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PRELIMINARY AND INCOMPLETE 

 

Abstract 
This paper empirically shows that innovation in Information Technology (IT) has become 
increasingly dependent on and intertwined with innovation in software. This change in the 
nature of IT innovation has had differential effects on the performance of the United States and 
Japan, two of the largest producers of IT globally. We document this linkage between software’s 
contribution in IT innovation and the differential innovation performance of US and Japanese 
electronics, semiconductors, and hardware firms. We collect patent data from USPTO in the 
period 1980-2002 and use a citation function approach to formally show the trend of increasing 
software dependence of IT innovation. Then, using a broad unbalanced panel of the largest US 
and Japanese publicly listed IT firms in the period 1983-1999, we show that (a) Japanese IT 
innovation relies less on software advances than US IT innovation, (b) the innovation 
performance of Japanese IT firms is increasingly lagging behind that of their US counterparts, 
particularly on IT sectors that are more software intensive, and (c) that US IT firms are 
increasingly outperforming their Japanese counterparts, particularly in more software intensive 
sectors. The findings of this paper could provide a fresh explanation for the relative decline of 
the Japanese IT industry in the 1990s. 
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I. Introduction 
The surge of innovation in Information Technology (IT) is one of the great economic 

stories of the last two decades. This period also coincides with the unexpected resurgence of the 

United States IT sector, belying the gloomy predictions about the US IT industry popular in the 

late 1980s and early 1990s (e.g. Cantwell, 1992; Arrison and Harris, 1992). 

In this paper, we argue that a shift in the nature of the innovation process in IT occurred. 

Starting in the late 1980s and accelerating in the 1990s, technological change in IT has taken on 

a trajectory that is increasingly software intensive. We show that non-software IT patents are 

significantly more likely to cite software patents, even after controlling for the increase in the 

pool of citable software patents. We also show that employment of software professionals has 

increased in IT industries.  While these shifts are broad-based, we also see substantial differences 

across IT sub-sectors in the degree to which they taken place.  We exploit these differences to 

sharpen our empirical analysis in the manner described below. 

If the innovation process in IT has indeed become more dependent on software 

competencies and skills, then firms better able to use software advances in their innovation 

process will benefit more than others. Indeed, we argue that the shift in software intensity of IT 

innovation has differentially benefited American firms over their Japanese counterparts.  Our 

results from a sizable unbalanced panel of the largest publicly traded IT firms in US and Japan 

for the period 1983-1999  show that US IT firms have started to outperform their Japanese 

counterparts, both as measured by productivity of their innovative activities, and as measured by 

their stock market performance.1   

                                                 
1   These results parallel the findings of Jorgenson and Nomura (2007), who demonstrate that Japanese TFP rose 
rapidly for decades, converging to U.S. levels, but then began diverging from it around 1995.  Their industry level 
analysis suggests that a change in the relative performance of the IT-producing industries (which we study in this 
paper) and the IT-using industries were particularly important in driving the shift from convergence to divergence.  
Jorgenson and Nomura do not attempt to explain the mechanisms behind relative declines in productivity.  
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The timing and the concentration of this improvement in relative performance appears to 

be systematically related to the software intensity of IT innovation.  We show that the relative 

strength of American firms tends to grow in the years after the rise in software intensity had 

become well established.  Furthermore, the relative improvement of the U.S. firms is greatest in 

the IT sub-sectors in which the measured software intensity of innovation is the highest.  Finally, 

we present evidence suggesting that much of the measured difference in financial performance 

declines disappears when we separately control for the software intensity of IT innovation at the 

firm level.  

This paper is structured as follows. Section II provides evidence and documents the 

existence of a shift in the technological trajectory of IT, Section III empirically explores its 

implications for innovation performance of US and Japanese IT firms, while Section IV 

discusses the possible explanations for the trends we observe in our data. We conclude in Section 

V with a summary of the key results and an outline of the limitations of our study with avenues 

for future work.  

II. Changing Technology of Technological Change in IT 
 A survey of the computer and software engineering literature points to an evident 

increase in the role of software for successful innovation and product development in various 

parts of the IT industry.  The share of software costs in product design has increased steadily 

over time (Allan et al, 2002) and software engineers have become more important as high-level 

decision-makers at the system design level in telecommunications, semiconductors, hardware, 

and specialized industrial machinery (Graff, Lormans, and Toetenel, 2003). Graff, Lormans, and 

Toetenel (2003) further argue that software will increase in importance and complexity in a wide 

range of products, such as mobile telephones, DVD players, cars, airplanes, and medical 
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systems.  Industry observers claim that software development and integration of software 

applications has become a key differentiating factor in the mobile phone and PDA industry 

(Express Computer, 2002).  A venture capital report by Burnham (2007) forcefully argues that 

that the central value proposition in the computer business has shifted from hardware to systems 

and application software. 

 Similarly, De Micheli and Gupta (1997) assert that hardware design is increasingly 

similar to software design, so that the design of hardware products requires extensive software 

expertise. Gore (1998) argues that peripherals are marked by the increasing emphasis on the 

software component of the solution, bringing together hardware and software into an integrated 

environment.2  Kojima and Kojima (2007) suggest that Japanese hardware manufacturers will 

face increasing challenges due to the rising importance of embedded software in IT hardware 

products.  In sum, there is broad agreement among engineering practitioners and technologists 

about the increasing role of software in various parts of IT. In the next section, we validate this 

assertion formally, using data on citation patterns of IT patents. 

Measuring the Shift in the Technology of Technological Change in IT  

Approach 

We use citations by non-software IT patents to software patents as a measure of the 

software intensity of IT innovation.  Patents have been used as a measure of innovation in 

mainstream economic research at least since the early 1960s (e.g., Griliches and Schmookler, 

1963). The possible uses of patent citations in economic research have been well documented 

(Jaffe and Trajtenberg, 2002), and although problems in using citations to measure knowledge 

                                                 
2   Personal discussions with Mark Kryder, former CTO of Seagate, confirmed that software has become an 
increasingly important driver of product functionality and product differentiation in the hard disk drive industry. 
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flows have been identified (Alcácer and Gittelman, 2006), they are still extremely useful in the 

context of our research project.  We cannot simply use time trends in software patenting by IT 

sector because  (a) patent counts are a very crude measure of innovation output through time, (b) 

the patentability of software has changed dramatically over our sample period, and (c) tracking 

patent counts does not tell us much about the connections between different types of IT 

innovation.  

The citation patterns we observe are an end result of the interplay of several 

determinants: the size of the citing knowledge pool expressed by the number of citing patents, 

the availability of citable knowledge expressed by the number of possible cited patents, and the 

rates of knowledge diffusion and obsolescence (Hall, Jaffe, and Trajtenberg, 2001). In order to 

get an unbiased view of knowledge flows, we need to purge citation patterns of the impact of 

these factors. 3

The citation function has been pioneered in the work of Caballero and Jaffe (1993) and 

Jaffe and Trajtenberg (1996, 2002).   Following these authors, we model the probability that a 

particular patent, P, applied for in year t, will cite a particular patent, a, granted in year T. This 

probability is determined by the combination of an exponential process by which knowledge 

diffuses and a second exponential process by which knowledge becomes superseded by 

subsequent research (Jaffe and Trajtenberg, 2002). The probability, , is a function of the 

attributes of the citing patent (P), the attributes of the cited patent (a), and the time lag between 

them (t-T), as depicted formally below: 

))(exp(1()(exp(),(),( 21 TtTtpapap −−−⋅−−⋅= ββα           (1) 

                                                 
3The possible biases in patent citations due to examiners (Alcacer and Gittelman, 2006) or due to the strategy 
behavior of patent applicants (Mowery, Oxley, and Silverman, 1996) are well known.  Still, there is substantial 
evidence validating these data as useful indicators of knowledge spillovers (Duguet and MacGarvie, 2005; Jaffe, 
Trajtenberg, Fogarty, 2000).   
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We sort all potentially citing patents and all potentially cited patents into cells 

corresponding to the attributes of articles and patents.  The attributes of the citing patents that we 

incorporate into our analysis include the citing patent’s grant year, its geographic location, and 

its technological field (IT, software). The attributes of the cited patents that we consider are 

again the cited patent’s grant year, its geographic location, and its technological field. Thus, the 

expected value of the number of citations from a particular group of citing patents to a particular 

group of cited patents can be expressed as the following: 

))(exp(1()(exp()( 21 TtTtnncE abcdefdefabcabcdef −−−⋅−−⋅⋅⋅= ββα          (2) 

where the dependent variable measures the number of citations made by patents in the 

appropriate categories of grant year (a), geographic location (b), and technological field (c) to 

patents in the appropriate categories of grant year (d), geographic location (e), and technological 

field (f). The alpha terms are multiplicative effects estimated relative to a benchmark or “base” 

group of citing and cited patents. Rewriting equation (2) gives us the Jaffe – Trajtenberg (2002) 

version of the citation function:  

))(exp(1()(exp(
)(

)( 21 TtTt
nn

cE
cp abcdef

defabc

abcdef
abcdef −−−⋅−−⋅=

⋅
= ββα         (3) 

Adding an error term, we can estimate this equation using the nonlinear least squares 

estimator. The estimated equation thus becomes the following: 

abcdeffedcbaabcdef TtTtcp εββαααααα +−−−⋅−−⋅⋅⋅⋅⋅⋅= ))(exp(1()(exp()( 21 …… (4) 

In estimating equation (4) we adjust for heteroscedasticity by weighting the observations 

by the square root of the product of potentially cited patents and potentially citing patents 

corresponding to the cell, that is 

   )()( defabc nnw ⋅=                     (5) 

6 



Data 

We use patents granted by the United States Patent and Trademark Office (USPTO) 

between 1980 and 2002. We use the geographic location of the first inventor to determine the 

“nationality” of the patent.4 We identified patents belonging to IT, broadly defined, by using a 

classification system based on USPTO classes, developed by Hall, Jaffe, and Trajtenberg (2001). 

They classified each patent into one of six broad technological categories: (1) chemical, (2) 

computers & communications, (3) drugs & medical, (4) electrical & electronic, (5) mechanical, 

and (6) others. They further broke down each category, generating a total of 36 technological 

subcategories. We applied their system and identified IT patents broadly defined as those 

belonging to any of the following categories: computers & communications category, electrical 

devices, or semiconductor devices. We obtained these data from the updated NBER patent 

dataset.5  

Next, we identified software related patents. The most pressing challenge is the definition 

and identification of software patents. There have been three significant efforts to define a large 

set of software patents. Graham and Mowery (2003) defined software patents as an intersection 

of those falling within a narrow range of IPC classes and those belong to packaged software 

firms. This created a sample that was severely under-inclusive according to Allison et al, (2006).  

The second effort was that of Bessen and Hunt (2007), who define a software invention 

as one in which the data processing algorithms are carried out by code either stored on a 

magnetic storage medium or embedded in chips. They rejected the use of official patent 

classification systems for defining the set of software patents, and used a keyword search method 

instead. They identified a small set of patents that adhered to their definition, and then used a 
                                                 
4 Patents with inventors from multiple countries currently represent a small fraction of the total patent population, so 
using first inventor’s location only is not likely to introduce noticeable measurement error into our data. 
5 Downloaded from the following link: http://elsa.berkeley.edu/~bhhall/bhdata.html (12/15/2007) 
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machine learning algorithm to identify similar patents in the patent population, using a series of 

keywords in the patent title and abstract. Recently, Arora et al. (2007) use a similar approach that 

connects the Graham-Mowery and Bessen-Hunt definitions.6  

We use a combination of a broad keyword-based and patent class strategy to identify 

software patents. First, we generated a set of patents, applied for after January 1st 1980 and 

granted before December 31st 2002, that used the words “software” or “computer program” in 

the patent document. Then, we defined the population of software patents as the intersection of 

the set of patents the query returned and IT patents broadly defined as described above, granted 

in the period 1980-2002. This produced a dataset consisting of 104,407 patents.  

 These data are potentially affected by a number of biases.  Not all invention is patented, 

and special issues are raised by changes in the patentability of software over the course of our 

sample period – this makes it all the more important for us to control for the expansion in the 

pool of software patents over time, as we do.  We also rely on patents generated by a single 

authority – the USPTO – to measure invention for both U.S. and Japanese firms.  However, 

Japanese firms have historically been among the most enthusiastic foreign users of the U.S. 

patent system.  Evidence suggests that examination of the U.S. patents of Japanese firms does 

provide the researcher with a reasonably accurate portrayal of their inventive activity 

(Branstetter, 2001; Sakakibara and Branstetter, 2000;  Nagaoka, 2007).  This is particularly 

likely to be true in IT, given the importance of the U.S. market in the various components of the 

global IT industry. 

                                                 
6Allison et al. (2006) rejected the use of both the standard classification system and keyword searches, resorting to 
the identification of software patents by reading through them manually.  Although potentially very accurate, this 
method is inherently subjective and not scalable.   
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Results 

The unit of analysis in Table I is an ordered pair of citing and cited patent classes.  In this 

regression, we are primarily interested in the coefficient on the software patent dummy.  Our 

regression model is multiplicative, so it is not a “zero” coefficient on a dummy variable but 

rather a coefficient of 1 that indicates no change relative to the base category.  Our coefficients 

are reported as deviations from 1.  The software patent dummy is large, positive, statistically 

significant, and indicates that IT patents in the 1990s are 1.34 times more likely to cite software 

patents than other IT patents, controlling for the sizes of available IT and software knowledge 

pools. The second specification in Table I includes only software patents in the population of 

possibly cited patents. The coefficients on the citing grant years show a sharp increase in citation 

probabilities from 1992 to 2002. An IT patent granted in 1996 is 1.74 times more likely to cite a 

software patent than an IT patent granted in 1992. Furthermore, an IT patent granted in 2002 is 

almost 4 times more likely to cite a software patent than that granted in 1992. Comparing this 

trend to that of the specification in the left-hand column of Table I, we see that this trend is much 

more pronounced, suggesting that software patents are becoming increasingly important for IT 

innovation broadly defined. In Table I, we also explore citation differences between Japanese 

and non-Japanese invented IT inventions. The specification in the left-hand column indicates that 

Japanese invented IT patents are 34 percent less likely to cite other IT patents than non-Japanese 

IT patents. However, they are 93 percent less likely to cite software patents than non-Japanese IT 

patents. This result is corroborated by the regression in the right-hand column, where the 

coefficient on the Japanese dummy again shows that Japanese invented IT patents are 

significantly less likely to cite software patents than non-Japanese patents.   
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The citation function results were subjected to a number of robustness checks.  

Concerned that our results might be driven by large numbers of U.S.-invented software patents 

appearing in the later years of our sample, we estimated the propensity of U.S. IT patents to cite 

non-U.S. software patents and found a rise in this propensity qualitatively similar to that depicted 

in Table 1.  We also directly controlled for the disproportionately high likelihood that patents cite 

patents from the same country, but our result that Japanese IT hardware patents are 

systematically less likely to cite software over time was robust to this.   

The citations function’s complexity makes it difficult to estimate different tendencies for 

Japanese and American firms to increase their propensity to cite software patents over time, 

holding all other factors constant, but we see evidence consistent with this in the raw data.  

Figure 1 shows trends over time in the fraction of total (non-software) IT patents’ citations that 

are going to software patents.  While the trends for both Japanese and U.S. firms rise 

significantly over the 1990s, then level off a bit in the 2000s, the measured gap between Japanese 

and U.S. firms rises substantially over the period.  A one-tailed t-test reveals that these 

differences are statistically significant at conventional levels for every year shown. 
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Figure 1:  Software Intensity of Non-Software IT Patents 
(Measured by fraction of patent citations going to software patents) 

 

The results from the two specifications in Table I portray an interesting picture: software 

innovation is (increasingly) important for IT innovation broadly defined, and this appears to be 

especially true in the U.S.  If this is true, then we might expect to see supporting evidence in 

patterns of employment in IT industries.  The U.S. Bureau of Labor Statistics conducts periodic 

surveys of U.S. employment by occupation and industry.  Inspection of the data from 1999-

20077 reveal trends consistent with a rising importance of software in IT innovation.  For 

instance, Figure 2 illustrates how two measures of the share of software engineers in total 

employment in the computer and peripheral equipment manufacturing industry have trended 

upward over time.  We see similar trends in other IT subsectors.  Interestingly, the relative share 

of software engineers in total employment across subsectors appears to accord with patent 

citation-based measures of software intensity.  The share is highest in computers and peripherals, 

lowest in audio and visual equipment manufacturing, and at intermediate levels in 

semiconductors.   
                                                 
7 Methodological changes in the survey make it difficult to track occupational employment in the U.S. IT industry in 
a consistent way over time, particularly in comparing the periods before and after 1999.   
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Figure 2   Trends in Software Engineering Employment 
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Source: Bureau of Labor Statistics, Occupational Employment Survey, 1999‐2007 
Note: Data include domestically employed H1‐B visa holders   

III. Comparing US and Japanese Firm-Level Innovation Performance in IT 
We use two of the most commonly employed empirical approaches to compare firm-level 

innovation performance of US and Japanese IT firms: the innovation (patent) production 

function and the market valuation of R&D. While the former approach relates R&D investments 

to patent counts and allows us to study the patent productivity of R&D, the second approach 

relates R&D investment to the market value of the firm and explores the impact of R&D on the 

value of the firm (Tobin’s Q). This allows us to tie together firm-level results reported in this 

section with the reported shift in IT innovation of the previous section.  

Patent Production Function 

This approach builds on Pakes and Griliches (1984) and Hausman, Hall, and Griliches 

(1984).  We begin by specifying a functional relationship between research and development 

effort, proxied by R&D expenditures, and innovation resulting from this effort, proxied by the 

number of patents taken out by a firm. We use a log-log form of the patent production function.  
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                  (6)      

where                               (7) 

In equation (6), Pit are patents taken out by firm i in period t, rit are research and development 

expenditures, JPi indicates if the firm is Japanese, and Ф’s represent innovation-sector-specific 

technological opportunity and patenting propensity differences across c different innovation 

sectors D, which follow a functional form as specified in (7). Substituting (7) into (6), taking 

logs of both sides, and expressing the sample analog we obtain the following: 

                 (8) 

where pit is the natural log of new patents (flow) and the error term which is defined below.  

                    (9) 

We allow the error term in (9) to contain a firm-specific component, ξi, which accounts for 

the intra-industry firm-specific unobserved heterogeneity, and an iid random disturbance, uit. The 

presence of the firm-specific error component suggests using random or fixed effect estimators. 

Since the fixed effects estimator precludes time-invariant regressors, including the firm origin 

indicator, we feature the pooled OLS and random effects estimators, and use the fixed effects 

estimator as a robustness check.  

Private Returns to R&D and Tobin’s Q 

 Griliches (1981) pioneered the use of Tobin q regressions to measure the impact of R&D 

on a firm’s economic performance (see also Jaffe, 1986; Cockburn and Griliches, 1988; Hall and 

Oriani, 2006).8 In this approach, efficient capital markets are assumed, so that the market value 

                                                 
8 See Hall (2000) for a detailed review. 
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of the firm represents the value maximizing combination of its assets. We can represent the 

market value V of firm i at time t as a function of its assets: 

                                                                                                                          (10) 

where Ait is the replacement cost of the firm’s tangible assets, typically measured by their book 

value, and Kit is the replacement value of the firm’s technological knowledge, typically measured 

by stocks of R&D expenditures9. The functional form of f is not known, and we follow the 

literature, which assumes that the different assets enter additively..: 

                                                                                                              (11) 

where qt is the average market valuation coefficient of the firm’s total assets, β is the shadow 

value of the firm’s technological knowledge measuring the firm’s private returns to R&D, and σ 

is a factor measuring returns to scale. Again following practice in the literature (e.g. Hall and 

Oriani, 2006), we assume constant returns to scale (σ = 1). Then, by taking natural logs on both 

sides of (11) and subtracting lnAit, we obtain the following expression that relates a firm’s 

technological knowledge to its value above and beyond the replacement cost of its assets, 

Tobin’s Q: 

                                           (12)      

Following Hall and Kim (2000), Bloom and Van Reenen (2002) and others, we estimate a 

version of (12) using the nonlinear least squares estimator, with time dummies and a firm origin 

indicator. We were unable to estimate a specification with firm-fixed effects because the NLS 

algorithms did not converge.  As a robustness check, we estimated a linearized version of (12) 

with fixed effects. 

                                                 
9 The construction of variables is explained in greater detail in subsequent sections. 
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Data and Variables 

Sample 

Our sample consists of large publicly traded IT companies in the United States and Japan, 

observed from 1983 to 1999. We obtained the sample of US firms from historical lists of 

constituents of Standard & Poor’s (S&P) US 500 and S&P 400 indices. The resulting set of firms 

was refined using Standard & Poor’s Global Industry Classification Standard (GICS) 

classification10 so that only firms appearing in “electronics”, “semiconductors”, “IT hardware” 

and “IT software and services” categories remained in the sample. This produced an initial set of 

approximately 220 firms. The sample was narrowed further in the following way: (a) only firms 

that were granted at least 10 patents in the 1983-1999 period were retained, (b) US firms in “IT 

software and services” were removed from the estimation samples in order to achieve 

compatibility with the sample of Japanese firms,11 and for Tobin’s Q regressions, only (c) firms 

for which at least 3 consecutive years of positive R&D investment and sales data were available 

were kept in the sample. This produced a final unbalanced panel of 140 and 135 US IT firms for 

patent production function and Tobin’s Q regressions respectively. 

The sample of large publicly traded Japanese IT firms was derived from the Development 

Bank of Japan (DBJ) database, which gave us an initial unbalanced panel of 154 publicly listed 

Japanese IT firms in the period 1983-1999.12 The sample was supplemented by an additional 37 

firms that were listed as constituents of Standard & Poor’s Japan 500 index as of January 1st 

200313, and that were listed as belonging to either “electronics”, “semiconductors”, “IT 

                                                 
10 GICS, the Global Industry Classification System, is constructed and managed by Moody’s in collaboration with 
Compustat.  
11 NTT is the only Japanese firms in “IT services and software” in our sample. 
12   We thank the Columbia Business School Center on the Japanese Economy and Business for these data.   
13 January 1st, 2003 was the date of creation of this index. 
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hardware”, or “IT software and services” based on their GICS code. This created an unbalanced 

panel of 191 Japanese firms.  

Japanese accounting standards do not force firms to report R&D data in a uniform way, 

which rendered the R&D investment data from the DBJ database unusable. As a consequence, 

we were forced to obtain self-reported R&D expenditure data for Japanese firms from annual 

volumes of the Kaisha Shiki Ho14 survey. Lack of reliable R&D expenditure data for some firms 

led to their exclusion from our sample. We further restricted the sample by (a) dropping all firms 

without at least 10 patents in the observed period, (b) dropping Nippon Telephone and 

Telegraph,  and, for Tobin’s Q regressions, (c) all firms for which at least three consecutive years 

of R&D investment and positive output data were not available in DBJ. This produced a final 

sample of 98 and 89 Japanese IT firms for the patent production function and Tobin’s Q 

regressions respectively. 

Locating Firms in Software Intensity Space 

 To explore how innovation performance differentials between US and Japanese 

firms vary with software intensity, we classify firms into industry segments.  GICS provided us 

with a classification of all US firms in our sample into four sectors – “electronics”, 

“semiconductors”, “IT hardware”, and “IT software and services”.  Japanese firms were 

classified manually using the two-digit GSIC classification data from the S&P Japan 500 along 

with the data from Japan’s Standard Industrial Classification (JSIC), supplemented by manual 

Google Finance, Yahoo! Finance and corporate websites. 

                                                 
14 Kaisha Shiki Ho (Japan Company Handbooks) is an annual survey of Japanese firms, published by the Japanese 
equivalent of Dow Jones & Company, Toyo Keizai Inc.  We thank Ms. Kanako Hotta for assistance in obtaining 
these data from the collections at the School of International Relations and Pacific Studies of the University of 
California at San Diego.   
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We construct two separate measures of software intensity, both of which suggest a 

similar ranking of IT subsectors.  First, we use the shares of software patents in total patents 

taken out by the firms in our sample to construct a firm-level measure of software intensity, then 

we average these across firms in an industry category.  Second, we calculate the fraction of 

citations to software parents that appear in the non-software IT patents of our sample firms, and 

average these across firms within a sample category. Table II presents summary statistics for 

both these measures of software intensity.  As expected, electronics is the least software 

intensive, followed by semiconductors and IT hardware. A two-sided test for the equality of 

means rejects that the intensities are the same in any pair of sectors when we use the share of 

software patents as our measure. The second measure, citations to software patents, yields 

similar results, albeit at lower levels of significance in some cases.  Tables III and III-2 calculate 

the industry averages of our measures of software intensity separately for U.S. and Japanese 

firms.  In general, the ranking of industries in terms of software intensity suggested by the 

overall sample appears to apply to the country-specific subsamples.15  Japanese firms’ measures 

of software intensity tend to be far lower than that of their US counterparts, consistent with the 

findings of the previous section that showed Japanese firms were less likely to use software 

innovation than their foreign counterparts.16 We also find that large Japanese IT firms are 

disproportionally located in less software-intensive sectors.  

Taking the assignment of firms to the different IT industries as given, we test whether US 

firms outperform Japanese firms, and whether this performance gap is more marked in IT 

industries that are more software intensive.  

                                                 
15 Depending on the measure, statistical tests of equality are not always significant at the conventional threshold 
levels when we disaggregate by country of origin, and when Japanese software intensity is measured by citations to 
software in non-software patents, electronics is (insignificantly) more software intensive than semiconductors.   
16 This is true in five out of six cases, although the measured differences are not always statistically significant. 
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Construction of Variables  

Patent Counts: Patent data for our sample of firms were collected from the updated NBER patent 

dataset containing patents granted by the end of 2002. Compustat firm identifiers were matched 

with assignee codes based on the original and updated matching as constructed and available on 

Bronwyn Hall’s website.17 The matching algorithm was manually updated by matching strings 

of Compustat firm names and strings of assignee names as reported by the USPTO. An identical 

procedure was used for matching Japanese firms to their patents, except that we based it on a 

Tokyo Stock Exchange (TSE) code - assignee code matching algorithm previously used in 

Branstetter (2001). Next, we computed patent counts for all firm-year observations based on 

patent application years. In addition to total patent counts, counts of IT and software patents, as 

defined in the previous sections, were collected. 

R&D Investment: Annual R&D expenditure data for US firms were collected from Compustat, 

and a set of self-reported R&D expenditure data for Japanese firms were collected from annual 

volumes of the Kaisha Shiki Ho survey. We deflated R&D expenditures following Griliches 

(1984), and constructed a separate R&D deflator for US and Japanese firms that weighs the 

output price deflator for nonfinancial corporations at 0.51 and the unit compensation index for 

the same sector at 0.49. Using data on wage price indexes for service-providing and goods-

producing employees,18 we constructed a single unit compensation index for each country, and 

then applied the proposed weights and appropriate producer price indexes to compute the R&D 

deflators and deflate the R&D expenditure flows. 

R&D stocks: We calculated R&D capital stocks from R&D expenditure flows using the 

perpetual inventory method,with a 15% depreciation rate (Hall and Vopel, 1997; Mairesse and 

                                                 
17 Downloaded from the following link: http://elsa.berkeley.edu/~bhhall/bhdata.html (12/15/2007) 
18 We obtained these data from the Bureau of Labor Statistics and Statistics Bureau of Japan, respectively. 
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Hall, 1996; Hall, 1993).19 We used 5 pre-sample years of R&D expenditures to calculate the 

initial stocks.20  

Market Value of the Firm: Market value of a firm equals the sum of market value of its equity 

and market value of its debt (Perfect and Wiles, 1994). Market value of equity equals the sum of 

the value of outstanding common stock and the value of outstanding preferred stock. The value 

of outstanding common (preferred) stock equals the number of outstanding common (preferred) 

shares multiplied by their price. For US firms, we used year-close prices, year-close outstanding 

share numbers, and year-close liquidating values of preferred capital. For Japanese firms, the 

only available share price data were year-low and year-high prices, and we used the arithmetic 

average of the two to obtain share price for each firm-year combination. In addition, preferred 

capital data was not available for Japanese firms. Although this can introduce a source of 

measurement error in our dependent variable, as long as preferred capital does not systematically 

vary with time and across technology sectors in a particular way, our results regarding sector and 

sector-origin differences will remain valid. Market value of debt was calculated following 

Perfect and Wiles (1994) as a sum of the value of long-term and short-term debt. For U.S. firms, 

we used total long-term debt as a proxy for the former and debt due in one year as a proxy for the 

short term debt. In the case of Japanese firms, we used fixed liabilities as a proxy for the value of 

long-term debt and short-term borrowings as a proxy for the value of short-term debt.21

                                                 
19 See Griliches and Mairesse (1984) and Hall (1990) for a detailed description and discussion of this methodology. 
We used several depreciation rates between 10% and 30%, with little change in the results.. 
20 When the expenditure data was not available, we used first 5 years of available R&D expenditure data, “backcast 
them” using linear extrapolation, and calculated the initial R&D capital stock based on the projected R&D 
expenditures. 
21 We use the book value of debt as our measure of debt. Although this might introduce measurement error, the 
results in Perfect and Wiles (1994) using a variety of measures provide us with some reassurance as they do not 
differ much, regardless of the measure used. Similarly, complicated recursive methods have been suggested for 
calculating the market value of short-term debt. Using book value approximations could again introduce 
measurement error to our data, but we again rely on the discussion in Perfect and Wiles (1994) for reassurance that 
this error will not be severe.  
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Replacement Cost of Assets: The replacement cost of the firm’s assets is the deflated year-end 

book values of total assets.22 where the deflator is a country-specific capital goods deflator 

obtained from the Bureau of Labor Statistics and the Statistics Bureau of Japan, respectively. 

Patent Production Function 

Figure 3 compares the number of patents per firm for the US and Japanese firms in our 

sample. We observe that Japanese firms obtain more non-software IT patents than their US 

counterparts. Between 1983 and 1988, the average number of non-software IT patent 

applications were almost identical for Japanese and US firms. Between 1988 and 1993, patent 

applications by Japanese firms outpaced those of US firms, after which both grew at the same 

pace. By contrast, Japanese firms file fewer and increasingly fewer software patents than their 

US counterparts. The difference has grown steadily since the late 1980s and at an increasing pace 

in the mid and late 1990s. 

                                                 
22 Perfect and Wiles (1994) note that different calculation methodologies do result in different absolute replacement 
cost values, but do not seem to bias coefficients on R&D capital. In a discussion particular to calculating 
replacement cost of assets in Japan, found in Hayashi and Inoue (1991) and Hoshi et al. (1991), several complex 
methodologies were proposed. For the purpose of this paper, we did not compare our results against the alternative 
of using replacement cost calculated with their methodology. 
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Figure 3: Average Number of non-software IT and Software Patents Per Firm 

  

Table V in the Appendix reports the estimates of the patent production functions of 

Japanese and US IT firms. Our first key result is presented in Figure 4 below, which plots the 

pooled OLS average difference in log patent production per dollar of R&D, between Japanese 

and US firms in our sample through time, controlling for time and sector dummies,.23 We see 

that R&D spending by Japanese firms was 40% more productive than in their US counterparts 

during 1983-1988, but 30% less productive during 1989-1993. This trend accelerated in the 

1990s, resulting in Japanese IT firms producing 60% fewer patents, controlling for the level of 

R&D spending, than their US counterparts in the period 1994-1999. 

  

                                                 
23 Detailed results are found in Table IV in the Appendix. 
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Figure 4: Average Japan-US Productivity Differences, Entire Sample 

 
Based on results from Table V. of the Appendix. Reported are pooled OLS estimation coefficients.    
 
Figure 5: Average Japan-US Productivity Differences, By Software Intensity Sector 

 
Based on results from Table V. of the Appendix. Reported are selected pooled OLS coefficients. 

Figure 5 reports Japan-U.S. differences in average R&D productivity by IT sector, where 

the measure of R&D productivity is based on patent output controlling for R&D input. In 

electronics, previously shown to be the least software intensive, and where average software 

intensity is similar between US and Japanese firms, Japanese firms have been less productive in 

patent production in the 1980s and early 1990s, but have been catching up to their US 

counterparts in the mid and end 1990s.24 On the other hand, in semiconductors and IT hardware, 

                                                 
24   In the mid-2000s, Japanese electronics firms received a boost from the rapidly growing sale of so-called digital 
appliances, such as DVD recorders, digital cameras, and LCD televisions.  Industry observers, such as Ikeda (2003), 
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which have significantly higher software intensity than electronics, and where average software 

intensity of US firms is greater than of Japanese firms, Japanese firms exhibited higher 

productivity in the mid 1980s, lost all of their advantage by the turn of the 1990s, and 

increasingly started to lag behind their US counterparts in the mid to end 1990s.  

 All of the results are statistically significant at the 5% level and robust to changes in the 

particularities of estimation techniques. Random effects and fixed effects estimators, which take 

into account firm-specific unobserved differences in patent productivity, do not produce 

qualitatively different results, suggesting that our results are not driven by unobserved firm-

specific research productivity or patent propensity differences.  

Robustness checks: These results have as the dependent variable the log of total patents applied 

for by firm i in year t. We estimated our regressions using the log of IT patents, and the log of IT 

patents excluding software patents, with no qualitative change in the results.  We also weighted 

total patent output by subsequent citations and by the number of claims appearing in the patent 

documents, with no qualitative change in the results.25  

 One might argue that the bursting of the Japanese asset price bubble at the break of the 

1990s and the economic slowdown that followed might distort our results, for instance by 

reducing Japanese R&D investments. Note however that we are estimating the productivity of 

R&D in producing patents, rather than merely the number of patents produced.  Further, insofar 

as Japanese firms reduced their R&D, diminishing returns to R&D should have resulted in higher 

not lower measured productivity.  Alternatively, Japanese firms may have changed patent 

propensity, filing fewer but higher quality patents.  However, estimates using citation weighted 

patents (not reported here) yield similar results.  But most telling of all, no simple story about the 

                                                                                                                                                             
warned of imminent commoditization of these new products – a prediction that has been born out in the latter years 
of the decade. 
25 We do not report these results in the paper, but are available from the authors upon request. 
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bubble can explain the observed pattern, wherein the relative decline in productivity is greater in 

more software intensive segments. 

A related stream of research, much of it authored by Japanese economists, has addressed the 

perceived relative weaknesses of the Japanese R&D system more generally.26  Goto (2000), 

Goto and Odagiri (2003), Nagaoka (2007) and many others have stressed the importance of 

effective university-industry linkages in science-based industries and noted that these linkages 

have taken a different form in the U.S. and Japan, possibly contributing to relative weakness in 

certain areas.  Together with these authors, Hamada (1996) and many others have pointed to the 

importance of venture capital as a driving force in American innovative dynamism and the lack 

of a similar system in Japan as a serious impediment to growth.  Chuma and Hashimoto (2007) 

and Tanaka (2003) have focused on the decline in the Japanese semiconductor industry in 

particular, suggesting that a shift in the technological trajectory of this industry undermined 

Japanese relative performance.  We find these analyses to be plausible and persuasive, but these 

views do not explain why the pattern of Japanese relative performance in IT is so closely linked 

to the software intensity of various IT market segments.   

Our empirical approach does have certain limitations. One is that we have estimated the 

patent production regressions based on a relatively narrow sample of Japanese firms, especially 

in the semiconductor sector. Entry of privately held firms has been limited in Japan, making it 

unlikely that we are missing a significant part of important Japanese IT firms in our data.   A 

more serious problem is that the same firms often contain business units operating in different IT 

                                                 
26   See Branstetter and Nakamura (2003) for a discussion of these issues and some attempt at quantification. 
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market segments, but do not separately report the revenues and R&D expenditures of these units, 

making it difficult to assess their R&D productivity.27

Another limitation is that we are do not attempt to compare the research productivity of 

US and Japanese firms in the packaged software industry, per se, which is the sector where we 

might expect differences to be most pronounced.28 This is driven partly by our interest in 

explaining the divergence of Japanese and U.S. performance in IT hardware, where Japanese 

firms have traditionally been strong.  We are also constrained by the relatively small numbers 

and relatively late appearance of publicly traded software firms in Japan, making a direct 

comparison difficult.  If we were to include such firms, the productivity differences would likely 

be favorable to US firms.29  

Finally, if Japanese firms exhibited lower propensities to patent in the United States than 

their US counterparts, this would bias the estimated Japan-US research productivity differences 

upwards. We have a two-fold response. First, a survey of patenting activity in the US suggests 

that Japanese IT firms have patented extensively in the US in our sample period, accounting for 

up to 30% of total IT patents filed at the USPTO (e.g. Arora et al, 2007). Secondly, in order for 

our time-period and industry-period differences to be biased, one would have to construct a 

viable story for why the patent propensity of Japanese firms dropped significantly in the 1990s, 

and more so in more software-intensive sectors.  

                                                 
27   We are currently seeking to address this, in part, by exploring the impact of alternative firm classifications on our 
results 
28   This means that U.S. software powerhouse firms such as Microsoft, Oracle, and Google are all omitted from the 
data set and play no role in our results. 
29 Towards the end of the 1990s, a small number of publicly listed firms that we could classify as software firms 
appeared on the Tokyo Stock Exchange. Softbank is a canonical example. We could not include these firms in our 
analysis as we are only looking at the period 1983-1999.  The Japanese videogame industry includes a handful of 
software-intensive game developers, but they are sufficiently different from their U.S. counterparts to make a 
comparison problematic.   Motohashi (2009) uses a different data set to explore productivity trends in the Japanese 
software industry, but does not attempt an international comparison. 
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Private Returns to R&D 

 We begin by plotting the average difference in Tobin’s Q between our sample of US and 

Japanese firms through time, shown in Figure 6 below. We observe that Japanese firms, on 

average, have had higher Q values than US firms in the mid 1980s, particularly in what would 

become more software intensive sectors – semiconductors and IT hardware. These differences 

diminished with the bursting of the Japanese economic bubble at the dawn of the 1990s, and 

Japanese Q values have lagged throughout the 1990s, especially in semiconductors, and to a 

lesser extent, also in IT hardware. Thus trends in average Tobin’s Q values by sector parallel 

those in patent production.  

Moving beyond the descriptive analysis, we regress Tobin’s Q on the ratio of R&D 

stocks by total assets to estimate private returns to R&D (shadow value of R&D). Table IV 

reports estimates of equation (12) by period using nonlinear least squares.  It shows that the 

shadow price of R&D/Assets for US firms was negative and statistically significant in the period 

1983-1988, but rose to positive and statistically significant levels by the mid to end 1990s. On 

the other hand, the coefficient on R&D/Assets for Japanese firms has not followed this trend. It 

has hovered just above 0 in the 1980s and dropped to just below 0 in the mid 1990s. In none of 

the periods was it statistically significantly different from 0. This is consistent with what we 

observed when plotting the values of Tobin’s Q through time, except that we see that it is not the 

Japanese who experienced a drop in returns, but that it is the US firms who exhibited a hike in 

private returns to R&D. 

 Interestingly, this “reversal of fortune” for the market valuation of U.S. firm R&D 

appears to be sensitive to the inclusion of a direct measure of software intensity.  Table IV-2 

reports the results of a regression in which we add the software intensity (measured by average 
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firm citations to software in non-software IT patents), and also interact with R&D/Assets.  This 

additional regressor changes our results.  The R&D/Assets coefficient for U.S. firms is positive 

in the last period, but not statistically significant from zero.  These results support the view that 

the relative increase in U.S. performance is related to software intensity.   

Figure 6: Average Difference in Tobin’s Q, By Sector 

 

Tobin’s Q as calculated in the database, averaged across sector. Calculated as JP average subtracted from US average. 

Figure 7 compares private returns to R&D for Japanese and US firms by IT sector. As 

with patent productivity, we find that results differ by sector. In electronics, the least software 

intensive sector, the US firms started off with an advantage in the mid 1980s, before losing it all 

by the mid to end 1990s. The reverse is true in IT hardware, the most software-intensive sector.  

We report detailed regression results in Tables VII-IX of the Appendix. 
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Figure 7: Average Difference in Private Returns to R&D, By Sector 

 

Shadow values of R&D as estimated by NLS by sector. Calculated as JP  average subtracted from US average. 

We conducted several robustness checks. We first estimated versions of (12) and (13) 

using NLS and FE estimators, where we directly estimated time trends for private returns to 

R&D separately for US and Japanese firms. Table VI shows that the direction of the trends 

remains unperturbed, but they lose their statistical significance when we use the NLS estimator 

on the sample of US firms. Private returns to R&D for Japanese firms linger, as before, around 0, 

and have no significant trend over time. In the left columns of Tables VII-IX, we report estimates 

of the linear approximation using firm fixed effects. Again, we observe that the signs of the 

coefficients remain essentially unchanged, except in the case of US semiconductors, where the 

FE reveals a highly statistically significant positive trend in private returns to R&D.  

Finally, we estimate a linearized version where we split US and Japanese firms into 

quartiles according to the share of software patents in total patents. Table X of the Appendix 

provides summary results of this effort. We observe that US firms’ private returns to R&D 

increase with software intensity, while they fall in the case of Japanese firms. This is consistent 

with our results from above. However, when we perform the same exercise by sector, we observe 

that, in semiconductors and IT hardware this no longer holds, suggesting that our results might 
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be driven by trends in electronics. This is plausible since Japanese firms are disproportionally 

located in this sector. Interestingly, we also observe that US firm’s private returns to R&D 

increase with the software intensity of the sector when they are also in the top quartile of 

software intensity. The same is true for Japanese firms. Conversely, private returns to R&D 

decrease with the software intensity of the sector for firms located in the bottom quartile of 

software intensity.  

IV. Discussion 
The empirical part of our paper documents three key observations. First, we show that IT 

innovation has become more software intensive. Second, Japanese firms produce significantly 

fewer software inventions and rely less on software knowledge in innovation production than 

their US counterparts. Third, the innovation performance of Japanese IT firms is increasingly 

lagging behind particularly in software intensive sectors. This suggests, but does not 

conclusively demonstrate, a causal link running from the changing technology of technical 

change in IT to an inability of Japanese firms to respond adequately to the shift, leading to 

worsening performance. 

The question is what prevented Japanese firms from using software advances as 

effectively as U.S. firms?  There are at least two explanations, not mutually exclusive. The first 

is a resource constraint argument:  software-intensive IT innovation necessarily requires access 

to large numbers of software engineers at various skill levels.  U.S.-based firms have access to a 

much larger specialized labor pool than do their Japanese counterparts for reasons that are 

largely exogenous to the wishes or actions of Japan-based firms.  Japanese firms are not able – 

or, at least, have not yet been able -- to completely overcome their national labor resource 

constraints by offshoring their software-intensive R&D.  The second explanation is one rooted in 
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the failure of Japanese managers to understand and adequately respond to the changing nature of 

technological change in IT.  Under this alternative hypothesis, Japanese firms would have lost 

ground even in a world where they had equal access to specialized software engineering labor. 

Japan’s relative weakness in many kinds of software has been widely recognized in the 

literature, and many scholars have pointed to human resource constraints as a partial explanation 

for this.30  Finan and Williams (1992) argued that Japan’s lack of an adequate training pipeline 

for software engineers would constrain its prospects in some areas of IT.  The authors also 

quoted Japanese researchers as having noted a critical shortage of software engineering talent in 

Japan since at least 1988.  Cusumano (1991) showed how Japan’s electronics and hardware 

companies took special steps to increase the productivity of their scarce software labor. Other 

studies, citing reasons as diverse as the structure of the Japanese language and weak university-

level computer science education programs, all pointed to the relatively weak software 

competence of many Japanese firms, the relatively weak software skills of many Japanese 

software workers, and the inadequate supply of highly skilled software labor in Japan (e.g., 

Fransman, 1995; Baba et al, 1996; Japanese Ministry of Internal Affairs and Communications, 

2005; D’Costa (2007); Kurokawa and Hayashi (2008). 

In spite of this general state of affairs, there are clusters of Japanese firms that have 

maintained their strong international market positions in software-intensive segments of IT, the 

most conspicuous example of which is probably the Japanese videogame sector.31  Does the 

strength of Japanese firms in this sector refute the generalizations both Western and Japanese 

                                                 
30 Anchordoguy (2000) and Tanaka (2003) have described in detail the relative weaknesses of the Japanese software 
industry in systems and applications software.  Kojima and Kojima (2007) discuss weakness in embedded systems 
software. 
31  Japanese firms also maintain a strong position in robotics, one that they have held for years.  The Japanese mobile 
phone service industry has been characterized by a high degree of software-intensive innovation, but these Japanese 
innovations have had little impact to date outside of the Japanese home market.   
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scholars have made regarding the relative weakness of software in Japan?32  We do not think so.  

As an entertainment industry, videogames sales are driven by artistic factors as well as purely 

technological ones, and Japanese developers have a rich local cultural tradition of manga (a 

Japanese art form akin to comic books in the West) and anime (animated films) to draw upon.  In 

terms of economics, the global revenues of the Japanese industry have been dominated by 

hardware sales rather than software in recent years, and hardware sales have been dominated by 

two console manufactures, Nintendo and Sony Computer Entertainment (a subsidiary of 

consumer electronics giant Sony).  An analysis of patenting and patent citations by the important 

Japanese players in this sector reveals that they are extremely software intensive.  This is 

consistent with our results that the performance differentials between Japanese and U.S. firms 

diminish when one controls for software intensity.  Our analysis also reveals that that Japanese 

videogame manufacturers and developers cite a much narrower set of patent classes than firms 

elsewhere in IT.  The ability of a handful of firms to pursue a narrowly focused but software-

intensive innovation strategy would not seem to contradict the general picture of software 

weakness painted by the work of the Western and Japanese scholars who have looked at the 

Japanese IT industry. Nor would it seem to necessarily contradict the existence of a general 

shortage of software workers that impacts less highly specialized firms. 

If we assume for the moment that an adequate supply of software workers is usually 

important for success in an increasingly software-intensive IT industry and that Japan’s domestic 

supply of such workers has been limited, it is still not necessarily the case that a local labor 

shortage would constrain multinational firms.  The level of local human capital would not be a 

constraint if knowledge flowed freely across countries.  Unfortunately, it is widely 

                                                 
32   This Japanese industry is not a focus of our empirical analysis because of the difficulty of finding U.S. firms 
with which the leading Japanese console manufacturers and game developers can be compared.  The issues are 
somewhat similar to those encountered in packaged software.   
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acknowledged that tapping into foreign knowledge pools can be difficult (Jaffe, Trajtenberg, and 

Henderson 1993). Belderbos (2001) and Odagiri and Yasuda (1997) document the relatively 

limited extent of Japanese R&D activity outside Japan during the years from which our data are 

taken; Belderbos, Fukao and Kwon (2006) examine the drivers of Japanese R&D expenditure 

outside Japan.  The results of this research are consistent with the view that Japanese foreign 

R&D spending was a relatively small fraction of total R&D spending during the years of our 

sample period.  Branstetter (2006) measures the impact of Japanese R&D subsidiaries in the U.S. 

on the research productivity of Japanese firms at home, finding it to be positive but limited in 

magnitude.  Anchordoguy (2000) provides circumstantial evidence that tapping into foreign 

software knowledge pools might be particularly difficult for Japanese firms due to language 

barrier, labor market frictions, and important differences between Japanese and other firms in 

terms of the institutional environment and business conduct conventions.33  All of these 

considerations suggest significant barriers to the ability of Japanese firms to move abroad to tap 

foreign knowledge or expertise.34  Japan’s relatively restrictive immigration laws and its long 

history as an ethnically homogenous society mitigate against large-scale importation of skilled 

labor from foreign countries, creating barriers to bringing the foreign expertise (or experts) to 

Japan.35

                                                 
33   An important strand of literature in international economics argues that country-specific factor endowments are 
crucial for explaining comparative differences in innovation performance of industries in national economies. For 
instance Acemoglu (2001, 2002), Dudley and Moenius (2007) and others, argue that not only do countries specialize 
in the production of goods intensive in factors they are abundant in, but that they also specialize in innovation 
activities intensive in factors they are abundant with, a phenomenon they dub “factor-biased technical change”. 
34   Kojima and Kojima (2007) examine the available data on Japanese offshoring of software development to other 
countries.  While the data are highly problematic, they suggest a very low level of offshoring relative to the U.S. – 
something as low as 5-10% of the U.S. level – even by the mid-2000s. 
35   See D’Costa (2008). 
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What if local labor resources really do matter?36  The available data make it difficult to 

precisely quantify the differences in software human resources between the U.S. and Japan, but 

the gap between the two is clearly large.  Figure 8 presents data from a number of sources 

comparing the flows of new (potential) domestic IT workers during the latter years of our sample 

period.  The U.S. National Science Foundation’s SESTAT survey, conducted every two years, 

tracks science and engineering graduates across fields and disciplines from U.S. universities.  

The Japanese Ministry of Education, Sports, and Welfare’s Basic School Survey does the same 

for Japanese universities, albeit with a slightly different breakdown of fields and disciplines.  To 

make the figures as comparable as possible, we aggregate over IT software and hardware related 

disciplines to produce a count of total IT bachelors and masters level graduates for both 

countries.37  In the U.S., the software related disciplines have consistently accounted for far more 

than half of this total, at both the bachelors and masters levels – anecdotal evidence suggests this 

is not true for Japan.  The U.S. Citizenship and Immigration Service and the Department of State 

maintain data on H-1B visa applications, approvals, and issuances; using these data, we create 

estimates of the number of temporary workers joining the U.S. labor force for the first time under 

an H-1B visa in order to work in “computer-related fields.”38  While Japanese immigration law 

also provides work visas to highly skilled foreigners, the numbers of workers imported into 

Japan under these visa categories to work in the IT sector has been extremely limited – so much 

so that inclusion of reasonable estimates of such workers would not materially affect the totals.  

In this paper, we have omitted such estimates.   
                                                 
36   Kerr and Lincoln (2008) examine the impact of fluctuations in H-1B immigrants on innovation at the city level; 
Hunt and Gauthier-Loiselle (2008) examine the impact of immigration more generally on innovation at the state 
level.  We conjecture here that this impact has been highly concentrated, with software innovation and diffusion 
being particularly impacted by H-1B visa immigration from India.  Broader studies may find a weaker impact. 
37  Our Japanese graduation data come from a report by the Japanese Ministry of Internal Affairs and 
Communications, (2006). 
38   Our data are drawn from reports by Lowell (2000) and Kirkegaard (2005). 
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Figure 8   ICT Human Resources, U.S. vs. Japan
(ICT graduates and H-1B immigrants into computer related-professions, 1995-2001)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1995 1996 1997 1998 1999 2000 2001

Total ICT graduates and H-1Bs
(US)
Total ICT graduates (Japan)

Total w/o H-1Bs (US)

 

 

These data are obviously imperfect in many respects – only a fraction of IT graduates 

will enter employment in IT industries in the countries in which they study, and only a fraction 

of those who obtain employment in the IT industry will be engaged in research.  Likewise, our 

estimates of H-1B temporary workers include individuals employed in IT companies as well as 

individuals working for banks and insurance companies, and only a fraction of the H-1Bs 

employed in IT companies are involved in research.  These data track new entrants to the IT 

workforce, not the total stocks of workers available for employment in the sector.  Despite these 

caveats, the picture painted by Figure 8 is quite striking.  During the crucial years of the mid-to-

late 1990s, new software technologies were being rapidly created and deployed in both countries, 

and it is plausible that newly trained workers were especially important and in especially short 
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supply.  Our graph indicates that the estimated pool of domestic new IT labor from which the 

two countries we study could draw expanded at very different rates.  In 1995, the inflows of new 

onshore IT labor in the U.S. were about 98% greater than those in Japan.  By 2001, the inflows 

in the U.S. were nearly 3.6 times bigger than those in Japan.  And the graph makes it clear that 

most of the difference is driven by H-1Bs.  In the latter years of the sample period, the U.S. was 

importing more IT specialists on an annual basis than it was graduating from all IT-related 

bachelors and masters programs combined.   

 

Figure 9  US Software Outsourcing to India, 1995-2001
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Figure 9 provides a different take on the resource constraint, by looking at offshoring of 

software development by the United States to India.  Using data from NASSCOM on the annual 

levels of Indian software exports and their breakdown across regions, we compute a total amount 
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of software exports to the U.S. which is, of course, a significant underestimate of total U.S. 

software offshoring in all locations.  Using data on average revenue per employee, we can 

convert these export flows into “effective offshore labor units” – this crude calculation suggests 

that by 2001, more than 120,000 Indian software workers were employed full time on software 

development projects for U.S. customers.39  Similar statistics for Japanese software offshoring 

do not appear to exist for the late 1990s, but even by 2005, after many years of rapid growth, the 

available data suggest that Japanese firms were importing no more than 15,000 person-years and 

the level of imports was on the order of U.S. $1 billon or less.40  Accounting for the level of 

software offshoring in the U.S. and Japan would significantly increase the resource gap implied 

by Figure 8. 

Given these magnitudes, it seems possible that imports of workers and, more recently, 

software outsourcing may have been a critical source of advantage for U.S. based firms.  It is 

possible that relatively few of these imported experts may have been software architects of the 

highest order, capable of undertaking transformative innovation.  However, creating, testing, and 

implementing software for IT product innovation required both fundamental innovators (akin to 

architects) and programmers undertaking more routine and standardized kinds of software 

engineering (akin to skilled construction workers).  America’s ability to tap into an increasingly 

abundant (and increasingly foreign) supply of the latter may have raised the productivity of the 

former and enabled American firms to outproduce their rivals.  It is possible to write down a 

                                                 
39   See Athreye (2005).  Wages rose substantially between 1997 and 1998 – so much so that the “implied labor 
units” actually fell between these years.  Note that NASSCOM’s “export” data often include revenue derived from 
projects to which Indian employees working in the U.S. on H-1B visas have contributed.  We have attempted to 
correct for this in the data. 
40  See Kojima and Kojima (2007).  These authors also use survey data and direct interviews to analyze the reasons 
for relatively low levels of software offshoring.  Language and cultural barriers were identified as an important 
constraints limiting Japanese offshoring, especially to India.  Japanese offshoring has focused much more on China, 
which has a much smaller and less well developed software offshoring sector than India.   
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simple model of IT innovation that has these features, and we hope to include such a model in 

future drafts of this paper.   

An alternative hypothesis posits that Japanese firms did not suffer from a labor resource 

constraint.  Instead, Japan’s relative decline in innovative productivity was driven by a 

managerial failure to recognize and adapt to fundamental change. Several strands of literature 

have explored this problem and proposed explanations for why it could occur.  The literature on 

learning and innovation has argued that the ability of a firm to recognize the value of external 

information, assimilate it, and apply it to commercial ends is critically dependent on previous 

investments in that sector.  For instance, Cohen and Levinthal (1990) argue that lack of 

investment in a sector of expertise may foreclose the future development in it. Our data suggest 

that, relative to American firms, Japanese IT firms have invested fewer resources in software 

innovation. Following a software-intensive technology shift, this mechanism would lead to 

vicious circle where the Japanese have lower absorptive capacity for software knowledge, thus 

produce fewer software inventions, which in turn again diminishes their absorptive capacity. 

This idea is similar to the notion of technological lock-in by historical reasons (Arthur, 1989) and 

learning myopia (Levinthal and March, 1993).  

A related strand of management literature has focused on how managerial mindsets affect 

the (in)ability of firms to make strategic shifts. The key assertion is that managers develop 

mindsets, formed through years of experience, which in turn guide their decisions (Prahalad and 

Bettis, 1986). However, when the environment changes, these mindsets may prevent managers 

from responding to the change (Bettis and Hitt, 1995).  The problem is more severe when 

managers have less experience in diverse settings.  Japanese institutions, such as the lifetime 

employment system, imply that Japanese IT firms are more likely than US IT firms to be led by 
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seasoned technocrats who have risen through the ranks. In contrast, US IT firms are more likely 

to be led by managers with business backgrounds and diverse experience. If this results in US 

firms’ managers having systematically more flexible managerial mindsets, this could again 

explain the inability of the Japanese to make the required strategic innovation shift.   

Initial Evidence for Distinguishing Between Possible Hypotheses 

 While our current data does not enable us to rule out any of the proposed explanations, 

we can obtain an initial insight by exploring data on patenting behavior of Japanese and US IT 

firms. The identification strategy we follow is based on the fact that the two possible 

explanations yield different predictions regarding what types of innovative activities Japanese 

firms should undertake in Japan and abroad. If they are constrained by their software knowledge 

pool at home, then Japanese firms will have the incentive to tap into foreign knowledge pools by 

setting up software intensive R&D facilities abroad. Thus, if we observe that innovative efforts 

of Japanese firms are markedly more software intensive when done outside Japan, this would 

suggest the existence of the software knowledge/labor constraint in Japan. 

 We classified USPTO granted patents assigned to the Japanese firms in our sample on the 

basis of where they were invented – Japan, United States, or elsewhere (rest). Then, we 

compared the shares of software, IT, and other patents in different invention locations. The 

results of this exercise are reported in Tables XI-XIV of the Appendix.  What we observe is 

consistent with the constraint hypothesis. The share of software patents in total patents invented 

in Japan and assigned to the Japanese firms in our sample is 6%. However, the share of software 

patents in total patents invented in the US and assigned to the Japanese firms is significantly 

higher – 33%. Similarly, software patents represent 24% of total patents invented in other parts 

of the world. This suggests Japanese firms are disproportionally likely to engage in software 
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innovation abroad. In addition, comparing citation behavior of non-software IT patents 

belonging to Japanese firms in our sample, we see that US invented patents are more likely to 

cite software innovation than those invented in Japan. We also conducted the exercise separately 

by sector – electronics, semiconductors, IT hardware - and see that increasing propensity to 

conduct software innovation abroad holds for all of them, but is strongest in IT hardware.  

 This does not rule out managerial myopia insofar as Japanese firms that recognize the 

importance of using software knowledge are also willing and able to invest in software related 

innovation activities abroad.  It does imply that conducting software intensive research in Japan 

is more difficult than doing so elsewhere, consistent with a software resource constraint in Japan. 

V. Conclusions, Implications and Next Steps 
In this paper, we document the existence of a software-biased shift in the nature of the 

innovation process in information technology. Using data on the citation patterns of IT patents, 

we show that IT inventions increasingly rely on software knowledge. In addition, we provide 

initial evidence of its economic importance by studying how the innovation performance of IT 

firms in the United States and Japan was affected by this shift. Using a panel of large publicly 

listed IT firms, we show that Japanese firms produce significantly fewer software inventions and 

rely less on software knowledge in innovation production than their US counterparts.  We 

present evidence consistent with the hypothesis that this difference has resulted in a deterioration 

in the relative performance of Japanese firms, and show that this effect is more pronounced in 

software intensive sectors. Finally, we provide suggestive evidence, consistent with a constrained 

supply of software knowledge and skills in Japan being a key factor in explaining the relatively 

weaker performance of Japanese IT firms in the 1990s.  However, a full investigation of the 

connections between labor market constraints and our results is beyond the scope of this paper. 
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Our findings highlight important interconnections between firm competencies, technical 

change, and innovation performance, and they contribute to a growing literature that explores 

linkages between factor endowments, technological change, and industry performance (e.g. 

Acemoglu, 2002; Dudley and Moenius, 2007).  Our results also point to some questions that are 

now the focus of ongoing research.  The most important of these is the mechanism that lies 

behind our main results.  Did American firms’ access to a substantially larger pool of software 

engineering labor play an important role in their ability to outperform their Japanese rivals as the 

software-intensity of IT innovation rose?  Or was the divergence driven by the superior 

organizational competence of American firms, or other institutional factors?  Determining the 

answer to this question could have important implications for policies in Japan and elsewhere 

that are aimed at promoting the advancement of the IT sector.  To the extent that the labor 

constraint story holds, institutional reforms in Japan that fail to open Japanese labor markets to 

highly skilled immigrants could leave Japanese firms at a disadvantage even in the longer run.  

Likewise, these results could inform the heated debate in the U.S. over the H-1B visa program.  

U.S. IT executives have long argued for generous H-1B visa caps, maintaining that liberal 

immigration was key to the competitiveness of American industry.  This claim deserves further 

scrutiny.  
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Table I: Citation Function Results           
      Full Sample   Citations to Software Patents Only   
Citing Grant Year   Coefficient Std. Error   Coefficient Std. Error   

1993   0.1364 *** 0.0432   0.2345 *** 0.0533   
1994   0.3248 *** 0.0500   0.4157 *** 0.0640   
1995   0.6339 *** 0.0609   0.8949 *** 0.0771   
1996   1.1426 *** 0.0769   1.7482 *** 0.0954   
1997   1.4741 *** 0.0942   2.2345 *** 0.1345   
1998   1.9031 *** 0.1123   2.7757 *** 0.1572   
1999   2.2265 *** 0.1372   3.2193 *** 0.1635   
2000   2.3847 *** 0.1622   3.4400 *** 0.1971   
2001   2.8789 *** 0.1978   3.7422 *** 0.2304   
2002   3.3690 *** .   3.98453 *** .   

Cited Grant Year               
1981   -0.6114 *** 0.0184   -0.6314 *** 0.0191   
1982   -0.7758 *** 0.0119   -0.7851 *** 0.0127   

…   … …   … …   
2000   -0.9977 *** 0.0004   -0.9981 *** 0.0003   
2001   -0.9988 *** 0.0005   -0.9990 *** 0.0005   

                  
Citing Patent From Japan -0.3358 *** 0.0220   -0.3916 *** 0.0231   
Cited Software Patent 1.3483 *** 0.0484   n/a n/a   

      Citing Patent From 
Japan X Cited 
Software Patent   

-0.9225 *** 0.0590 
  n/a n/a 

  
Obsolescence   0.3824 *** 0.0053   0.3978 *** 0.0062   
Diffusion     0.0002 *** 0.0000   0.0003 *** 0.0000   
                  
Adj R-Squared   0.8526   0.6460   
Number of Obs.   804   402   
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Table II: Software Intensity by Sector, Firms in Tobin's Q Regression Sample, 1993-1999 

Industry No. of Firms Mean St. Deviation Mean St. Deviation
Electronics 68 0.0139 (**/**) 0.0183 0.1650 (**/**) 0.1528
Semiconductors 56 0.1452 (**/**) 0.1684 0.2691(**/*) 0.2099
IT Hardware 99 0.2320  (**/**) 0.2200 0.3316 (**/*) 0.2100

** - Test for equality of means rejected at 5% level for a pair of industries, * - Test for equality of means rejected at 10% level for a pair of industries
( / ) - First term in bracket represents the upper pair, second term in bracket represents the lower pair

Share of Citations to Software PatentsShare of Software Patents

 

 

Table III: Software Patent Shares by Sector and Firm Origin, Tobin's Q Regression 
Sample, 1983-1999 

Industry No. of Firms Mean St. Deviation No. of Firms Mean St. Deviation
Electronics 16 0.0248(**/**) 0.0261 52 0.0106 (*/**) 0.0137
Semiconductors 43 0.1820 (**/**) 0.1749 13 0.0234 (*/**) 0.0450
IT Hardware 76 0.2822 (**/**) 0.2277 23 0.0663 (**/**) 0.0387

** - Test for equality of means rejected at 5% level for a pair of industries, * - Test for equality of means rejected at 10% level for a pair of industries

( / ) - First term in bracket represents the upper pair, second term in bracket represents the lower pair

Japanese FirmsUS Firms

 

 

Table III-2: Share of Citations to Software by Non-Software IT Patents by Sector and Firm 
Origin, Tobin's Q Regression Sample, 1983-1999 

Industry No. of Firms Mean St. Deviation No. of Firms Mean St. Deviation
Electronics 16 0.1160 (**/**) 0.1231 52 0.1800 (  /**) 0.1589
Semiconductors 43 0.3089 (**/  ) 0.2118 13 0.1374 (  /**) 0.1434
IT Hardware 76 0.3378 (**/  ) 0.2260 23 0.3109 (**/**) 0.1476

** - Test for equality of means rejected at 5% level for a pair of industries, * - Test for equality of means rejected at 10% level for a pair of industries
( / ) - First term in bracket represents the upper pair, second term in bracket represents the lower pair

US Firms Japanese Firms
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Table IV: Tobin's Q Regression Results ‐ By Period

lnQ NLS NLS NLS NLS

0.1721 -0.5772 -0.1905 0.1972
(0.0489) *** (0.0655) *** (0.0566) *** (0.0594) ***
-0.1625 0.5819 0.2078 -0.2099

(0.0494) *** (0.0654) *** (0.0611) *** (0.0617) ***
lnSales 0.0380 0.0498 0.0475 0.3236

(0.0016) *** (0.0019) *** (0.0027) *** (0.0022) ***

N 2973 913 888 1172
0.4889 0.6051 0.5171 0.4925

Table

lnQ

N

RD/A

RD/A

R-

Industry

RD/A

R-squared

Industry

RD/Assets

RD/Assets * Japan

Entire Sample 1983-1988 1989-1993 1994-1999

 IV‐2: Tobin's Q Regression Results ‐ By Period ‐ Software Intensity

NLS NLS NLS NLS

0.0619 -0.3478 -0.1834 0.0848
(0.0440) (0.1019) *** (0.0689) *** (0.0524)

0.0514 0.3375 0.3289 -0.0042
(0.0643) (0.1023) *** (0.0934) *** (0.0922)

0.2568 -0.0498 0.3557 0.1671
(0.1233) ** (0.0816) (0.2259) (0.1681)

2973 913 888 1172
0.5108 0.6154 0.5304 0.4991

1994-1999

ssets

ssets * Sof.Intensity

squared

 controls, time controls, and other level and dummy variables not reported

ssets * Japan

 controls, time controls, and other dummy variables not reported

Entire Sample 1983-1988 1989-1993

 



Appendix A  

Table V: Patent Production Function Results: Entire Sample and By Sector 

 

      Entire Sample   Electronics Semiconductors IT Hardware 
      OLS RE FE   OLS RE FE OLS RE FE OLS RE FE 
                                
Log 
R&D     0.8300 0.1865 0.0124   1.0778 0.6272 0.2364 0.6294 0.1393 0.0330 0.7564 0.1286 0.0183 
      (0.0452) (0.2159) (0.2178)   (0.0711) (0.0515) (0.0649) (0.0814) (0.0393) (0.0369) (0.0758) (0.0301) (0.0299) 
Time 1989-1993   0.5256 0.5409 0.5388   0.0578 0.1209 0.1771 0.4726 0.6685 0.7089 0.6885 0.6516 0.6342 
      (0.1312) (0.0684) (0.0624)   (0.1611) (0.1314) (0.1252) (0.2566) (0.1486) (0.1282) (0.1718) (0.0907) (0.0834) 
Time 1994-1999   1.0674 1.3098 1.3752   -0.3737 -0.2725 -0.1716 1.3183 1.9250 2.1288 1.2491 1.3759 1.4005 
      (0.1704) (0.0665) (0.0612)   (0.2574) (0.1305) (0.1249) (0.3015) (0.1422) (0.1241) (0.2083) (0.0883) (0.0819) 
Japan Dummy   0.4003 0.4853 n.a.   -0.5425 -1.2094 n.a. 0.2269 0.3428 n.a. 0.9121 1.7556 n.a. 
      (0.1974) (0.1814)     (0.2600) (0.2796)   (0.3511) (0.3336)   (0.3239) (0.2869)   
Japan * Time 1989-1993 -0.6963 -0.2654 -0.1614   -0.3780 -0.1123 0.0072 -0.2529 -1.0391 -0.0492 -0.7936 -0.2734 -0.1812 
      (0.1515) (0.0943) (0.0861)   (0.1941) (0.1479) (0.1415) (0.3583) (0.2621) (0.2264) (0.2038) (0.1472) (0.1353) 
Japan * Time 1994-1999 -1.0023 -0.7146 -0.6435   0.2891 0.5941 0.7105 -1.1184 -1.1435 -1.1602 -1.0569 -0.7088 -0.6333 
      (0.2003) (0.0946) (0.0869)   (0.2884) (0.1490) (0.1431) (0.5263) (0.2498) (0.2173) (0.2767) (0.1491) (0.1377) 
Electronics   -0.9619 0.8915 n.a.                     
      (0.2402) (0.2064)                       
Semiconductors   -1.1759 0.6300 n.a.                     
      (0.2258) (0.2145)                       
IT Hardware   -1.1356 0.5599 n.a.                     
      (0.2443) (0.1938)                       
_cons     n.a. n.a. 2.5148   -0.9807 0.9164 1.5926 -0.4581 0.5473 1.7714 -1.0538 1.0991 2.9155 
          (0.0972)   (0.3612) (0.3284) (0.2433) (0.2985) (0.2386) (0.1657) (0.3462) (0.1978) (0.1540) 
                                

 

49 



                                    
Table VI: Tobin's Q Regressions - US and Japan - Comparing Time Trends   
                                    
      Entire Sample       US         Japan         
lnQ     FE   NLS     FE   NLS     FE   NLS     
                                    
RD/Assets   0.0175  0.1242 ***  -1.2380   -0.1531     0.0072  0.0105     
      (0.0094) * (0.0322)   (0.1771) *** (0.1791)     (0.0087)  (0.0071)     

RD/Assets * Year_1989-1993 0.0084
 

   -0.0629
 

*   -0.3799
 

   -0.4052
 
      0.0059

 
   0.0072

 
     

      (0.0246)  (0.0385)   (0.0920) *** (0.0711) ***   (0.0234)  (0.0306)     
RD/Assets * Year_1994-1999 0.01256  -0.0726 *  1.2647   0.2194     -0.0026  -0.0008     
      (0.0111)  (0.0428)   (0.1771) *** (0.1838)     (0.0275)  (0.0250)     
                          
                                    
N     2973   2973     1529   1529     1444   1444     
R-squared   0.1129   0.5180     0.2207   0.5883     0.2888   0.7532     
                                    
Firm size coefficient, Industry controls, and other controls not reported                  
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Table VII: Total Sample Period Tobin's Q Regression - Logarithmic Approximation FE and NLS - US and Japanese Firms - Electronics 
                               
      US   Japan     US   Japan          
lnQ     FE   FE     NLLS   NLLS          
                               
RD/Assets   1.1709   0.0178     1.5170   0.0114          
      (0.3692) *** (0.0097) *   (0.6332) ** (0.0078)          
RD/Assets * Time 
1989-1993 -0.7581

 
   -0.0056

 
     -0.5278

 
   0.0000

 
          

      (0.1792) *** (0.0244)     (0.2101) ** (0.0345)          
RD/Assets * Time 
1994-1999 -0.2068   0.0207     -1.6333   0.0093          
      (0.3045)   (0.0294)     (0.6450) ** (0.0286)          
                        
                               
N     209   865     209   865          
R-squared   0.3936   0.3510     0.5828   0.7598          
                               
Firm size, time dummies,  and other controls not reported                    
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Table VIII: Total Sample Period Tobin's Q Regression - Logarithmic Approximation FE and NLS - US and Japanese Firms - Semiconductors 
                            
      US   Japan    US   Japan        
lnQ     FE   FE    NLLS   NLLS        
                            
RD/Assets   -1.4462  0.0061   0.3945  -0.0148        
      (0.3001) *** (0.0294)   (0.3757)  (0.0193)        

RD/Assets *  
Time 1989-1993 -0.5272

 
  0.0609

 
   -0.6778

 
  0.1805

 
        

      (0.1596) *** (0.2403)   (0.1473) *** (0.1903)        
RD/Assets *  
Time 1994-1999 1.4761  -0.1022   -0.1831  -0.3690        
      (0.3001) *** (0.2663)   (0.3957)  (0.1451) **      
                     
                            
N     468   209    468   209        
R-squared   0.3831   0.1276    0.6615   0.7696        
                            
Firm size, time dummies,  and other controls not reported                 
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Table IX Total Sample Period Tobin's Q Regression - Logarithmic Approximation FE and NLS - US and Japanese Firms - IT Hardware 
                            
      US   Japan    US   Japan        
lnQ     FE   FE    NLLS   NLLS        
                            
RD/Assets   -1.6589   -0.0742    0.6943 ** 0.2306        
      (0.2633) *** (0.1185)    (0.3546)   (0.1253) *      

RD/Assets *  
Time 1989-1993 0.2243

 
   -0.1399

 
    0.2566

 
***  -0.1201

 
        

      (0.1553)   (0.1475)    (0.0946)   (0.1761)        
RD/Assets *  
Time 1994-1999 1.0624 *** -0.0154    1.2291 *** -0.1962        
      (0.2725)  (0.1469)   (0.3558)  (0.1754)        
                     
                            
N     852   370    852   370        
R-squared   0.1798   0.2604    0.5607   0.7524        
                            
Firm size, time dummies,  and other controls not reported                 
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lnQ

RD/Assets - US -0.2975 *** 0.1107 * 0.1059 0.1689 **

RD/Assets- Japan 0.0499 *** 0.0482 0.0155 -0.1519 **

lnQ

RD/Assets - US 0.1012 0.0200 0.9330 *** -0.0989 *

RD/Assets- Japan 0.1677 0.0058 0.2112 ** -0.1863

25 percentile or lowerabove median

below median above median 25 percentile or lower

Table X: Tobin's Q Regressions Summary - Share of Software Patents

ELECTRONICS

TOTAL

75th percentile or 
higher

75th percentile or 
higher

below median
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lnQ

RD/Assets - US -0.4071 *** 0.3880 -0.2349 0.8945 ***

RD/Assets- Japan 0.0562 *** 0.2246 0.0163 0.6957 **

lnQ

RD/Assets - US (n/a) -0.3662 *** -0.4499 *** -0.3327 ***

RD/Assets- Japan (n/a) 0.2175 *** -0.4599 *** 0.0825 ***

75th percentile or 
higher

below median above median 25 percentile or lower 75th percentile or 
higher

IT HARDWARE

below median above median 25 percentile or lower

SEMICONDUCTORS

Table X: Tobin's Q Regressions Summary - Share of Software Patents (contd.)
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Table XI: Distribution of Patents Held By Japanese Firms by Innovation Origin – Entire Sample 

other IT software Total Freq. Percent Cum.
other 426,152 40,199 6,358 472,709 50.25 other 72,503 50 50.44
IT 85,663 262,811 46,791 395,265 42.02 IT 62,326 43 93.8

software 11,936 34,144 26,575 72,655 7.72 software 8,914 6 100
Total 523,751 337,154 79,724 940,629 Total 143,743 100

55.68 35.84 8.48

22% 66% 12%
16% 47% 37%

other IT software Total Freq. Percent Cum.
other 9,998 1,257 436 11,691 33.97 other 977 36 35.54
IT 2,699 5,126 1,595 9,420 27.37 IT 858 31 66.75

software 1,976 5,064 6,264 13,304 38.66 software 914 33 100
Total 14,673 11,447 8,295 34,415 Total 2,749 100

42.64 33.26 24.10

29% 54% 17%
15% 38% 47%

other IT software Total Freq. Percent Cum.
other 1,115 141 28 1,284 22.30 other 230 36 35.99
IT 319 960 286 1,565 27.17 IT 258 40 76.37

software 267 1,494 1,149 2,910 50.53 software 151 24 100
Total 1,701 2,595 1,463 5,759 Total 639 100

29.54 45.06 25.40

20% 61% 18%
9% 51% 39%

composition of citations for software patents

composition of citations for IT patents
composition of citations for software patents

PATENT COUNTS

ci
tin

g 
pa
te
nt
 c
la
ss

ci
tin

g 
pa
te
nt
 c
la
ss

ci
tin

g 
pa
te
nt
 c
la
ss

Cited Patent Class

Cited Patent Class

Cited Patent Class

composition of citations for IT patents
composition of citations for software patents

Invented elsewhere

Invented in the US

Invented in Japan

CITATION PATTERNS (citation counts)

composition of citations for IT patents

 

Table XII: Distribution of Patents Held By Japanese Firms by Innovation Origin – Electronics 
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other IT software Total Freq. Percent Cum.
other 162,555 10,097 1,714 174,366 66.58 other 28,574 66 65.84
IT 19,487 52,322 6,959 78,768 30.08 IT 13,573 31 97.12

software 1,855 4,203 2,692 8,750 3.34 software 1,252 3 100
Total 183,897 66,622 11,365 261,884 Total 43,399 99.99

70.22 25.44 4.34

25% 66% 9%
21% 48% 31%

other IT software Total Freq. Percent Cum.
other 3,720 199 28 3,947 79.27 other 251 77 76.99
IT 275 459 34 768 15.42 IT 50 15 92.33

software 64 137 63 264 5.30 software 25 8 100
Total 4,059 795 125 4,979 Total 326 100

81.52 15.97 2.51

36% 60% 4%
24% 52% 24%

other IT software Total Freq. Percent Cum.
other 103 4 0 107 76.43 other 24 67 66.67
IT 6 23 4 33 23.57 IT 12 33 100

software 0 0 0 0 0.00 software 0 0
Total 109 27 4 140 Total 36 100

77.86 19.29 2.86

18% 70% 12%
#DIV/0! #DIV/0! #DIV/0!

CITATION PATTERNS (citation counts) PATENT COUNTS

composition of citations for IT patents
composition of citations for software patents

composition of citations for IT patents

Invented in Japan

Invented in the US

ci
tin

g 
pa
te
nt
 c
la
ss

ci
tin

g 
pa
te
nt
 c
la
ss

composition of citations for IT patents
composition of citations for software patents

Cited Patent Class

Cited Patent Class

Cited Patent Class

composition of citations for software patents

Invented elsewhere

ci
tin

g 
pa
te
nt
 c
la
ss

 

Table XIII: Distribution of Patents Held By Japanese Firms by Innovation Origin – Semiconductors 
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other IT software Total Freq. Percent Cum.
other 14,360 1,654 160 16,174 47.97 other 2,605 45 45.2
IT 3,673 11,473 1,100 16,246 48.18 IT 2,943 51 96.27

software 242 721 334 1,297 3.85 software 215 4 100
Total 18,275 13,848 1,594 33,717 Total 5,763 100

54.20 41.07 4.73

23% 71% 7%
19% 56% 26%

other IT software Total Freq. Percent Cum.
other 95 7 0 102 14.78 other 14 25 25.45
IT 145 275 28 448 64.93 IT 28 51 76.36

software 7 79 54 140 20.29 software 13 24 100
Total 247 361 82 690 Total 55 100

35.80 52.32 11.88

32% 61% 6%
5% 56% 39%

other IT software Total Freq. Percent Cum.
other 34 3 0 37 90.24 other 6 86 85.71
IT 0 4 0 4 9.76 IT 1 14 100

software 0 0 0 0 0.00 software 0 0
Total 34 7 0 41 Total 7 100

82.93 17.07 0.00

0% 100% 0%
0% 0% 0%

CITATION PATTERNS (citation counts) PATENT COUNTS

composition of citations for IT patents
composition of citations for software patents

composition of citations for IT patents

Invented in Japan

Invented in the US

ci
tin

g 
pa
te
nt
 c
la
ss

ci
tin

g 
pa
te
nt
 c
la
ss

composition of citations for IT patents
composition of citations for software patents

Cited Patent Class

Cited Patent Class

Cited Patent Class

composition of citations for software patents

Invented elsewhere

ci
tin

g 
pa
te
nt
 c
la
ss

 

Table XIV: Distribution of Patents Held By Japanese Firms by Innovation Origin – IT Hardware 
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other IT software Total Freq. Percent Cum.
other 249,237 28,448 4,484 282,169 43.76 other 41,324 44 43.7
IT 62,478 198,882 38,720 300,080 46.53 IT 45,788 48 92.12

software 9,839 29,220 23,549 62,608 9.71 software 7,447 8 100
Total 321,554 256,550 66,753 644,857 Total 94,559 100

49.86 39.78 10.35

21% 66% 13%
16% 47% 38%

other IT software Total Freq. Percent Cum.
other 6,183 1,051 408 7,642 26.58 other 712 30 30.07
IT 2,279 4,392 1,533 8,204 28.54 IT 780 33 63.01

software 1,905 4,848 6,147 12,900 44.88 software 876 37 100
Total 10,367 10,291 8,088 28,746 Total 2,368 100

36.06 35.80 28.14

28% 54% 19%
15% 38% 48%

other IT software Total Freq. Percent Cum.
other 978 134 28 1,140 20.44 other 200 34 33.56
IT 313 933 282 1,528 27.39 IT 245 41 74.66

software 267 1,494 1,149 2,910 52.17 software 151 25 100
Total 1,558 2,561 1,459 5,578 Total 596 100

27.93 45.91 26.16

20% 61% 18%
9% 51% 39%

CITATION PATTERNS (citation counts) PATENT COUNTS

composition of citations for IT patents
composition of citations for software patents

composition of citations for IT patents

Invented in Japan

Invented in the US

ci
tin

g 
pa
te
nt
 c
la
ss

ci
tin

g 
pa
te
nt
 c
la
ss

composition of citations for IT patents
composition of citations for software patents

Cited Patent Class

Cited Patent Class

Cited Patent Class

composition of citations for software patents

Invented elsewhere

ci
tin

g 
pa
te
nt
 c
la
ss
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Appendix B 

A Simple Model of Skill Complementarity in IT Innovation (Version 1, 2-Level CES) 

In this section we present a very simple model of IT innovation in which we embed a particular kind of skill complementarity.  

To create new IT innovations (I), firms must employ hardware engineers (H) and software engineers (S).  The highly labor intensive 

nature of software development requires contributions from very high skilled software architects (SH) and lower skilled “code 

warriors,” (SL), who actually create, test, and maintain the subroutines and program modules scripted out by the architects.  These two 

kinds of software engineers are complements.  The productivity of the highly skilled architects, SH, is enhanced by hiring larger 

numbers of code warriors and vice versa.  To build this complementarity into our innovation production function in a simple way, we 

start with a two-level CES production function of the following nature:41

ρρρ 1])1([ ititit HaaSAI −+=  where )1( ≤ρ   (A-1) 

and 

])1(([ θθ
LitHitit SbSbS −+=  where )1( ≤θ   (A-2) 

For notational simplicity, the coefficients  and b are represented as stable over time, but could, in principle vary.  Complementarity 

between high-skilled and low-skilled software workers requires that 

a

ρ >θ ; in other words, the direct elasticity of substitution between 

H and S must exceed the direct elasticity of substitution within the “nest” between SH and SL.   

                                                 
41   We follow Fallon and Layard (1975), Goldin and Katz (1996), Sanders and Weel (2000), and many others in using the 2-level CES as a mathematical 
formulation of this complementarity.  An extensive literature uses this and other closely related functional forms to examine the hypothesis of complementarity 
between physical capital and worker skill.  Our notation is closely related to Fallon and Layard (1975) 
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 Note that, in this formulation, the increasing tendency of IT innovation to draw upon software advances (and less so upon 

hardware advances) can be represented by an increase over time in the  parameter.  This is mathematically isomorphic to the way 

that many researchers in the labor and trade literatures have attempted to model the impact of skill-biased technical change.  Profit 

maximization, taking factor prices as given, yields the result that relative factor payments in equilibrium will be: 

a

1)1( −

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ −

==
ρρ

ω
S
H

a
a

W
W

S

H     (A-3) 

In this simple case, Hicks-neutral technical progress in IT innovation can be defined as an increase in productivity that leaves relative 

factor prices stable for a given employment ratio; or equivalently leaves the factor employment ratio stable for a given wage ratio.  

From A-3, it follows that technical change in IT innovation is Hicks neutral so long as  does not change.  The “changing nature of 

technical change” in IT is biased against hardware engineers (and toward software engineers) if  increases.  Software-biased 

technical change could show show up empirically either as a relative wage change when controlling for supply shifts or as an 

employment-ratio change when controlling for relative wage shifts.   

a

a

 But the fact that we represent S as a composite of two different kinds of software engineers complicates the analysis 

somewhat.  If Japanese and U.S. firms have approximately similar access to high-skilled software architects but very different levels 

of access to lower-skilled code warriors, then this could directly impact the optimal response of these two groups of to a common shift 

in , in ways that we will illustrate below.   a
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 Given our representation, we can express the Hicks (1970) elasticity of complementarity for a constant returns production 

function as 

j

i

j
ij X

f
v

c
log
log1

∂
∂

=    (A-4) 

where  is the share of the jth factor in output, and jv ji Xf log/log ∂∂  indicates the proportional effect on the marginal product of the 

ith factor of a change in quantity of the jth factor, holding all other input quantities constant.  This implies that  

L
S

SS

S
SS S

f
f

v
c

H

LH

L

LH
⋅⋅=

1   (A-5)_ 

which, in the case of our two-level CES function, can be expressed as  

)(11 θρρ −+−=
S

SS v
c

LH
  (A-6) 

and this implies that an increase in the quantity of SL will raise the marginal product of SH, and it will do so by more than it raises the 

marginal product of H.  The Hicks elasticity of complementarity between SL and H can be shown to be 

ρ−== 1HSHS HL
cc    (A-7) 

and this will be strictly less than the expression defined in (A-6) so long as ρ >θ , which is true by assumption.  We can also define 

the Allen elasticity of substitution used by Griliches (1969), which gives the impact of a factor price change on optimal factor 

quantities.  In general, the Allen elasticity of substitution is 
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X
v log

log1
∂
∂
⋅=σ   (A-8) 

and in our 2-level CES, this corresponds to  
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1
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  (A-9) 

while 

ρ
σσ

−
==

1
1

HSHS HL
  (A-10) 

This implies that a decrease the price of SL will tend to raise the optimal quantity of SH, so long as ρ >θ , which is true by assumption.   

 With these basic mathematics as background and foundation, here is the story we believe unfolded in the late 1980s and, 

especially, the 1990s.  IT innovation became more software intensive. That is,  increased rapidly and sharply.  The optimal response 

for IT firms in all countries was to respond by hiring more software engineers relative to hardware engineers.  U.S.-based firms were 

able to tap into a fairly elastic supply of lower-skilled code warriors by importing increasingly large numbers of (disproportionately 

Indian) software engineers under the H-1B visa program and by outsourcing an increasing fraction of software development to 

offshore workers.  This prevented the price of lower-skilled software engineers from rising.  In fact, a true quality-adjusted index of 

lower-skilled software services might have actually declined for American firms as Indian software enterprises ramped up their ability 

to serve the U.S. market.  In any case, the cost of lower-skilled software engineers remained much lower for U.S.-based firms than for 

Japanese firms.  This raised the marginal product of higher skilled software engineers for U.S. firms while labor constraints in Japan – 

a
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the limited availability and relatively high prices of low-skilled software workers – lowered the marginal product of higher-skilled 

software workers from the perspective of Japan-based firms.     

 In the presence of the labor constraint they faced, the optimal response of Japanese firms was to invest in relatively fewer 

software engineers than their U.S counterparts.  This, however, limited their innovative output relative to their U.S. counterparts and 

helped bring about the decline in relative performance documented in the text of the paper. 
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