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1. Introduction
Welfare economics and finance have each evolved their own equilibrium concepts. In

welfare economics this is the concept of a competitive general equilibrium: in finance, it is the

absence of arbitrage opportunities. These concepts emerged independently and were initially

seen as quite distinct. Each plays an absolutely central role in its field, both in the theory and

in practical applications. In the 1980s researchers in both fields began to investigate the

connections between the two concepts. The first paper to address explicitly the

arbitrage-equilibrium relationship was Kreps (1981): subsequently this issue was addressed by

Werner (1987), Nielsen (1989) and Brown and Werner (1992). However, Hart's earlier paper

on equilibrium in securities markets (1974) in fact contained many of the elements needed to

understand the arbitrage-competitive equilibrium relationship. This was developed by

Hammond (1983) and Page (1987): Green (1973) covered related topics in a temporary

equilibrium framework. This work has established that for finite-dimensional choice spaces the

absence of arbitrage opportunities (a no-arbitrage condition) is sufficient for the existence of a

competitive equilibrium (Werner (1987)). Recently, Brown and Werner (1992) have extended

this to infinite-dimensional choice spaces, though at the cost of a very strong assumption about

the structure of the Pareto frontier.

Our paper extends this literature. We work with a weaker condition than no arbitrage,
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the concept of limited arbitrage. This concept was introduced in the context of social choice

theory by Chichilnisky (1991a). Limited arbitrage, as its name implies, admits arbitrage

opportunities that generate bounded increases in utility: it does not rule out all arbitrage

opportunities. We show that this concept, limited arbitrage, is fully equivalent to the concept

of a competitive general equilibrium. Formally, we show that a competitive general

equilibrium exists if and only if arbitrage opportunities are limited. The two equilibrium

concepts as used in finance and in welfare economics are therefore logically equivalent. This

equivalence disproves the conjecture of Dybvig and Ross (1987) that "absence of arbitrage is

more primitive than equilibrium, since only relatively few rational agents are needed to bid

away arbitrage opportunities."

In establishing the equivalence of the two equilibrium concepts, competitive

equilibrium and limited arbitrage, it is crucial that we relax the condition on arbitrage from "no

arbitrage" (as used in Werner (1987), Nielsen (1989)) to "limited arbitrage". "No arbitrage" is

sufficient for the existence of competitive equilibrium: "limited arbitrage" is necessary and

sufficient.

As a by-product of showing that the equilibrium concepts at the foundations of general

equilibrium theory and finance are equivalent, we are able to give necessary and sufficient

conditions for the existence of a competitive equilibrium in economies with finitely or

infinitely many commodities. Previously we had only sufficient conditions for existence: on

the basis of the present results we can say for the first time precisely when a competitive

equilibrium will not exist, as well as saying when it will exist.

In order to integrate fully real and financial markets we use a framework similar to that

adopted in finance. Therefore we study the equivalence of limited arbitrage and competitive

equilibrium in economies with finitely or infinitely many assets and commodities using Hilbert

spaces as the commodity space. Financial models often involve continuous trading and use

Hilbert spaces as commodity spaces. Hilbert spaces are the closest analog of euclidean spaces

in infinite dimensions, and have been used widely in economics and in finance since their



introduction in general equilibrium theory (Chichilnisky (1976)) and in infinite horizon models

of economic growth (Chichilnisky (1977)), see e.g. Chamberlin and Rothschild (1983), Connor

(1984), Bergstrom (1985). An important example of a Hilbert space is a weighted L~ space of

square integrable functions with a finite measure, which contains another space frequently used

in economics, L^, the space of bounded functions (Debreu (1954), Bewley (1972)), as a dense

sub space. Our results apply also to other L spaces ( l<po) and to Sobolev spaces

(Appendix).

The results apply to models having as consumption sets:

(i) general closed convex sets including the positive orthant as in the standard

Arrow-Debreu models (Debreu (1954), Bewley (1972)),

(ii) the whole commodity space as in financial models without bounds on short sales

(Hart (1974), Kreps (1981)) trading finitely or infinitely many assets, and

(iii) more general cases of consumption sets which may be bounded below in some

commodities and not in others and which include all the above (Chichilnisky and Heal

(1984,1991)).

Our analysis therefore covers a wide spectrum of market economies which have been

used in the literatures of economics and of finance. The most natural interpretation of our

model is that some dimensions of the commodity space refer to assets, and others to

consumption goods. The former are unbounded below: the latter may or may not be. One can

view utility as a function of during - period consumption, and of end - of - period wealth

(asset) holdings.

A typical problem which arises in proving the existence of a competitive equilibrium in

infinite dimensional spaces is that feasible efficient allocations do not generally exist. While

some feasible efficient allocations exist trivially (e.g., give the whole endowment to any one

consumer) interesting ones, e.g. with a prescribed ratio of utilities, are not guaranteed to exist.

The problem is that the Pareto frontier in utility space may not be closed. Now, the Pareto

frontier is always closed in finite dimensions when the consumption sets are the positive



orthants. However, this is no longer true when the consumption set is the whole space even in

finite dimensions: Figure 1 below exhibits such a finite dimensional economy where the Pareto

frontier is not closed. In infinite dimensions the problem is more acute; even when the

consumption set is the positive orthant the Pareto frontier may not be closed, as shown in the

example provided by Mas - Colell (1986). The problem is worse when the consumption set is

not bounded below, and is infinite dimensional. In this case there are no results in the literature

to guarantee that the Pareto frontier is closed. Here is where the Hilbert spaces exhibit their

strength: we are able to prove from the properties of preferences, that the Pareto frontier of the

economy is closed, Lemmas 2 and 5 in the Appendix. These results hold for all our

consumption sets X, finite or infinite dimensional, bounded below or not. In comparison,

Brown and Werner (1992) assume that the Pareto frontier is closed, without offering conditions

for this to be true. Our arguments are not available in their framework

2. Definitions

There are k agents, indexed by i. Commodities are indexed by the real numbers.

Consumption bundles are therefore real valued functions1 on R. The space H of commodity

bundles is a weighted L~ space of measurable functions x(t) with the inner product <x,y> = j R

x(t).y(t) djx(t), where fi(t) is any finite and positive measure [i on R (i.e. JRd/i(t) < <», }i(A) > 0

for all measurable sets A) which is absolutely continuous with respect to the Lebesgue

1/2measure. The L~ norm of a function2 x is ||x|| = <x,x>

The consumption set for the ith agent is X c H; X is closed and convex, it contains the

vector {0}, and satisfies the following condition: (*) if x e X, and y > x, then y e X. Both H

1 The analysis can easily be extended to real valued functions of R , n > 1.
2 Chichilnisky (1977) and Chichilnisky (1981 a,b,) gave a straightforward economic
interpretation of (weighted) Hilbert space inner products as the value of consumption streams
in infinite horizon models of optimal growth; following this, Chamberlin and Rothschild (1984)
Connor (1984) and Chichilnisky and Heal (1984, 1991) used Hilbert spaces in financial models
and gave a straightforward economic interpretation of L~ norms in models with infinite

dimensional commodity spaces.



and the positive orthant H of H, are included in this definition of consumption sets, as are

other subsets of H which are bounded below in some coordinates and not in others.

A price p is a real valued function on H giving positive value to positive consumption

bundles: this implies that p is continuous on H, that p is itself a function in H, and that the

value of the bundle x at price p is given by the inner product <p,x> = / p(t). x(t) d/i(t). The

price space is therefore H , the positive cone of H.

The results given here apply to weighted Lo and also to the space of real sequences U

with a finite measure; the appendix extends the definitions and the results to other L (1 < p <

«0 spaces and to Sobolev spaces H , for an integer s > l.The order > in H is given by x > y

iff x(t) > y(t) a.e., and x >.y iff x(t) > y(t) a.e. A sequence (x11) is said to converge to x in the

weak topology iff <xn,h> -+ <x,h> for all h in H. L^, the space of real valued functions on R

which are bounded a.e., is contained in H and is a dense subset of H, see Chichilnisky (1977)

and Chichilnisky and Heal (1984, 1991). For example, L^ is contained in weighted L~ because
9

if f £ L^, then J R f(x) dfi(x) < sup £ D K ( X ) | J D ^ X ) < °°- ^ *s dense in weighted 1^

because the sequence of "cutoff" functions (f ), where f (x) = 0 for x > n, and f (x) = f(x)

otherwise, converges to f in L~.

Society's endowment Q. is the sum Q..+...+ Q, , where Q.- is the initial non - negative

endowment of individual i. A feasible consumption bundle is a vector v e H which satisfies v <
2

Q. A function u: R -» R is said to satisfy the Caratheodory condition if u(c,t) is continuous

with respect to c e R for almost all t e R, and measurable with respect to t for all values of c.

An allocation x is a vector (Xp.-.x) e H . A feasible allocation x is an allocation such that I-

x. < Q. The set of feasible allocations is denoted F.

Each individual i has a utility function W. defined on a neighborhood of the
2

consumption set X, denoted NX, W-: NX -» R which is C (twice continuously differentiable in

the norm of H), strictly quasi concave and increasing, i.e. if u > v, then W. (u) > W-(v), and

such that W.(0) = 0. Without loss of generality we assume that sup ^-(W.(x)) = »; this is

simply a normalization of utilities; all the results follow by assuming instead that for each i



there exist a number W. = sup py(W.(x)) < °°, and replacing "°o" by W. in the notation. The

utility level of an allocation x denoted W(x) is the k - dimensional vector (W|(x,),...,

W. (x,)), also called the utility vector. We assume that the ratio of the first and second

derivatives of W. is bounded; this means bounding absolute risk aversion of the agents if the

coordinates of the space are states of nature:

(A*) For any x e H, and i = l,...,k, ||D2Wi(x)||/||DWi(x)|| < X < 1.3

A utility vector v = (v.,...,v. ) - which may not be the utility vector of a feasible

allocation - is called efficient if there is no feasible allocation (z1?...,z, ) such that W.(z-) >
IK 11

W.(x-) for all i, W.(z-) > W.(x-) for some i, and there exists a sequence of feasible allocations

{zn} in F such that v = lim n (WJz*),...,W, (z. )). i.e., v is in the closure of the utility vectors

corresponding to the set of feasible allocations. The Pare to frontier is the set of efficient utility
k+vectors in the positive cone R which correspond to feasible allocations. A real number v. is

called an efficient utility value, if it is the ith component of an efficient utility vector v. A

feasible efficient allocation is an efficient allocation which is also feasible. The following

condition on preferences will be assumed throughout:

(CL) The set of directions of gradients of an indifference surface is closed, i.e.

Gv = {a = DWjCxyyDW.WH s.t. W.(x) = v.) is closed for all utility values v{.

This condition (CL) rules out the existence of "asymptotic supports" which do not support any

3 DW-(x) denotes the derivative of W., i.e. the gradient of W., computed at the point x.

2 2

Similarly D W.(x) denotes the second derivative at the point x. Recall that D W. is a bilinear

form, so that (A*) means that for all x, u e H, uT e (x, x+u) 3 X > 0 s.t. | (u.

D2(Wi(x+u').uT)/DWi(x).uT| < A, uT the transpose of u.



allocation but do so asymptotically, see figure 1. Note that this condition does not rule out

linear or piecewise linear functions, nor most strictly concave functions.

Figure 1

Society's endowment Q is said to be desirable if W.CocQ) > W.(0) for all a > 0, and all
1 1

i. This is always satisfied if W. is strictly increasing, W.(0) = 0, and the initial endowment Q.

is positive, which we assume.

k k+

Let A denote the unit simplex in R , A = { y e R : I- y. = 1}. A feasible allocation

(Xp...,x,) is a quasi equilibrium when there is a price p * 0 with <p,Q-> = <p,x-> and <p,z> >

<p,x.> for any z with W.(z) > W.(x-), i = l,—»k. A feasible allocation (X15 . . . ,X.) is an
1 1 1 1 IK

equilibrium when it is a quasi equilibrium and W.(z) > W.(x.) -» <p,z> > <p,x.> . The latter

holds at a quasi equilibrium such that <p,Q.> > 0 for any i.

We define the set of undominated sequences for the i-th consumer as A. = { % -

{x11} _i , #: x11 £ X , and lim Wl(xn) = »}. The set A- consists of all sequences in the

consumption set X along which individual i's utility increases without bound4. Define now the

asymptotic dual of A., D. = { h e H+ s.t. if (xm) e A. 3 n(h) with <h,xm> > 0 for all m >

n(h)}. D. is the set of prices giving positive value to all but finitely many terms of any

sequence of consumption vectors leading to unbounded utility values.

We now define the condition of limited arbitrage: that there exists a vector h e H

giving a strictly positive value to all elements of sequences in A. , i = l,...,k, from some

allocation onwards,

(LA) D = f l D. * d>.

In words: there is a price at which nobody can derive unbounded utility from zero - cost

4Debreu (1962) page 258 introduces a cone based on all points preferred to a given vector. Hart
(1974) and Brown & Werner (1992) also use cones of directions in which a preference
increases. Note that our concept is different because we are looking at sets of sequences along
which utility levels go to infinity (or the sup of utility values over the consumption set).



Asymptote of both
indifference surfaces

difference surface of agent 2
corresponding to U(2)

Consumption of good 1

Indifference surface of agent 1
corresponding to U(l)

Figure 1: Two agents who have indifference surfaces corresponding to utility
values U (1) and U (2) with the line y = — x as asymptote. Consumption sets are
the whole space and feasible allocations are those which sum to zero. The utility
functions of the agents are

, U2 = x2 + y2 -

The problem:

maximize U\ subject to U\ = U2 and X\ + x2 = 0, yx -\- y2 = 0,

has no solution, but the values of U\ and U2 approach 0 from below as X\
yi — -co .



allocations, and for this reason we call this condition limited arbitrage.5

Define the set of feasible allocations which give utility values exceeding those of the

initial endowments to all agents, F Q = { x e X , x = (x. + ^;)j£ri l,] s-t< V i» Z- x. = 0 and

U (x.+ Q.) > U (Q.)}- The set S of utility vectors which are co linear with a given element of

the unit simplex A, r = (r,,...,r,) e A, and arising from feasible allocations, is defined by S =

{(u1v..,u,) e Rk s.t. u. = W.(Q. + x.), I- x. = 0, and JU(W.(Q. + x.)) = r. for i e [l,k], for some
IK 1 1 1 1 1 1 1 1 1 1

ju > 0). Define the cone C(W.X n X) - x = (Av e X : A > 0, and v satisfies wV+x) > W^x)}.

This is the smallest cone containing the intersection of the set of vectors preferred or

indifferent to x for agent i and the consumption set X, translated to the origin. We will work

with two regularity conditions on individual preferences: condition (R), which is required

when X = H, and condition (T) required otherwise:

(R) There exists an agent i, 1 < i < k, such that 0 i the weak closure of the union over x e H,

of the supporting hyperplanes to the preferred set of individual i at x, W. .6

Condition (R) is required when the consumption set of the economy is all of the

commodity space, X = H; it requires the existence of one individual with marginal utility

bounded away from zero.

(T) There exists a vector w < 0, ||w|| = 1, at distance e > 0 from the cone C(W. n X) • x, for

all x e X and 1 < i < k7. There is an agent i and V x e X a subset V. supporting the preferred

5 Arbitrage possibilities still exist, they are limited but not necessarily removed because it may
be possible for all agents to raise utility by some positive amount at zero cost at this price.

6 Wx. is the set {y £ H : W.(y) > W.(x)}. The preferences of Example 2 in Chichilnisky and

Heal (1991) satisfy condition (R) and (T). In addition, all preferences satisfying a uniform
"cone condition" as in Chichilnisky and Kalman (1981), which is the same as Mas - Colell's
(1986) uniform properness condition, satisfy both (R) and (T). For further examples, see also
Section 3 and footnote 8 below, Chichilnisky (1991) and Chichilnisky and Heal (1991).
7 In the Hausdorff distance.
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Condition (T) is required when X ^ H . The first part of condition (T) is the "cone

condition" in Chichilnisky and Kalman (1980, Theorem 2, part (C)), where it was shown to be

necessary and sufficient for the existence of supporting prices for optimal allocations when

consumption sets may have empty interiors. This is a typical situation in Hilbert and L spaces

(l<p<°°) where the consumption set is the positive orthant, since positive orthants in these

spaces have empty interior. This cone condition is not needed when X = H because then there

is no problem with empty interiors, as H is its own interior. The second part of condition (T)

requires that among the supports for all preferred sets W1 there should exist some subset

which is weakly bounded away from zero, i.e. the vector 0 is not in the weak closure of this

subset. That the vector 0 is not in the weak closure of a set implies that the set has no

sequence converging pointwise to zero. Condition (T) is similar to condition (R) but weaker,

since we don't require that all supports form a set weakly bounded away from zero, but rather

that there should exist some subset of supports with this property.

The difference between the conditions (R) and (T) arises because when X = H and

preferences are smooth, there exists a unique supporting hyperplane for each x and i, while in

the case X * H, for example X = H , and x is in the boundary of H , W1 could have a large

number of supports even if preferences are smooth. Some of these supports must then be

eliminated8 to satisfy (T). In both cases, when X = H or when X * H, the role of the

8 For example, condition (R) is satisfied by smooth preferences W. whose gradient vectors

DW- belong to a weakly closed set disjoint from the origin, or to a norm bounded, closed and

convex set disjoint from the origin. Condition (R) is satisfied when for example there exist a

vector v e H - {0} such that for all x, the supporting hyperplanes for Wx- have normals p.(x)

with <p.(x),v> > £ > 0 for all x e H. The main difference between our regularity condition (R)

used when X = H, and our regularity condition (T) which is used when X * H, satisfying (*),
is that (T) does not imply that the set of all supports to all weakly efficient allocations be
weakly bounded away from zero, but rather that there exists some convex set of supports for
each weakly efficient allocation within the consumption set, such that the union of these



10

conditions (R) and (T) is the same: eliminating equilibria with zero prices. Conditions related

to (R) and (T) have been used in the literature on equilibrium in infinite dimensional spaces:

for example Mas - Colell (1986) uses a uniform properness condition. The properness

condition of Mas - Colell (1986) (without the requirement of uniformity) is the same as the

cone condition introduced earlier in Chichilnisky and Kalman (1981), see Chichilnisky (1991).

3. Limited Arbitrage and the Existence of an Equilibrium

The following theorem proves that the limited arbitrage (LA) assumption on

preferences is necessary and sufficient for the existence of a competitive equilibrium. The

proof uses Lemmas 1 to 5 which are found in the Appendix. The main purpose of these

Lemmas is to establish two building blocks for Theorem 1: (1) the Pareto frontier in utility

space is a closed set under the limited arbitrage assumption (LA), and (2) each Pareto efficient

allocation admits a non zero supporting price p in H, a decentralization result. These two

results are standard in finite dimensional models with consumption sets which are bounded

below (like the positive orthant), but are not generally true when consumption sets are not

bounded below, nor in infinite dimensional spaces. The choice of spaces is quite crucial, as is

the condition (CL) on preferences. Figure 1 shows that the Pareto frontier may fail to be closed

even in finite dimensional models, provided the consumption set is the whole euclidean space.

This shows the necessity of condition (CL): when preferences do not satisfy (CL), the Pareto

convex sets over all such allocations is weakly bounded away from zero. The reason for this

difference is that if X = H+ the positive orthant of H, (H satisfies (*)) then condition (R) is

not satisfied because H has "too many" supports and in particular 0 is in the weak limit of its

supports. To see this consider H = 19, then the functions (e1), i = 1,..., defined by e1. = 1 if i = j
J

and e • = 0 otherwise, all support H and 0 is in their weak limit. Note that this is not a
problem of lack of existence of supports: it is, rather, a problem of too many supports. The
natural solution to this problem, which is the one adopted here, is to eliminate judiciously
some of these supports and this is achieved by constructing for every weakly efficient
allocation a convex set of supoorts in such a way that their union over all allocations is weakly
bounded away from 0. this is precisely what condition (T) does.
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frontier is generally not closed. Even when the consumption set is bounded below, but the

commodity space is infinite dimensional, examples can be provided where the Pareto frontier

is not closed. Mas - Colell (1986) presents an example of this phenomenon in L^ , and, in order

to prove existence of an equilibrium, he rules it out by assuming a "closedness condition"

which requires the Pareto frontier to be closed, without reference to the primitives of the

model such as endowments and preferences. Here is where Hilbert spaces show their strength:

from the strict quasi concavity and smoothness of the preferences, the Banach - Saks Theorem,

and results of Chichilnisky (1977) and Chichilnisky and Kalman (1981), we prove in Lemma 2

in the Appendix that the Pareto frontier is closed: this is true even when the consumption set is

not bounded below provided that (LA) and (CL) are satisfied (Lemmas 1 to 5).

Another issue underlining the importance of the choice of space is the problem of

existence of supporting prices to decentralize Pareto efficient allocations. Even when the

consumption sets are positive orthants, such prices do not exist in general, as an example in

Mas Colell (1986) shows. The existence of supports requires special conditions on preferences.

When the consumption set X has an empty interior (e.g. the positive orthant of H) this requires

the "cone condition" of Chichilnisky and Kalman (1981), which is always satisfied when the

allocation maximizes a continuous utility defined on a neighborhood of the consumption set X

(Chichilnisky and Kalman (1981), Theorem 2). To resolve this problem, Mas - Colell (1986)

uses the Chichilnisky - Kalman cone condition (which he calls "properness", see Chichilnisky

1991), a condition which is automatically satisfied in our case when the utilities are continuous

as shown in Chichilnisky and Heal (1991). In (T) we required the cone condition.

The following Theorem is valid for H = weighted L9 , for H = weighted L (1 < p <
z p

°°), and for more general Sobolev spaces, as indicated in the Appendix. This theorem is valid

when the consumption set X is either all of H or not; when X * H, then X must satisfy (*) x

eX, y > x -» y e X. Recall that when the consumption set X is the whole space H, the

preferences satisfy the regularity condition (R); while when X * H, then they satisfy the
2

regularity condition (T). Recall also that utilities are C , strictly increasing, quasi concave and
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satisfy (CL), and that the initial endowment Q. = (Q..,...,Q,) is desirable:

Theorem 1. Consider an economy E in which individual utilities W:H -+ R satisfy the limited
1

arbitrage condition CLA). Then there exists a Pareto Efficient competitive equilibrium

allocation (x« x, ) with a supporting price p £ H . ||p|| = 1. Reciprocally, if E has a

competitive equilibrium, then the limited arbitrage condition CLA) is satisfied.

Proof:

We establish necessity first. Assume that (p*,x*) is a competitive equilibrium. Then if

D = (|), for all p e H there exists a sequence (x11} s.t. p g D. for some j . Consider now p*; if D

= ((), there exists a j and a sequence {x.n} in A. and such that <p*,x.m> < 0 for infinitely many

m's. However, for m large enough, W (x. ) > W^x*.) and x. is within j's budget at prices

p*. This contradicts the fact that (x*,p*) is a competitive equilibrium. Therefore, when D is

empty, E has no competitive equilibrium.

We now prove sufficiency. Consider first the case where X = H, so that (R) is satisfied.
k kWe define a correspondence <|>: A -» T = { y e R : !•_, y.= 0} with the property that any of its

zeros is a quasi equilibrium9. For each r e A, let x(r) = (x^r),...^, (r)) be the feasible

allocation which gives the greatest utility vector co linear with r. Such an allocation defines a

nonzero utility vector which depends continuously on r by Lemma 1 in the Appendix. Without

loss of generality assume that I- x.(r) = Q. Now let P(r) = {peH : ||p|| < 1, p supports x(r)}.

P(r) is convex, and is non - empty by Lemmas 2 and 3 in the Appendix. Now define (j)(r) =

{(<p,Qj- x,(r)>,...,<p,£l - x, (r)>) : p e P(r)j. (j)(r) is non empty and convex valued, Lz. = 0

for z e (j)(r) by Walras1 Law, and 0 £ (j)(r) if and only if x(r) is a quasi equilibrium. The next

step is to show that (j) is upper semi continuous, i.e. if vn^ r, zn e (()(rn), z11 -> z then z e $ (r).

k n
Consider now the feasible allocation x(r) in H , where r = lim (r ). Let u be any other

allocation with W.(u-) > W.(x.(r)), where x.(r) is the ith component of the vector x(r). Since

9 This follows a method which was introduced by Negishi (1960).
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r11-* r, eventually W^up > W^x^r")), which implies <pn,ui> > <pn,xi(r
I1)> = <pn,Qi> - zn

f,

where zn. is the ith component of z11 e (j)(r), and pne P(rn) : this follows from the definitions of

z and of p . Let (pn) be any such sequence of price vectors in P(r ). Closed convex bounded

sets in H are weakly compact by the Banach Alaoglu theorem (Dunford and Schwartz (1958))

because H is reflexive; thus the set {p: ||p|| < 1} is weakly compact10. The weak closure of the

set u P(r) of supporting prices to the preferred sets of the agents is contained within { p : ||p||

< 1}, and is weakly compact as well. There exists therefore a p with ||p|| < 1 and a

subsequence (pm) of (pn) such that <pm,f> -» <p,f> for all f in H. Note that each p m supports

the preferred sets of all agents at x(r), so that by condition (R) the weak limit of p m = p * 0,

so we may take ||p|| = 1. In. particular such a p exists for f = u, i.e. <p ,u> -+ <p,u>. Therefore

in the limit <p,u> > <p,Q> - z.. Since this is true for all u with W.(u.) > W.(x.(r)), it is also

true for u with W.(u.) > W-(x.(r)) and in particular for u = x, i.e. <p,x.(r)> > <p,O-> - z. for all

i so that <p,E-x.(r)> > <p,£.Q.> - Z-z-. Since I-x.(r) = £.Q. and I-z. = 0, we have <p,x.(r)> =

<p,Q.> - z. for all i, implying that z e ())(r) as we wanted to prove.

The proof is completed by showing that (J) has a zero. This is now a standard

application of Kakutani's fixed point theorem. Consider the map F defined by F(r) = r + §(T). It

is upper semi continuous, non empty and convex valued. If r is in the boundary of A, F(r) e A:

if r- = 0 for some i, then x.(r) is indifferent to 0 for i, so that 0 > p.x.(r) > 0 where p e P(r).

This implies that z. = <p,Q. - x> > 0. Since F is non - empty, upper semi continuous and

convex valued, and it satisfies the appropriate boundary conditions, we may use Kakutani's

fixed point theorem: F has a fixed point in A, which is a zero of (j). This completes the proof

of existence of a quasi equilibrium.

When all initial endowments Q- are strictly positive, the value of Q. at the equilibrium

prices is also strictly positive, i.e. j R p(t) Q-(t) djU(t) > 0. More generally, in a Hilbert space p

> 0, Q » 0 and <p,£2> = 0 imply p = 0. It follows that when all initial endowments Q. are

10 In Lj , the Banach Alaoglu theorem is that convex, bounded and closed sets are weak*

compact, not weakly compact (Dunford and Schwartz (1958)).
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strictly positive, then <p,Q.> > 0 for all i and therefore the quasi equilibrium is a competitive

equilibrium. In particular, the value of the society's initial endowment Q is always positive, i.e.

<p,Q> > 0. That the competitive equilibrium is Pareto efficient follows now from standard

arguments, see for example Debreu (1954).

Consider now the case where X * H, so that (T) is satisfied. The proof follows the

same lines as above except that Lemmas 2 and 3 are replaced by Lemmas 4 and 5 in the

Appendix, and P(r) is replaced by P'(r) = { p e H+: ||p|| < 1 , p supports x(r) and <p,-w.> > e

for a given w.(r) £ *¥ }. The £ and ¥ are given by condition (T). We shall show that V r, P'(r)

is not empty. Condition (T) and Theorem 2.1 pp. 25, (a) of Chichilnisky and Kalman [12]

imply that for each r e R there exists a supporting hyperplane p e H for the weakly

efficient allocation x(r). We shall show that such a p can be chosen so that <p,-w-> > er for

some w. = w-(r) in Q. As the distance between w. and C(Wxi n K) - x- is d > £, and ||w.|| =
J J i

1, there exists y e D. = closure of C(Wxi n K) - x., such that ||y - w.|| = d. Convexity of
i l •*

C(Wxi n K ) - x. implies that <y - w.,y > = 0 and <y - w-,z> > 0 for all z £ C(Wxi n K) - x-.
i * ^ J i l

2 2
Let p = (y-w.), then ||p|| = ||y-w.|| = <y-w.,y-w.> = <y-w.,y> + <y-w.,-w.> = <y-w.,-w.> =

2 2 ?<p,-w-> since <p,y> = 0. Therefore <p,-w-> = ||y-w.|| = d > £~ and thus V r, the set P'(r) is

not empty. P'(r) is also convex and closed. Now consider as in the case X = H a sequence

(pm) in P'(r). By construction, (pm) is contained in a weakly compact set, the unit ball of H.

Assumption (T) assures that the weak limit of (pm) cannot be zero, because for each m, there

exists a j such that <p ,- w.> > e and w. * 0. The rest of the proof follows as in the case X

= H. •

4. Appendix
Lemma 1. Consider an economy with consumption set X = H. or X * H and satisfying (*). The

limited arbitrage condition (LA) implies that the set S of feasible utility allocations of

direction r is bounded for all r £ A.
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Proof: Consider r eA. Let S = {(u1v..,u,) £ Rk s.t. u- = W.(Q. + x.), L x. = 0 and JU(W.(Q. +
r I K l i i i i i l i

x.)) = r. for i = [l,k], some jj, > 0}. Assume S is not bounded. Then there exists a sequence of

allocations (x11) , with I-(x.n) = 0, and a subsequence (xm) of (x11) s.t. lim (W.(x.m)) =

«> for some j , call this j ' .

First consider the case r » 0 . Then lim W-(x.m) = » for all j , for otherwise not all of

r's coordinates could be strictly positive. Therefore, (xm) is in A. for all j . But (LA) implies

that there exists an h e H and an M such that <h,x.m> > 0 for m > M and all j , which

contradicts the fact that I-(x.m) = 0 for all m. Therefore if r » 0, S is bounded.

Now assume r s dA, so that r. = 0 for some i. Let I be the set of indices i s.t. r. = 0. For

a given j ' * I, define a sequence (zm) by z-,m = x.,m + l { l ( x ^ ) , z™ = 0 if i £ I, and z h
m =

k k

x, otherwise. Then the sequence (Q.,+ z.,m) is in A-, and I- , z.m = L , x.m = 0.

Consider the vector d £ D, which exists by condition (LA). For some i £ I, a new sequence

(v ) is now defined, which can be described informally as follows: agent h is given the

projection of z, on the line defined by d; agent j 1 gets 1/2 of the projection of z., on that

line, and agent i gets the same. Hence the utilities of j ' and i go to infinity along this new

sequence of allocations. Formally, let v. m = <d,z, m >. d if h * j',i, v.,m = <d,z.,m/2>.d, and

V i
m = <d,zjt

m/2>.d. Then since d £ D, limmHoo W.,(Qjf + v j t
m) = l i m ^ WJCQJ + v ^ ) = «.,

and L , v . m = 0. This contradicts (LA) which requires that for such a sequence (v. ) there

should be an M s.t. <d,v.m> > 0 for all m > M. Therefore (LA) implies that S is bounded for

all r £ A as we wished to prove. •

Using Lemma 1, the following Lemma establishes that, when X = H, the Pareto frontier is

closed. In establishing that the Pareto frontier is closed, we use heavily the fact that the

commodity space is reflexive. We use the Banach-Steinhaus theorem, which requires

reflexivity, to establish weak compactness from norm-boundedness, and then use the

Banach-Sacks theorem to show that pointwise convergence implies norm convergence.
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Lemma 2. Assume that the consumption set of the economy is X = H. that society's

endowment Q is desirable, and the utilities of the agents are Or. strictly increasing and quasi

k+concave, and satisfy conditions (CD and fLAI Then on any ray r of the positive cone in R

there exists a non - zero feasible efficient utility vector. The Pareto frontier is closed, and the

map V(T) = sup.fWh. V W^ e S . is continuous in r.

Proof: Since the initial endowment is desirable and each W. is increasing, for each ray r in

R , there exists a feasible allocation (x°p..,x°,) s.t. WjCx0^, ..., W^Cx0 .̂) is a non zero

vector in r. Consider now a sequence of utility vectors (W ) contained in the set S e R

defined in Lemma 1. Without loss of generality we may assume that (W ) is increasing. By

definition, W m = ( W ^ " 1 ^ W ^ ™ ^ f o r s o m e s e c l u e n c e fr™) = (y™! ym
k) £ F. Let

v(r)= (v,,...,v, ) = sup(Wm) in r. We shall prove that v(r) is a utility vector corresponding to

some feasible allocation (Q,+z lv..,Q, +z,) with I-z. = 0.

Define the vector s.n=DW.(Q.+y.n)/||DW.(Q.+y.n)||. Then by (A*), lirn m(sup. .
1 1 1 1 1 1 1 I i j l l l l j j

| <h,s-n - s-m>|) = 0, for every h in the basis of coordinates of H, because otherwise there will

exist feasible allocations produced by varying individual allocations along the direction

defined by h, which increase everyone's utility and eventually exceed the utility levels

(Vj,...,v.), contradicting the fact that the sequence of utility levels W.(Q. + y-n) converges to

its supremum, v. Formally, if lim (sup. • |<h,s.-s.m>|) * 0, for some h in the coordinate
ii,in i,j i j

basis of H, then 3 e > 0 s.t. for any N, 3 n,m > N with <h,S|n-s.m> > £. So there exists a

number A > 0, with <Ah,DW i(a+y i
n)> = A||DWi(Qi + yi)||<h,si

n> > 0, <Ah,DW.(Q.+y.m)> =

A||DW.(Q. + y.m | | <h,s.m> > 0. We can then write W^Qj + y" + Ah) = W ^ a + y.n) +

<DWi(Qi + yi
n),Ah> + 1/2 Ah. D2(Q. + y.n+ vh) (Ah)T by Taylor's theorem for some v e

(0,A). By (A*), W.(Q. + y.n + Ah) - W. (Q. + y?) > (l-y)<DWi(Qi + y^), Ah>. Now, given

any 8 > 0, 3 N(<5) s.t. ||W.(Q. + y.n - v.)|| < 5 for all i, because v = sup W m by assumption.

Choose 8 < (l-'K)<DWi(a + yi"),Ah> and pick n > N(<5). We can do the same for W-(Q. + y.n

- Ah). In particular, we can pick a 8 and n > N(<5) s.t. W^Qj+y^ + Ah) > v ,̂ and W.(Q. + y-n

- Ah) > v., contradicting the definition of v as the supremum of attainable utility vectors on the



17

ray r. Therefore, for all h in the basis of coordinates of H, lim (sup. . | <h,s- - s. > |) = 0 as
n,m i,j l j

we wished to prove.

Now let s° denote the weak limit of (s-n) with respect to n, for all i. This limit exists

by Banach - Steinhaus theorem which establishes that norm bounded sets are weakly

precompact, because all vectors s-n have norm one. Note that the Banach - Steinhaus theorem

requires that the space H be reflexive11, a condition which is satisfied because H is a Hilbert

space. Now since v(r) = sup Wm , it follows that for any e > 0, and m(£) large enough, there is

a vector denoted z.m s.t. (Q. + z.m) e ( W . y V ) and ||DW.(n.+z.m) - DW.(Q.+y.m)|| < e.
I v I I ' v Y v r " I I I I I Ji "

Therefore the sequence (t.n) = (DW-(Q. + z.n)/||DW.(Q. + z-n)||) also converges weakly to s°

for all i. Since (t1 ) converges weakly to s°, it converges pointwise to s°. Therefore, we may

now apply the Banach - Saks theorem (Dunford and Schwartz (1958)), to establish that the

sequence of averages of (t1 ), defined by a.n = (l/n)(t- +...+t-n)) converges to s in the norm

of H.12 Strict quasi concavity of W. implies that a-n is the direction of a gradient in (W.~ (v.))

as well. We may now apply condition (CL), which implies that s° is the direction of the

gradient of some vector in the set (W.)~ (v.) for all i. In other words, there exists a vector z. £

H, with (Q. + zp £ (Wp" (v.) and A-.DW.(Q. + z.) = s° for all i, some X-. By strict concavity,

z. = lim z.n = lim y.n; since I y . n = 0 for all n, it follows that I-z. = 0, so that the allocation

nThe Banach-Steinhaus Theorem (Robertson & Robertson (1973) Chapter 4 Proposition 5 page
72) establishes also that norm-bounded sets are only weakly pre-compact in reflexive spaces.
Hence the arguments of this proof are not available in non-reflexive spaces such as L^ or L p

such as those used e.g. by Mas - Colell (1986) and by Brown and Werner (1992).
12 The Banach Saks theorem establishes that if a sequence converges pointwise, then the
sequence of its averages as defined above converges in the norm; we can apply this theorem

here because we know that (t ) converges weakly and therefore pointwise. If, instead, (t )
*

converged in the weak topology rather than weakly, the reasoning would not apply since we

cannot assure in this latter case that (t1 ) converges pointwise. The norm boundedness of the

vectors s . assures weak precompactness only when H is reflexive: this is the Banach Stenhaus

theorem (Robertson and Robertson, 1973). Therefore only with reflexive spacec we can apply
this chain of reasoning. For this reason, the use of Hilbert or reflexive spaces is crucial to our
results.
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(Q.+z.) is feasible and W-(Q-+z.) = v. as we wished to prove. This completes the proof that

along every ray r in R there is a non - zero feasible efficient vector. We now complete the

proof that the Pareto frontier is closed in R .If the limit v e R of a sequence (WJ) in the

k+Pareto frontier is not in this frontier, consider the ray r in R through the origin, passing

k+through this limit point v. There exists a nonzero feasible efficient utility vector \i £ R on

that ray. If [i * v then either \i is not weakly efficient or else for j > N, some N, W* is not

feasible efficient. In either case we have a contradiction. Thus /i = v and the Pareto frontier is

closed. The last statement of this Lemma is the closed - graph theorem. •

The next result shows that when the consumption set of the economy is X = H, every Pareto

efficient allocation is supported by an appropriate price in H :

Lemma 3. Consider an economy with consumption set X = H. and let z = (x, x.) be a

feasible efficient allocation, and for 1 < i < k .let W. be concave, strictly increasing, and

continuous. Then there exists a price p e H . ||p|| = 1. such that <p.y> > <p.x> for all y

satisfying W.(y) > W.fx.l

Proof: Let Wxi = { x e H : W.(x) > W-(x.)}. Let V = I- Wxi , and v = x.+...+x. £ V. By
1 1 1 1 1 1 I K

Theorem 2.1 of Chichilnisky and Kalman (1981), V i there exists a positive price p- e H which

supports Wxi at x. , ||p|| = 1. Since z is feasible and efficient, and the W. are strictly
i

increasing, if v' < v, then13 v1 t V. Furthermore, the set V is convex and has a non empty

interior because for each i, the set W. i has a non empty interior by continuity of W-. It

follows from Chichilnisky and Kalman (1981, Theorem 2.1) that there exists a non zero

supporting price p for V at v. V contains a translate of the positive orthant because each W i
i

does. Therefore p is positive and we can take ||p|| = 1. It is now easy to check that p supports

13 For otherwise there would exist an allocation z" = (x"1v..,x",) s.t. I-x". < v so that z" is
1 K 1 1

feasible, and such that W.(x".) > W.(x-), contradicting the fact that z is weakly efficient.
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W-i at x.. This is because, by construction, p is minimized over V at v. The minimum of a

linear function on the sum of sets is equal to the sum of the minima of the linear function on

each set, i.e. p(v) = I p(x'.), where x'. minimizes p over the set W-i . Since V i p(x'.) < p(x-),

and l{ pCx'p = p(v) = £. p(xp, then pCx'p = p(xp for all i, i.e. p^xp = min p^y) V y e Wxi and

V i. Therefore p supports W.i at x., as we wished to prove. •

The following lemmas proves the same results as Lemmas 2 and 3, but when the consumption

set X is not H; X is convex and closed and satisfies: (*) x e X, y > x implies x e X.

Lemma 4: Consider now an economy with consumption set X ^ H satisfying (*). Let z =

(x, x, ) be a feasible efficient allocation in X and for 1 < i < k. let W- be a strictly concave

and strictly increasing continuous function. Then there exists a price p e H . ||p|| = 1. such that

<p.y> > <p.x> for all y e X satisfying W-(y) > W:(x-).14

14 The parallel to our Lemma 3 in Mas - Colell (1986) requires an additional condition denoted
"uniform properness" which is not required here, and which is strictly stronger than our

assumptions. We assume H continuity of the utilities instead, and it is easy to see that our
condition of continuity implies "properness at one point" but it is strictly weaker than "uniform
properness". To this end, consider a continuous strictly increasing function W: H-» R. Then
W(x - Ah) < W(x) implies that there is a ball around (x - Ah) where this inequality is also

satisfied. Therefore for all x there exists h in H and a neighborhood V of the origin such that
W (x - Ah +y) > W(x) implies y e AV. The "uniform properness" condition of Mas - Colell

(1986) requires the existence of one h e H and a neighborhood V of {0} which are valid for
all x in H such that W(x - Ah + y) > W(x) implies y t AV. Our condition of continuity is
therefore strictly weaker than the "uniform properness11 condition of [27], since in our case the
h and 8 may vary with x, while "uniform properness" requires instead the existence of one h
and one 8 which must be the same for all x in H. It is also easy to see that properness at one
point is identical to the cone condition introduced in Chichilnisky and Kalman (1981,Theorem
2.1 p. 25 ) as a necessary and sufficient condition for the existence of a supporting hyperplane
for convex sets which may have an empty interior, see also Chichilnisky (1991). The cone
condition of Chichilnisky and Kalman (1981) requires that if Y is a convex set, then there
exists a w > 0 which is at a positive distance from the cone defined by Y and x e Y, C(Y,x) =
{ z = a(y -x) + x, y s Y, a > 0} see Chichilnisky and Kalman (1981, (a) of Theorem 2.1 p. 25).
When Y is the convex set of points which are preferred (by >•) to x, this condition is identical

to requiring that there exists a vector w > 0, and an open neighborhood of the origin V such
that: (x - aw) + z >• x implies z e aV, which is the "properness" condition for the preference

>{ (Mas - Colell, 1986, page 1043).
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Proof: Consider the feasible efficient allocation z = (x15...,x,) in X and let x = X- x.. Let V.
IK 1 1 1

V -4-

= ( W i n X). We must show that there exists a p e H with ||p|| = 1, supporting I-V. at x. For
i

all i the function W. is continuous, it attains a minimum within Wxi at x., and is increasing so

that y < x -» y g Wxi. By Chichilnisky and Kalman (1981, Theorem 2.1), this implies that there

exists a non zero q. £ H supporting the set V. at x.. Equivalently, there exists a non zero p. e

H+ supporting the set V. - x. at {0}. Consider the set Bi = { u e H : V z £ (Vj - xp <u,z>)>0},

namely B. is the set of supports to V. - x.. B. is convex and closed . Since X satisfies (*) and

W. is increasing, B. c H+. If 3 v* * 0, v* in n. B., then v* is the desired support for the set

I-V- at x, and thus provides the desired support for the feasible efficient allocation z. Assume,

to the contrary, that n.B. = {0}. For any given i, define D- = { z £ H : <z,y> > 0 V y £ L -V. -

x. }. This is the closed convex cone of supports of the set I- -V- - x.. Since V j , W- is
J J J J J

minimized at x- over the set W. j , by Chichilnisky and Kalman (1981, Theorem 2.1), D. * {0}.

By condition (*) on X and the increasingness of W-, D - c H . Note that n.B. = {0} implies B.

n D. = {0}, which we now assume. Take w * 0 in D-. Then w + D. c D-, so that V z £ B. and y

£ D-, w + y * z, or equivalently w * z - y. Since this is true for all z e B. and y £ D., then w is

not in the cone B. - D. . Since the set B. - D. is closed, this implies d(z, B. - D.) > 0; by

Chichilnisky and Kalman (1981, Theorem 2.1), there is therefore a p £ H s.t. p supports B. - D.

at {0}. Equivalently, p separates B. from D-, i.e. V x e B - x ^ O , <p,x> > 0 , and V y £ D. y * 0,

<p,y> < 0. For any such x,y, d(x,y) > 0, so that the separation can be made strict:

(1) <p,x> > 0 V x * 0 in Bj, and <p,y> < 0 V y * 0 in D{.

Since B. is the set of all supports of the set V.-x., by (1) 3 X > 0, such that Xp £ V- - x.. For

any a < X, since 0 £ V. - x. and V. - x- is convex, ap is in V. - x. as well. By strict concavity

of W-, W.(orp + x.) > W.(x-). Similarly, (1) implies that there exists a y > 0 , such that -yp £

I ^ j V.-x.. Let /3 = min (a , | ) . Then

(2) ft) £ V i - x. , - J8p £ I j 5 t i Vj - Xj ,and WjCjSp+Xj) > W^xp.

Consider now an allocation that assigns /3p + x. to the i-th agent and -J3p + I-r x. to the rest;
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it is feasible because J3p + x. - /3p +£. . x. = X-x.. By (2) such an allocation exists which
1 J*1 J x l

strictly increases the utility of the ith agent without decreasing that of the others, contradicting

the efficiency of z. The contradiction arises from the assumption that n.B. = {0}. Therefore,

there exists a non zero vector v* in n.B.. Since X satisfies (*) and W. is increasing, v* e H ,

and provides the desired support for the feasible efficient allocation z, as we wished to

prove. •

Lemma 5: Assume that society's endowment Q. is desirable, the consumption set X ± H

satisfies (*) and the utilities of the agents are continuous, strictly increasing and satisfy

k+condition (LAV Then on any ray r of the positive cone in R there exists a non zero feasible

efficient utility vector. The Pareto frontier is closed and the map v(V) = sup-fW-M V W^ e r. is

continuous in r.

Proof: This follows directly from the proof of Lemma 2 by replacing the set S in the proof by

Sf* = {(ur...,uk) e Rk s.t. Uj = Wi(xi +

e [l,k] and some positive number/i}. •

S * = {(u,,...,u.) e R k s.t. u. = W.(x. + Q.) where x. e X, I-x. = 0 and M(W.(X. + Q.) = r. for i
r IK 1 1 1 1 I l i 1 1 1 1

Extension of the Existence Results

to Sobolev Spaces Hs and to L p spaces.

Let s and p be integers, 1 < s < », and 1 < p < «.

Hs = { f: R-. R : f is Cs and I (f(t)2 + ... + Dsf(t)2 djU(t) < « }

where D f is the s-th derivative of f, and

L = { f:R -• R : f is measurable and j |f(t)p | d^Ct) < * }.

For all » > p > 1, L is a Banach (complete, normed) linear space. When p > 1 it has the

following duality property: the space of continuous linear functions on L denoted L is L

for 1/p + 1/q = 1, In particular, L = L , Dunford and Schwartz [19]. One interesting feature
r r

c c

of the Sobolev spaces H is that for all s > 1, H is a Hilbert, and in particular self - dual,

space with the standard inner product and countable, orthonormal coordinate basis.
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Furthermore, by Sobolev's theorem H c C (R) if s > 1/2 + k, so that H consists entirely of

continuous functions, H consists entirely of continuously differentiable functions, and H° =

L~ , see Adams (1975), Nirenberg (1973/4), Chichilnisky (1977). In all these spaces, therefore,
s*prices (which are elements of the dual space H ) are also continuous or differentiable

functions. All the results stated in the paper apply to H and L spaces with « > p > 1

provided the assumptions are made in the respective norms of these spaces. The main

assumption is the continuity of the utility functions. The following results characterize
1 2

continuous functions in L , 1 < p < », in H and H . As before all measures \x{\) are finite.

Lemma 6. Let W (c) = fR u(c(t).t) d̂ zCt), with u satisfying the Caratheodory condition . Then

W defines a norm continuous functions from L to R (1< p < °° ) for some coordinate system
P

of L if and only if 1 u(c(tU I < aft) + b I c(t) Ip where a(0 > 0. f o a(t) du(i) < °° and b > 0.
p K

The proof is the same as given for the case of L~ in Chichilnisky (1977). •

Lemma 7. Given a coordinate system for H1. i=1.2. a function WCc) = fR ufc(t).t) dfid) is

continuous from H to R if and only if the conditions in Lemma 7 are satisfied for u and for
2

Du. W is continuous from H to R if the conditions in Lemma 7 are satisfied for u. Du. and

The proof is the same as in Chichilnisky (1977). •



23

5. References

Adams,R. A. "Sobolev Spaces", Academic Press, New York, 1975.

Bergstrom, R., Non Parametric Estimation in Hilbert Spaces, Econometric Theory 1 (1985),

7-26.

Bewley,T., Existence of Equilibrium in Economies with Infinitely Many Commodities, / .

Econ. Theory 4 (1972), 514 - 540.

Brown, D. and J. Werner (1992). Arbitrage and Existence of Equilibrium in Infinite Asset

Markets. Working Paper, Stanford University.

Chamberlin G. and M. Rothschild, Arbitrage, Factor Structure, and Mean Variance Analysis on

Large Asset Markets, Econometrica 51 (1983), 1281 - 1304.

Chichilnisky,G. Manifolds of Preferences and Equilibria, Ph. D. Dissertation, University of

California at Berkeley (1976), and Working Paper, Harvard University, Project on Efficiency of

Decision Making in Economic Systems, (1976).

Chichilnisky, G., Non Linear Functional Analysis and Optimal Economic Growth, / . Math.

Anal Appl. 61 (1977), 504 - 520.

Chichilnisky, G. Existence and Characterization of Optimal Growth Paths including Models

with Non Convexities in Utilities and Technologies, Rev. Econ. Stud. 47 (1981a), 5 1 - 6 1 .

Chichilnisky,G., Optimal Savings Policies with Imperfect Information, / . Math. Econ. 8

(1981b), 1 - 15.

Chichilnisky, G., and P.J. Kalman, Comparative Statics and Dynamics of Optimal Choice

Models in Hilbert Spaces, / . Math. Anal Appl. 70 (1979), 490 -504.

Chichilnisky, G. and P. J. Kalman, An Application of Functional Analysis to Models of

Efficient Allocation of Economic Resources, J. Opt. Theory and Appl. 30 (1980) 19 -32.

Chichilnisky, G. and G. M. Heal, Existence of a Competitive Equilibrium in L and Sobolev

Spaces, IMA Preprint Series # 79, Institute for Mathematics and Its Applications, University of

Minnesota, Minneapolis, Minnesota, June 1984.



24

Chichilnisky, G. and G. Heal, Existence of a Competitive Equilibrium in Sobolev Spaces

without Bounds on Short Sales, Journal of Economic Theory (1991), to appear.

Chichilnisky, G., The Cone Condition, Properness and Extremely Desirable Commodities,

Working Paper, Columbia University, January 1991. Economic Theory, to appear.

Chichilnisky, G. (1991a) Markets and Social Choices. Working Paper, Columbia University,

1991.

Connor, G. A unified beta pricing theory, / . Econ. Theory, (1984) 13-31 .

Debreu, G.,Valuation Equilibrium and Pareto Optimum, Proc. Nat. Acad. Sci. 40 (1954), 588 -

592.

Debreu, G. (1962). New Concepts and Techniques for Equilibrium Analysis. International

Economic Review, September 1962 Vol. 3, No. 3., Pp 257-273.

Dunford, N. and J. Schwartz, "Linear Operators" Parts I and II, Interscience, New York, 1958.

Dybvig, Phillip and Stephen Ross, Arbitrage, in The New Palgrave: Finance, edited by John

Eatwell, Murray Milgate and Peter Newman, McMillan, 1987.

Green, J. (1973). Temporary General Equilibrium in a Sequential Trading Model with Spot

and Futures Transactions. Econometrica, Vol. 41 No. 6 1103-23.

Hammond, Peter. (1983) Overlapping Expectations and Hart's Conditions for Equilibrium in a

Securities Market. Journal of Economic Theory, 31, 170-175.

Hart, O.,On the Existence of Equilibrium in a Securities Model, J. Econ. Theory 9 (1974), 293

-311.

Kreps,D., Arbitrage and Equilibrium in Economies with Infinitely Many Commodities, / .

Math. Econ. % (1981), 15- 35.

Mas - Colell, A., The Price Equilibrium Existence Problem in Topological Vector Lattices,

Econometrica 54 (1986),1039 - 1053.

Negishi, T., Welfare Economics and the Existence of an Equilibrium for a Competitive

Economy, Metroeconomica 12 (1960), 92-97 .

Nielsen, Lars. (1989) Asset MArket Equilibrium with Short Selling. Review of Economic



25

Studies, Vol. 56, No. 187, 467-473.

Nirenberg, L., "Topics in Non Linear Functional Analysis" Notes, Courant Institute of

Mathematical Sciences, New York University, 1973/74.

Page, F. H. (1987) On Equilibrium in Hart's Securities Exchange Model. Journal of Economic

Theory, 41,392-404.

Robertson A.P. and Robertson W. J. (1973). Topological Vector Spaces. Cambridge University

Press.

Smale, S. Global Analysis and Economics IIA, Extension of a Theorem of Debreu, / . Math.

Econ. 1, (1974a) 1 - 14.

Smale, S. Global Analysis and Economics IV, Finiteness and Stability of Equilibria with

General Consumption Sets and Production, J. Math. Econ. 1, (1974b), 119 - 127.

Werner, J. (1987), Arbitrage and the Existence of a Competitive Equilibrium, Econometrica,

55,1403 - 1418.

• • •


