set 6" = ^ ( f r ' ) .

In words, this means that we map from the original n to the new TT7, but set the

intercept so that the population is a weighted average of the original population and the

new population.3 In Case 1 above, the weight A on the new population results in a mapping

back into D^ itself, and this then defines the final mapping. In Case 2, the use of these

fixed weights would result in a mapping outside the domain: the hyperplane is then shifted

back to the boundary of the domain.

With this, we have constructed a mapping from DM to itself. The fact that the
mapping is continuous follows from Assumption A4. With A4, small changes in (TT,6)

induce correspondingly small changes in the policies Pi(n,b) and ft(7r,6), which in turn
produce continuous changes in the division of the population between the institutions.
Hence the mapping from (TT, b) to (TT', I/) is continuous, as is the mapping from b' to b"

defined above, confirming overall continuity of the mapping.

C. Application of Index Theorem. We have chosen this mapping in order to apply the
Lefschetz fixed-point theorem. The conclusion of the theorem, as stated in Theorem 4
below, is that there exists (TT, 6) G DM such that (ir,b) = (TT',6") or (n,b) = (— TT', — W):

there exists some hyperplane that maps back to itself, but its orientation might be reversed.
We refer to all such hyperplanes as fixed points of the mapping.

D. Existence of Equilibrium. There are four qualitatively distinct types of fixed points,

depending on whether the orientation is preserved or reversed, and whether we are in Case

1 (the interior case) or Case 2 (the boundary case) in the definition of the mapping.

(1) An orientation-preserving interior fixed point. In this case, the original population

and final populations are the same, as is the gradient vector, and hence we have an

equilibrium.

(2) An orientation-preserving boundary fixed point. This is impossible, since it involves
an institution with original population \L shrinking to a final population below /i while
the dividing hyperplane maintains the same normal. Thus the smaller institution
shrinks to a subset of its original membership. This contradicts A5 which states that
someone new is attracted to a small institution with population /i.

3 This mapping is motivated by the construction introduced in Westhoff [1977].
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(3) An orientation-reversing interior fixed point. For this to happen, it is necessary
that an initial population division (Mi,M2) leads to a reversed population division
(Af2, Mi). This cannot be immediately ruled out.

(4) An orientation-reversing boundary fixed point. This requires that an original popu-
lation of size fi results in a population of 1 - / i in the final mapping. This is impossible
because even the maximum possible shift is not big enough to bring a population of
fj. up to 1 — \x.

To prove that there is an equilibrium, we consider a sequence of mappings replacing
A by An = A/n. By the above argument, each such map has an interior fixed point. To
prove existence of an equilibrium, we need only show that not all of these fixed points can
be orientation-reversing. If all fixed points were of this type, then we could construct a
sequence, {nn,bn) converging to (TT,b) in which each (*•„,&„) maps to (-nni— bn). Note
that (TT, b) must divide the population into two equal portions, M\ — Mi — 1/2, since any
reversal of population sizes must become infinitesimal as An approaches zero. In addition
we know by continuity that (7r,6) map6 back to the gradient vector — n. Since the orien-
tation of the hyperplane has been reversed, at least one of the new institutions contains
a superset of the other institution's original membership. Starting with equal popula-
tions, one group has taken all of the other's constituents, violating A6 and establishing
the theorem. Q.E.D.

Theorem 2 applies when the domain of a is iT1, with n odd. The case of a € iS11"1,
with n odd follows directly. The case of a € A n - 1 is similar to a problem in one lower
dimension, without the constraint to the simplex and hence equilibrium exists for n even;
this is the case we consider in Theorem 3 below.

To change the proof to cover the case of nonviable small institutions [A5'] is straight-
forward. We simply shift the direction of the mapping, replacing A by —A. This is the
approach used by WesthofF. In this variation, an institution that loses members is rewarded
with a greater population. This points to an instability of the equilibrium [WesthofF [1979].
We can also use the above proof structure to extend the one-dimensional m institution
existence proof of WesthofF beyond the case of majority rule to a broader class of political
processes.

THEOREM 3: For U(a,x) = a • x, A2, and B3-B7, there exists a position-based
equilibrium fora e A n - 1 , n even. In this equilibrium, both institutions will have strictly
positive mass.

PROOF: We present the proof in the four stages referred to above.

A. Defining the domain: We define the domain £>M of the mapping in two stages. At the
first stage, we consider all (xi,x2) vectors with \\xi\\ < (2>/n 4- l)R and min* ||xi — X2 —
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, 1 , . . . 1)11 > 0, such that the population in each of Si(xitx2)1S2(xi1x2) is at least p.

(here /i is the value from B5 that guarantees the viability of small institutions and R is

the value from B7). To arrive at the second-stage definition of the domain, we pick any

pair (xi,x2) that satisfies the first-stage definition, and compute the corresponding policy

choices, Qi(Si(xux2),x2) and Q2(S2(xi1x2)1Xi).

With Assumption B3, we know that Qi(S\(xi,x2),x2) and Q2(S2(xu32),x\) differ.

In fact, we know there is a minimum distance dmin > 0, between (Q\ — Q2) and the 45-

degree line. To see this, pick any fixed hyperplane (TT, 6) that has at least \i population on

both sides, and consider the set of all (xi, x2) pairs that give rise to this division. With B3

it is not possible to find a convergent sequence of such pairs (xi(n),x2(n)) such that for

some/:, \\Qi(S1(x1(n)yx2(n))yx2(n))-Q2(S2(xl(n),x2(n)),Xi(n))-kl\\ ^ 0. This implies
that the infimum of the distances | \Qi (Si (xi (n), x2(n)), x2(n))-Q2(S2(xi (n), x2(n)), x\ (n ) ) -

A;l|| on this set is strictly positive: call this d(7r,6). Note that this function d(7T,6) is con-

tinuous and that the set of permissible (TT, b) vectors is compact, establishing existence of

the claimed positive distance, dmin > 0.

We finally define the domain D^ as the set of (xi,x2) vectors with ||XJ|| < ( 2 - ^ + l)R

and mink ||xi -X2 - k l \ \ > dmin such that the population in each of Si(xi,x2),S2(xi,X2)

is at least fi.

B. Construction of the mapping: Given (xi,X2), the constituencies of the two institutions

are well-defined. They choose policies (xi,x2) — (Qi(S\(x\,x2)>X2),Q2{S2(xuX2),X\)).

On our domain, the distinct institutions choose platforms that differ from the 45-degree

line by at least dmin > 0.

However, our mapping is not from (xi,X2) to (xi ,x2) . Instead, we consider the net

flow from the two institutions in the move from (xi, X2) to (x[, x2). One of the two groups

will be a net gainer and the other a net loser. Without loss of generality, let group 1 be

the gainer.

In the final mapping, we reduce x\ by subtracting a multiple of a unit vector. This

reduces the market share going to group 1 while preserving the normal to the dividing

hyperplane in the A n - 1 space. To determine the extent to which we reduce Xi, define Af<

as the original population of party i under (z 1,2:2), and M[ as the population of party i

according to {x[,x2). The definition of x'[ divides into cases depending on the value of

Mi, M[ and A € (0,1) as follows:

Case 1 (Interior): If /i < M\ + A(M{ — Afi) < 1 — /i, then we define x'{ by subtracting a

multiple of the unit vector from x[ until the population in group 1 is exactly M\+X(M[ —
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Case 2 (Boundary): If Mi + A(M{ - Mi) > 1 - /i, then we define x" by subtracting a
multiple of the unit vector from x\ until the population in group 1 is exactly 1 — /i.4

In words, this means that we map from the original x2 to the new x^, but shift
x[ to x*{ so that the population split according to (x",x'2) is a weighted average of the
original population division and the new population division. To unify the notation, we
set a?2 = x j and map from (£i,£2) to (jci',2^').

It follows from A2 and B4 that Si and Qi(Sx(xi,x2),Xj) are continuous in (z i , z 2 ) , so
that our mapping to («y, arj) will be continuous in (xi ,x2) . By subtracting only multiples
of the unit vector from x\, the minimum distance between x\ — x'2 and the 45-degree
line is the same as the distance between x'[ — x'2 and the 45-degree line and hence this
transformation does not take us out of the domain. Finally, we need to ensure that
\\x'{\\ < (2v/n+ 1)R. Note that the maximum possible utility among a € A11"1 and x
in the A-ball is R and the minimum possible utility is —R. Thus a reduction of x[ by
2i?(l, 1 , . . . , 1) reduces the utility by 2R and hence makes this position less desirable than
any possible position within the A-ball. Finally, note that since x\ was initially inside the
.R-ball, a shift by 2R times the unit vector will keep x" within a (2y/n + I)i2-ball.

C. Application of Index Theorem.

Once again we apply the Lefschetz fixed-point theorem. The domain is bounded, has
a smooth boundary and a symmetry property — if (x\,X2) is in the set so is (£2J£I ) -

Since ||xi - £211 > dmim with no additional restrictions, this set would be homeomorphic
to Sn~l x {/T1}. However, for Xi in the set we must also eliminate all Xj = £< + Al. If
we think of this in terms of the possible directions of (x\ — a?2)/i|a?i — X211, then we have
eliminated (1 ,1 , . . . 1) and (—1, — 1 , . . . — 1). Hence this is like a sphere minus two poles
which is homeomorphic to 5"~2. At this point, the situation is almost identical to the
case of Theorem 2 except that we are in one lower dimension. Given that the dimension
of n — 1 is odd (or that the dimension of n is even), the result of the Lefschetz theorem,
is that there exists an (£1,2:2) € D^ such that (£1,2:2) = (x",!^) or (£i,£2) = (£2

/,£i/).
There exists a pair that either maps back to itself or to its flip. It remains to show that any
true fixed-point of this mapping corresponds to an equilibrium and that it is not possible
that all fixed points are flip.

D. Existence of Equilibrium. The proof is completed by identical arguments to those used
in Theorem 2. There are four distinct types of fixed point: those that involve Case 2
(the boundary fixed points) can be ruled out by Assumption B5 and the fact that A < 1.
Case 1 fixed points are true equilibria. To prove that such a fixed point exists, consider

4 Note that by assumption, group 1 gained population so that Mi + -MA/J —Mi) < ft is
impossible. If group 2 is the one that gains population, then we shift x'7 in the proscribed manner.
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a sequence of mappings using An = A/n. If all fixed points were antipodal, then the limit
of the corresponding sequence of antipodal fixed points would be a point with an equal
population division which maps to the reverse normal, contradicting B6. Q.E.D.

Once again, ranging the proof to cover the case of nonviable small institutions [B57]
is straightforward; we simply shift the direction of the mapping, replacing A by —A.

THEOREM (LEFSCHETZ FIXED-POINT THEOREM, (MUNKRES,1984)) : Let K be a

finite complex; let F : \K \ *-*• \ K\ be a continuous map. If the Lefschetz number, A(F) ^ 0,
then F has a fixed point.

THEOREM 4 (EXISTENCE OF FIXED POINT OR ANTIPODE, (MUNKRES)): Let n e

S71'1. (a) Suppose that to each such ir we associate a non-trivial interval [f(ir),g(n)] on
the real line.5 (b) Suppose further that / and g are continuous functions of TT and (c) that
/ ( -TT) = -g(ir). Let 17 c 5""1 x R be the space of all pairs (TT, b) with /(TT) < b < g(n).

Under these hypothesis, for n odd, it follows that if F : £2 »-• Q is a continuous
function, then there is either a fixed point or an antipodal fixed point: there exists a
(7r, 6) G X such that F(TT, 6) = (TT, b) or F(TT, 6) = (-TT, -6) .

PROOF: The theorem is a consequence of the Lefschetz fixed-point theorem. Under
hypothesis hypothesis (a) and (b), the space to is homeomorphic to 5 n ~ 1 x [0,1], so it
is triangulable and compact. Thus the hypothesis of the Lefschetz theorem are satisfied.
For any continuous map F : fi »-• Q there is an associated integer d (which we call the
degree of F) determined by the homeomorphism F, : Hn-\(X) >-* Hn-\(X) in homology.
The Lefschetz number A<F) of F is 1 + (-l)n-ld(F), where d(F) is the "degree" of F.

Next, we introduce the continuous map A : ft *-* Q given by a(n, b) = (—TT, —6). This
map takes each point to its antipode. Since it is fixed-point free, A(a) = l+(—l)**"1^^ =
0, so its degree must be (—l)n.

If the theorem were false then both F and a o F must be fixed-point free. A(F) = 0
implies that the degree of F is (—l)n. A(o o f ) = 0 implies that the degree of F is 1:

1 + ( - l ) " - 1 ^ o F) = 1 + (-lr^K-lJM*1)) = 1 - d(F) = 0,

since degree is multiplicative. This leads to a contradiction whenever (—l)n ^ 1 or n is
odd. Q.E.D.

The theorem applies directly to our membership-based framework since Z)M satisfies
(a), (b), and (c) and the mapping from (n,b) to (^,6"') is continuous.

By non-trivial, we mean /(*) < g(*).
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