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Abstract

The purpose of this paper is to explore the evolution of bargaining norms in a simple team production

problem with two sided relationship speci�c investments, and competition. The puzzle we wish to address

is why e¢ cient bargaining norms do not evolve even though there exist e¢ cient sequential equilibria.

Conditions under which stochastically stable bargaining conventions exist are characterized, and it is

shown that the stochastically stable division rule is independent of the long run investment strategy.

Hence, e¢ cient sequential equilibria are not in general stochastically stable, a result that may help us

understand why institutions, such as �rms, may be needed to ensure e¢ cient exchange in the context of

relationship speci�c investments. We also �nd that increasing competition, while enhancing incentives,

may also destabilize existing bargaining norms.
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1 Introduction

A starting point for modern contract theory is the Coase (1960) conjecture stating that in the absence of

transactions costs, individuals should be able to bargain to e¢ cient allocations, regardless of the original

allocation of property rights. However, when individuals make investments that are both relationship speci�c

and non-contractible before trade, then, as Grossman and Hart (1986) show, the allocation of property rights

can a¤ect the returns from these investments, and hence the e¢ ciency of the relationship. This observation

has led to the �property rights" view of the �rm, in which ownership allocation and �rm boundaries are

viewed as a mechanisms that enhance productive e¢ ciency (see Hart (1995)).

This view is can be controversial. Maskin and Tirole (1999) observe that incomplete contracts and hold-

up do not preclude the existence of e¢ cient contracts. They show that regardless of the property rights

allocation, if agents have su¢ cient foresight, then there exist contracts that provide e¢ cient investment

incentives. By itself, this does not imply that agents necessarily choose e¢ cient contracts from the set of

incentive compatible contracts. Such a step typically relies upon some model of negotiation or equilibrium

selection. Both Moore (1992) and Tirole (1999) worry that e¢ cient contracts may be too complex to use

in practice, and hence to explain observed contracting arrangements one should rely upon a more realistic

model of behavior.1

One approach to this problem that has been particularly in�uential in the legal academy is to use an

evolutionary model of rule or contract selection selection.2 For example Ellickson (1991) has studied the

system of property rights allocation in Shasta County, and concludes that over time individuals are likely to

evolve e¢ cient norms of behavior. Moreover, even when there is an existing ine¢ cient legal rule, individuals

are able to evolve rules that are more e¢ cient and supersede the legally enforceable rule.

In this paper we use an evolutionary learning model in the tradition of Young (1993a) and Kandori,

Mailath, and Rob (1993) to evaluate the claim that through a process of experimentation and learning

individuals select an e¢ cient division rule for a simple bilateral trade model. In this model both parties have

an opportunity to make non-contractible, relationship speci�c investments at a cost c before entering the

market. This investment can be thought of as human capital, such as the acquisition of special skills needed

for a project, or any other sunk investment that is made ex ante. After entering the market, agents are

randomly matched, at which point they observe each other�s productivity, and play a Nash demand game

to divide the gains from trade.3 An important feature of the Nash demand game is that any division of the

gains from trade is a potential Nash equilibrium, and hence the division rule selected may depend upon each

party�s contribution to the productivity of the match. This ensures that whenever it is e¢ cient for both

1See discussion on page 773 of Tirole (1999).
2See Alchian (1950) for an account that is still well worth reading. Kim and Sobel (1995) make the point explicitly that even

if one allows for communication one cannot be assured that an e¢ cient allocation will be selected. They show that e¢ cient

allocations are selected in pure coordination games. When the common interest assumption fails (as in this paper), evolution

with communication has no unique equilibrium.
3The rules of the Nash demand game are as follows. Given the gains from trade S; each person makes a demand di; and if

d1 + d2 � S; then they recieve their demand. Otherwise they receive zero.
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parties to invest, there exists a a division rule that is part of a sequential equilibrium that implements the

e¢ cient allocation.4

The �rst issue we address is whether the existences results of Ellingsen and Robles (2002) and Troger

(2002) for one-sided speci�c investment extend to the case of two sided investment. They consider a model

in which only one party makes a relationship speci�c investment, followed by play of the Nash demand game.

They show that there is an e¢ cient stable equilibrium, with the feature that the investing party appropriates

most of the gains from trade. The authors conclude that their results demonstrate that the holdup problem

cannot be considered a stable feature of an environment with boundedly rational individuals. In particular,

their results imply that stable division rules have the feature that individuals are rewarded according to their

contribution and therefore supports equity theory. This theory, as discussed in Rabin (1998), predicts �that

people feel that those who have put more e¤ort into creating resources have more claim on those resources.�5

Essentially, the e¢ ciency result in a setting with one-sided investment is based upon the insight that

the allocation of all the rents to the investing party is (stochastically) stable. In particular, the additional

value added by the investment may be relatively small compared to the gains from trade, but never the

less, the stable outcome entails giving the investing party all the rents. Thus their results demonstrate that

one does not need new organizational forms, such as �rms, to enhance e¢ ciency when relationship speci�c

investments are one-sided.

This is an interesting result because it is consistent with the evidence presented in Demsetz (1967) and

Ellickson (1991). They �nd that in the cases of fur trapping and the fencing of land one observes the

evolution of e¢ cient norms of behavior. In each of these cases only one party makes an investment, and

hence their observations are consistent with the results from the one-sided investment model. The holdup

model of Grossman and Hart (1986) is quite di¤erent because it entails investments by both parties to the

contract. In the Grossman-Hart model if one allocates more bargaining power to one party, this enhances

this parties incentives to invest, while reducing the other party�s investment incentives.6

Our �rst result is that there exists no stable bargaining norm when two parties make observable rela-

tionship speci�c investments that are not contractible.7 The reason such a norm does not exist is that at

an e¢ cient equilibrium both parties make high investments, and hence there are no high-low matches in the

long run equilibrium. This implies that beliefs regarding the outcome of high-low matches can drift due to

the noise inherent in the evolutionary learning model, until eventually it is in one party�s interest to enter

the market with a low investment. A similar argument applies to the low-low equilibrium.

An essential element in this argument is that the choices of individuals are subject to small noise, but

4 In a related model, Carmichael and MacLeod (2003) show that the e¢ cient allocation rule is unique when there is su¢ cient

diversity in preferences. In the subsequent discussion, when we use the term �equilibrium� by itself, we mean the sequential

equilibrium of the game. Similarly, the term "stable equilibrium" refers to Peyton Young�s notion of a stochastically stable

equilibrium, which we de�ne formally in section 4.
5As cited in Troger (2002), page 376 - the orginal source is Rabin (1998), page 18.
6Grossman and Hart (1986) state in their abstract that �When residual rights are purchased by one party, they are lost by a

second party, and this inevitably creates distortions." Note that such distortions cannot arise in the case of one-sided investment

when the investing party buys the asset.
7This result is suggested in Troger (2002) discussion his model, and we �rst proved it in Dawid and MacLeod (2001), a

journal this is now unfortunately out of print.
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the e¤ects of investments are completely deterministic. Arguably, in many instances the consequence of

investment is uncertain. For example, if a �rm invests in worker training, there is always a chance that

some of the workers do not acquire the skill. This can be modelled by supposing there is a small probability

that a high investment results in low productivity, and conversely that a low investment may (with low

probability) result in high productivity. The level of noise associated with investment e¤ects is assumed to

be of a magnitude larger than that associated with the implementation of the individuals�actions and we

derive our results when both levels approach zero. We show that this gives rise to a �hierarchy�of norms:

bargaining norms move very slowly, and investment norms, which, for given bargaining norms, might shift

due to stochastic changes in the investment results, move more quickly.

This, arguably small, modi�cation of the investment game now ensures the existence of a stable bargaining

norm, regardless of the investment strategies. This bargaining norm corresponds to the equal division rule,

even when the investments by parties di¤er. Hence the equity theory discussed above is not consistent with

a stable equilibrium when both parties contribute to the gains from trade, and there is some uncertainty

regarding the link between investment and productivity. Under these conditions, our results provide a formal

justi�cation for the use of the equal division rule in a model with holdup. This in turn implies that in many

cases the criteria of stochastic stability selects an ine¢ cient equilibrium.

The standard economic prescription to enhance e¢ ciency when norms of behavior are ine¢ cient is to

introduce more competition. We consider this possibility by supposing that if trade does not occur, the

individual may re-enter the market with their investments the next period at a discount factor of �: Varying

� from 0 to 1 parameterizes the model between the case of pure holdup and perfect competition.

Initially we �nd that the introduction of some competition always enhances e¢ ciency. However, as the

market becomes more competitive, this may also destabilize norm formation. When � is close to 1; an

individual with high productivity currently in a high-low matches, may prefer not to trade in order to re-

enter the market the next period, with the hope of meeting another high productivity individual. We �nd

that merely the possibility of being better o¤ the next period is su¢ cient to destabilize the evolution of a

stable bargaining norm in such cases.

To see this, suppose it is an equilibrium for all individuals to make a low investment. An individual with

high productivity has a low probability of meeting a high productivity individual the next period and hence

should trade as soon as she enters the market, regardless of the productivity of her partner. But, when

high-low matches are rare, then it is possible for beliefs to drift, with the consequence that in the long run

a person with high investment eventually believes that she will meet a high type the next period. If � is

su¢ ciently large, then in this case she is better o¤ delaying trade for one period given these beliefs, which

in turn destabilizes the equilibrium norm. Thus, when � is su¢ ciently large, a stochastically stable division

norm will not exist, even though there may exist e¢ cient sequential equilibria.

This result illustrates how the introduction of learning can signi�cantly change the results from more

standard, game theoretic approaches. In particular, an individual�s investment is an equilibrium only if

it provides a higher payo¤ than she would receive choosing the alternative investment level. To be an

equilibrium all that is required is that it is possible to select some o¤ equilibrium beliefs that are self-

enforcing. In contrast, in an evolutionary model all strategies are chosen with some probability. The
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distinguishing features of o¤ equilibrium strategies is that in the limit they are chosen very infrequently.

This implies that beliefs are not �xed, but can drift over time. As a result, equilibrium strategies must

satisfy the more stringent criteria of being an equilibrium, regardless of the o¤ equilibrium beliefs. This has

a number of practical implications.

The �rst of these is that a necessary condition for the existence of a norm is that it is used in practice.

Secondly, as a market becomes more competitive, then the frequency of ine¢ cient matches is reduced. Hence,

if a fair division norms applies mainly in cases where trade is ine¢ cient, then increases in competition will

lead to a breakdown of norms of fair behavior. This observation appears to be consistent with the breakdown

in norms of fair behavior that seem to accompany the transition process (see for example Roland (2000)).

The agenda of the paper is as follows. The next section introduces the basic model. It is shown that

whenever high investment is e¢ cient, there is a sequential equilibrium implementing the e¢ cient allocation.

Sections 3 introduces the formal stochastic learning model that is used to de�ne the notion of stochastically

stable states and the induced stable norms. This is followed by a discussion of how adding two sided

investment to the model results in the non-existence of a stable equilibrium. A preliminary analysis of the

stable equilibrium for our model is carried out in section 6. Section 7 considers the case of substitutes, where

the marginal return from the �rst investment is greater than the second investment, while section 8 presents

our results for complementary investments. Section 9 discusses the impact of the outside option, and �nally,

section 10 contains our concluding discussion.

2 The Model

We are interested in the kind of bargaining and investment norms which are developed endogenously in a

population of adaptive agents. To examine this, we use an evolutionary bargaining model similar to Young

(1993b) and Kandori, Mailath, and Rob (1993) as extended to incorporate investment by Troger (2002)

and Ellingsen and Robles (2002). The basic idea underlying this approach is that individuals anonymously

interact in a population and use a random sample of observed past behavior to build beliefs about current

actions of their opponent. With a large probability they then choose the optimal strategy given their beliefs.

Consider a single population of identical agents who are repeatedly matched randomly in pairs to engage

in joint production (or in a joint project). Every agent can make an investment that in�uences his type,

either high (H) or low (L), before entering the population, and accordingly the joint surplus of the project.

Before partners start joint production or trade they bargain over the allocation of the joint surplus. If

the bargaining does not lead to an agreement they split without carrying out the project and look for new

partners. The e¤ect of an investment stays intact as long as the agent has not carried out the project. It

is however assumed that an agent leaves the population once she has carried out the project and that the

investment afterwards creates no additional revenue. Looking for a new partner for the project needs time

and therefore payo¤s from the next matching are discounted by a factor � 2 [0; ��]. The more speci�c the
project, the search time is longer and hence � is smaller. Hence, we interpret � as a parameter measuring

the project speci�city, though it can be induced by any type of market frictions leading to search times.

The value of trade t periods after the initial investment is �tU; where U is the agents share of the gains
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from trade. When � = 0 the investment can only generate revenues in the current period and the model

corresponds to one with purely relationship speci�c investment.

The sequence of decisions facing an individual are:

1. The agent, i, decides about her investment level Ii 2 fh; lg ; where the cost of investment is

c (I) =

(
c; if I = h;

0; if I = l.

After the investment has been made the type Ti 2 fH;Lg of the agent is determined. It is assumed
that the probability of being a high type after having invested I is pI ; where ph > pl.

2. The agent is randomly matched with some partner and both observe each other�s type. The types

determine the size of the surplus, STiTj , where when convenient SH � SHH ; SA � SHL = SLH and

SL � SLL; and satis�es SH � SA � SL > 0.

3. Individual i makes a demand conditional upon her type and that of her partner j, denoted by xTiTj 2
XTiTj (k) =

�
0; �TiTj ; 2�TiTj ; :::; k�TiTj

	
; �TiTj = STiTj=k; k is some large even number.

4. The payo¤ to individual i in this period is given by the rules of the Nash demand game:

U i =

(
xiTiTj ; if xiTiTj + x

j
TjTi

� SIiIj
0; if xiTiTj + x

j
TjTi

> SIiIj

)
� c

�
Ii
�

and similarly for player j. Agents are assumed to be risk neutral.

5. If agent i has traded in this period she leaves the population and is replaced by another individual.

If there was no trade the individual stays in the population and goes again through steps 2 - 5 in the

following period where future payo¤s are discounted by a factor � per period.

Throughout the analysis SH and SL are assumed �xed, while the degree of complementarity in investment,

SA, the cost of investment, c, and the discount rate � are parameters that determine the nature of the

investment problem.

Furthermore, we assume that the probability that the type di¤ers from the investment level is symmetric

and small, namely: 1�ph = pl = � for some small positive �. This latter assumption plays an important role
in the analysis because it ensures that even if all individuals carry out high investment, there is a strictly

positive probability of having low types in the population. Hence each period there is the potential for

trade between H and L types. As we shall see, the existence of such trades is a necessary condition for the

evolution of a bargaining norm.

This is a one-population model where the only di¤erence between individuals stems from their investment.

Accordingly, in any uniform equilibrium where all individuals use identical strategies, the surplus has to be

split equally in matches of partners with identical investments. We are concerned with the evolution of norms

which are uniform equilibria, and hence in any norm the surplus has to be split equally between partners
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with identical investment8 . Therefore, to simplify the analysis it is assumed here that when two high types

meet or two low types meet they split the gains from trade equally if they trade, i.e. xiHH =
SH
2 ; x

i
LL =

SL
2 8i.

Although this has to hold true in any norm, our assumption is not completely innocent. In the absence of

such an assumption we may also have cyclical long-run phenomena where all individuals keep switching in a

coordinated fashion between demanding more or less than half of the surplus in equal investment matchings.

This would result in disagreement for half of the periods and a waste of parts of the surplus for the other half.

Ruling out such phenomena makes the model much more tractable and allows us to focus on the question

we are mainly interested in, namely the allocation of surplus in matches between partners with di¤erent

productivities and its implication for investment incentives.

For most of the current analysis it shall be assumed that the discount factor � is su¢ ciently small that

it is always e¢ cient to trade, regardless of the type of your partner, rather than wait. Hence the option to

wait will act as a constraint on the current trade, an assumption that is discussed in more detail in the next

section.

These assumptions greatly simplify the strategy space. When a player �rst enters the game she chooses

I 2 fh; lg, after which point she learns her type T 2 fH;Lg : Given her type, each period she needs to
formulate only her demand when faced with a partner of a di¤erent type, since she adopts the equal split

rule when faced with a partner of the same type. Formally, a strategy of the stage game is given by

(I; xHL; xLH) 2 fh; lg � X(k)2, where X (k) = XLH (k) = XHL (k), but in every period, other then the

period she enters, an agent only has to determine one action, namely xHL if she is of type H; or xLH if she

is of type L. For convenience let xH = xHL; denote the strategy of the high type when paired with a low

type, while xL = xLH is the strategy of a low type when paired with a high type. In what follows we will

refer to the pair (xH ; xL) as the bargaining strategy of an agent.

3 Equilibrium Analysis

Our goal is to understand the structure of the stochastically stable equilibria as a function of the cost of

investment, c; the degree of investment complementarity, SA; and the degree of investment speci�city, �.

The purpose of this section is to characterize the uniform sequential equilibria in stationary strategies of the

population game that result in high investment.9 It will turn out that if stochastically stable equilibria exist

they are indeed in this class of equilibria.

Note that in the Nash demand game any strategy pro�le (xH ; xL) such that xL + xH = SA is a Nash

equilibrium. By a bargaining norm we mean a situation where all individuals have identical bargaining

strategies of the form (SA � x̂L; x̂L) for some x̂L 2 [0; SA].
Given our assumption that surplus is split equally between equal types if trade occurs, we only have to be

concerned about the question whether equal types want to trade or wait for a di¤erent type. The maximal

8Young (1993b) has shown in a two population model that the equal split is stochastically stable when both populations have

identical characteristics. In his model contrary to ours there exist however conventions where the surplus is not split equally

between the partners from the two populations although they have identical characteristics.
9This means that we consider scenarios where all individuals use identical strategies of the stage game every period and

these strategies are constant over time.
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payo¤ a low type can get in the next period is SA and therefore SL
2 > �SA is su¢ cient to guarantee trade

between low types. For high types we must have SH
2 > �SA which clearly is a weaker condition. Hence we

will assume throughout the paper that

(1) � <
SL
2SA

:

Observe that in High-Low pairings with relatively high discount factors and strong complementarity

between investments, then even if a bargaining norm exists, one of the two partners would rather wait for a

partner of identical type than to trade according to the bargaining norm. For a given bargaining norm x̂L,

the high type in a High-Low pairing expects a low bid of x̂L, the low type expects a high bid of SA � x̂L. If
both partners believe that they will meet an identical type in the following period, they are willing to trade

if

SA � x̂L > �SH=2;

x̂L > �SL=2:

The �rst condition ensures that the high type prefers trading with a low type, rather than waiting one

period and trading with a high type. The second condition is the corresponding requirement for the low

type. Adding these inequalities together implies the following necessary condition for trade to occur for HL

matches:

(2)
2SA

SL + SH
> �:

Put di¤erently, (2) implies that there exists a bargaining norm xL such that individuals always trade in

High-Low matchings regardless of their beliefs concerning the distribution of types in the population. Notice

that condition (2) can not be binding, if investments are substitutes. Investments are substitutes if the

marginal return from the �rst investment is greater than from the second investment:

SA � SL > SH � SA;
2SA

SL + SH
> 1:

Conversely, investments are complements if the marginal return from the second investment is larger:

SA � SL < SH � SA;
2SA

SL + SH
< 1:

In this case, when � is large it may be more e¢ cient for HL pairs not to trade, and instead to delay trade

until they meet a partner of the same type. For further reference, the requirement that there is a bargaining

norm that implies trade in HL pairings regardless of the individual beliefs about the type distribution is

summarized as the trade condition:

De�nition 1 The discount rate � satis�es the trade condition if � < 2SA
SL+SH

:
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It shall be shown below that this is a necessary condition for the existence of a stochastically stable

bargaining norm when investments are complements. By a norm we mean a pair fI; x̂Lg ; with the interpre-
tation that each agent selects the investment I upon entering the market, the low type demands x̂L , while

the high type demands x̂H = SA � x̂L: To economize on writing out the full set of strategies and payo¤s,
the notion of a self-enforcing norm is be de�ned as follows.

De�nition 2 A norm fH; x̂Lg is self-enforcing if:

1. (1� �) (SH=2� x̂L) + �
�
(SA � x̂L)� SL

2

�
� c= (1� 2�) ;

2. SA � x̂L � � (1��)(1���)SH=2

3. x̂L � � �
(1��(1��))SL=2:

The �rst of the three conditions says that for the given bargaining norm, x̂L; the expected payo¤ of

high investment exceeds that of low investment. The expected payo¤ of a person making a high investment

assuming that trade is immediate and she meets a high type is (1� �)SH=2 + �x̂L; while the result of no
investment is �SH=2+(1� �) x̂L: If she meets a low type, the expected payo¤s are (1��)(SA� x̂L)+�SL=2
if she invests high and �(SA� x̂L) + (1� �)SL=2 if she invests low. Given the expected equilibrium fraction

of high types in the market in any period is (1 � �) a simple calculation yields condition 1. The second
condition is the requirement that a person who is a high type prefers to trade with a low type, rather than

wait until meeting a high type. The �nal condition requires the low type to prefer trading with a high

type, rather then waiting until meeting a low type. This places a lower bound on x̂L: It is a straightforward

exercise to show that for every self-enforcing norm there is a sequential equilibrium yielding this outcome for

the trading game outlined above. A self-enforcing norm, fL; x̂Lg ; for low investment is de�ned in a similar
fashion.

For much of the analysis the parameter � is positive, but small. In the limit when � = 0, a su¢ cient

condition for the existence of a self-enforcing norm with high investment is that it is e¢ cient.

Proposition 1 Assume that the trade condition is satis�ed and that it is strictly e¢ cient for all agents to

select high investment, SH � 2c > max fSA � c; SLg. If � is su¢ ciently small then there exists a bargaining
norm, x̂L; such that fH; x̂Lg is a self-enforcing norm.

This result demonstrates that when noise is small it is possible to support as an equilibrium high invest-

ment whenever it is e¢ cient to do so. It should be noted that we always also have self-enforcing norm with

low investment10 , e.g. fL; SAg is always self-enforcing. In contrast, the literature on the holdup problem
assumes that the ex post division of the surplus is determined by the Nash bargaining solution, which in

some cases induces ine¢ cient investment. However the division implied by the Nash bargaining solution is

only one among many sequential equilibria of the game. In general, one is able to conclude that for this game

there are a large number of sequential equilibria, some of which induce e¢ cient investment. The question

then is whether or not the e¢ cient equilibria are (stochastically) stable.

10The de�nition of a self-enforcing norm with high investment has to be adopted in the obvious way.
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4 Learning Dynamics

Consider now the kind of bargaining and investment norms that are developed endogenously in a population

of adaptive agents. Following Young (1993a) and Kandori, Mailath, and Rob (1993) it is assumed that

agents sample past trades to build an empirical distribution of the investment and bargaining choices of

the other individuals in the population (see Young (1993b) for the application of this approach to the Nash

bargaining game). Regarding the value of the outside option, agents believe that the distribution of low

and high types in the economy is time stationary, a hypothesis that is consistent with the assumption that

agents base current actions on past observations of the frequency of high types. It is also assumed that with

a small probability they make mistakes in executing their optimal strategy given their beliefs regarding the

play of the game described in section 2.

Our model consists of a single population of individuals who choose investment from fh; lg upon entering
the population and afterwards have to choose their action from the space X (k) every period until they

trade and leave the population. This choice is based on beliefs about distribution of types and bargaining

behavior of the other individuals in the population. Each period every individual independently takes a

random sample of m individuals from the previous period, observing the type and the demand made at

the bargaining stage. This sample is added to the memory of the individual thereby replacing some old

observations11 .

Using the data in her memory each individual generates beliefs about the fraction of types H in the

population and the distribution of demands made by other individuals in HL and LH pairings. Each of

these beliefs is based on m observations, hence there is a �nite set of possible beliefs we denote by B. For

each b 2 B we denote by p̂ (b) the estimated proportion of high types, by F̂H (xH ; b) the estimated probability
that xH or less is demanded by a high type in a HL pairing and by F̂L(xL; b) the estimated probability that

xL or less is demanded by a low type in a LH pairing. Put di¤erently, F̂H and F̂L are empirical distribution

functions given the observations in the memory of the individual. It will turn out to be convenient to denote

by P(z) the distribution function of point expectations z, i.e. P(z)(x) = 0 for x < z and P (z)(x) = 1 for

x � z. When an agent leaves the market, her beliefs are passed on to the new agent entering the market to
replace this agent. Beliefs in the �rst period are arbitrary.

The structure and time-line of the game with adaptive dynamics is summarized as follows (see also

Appendix A):

(i) At the beginning of the game beliefs are random, but when an individual leaves she is replaced by

another agent with the same beliefs, say b.

(ii) Investment decisions are only made by agents entering the population in the current period. Given

her beliefs, an agent chooses to invest if the expected gain from investment exceeds investment costs c

under the assumption of optimal behavior on the bargaining stage. Then she draws her type, which is

equal to her investment with probability 1� �:
11An exact mathematical description of the belief formation and learning dynamics considered as well as the associated belief

and state spaces is given in Appendix A

10



(iii) Each period the following steps are repeated until exit occurs:

1. At the beginning of every period t the individual randomly samples the types of m individuals

from the previous period. This is used to update beliefs bit 2 B.

2. With probability " > 0 the individual selects an action randomly from X (k) ; under the uniform

distribution. This noise process is i:i:d: between individuals and periods. With probability 1� "
the individual determines which demand maximizes the expected payo¤ under her beliefs if she

is matched with a di¤erent type.

3. Agents are randomly paired, and their payo¤s are determined. If the partners are of identical

type, there is an equal split, otherwise they chose the actions determined at stage 2:

4. If trade occurs, both agents leave and are replaced with agents with the same beliefs who begin

at step (ii). If not, step (iii) is restarted.

Given that an agent�s action is completely determined by her beliefs bit 2 B; and type T i 2 fH;Lg12 , the
state at time t is characterized by a distribution over beliefs and types, and accordingly there is a �nite state

space we call S. The learning process described above de�nes a time homogeneous Markov process f�tg1t=0
on the state space S. Although, even for � > 0, the transition matrix is not positive, the following lemma
shows that the process is irreducible and aperiodic.

Lemma 1 For � > 0 the Markov process f�tg1t=0 as de�ned above is irreducible and aperiodic.

Hence, for � > 0 there exists a unique limit distribution ��(�) over S, where ��s(�) denotes the probability
of state s. Following a standard approach in evolutionary game theory we consider the limit distribution

for small values of � and in particular characterize the states whose weight in the limit distribution stays

positive as the mutation probability � goes to 0. Such states are called stochastically stable:

De�nition 3 A state s 2 S is called stochastically stable if lim�!0 �
�
s(�) > 0. We say that a set is stochas-

tically stable if all his elements are stochastically stable.

The reason why this concept is of interest is that for small � the process spends almost all the time in

stochastically stable sets. Hence, characterizing the stochastically stable outcome means characterizing the

long run properties of the evolutionary process. To identify stochastically stable states it is necessary to �rst

identify the minimal absorbing sets of the process for � = 0. It is well known that the set of stochastically

stable states is a subset of the union of these so called limit sets. Formally, a limit set is de�ned as follows:

De�nition 4 A set 
 � S is called a limit set of the process if for � = 0 the following statements hold:

8s 2 
 IP(�t+1 2 
j�t = s) = 1

8s; ~s 2 
 9z > 0 s.t. IP(�t+z = ~sj�t = s) > 0:
12We look at the process after all incoming agents have made their investment decisions, but before they are paired and

therefore the type of all agents is determined.
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In the following sections we will characterize the stochastically stable sets and discuss the implied invest-

ment and bargaining norms.

The question we address is the emergence of a unique, e¢ cient and stable bargaining norm in which all

individuals follow the same investment strategy, and have the same expectations regarding how to divide

the gains from trade. This is formally de�ned by:

De�nition 5 A state s induces the bargaining norm xL if all individuals have beliefs b 2 B that place

probability one on the demand by their partner being xL or SA � xL; depending upon their type in HL
matches.13 If all stochastically stable states induce the same bargaining norm we say that this bargaining

norm is stable.

Conversely, a bargaining norm does not exist at a state s if there is heterogeneity in the beliefs of the

agents regarding the terms of trade between high and low types. Observe that the notion of a norm used

here captures its dual nature. As Ellickson (1991) observes (see chapter 7), a norm de�nes what is considered

acceptable behavior by individuals, and hence explicitly implies homogeneity of behavior. It is also used to

trigger punishments against deviators. In this model, the punishment is generated by the cost of disagreement

when a party deviates from the accepted fair division norm.

5 Deterministic Investment E¤ects

Before we explore the stable norms of the model described above we discuss brie�y the importance of our

assumption that investment e¤ects are stochastic (� > 0) for the evolution of bargaining norms. This is

particularly important since the results of Ellingsen and Robles (2002) and Troger (2002) show that in cases

of one-sided investment the stable bargaining norm always induces e¢ cient investment when � = 014 .

Dawid and MacLeod (2001) study the two-sided investment model presented for the case � = � = 0. Their

�ndings concerning the evolution of bargaining norms can be summarized as follows (compare Proposition

4 and Proposition 7 in Dawid and MacLeod (2001)):

Proposition 2 With deterministic investment (� = 0) and relationship speci�c investments (� = 0) the

stochastically stable set always includes states where individuals have heterogenous beliefs about bargaining

behavior. Hence, there is no stable bargaining norm.

The assumption that � = 0 is not crucial for this �nding and the result would still hold for � > 0.

Intuitively, once all individuals follow the same investment strategy, any bargaining norm which might exist

at that point will be slowly destroyed. Under identical investment strategies with deterministic investment,

the only way a pairing between a high and a low type might occur is that at least one of the two has mutated.

A mutant may not follow the bargaining norm and hence at least half of the demands in high low pairings

are completely random and do not follow any bargaining norm. Since all individuals use these demands to

update their beliefs, any uniform consistent point beliefs that might have existed in the population will be

13Formally F̂H(b) = P(SA � xL), and F̂L(b) = P(xL)).
14Also, they only consider the case of relationship speci�c investments (� = 0).
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destroyed, and beliefs about bargaining behavior between high and low types keeps drifting around in the

space of possible beliefs. Therefore, stable bargaining norms between high and low types cannot evolve with

deterministic investment.

This drift of beliefs is also present in the scenario with one-sided investment and eventually leads to an

outcome where investors who invest e¢ ciently get a su¢ ciently large part of the surplus that they have no

incentive to change investment regardless of their beliefs about the allocation of surplus for other investment

levels. In the case of two-sided investments one of the two partners will always have incentives to change

her investment level if she believes that such a change increases her fraction of the surplus by a su¢ cient

amount. Therefore, for the case of two sided deterministic investments there are no stable bargaining norms,

and consequently investment levels are in general ine¢ cient.

6 Existence of Stable Bargaining Norms and Induced Investment

The �ndings reported in the previous section suggest that the uncertainty of investment e¤ects should have

an important positive role for the evolution of stable bargaining norms. For � > 0 high-low matches occur

with positive probability even after an investment norm has been established and therefore the drift of beliefs

which is responsible for the continuous destruction of norms in the deterministic case cannot occur. In this

section we return to the case � > 0 and �nd conditions under which we always get stable bargaining norms.

A necessary condition for the evolution of a norm is that the terms of trade between high and low types

result in outcomes that are better than their respective outside options. By simply waiting for a partner

with the same type an agent can guarantee a non-negative expected payo¤, where the size of the expected

payo¤ depends on the agents�beliefs about the distribution of types and the value of �. Since � � � the

population distribution of types keeps �uctuating even if a bargaining norm has been reached. Accordingly,

a bargaining norm x̂L can only be stable, if � in the absence of mutations � all individuals who expect

demands x̂L (SA � x̂L) from their opponents in high-low (low-high) pairings, stick to this norm regardless

of their belief p̂ about the type distribution. In particular, a bargaining norm can only be stable if both

partners prefer the payo¤ according to this norm to the outside option for all possible beliefs p̂i. Proposition

3 shows that the trade condition is a necessary condition for this to hold true15 .

Proposition 3 Suppose that the trade condition does not hold, then for su¢ ciently large m, n, and k there

is a unique stochastically stable set L where beliefs about demands as well as induced actual demands do not
coincide for all individuals in all states contained in L. Accordingly, no stable bargaining norms exist.

If the trade condition does not hold, bids never settle down at a compatible norm, rather persistent

�uctuations driven by the �uctuations in the p̂i occur. Long run bargaining behavior is then characterized

by ergodic behavior on a set of di¤erent bids. When investments are complements, there is a �� < 1; such

that for all � > �� the trade condition is not satis�ed. This demonstrates that if the market is su¢ ciently

competitive and investments are complements, then it is not possible for a bargaining norm to evolve. This

does not imply that increasing market competition results in ine¢ ciency. When the trade condition does not

15We will establish below that the trade condition is also su¢ cient for the existence of a stable bargaining norm.
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hold, then LL and HH matches are the most likely trades, and hence if high investment is strictly e¢ cient,

(SH=2� c > SL=2) individuals often �nd it in their interests to invest.
The question now concerns the nature of the division rule when it is e¢ cient for HL pairs to trade, and

therefore the remainder of the paper assumes that the trade condition is satis�ed. Under this assumption

long run norms might exist. Clearly the investment incentives depend on which of these norms are reached in

the long run. Due to our assumption of stochastic investment e¤ects, the actual distribution of productivity

types will keep �uctuating even after bargaining behavior has settled down at a norm. On the other hand,

transitions between bargaining norms have to be triggered by (in general multiple simultaneous) mutations.

Hence, for small mutation probabilities bargaining norms adjust more slowly, and are more stable than the

realized distribution of types. As we will see, this implies that the stable bargaining norm is independent of

the long run investment behavior and therefore also independent of investment costs c.

For a given bargaining norm and current distribution of types the distribution of types in the following

period depends on the outcome of the stochastic sampling procedure for all agents. Sampling generates

the beliefs p̂(bit) and therefore in�uences the investment decisions, and the actual realization of types given

the investment decision. This can be described by a Markov process f~�tg1t=0 on the state space ~S =

f0; 1=n; 2=n; : : : ; 1g. For � > 0 the process is irreducible and aperiodic. The unique limit distribution is

denoted by ~��(�). The following lemma shows that three scenarios are possible as � becomes small.

Lemma 2 For a given bargaining norm x̂L; the long run distribution of types for small � can be characterized

by one of the following16 :

(a) lim�!0 ~�
�
0(�) = 1.

(b) lim�!0 ~�
�
1(�) = 1.

(c) lim�!0 ~�
�
1(�) = lim�!0 ~�

�
0(�) = 0:5.

In case (a) we say that x̂L induces a no-investment norm, in (b) x̂L induces a full investment norm, and

in case (c) we say that x̂L induces cyclical investment. By cyclical investment we mean that in one period

everybody invests, and in the next period nobody invests. When all individuals invest, it is optimal not to

invest, and vice verso. The hierarchy of conventions should be noted here. When de�ning stable bargaining

conventions we have considered the dynamics for � ! 0 keeping � > 0. We then take the limit � ! 0 to

derive the long-run equilibrium.

Accordingly, in the following analysis we will on the one hand characterize the stable bargaining norm

(for � > 0; � ! 0) for di¤erent constellations of SA and c and then the investment norm induced by the

stable bargaining norm (for �! 0; �! 0; �� �). Our discussion starts with the case where investments of

the two parties are complements.

16We exclude the non-generic cases where both ~� = 0 and ~� = 1 are absorbing states for � = 0 and have identical radius.
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7 The Case of Substitutes

The trade condition always holds if investments are substitutes, which implies that there is a chance for

stable bargaining norms. Proposition 4 shows that stable bargaining norms indeed exist in this setting and

characterizes how the generated norm depends on the degree of substitutability of investments. We say

that investments are weak substitutes if 12 (SH + SL) � SA � �S := SH � �
2 (SH � SL). For �S < SA � SH

investments are called strong substitutes.

Proposition 4 For su¢ ciently large m, n the limit of the stochastically stable sets of the process f�tg for
k !1 can be characterized as follows:

(a) If investments are weak substitutes the stable bargaining norm is given by

x̂SL =
SA
2
� �

2(2� �) (SA � SL):

(b) If investments are strong substitutes the stable bargaining norm is given by

x̂SL =
SA
2
� �

4
(SH � SL):

Note that in the absence of outside options (� = 0) the equal split rule is the unique, stable bargaining

norm, regardless of investment levels. For positive � the stable norm allocates less than half of the joint

surplus to the low type.

In order to characterize the investment norms induced by the stable bargaining norm we �rst observe

that investment incentives are largest for p̂ = 0 and smallest for p̂ = 1 if investments are substitutes. Hence

three possible scenarios arise: the stable bargaining norm is such that a) low investment is optimal for all

p̂, b) high investment is optimal for all p̂, or, c) high investment is optimal for p̂ = 0 but low investment

is optimal for p̂ = 1. In the following proposition we show that an investment norm is induced in the �rst

case, a no-investment norm in the second case and cyclical investment in the third case. Furthermore, we

characterize the range of investment costs c where each of the three scenarios arises.

Proposition 5 Assume that m;n and k are su¢ ciently large.

(a) If investments are weak substitutes the stable bargaining norm induces full-investment for c < c1, no-

investment for c > c2 and cyclical investment for c 2 [c1; c2], where

c1 = 1
2(2��) (�(SA � SL) + (2� �)(SH � SA))

c2 = 1
2�� (SA � SL):

(b) If investments are strong substitutes the stable bargaining norm induces full-investment for c < c3 and

cyclical investment for c � c3, where

c3 =
1

4
(�(SH � SL) + 2(SH � SA)):

For � = 0, investments can never be strong substitutes and c1 = (SH � SA) =2; c2 = (SA � SL)=2.
It is e¢ cient for both parties to invest whenever c < (SH � SA) : Therefore, regardless of SA we obtain
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under-investment for some values of c. As � increases both c1 and c2 move up. Furthermore, for positive

� there is always a range of SA where investments are strong substitutes. The transition from weak to

strong substitutes is exactly at the point where the threshold c1 crosses the border of the area where high

investment is e¢ cient.

Figures 1 illustrates the relationship between (SA; c) and the investment norms when the discount rate is

0: The �gure illustrates both the cases of substitutes and complements (discussed below). It is assumed that

SH = 2SL; with the illustrated trapezoid region giving all the fSA; cg combinations for which full investment
is e¢ cient. Holdup occurs in the region above the line(s) C1 and C4. For these values high investment is

e¢ cient but not induced by the stable bargaining norm. Notice that when investments are substitutes then

in the region between the lines C1 and C2 investments cycles between high and low.

� � � � � � � �Figure 1 Here � � � � � �

Figure 2 illustrates the e¤ect of increasing competition by setting the discount factor � = 1=4: Observe

that this results in an upward shift of C1 and C2. In addition this results in a decrease in �S from SH and

hence there is now a region corresponding to strong substitutes. In that case observe that when SA > �S;

and costs satisfy c > SH � SA; but are below line C3; then the stochastically stable equilibrium may entail

high investment, even though this is not e¢ cient.

� � � � � � � �Figure 2 Here � � � � � �

More generally, in the case of weak substitutes the gain from investing at the bargaining norm is:

SH=2� xL =
(SH � SA)

2
+

�

2 (2� �) (SA � SL) ;

� (SH � SA)
2

:

Therefore, the outside option increases the gains from investing, regardless of whether it is binding at the

equilibrium. However, for weak substitutes, it never increases incentives to the point that the gains from

investing are equal to the full marginal gains, given by (SH � SA) : On the other hand, if investments are
strong substitutes and the gains from the second investment are very small (case (b) above) the stable norm

indeed induces full investment whenever this is e¢ cient. These observations can be summarized in the

following corollary.

Corollary 1 If investments are strong substitutes the stable bargaining norm induces full-investment for all

values of c where full investment is e¢ cient. In some cases, it may entail over-investment.

8 The Case of Complements

Consider now the case of complementary investments, where (SH + SL) =2 � SA � SL: According to propo-
sition 3 no norms evolve if the trade condition is violated. Therefore, we assume throughout this section

that the trade condition holds.
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The following proposition shows that under this condition there is a unique stable bargaining norm

which is again independent of beliefs regarding the fraction of high types in the market. The properties of

this bargaining norm depend on the degree of complementarity of investments. We call investments weak

complements if (SH + SL) =2 � SA � S := �
2 ((2� �)SH + SL), and strong complements if S > SA � SL.

Proposition 6 Suppose the trade condition holds, then for su¢ ciently large m, n the limit of the stochas-

tically stable sets of the process f�tg for k !1 can be characterized as follows:

(a) If investments are strong complements the stable bargaining norm is

x̂SL = SA � �
SH
2
:

(b) If investments are weak complements the stable bargaining norm is

x̂SL =
SA
2
� �

2(2� �) (SA � SL):

Case (a) occurs when the outside option for the high type is binding for p̂ = 1. This can only happen if

S > SL: A necessary and su¢ cient condition for this to apply is:

� � SL
SH
:

One can explore the maximum incentives possible, while ensuring the existence of a bargaining norm by

supposing that the trade condition is satis�ed with equality, namely � = 2SA
SL+SH

: In this case

S =
�

2
((2� �)SH + SL)

=
� (1� �)

2
SH + �(SH + SL)=2

=
� (1� �)

2
SH + SA > SA;

and hence we are in the case of strong complements, and the stable bargaining norm is given by:

x̂SL = SA � �
SH
2
;

= SA
SL

SL + SH
:

This result illustrates the e¤ect that the low payo¤ plays in determining the bargaining norm. When

SL is close to zero (the payo¤ in the absence of trade), then with su¢ cient competition one obtains �rst

best incentives, while ensuring the existence of a bargaining norm. When � = 2SA
SL+SH

and c < SA; then low

investment is not an equilibrium for SL = 0; and we have high investment in this case. However, in other

cases, both high and low investment choices may be equilibria under the stable bargaining norm.

Taking the bargaining norm as �xed, investment decisions have the structure of a coordination game

when investments are complements. Incentives are larger for p̂ = 1 than for p̂ = 0. This implies that

if the bargaining norm induces no investment for p̂ = 1, no individual will invest any more, once the

bargaining norm has been established regardless of their beliefs p̂ �a no-investment norm is induced. On
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the other hand, if investment is optimal at p̂ = 0, everyone invests under the stable bargaining norm �a

full investment norm is induced. If investment is optimal for p̂ = 1 and no investment is optimal for p̂ = 0,

both the homogeneous state corresponding to full investment and the homogeneous state corresponding to

no investment are absorbing as long as high investment always implies high types and low investment always

implies low types. Standard results about stochastic stability of equilibria in coordination games (Kandori,

Mailath, and Rob (1993)) imply that also in such a scenario either investment or no-investment is induced.

The selection depends on how large the maximal sampled fraction of deviating productivity types can be

such that investment (respectively no-investment) is still optimal. Taking into account proposition 6 these

considerations yield:

Proposition 7 Assume that m;n and k are su¢ ciently large, the trade condition holds, and investments

are complements, then the stable bargaining norm induces full investment if c < c4(SA; �) and no-investment

for c > c4(SA; �), where

(3) c4(SA; �) =

(
1
4 (SH � SL) +

1
2 (�SH � SA) if SA � S;

1
4 (SH � SL) +

�
2(2��) (SA � SL) if SA > S:

In the case of investment complements high investment is e¢ cient (for su¢ ciently small �) whenever

c < (SH � SL)=2; but is only induced by the stable norm for c < c4 < (SH � SL)=2: If investments are
complements there always remains a hold-up region with ine¢ cient investments in the long run (see �gures

1 and 2). It follows from the coordination game structure of the investment stage that a bargaining norm x̂L
does not necessarily induce a high investment norm even if fH; x̂Lg is a self-enforcing norm. An implication
of this, especially when compared to the case of substitutes, is that the set of parameters for which a full

investment norm is self-enforcing under the equal split rule might be larger than the set of parameter values

for which high investment is part of a stochastically stable equilibrium. To see this, notice that if SA > �SH
and c < 1

2 (SH � SA) the norm fH;SA=2g is self-enforcing for su¢ ciently small �. Comparing this bound
on investment costs with c4 we get

Corollary 2 For

SA < min

�
SL + 2(1� �)SH ;

(2� �)SH + (2 + �)SL)
4

�
we have c4(SA; �) < (SH � SA)=2. If c 2

�
c4(SA; �); (SH � SA)=2

�
then

�
H; SA2

	
is a self-enforcing norm

for su¢ ciently small �, but there is no stable norm with full investment.

The fact that there is a self-enforcing norm with high investment does not imply uniqueness of the

equilibrium. Even if a high investment norm is self-enforcing there might be a coexisting low investment

equilibrium with the corresponding equilibrium selection problem. To deal with the equilibrium selection

problem we could use the concept of risk dominance as an equilibrium selection device and say that a

bargaining norm induces high investment only if the full investment is the risk dominant equilibrium at the

investment stage17 . It is straightforward to check then that the maximal investment costs inducing high

17The use of risk dominance as the selection criterium is appropriate because it is well known that the risk dominant

equilibrium coincides with the stochastically stable one in coordination games.
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investment under the equal split rule is always below c4. So, taking into account the coordination problems

arising at the investment stage, the equal split rule again provides less investment incentives than the stable

norm.

9 The Impact of the Outside Option

Considering propositions 4 and 6, the e¤ect of the outside options on the bargaining norm might be quite

surprising. Notice, that in this model the outside option is introduced only as a constraint on the set of

possible bargaining agreements and is binding only in case a) of proposition 6. Hence, one might expect

the outside option principle to apply (see Binmore, Rubinstein, and Wolinsky (1986)). In that case if

xL > �SL=2 and SA � xL > �SH=2; then xL should not depend on either SH or SL; yet we �nd that that

for all � > 0 the stable bargaining norm depends upon at least one of the outside options, and that the low

types share is always strictly increasing in SL; a result that is consistent with Binmore, Proulx, Samuelson,

and Swierzbinski (1995) who report results from a bargaining game with drift. This might raise the question

whether the e¢ ciency result of corollary 1 is a simple implication of the di¤erence in threat point payo¤s of

the two types.

To address this question let us denote by x̂NL the allocation consistent with the Nash bargaining solution

between a high and a low type where both have beliefs p̂ = 1 (they believe that they will meet a high type

with probability 1 next period) and the expected payo¤s in the following period are treated as a threat point.

This allocation has to satisfy

x̂NL = �x̂
N
L +

1

2

�
SA � �x̂NL � �

SH
2

�
;

and therefore we get

(4) x̂NL =
SA
2
� �(SH � SA)

2(2� �) :

For � = 0 the Nash bargaining solution, just like the stable norm, coincides with the equal split rule.

Comparing (4) with the stable bargaining norms from propositions 4 and 6, shows that for � > 0 we have

x̂NL > xSA if investments are substitutes and x̂NL < xSA in the case of complements. Figure 3 shows the

stable bargaining norm x̂sL (solid line) and the Nash bargaining solution (dashed line) as a function of SA
for � = 1=4. The equal split rule gives an outcome that is everywhere above both of these rules, and hence

the addition of an outside option unambiguously increases investment incentives.

� �Figure 3 Goes Here � �

When investments are substitutes the investment incentives in a population of investors under the stable

bargaining norm are not only larger than under the equal split rule, but are also larger than under Nash

bargaining with the outside options as threat points. On the other hand, when investments are complements

the Nash bargaining solution with the outside option as threat point gives a smaller allocation of the surplus

to low types compared to the stable norm, and therefore provides higher investment incentives.
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To understand this result intuitively observe that the long run stability of the bargaining norms are

determined by their resistance to change in scenarios where deviations from the norm have the highest

chance of altering the norm. Bargaining norms are more easily destabilized in scenarios with low investment

in the population since the expected losses from disagreement when not giving in to demands of deviators

from the norm are the largest under this investment pattern. When investments are substitutes, a high

type has a lot of bargaining power in an environment of low types, and hence the stable bargaining norm

gives a larger part of the surplus to the high types than they would get if the norm had been evolved in a

population of mostly high types. Hence, the stable norm allocates more to the high types than the Nash

bargaining solution would in an environment of high types. Although developed in low investment scenarios,

the stable bargaining norm is adhered to even if in the long run everyone invests, and hence it facilitates the

development of full investment norms.

In summary, whether evolutionary learning facilitates or hinders the development of full investment

depends upon whether investments are substitutes or complements. In the following corollaries we state this

insight formally. We compare the stochastically stable outcome to the notion of a self-enforcing norm under

the Nash bargaining solution:

Corollary 3 Assume that investments are substitutes.

(a) If c satis�es

c � 1

2
(SH � SA);

then the stable norm induces full investment, and fH;SA=2g as well as
�
H; x̂NL

	
are self-enforcing

norms for su¢ ciently small �.

(b) If c satis�es
1

2
(SH � SA) < c �

1

2� � (SH � SA)

then the stable norm induces full investment,
�
H; x̂NL

	
is a self-enforcing norm for su¢ ciently small �

but fH;SA=2g is not a self-enforcing norm.

(c) If c satis�es
1

2� � (SH � SA) < c < min(c1; c3);

then the stable norm induces full investment, but neither fH;SA=2g nor
�
H; x̂NL

	
are self-enforcing

norms.

It follows from this corollary that the Nash bargaining solution x̂NL never implies e¢ cient investment in

the sense that there is always a range of cost values c where high investment is e¢ cient but
�
H; x̂NL

	
is

not a self enforcing norm. As we know from corollary 1, the stable norm does induce e¢ cient investment

if investments are strong substitutes. A much di¤erent picture emerges if investments are complements. It

has been shown in Corollary 2 that the stable norm induces less than e¢ cient investment. The following

corollary sharpens this statement and shows that the stable norm always induces less investment compared

to the self-enforcing norm under the Nash bargaining solution.
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Corollary 4 Assume that investments are complements. Then c4(SA; �) < SH�SA
2�� and for all c 2

�
c4; SH�SA2��

�
the norm fH; x̂NL g is self-enforcing but the stable bargaining norm induces low investment.

Proof. Taking into account 2SA < SH + SL the inequality c4(SA; �) < SH�SA
2�� follows directly for both

branches of c4(SA; �) after collecting terms.

The two corollaries are illustrated in �gure 2 where, in addition to the parameter regions with sta-

ble investment norms, we also indicate the parameter regions where fH; x̂NL g (below the dashed line) and
fH;SA=2g (below the sparsely dashed line) are self-enforcing.
These results demonstrate that the decrease of the size of the hold-up region under the evolutionary

dynamics compared to the equal split rule in the substitutes case is not a simple implication of the existence

of outside options. Rather, the dynamic interplay between investment and bargaining decisions is responsible

for the increased long run investment in our evolutionary setting18 .

10 Discussion

There is a tension in the literature between the results in mechanism design demonstrating that e¢ cient

allocations can be implemented under a wide variety of situations, and the fact that one rarely observes

many of these mechanisms in practice.19 An example of this tension is the recent contribution of Maskin

and Tirole (1999). They show that one can design an incentive compatible mechanism that achieves the �rst

best in the hold-up model of Grossman and Hart (1986). The fact that such a mechanism exists does not

imply that participants in the market will necessarily discover such an e¢ cient solution.

In this paper we address this question directly by studying the evolution of behavior in a market with

learning and two sided relationship speci�c investments. Our model has multiple perfect equilibria that

include both e¢ cient and ine¢ cient outcomes. We use the evolutionary learning approach of Young (1993a)

and Kandori, Mailath, and Rob (1993) to explore the stability of these equilibria, and �nd that in many

cases e¢ cient equilibria are not in fact stable. This result is consistent with the theory of the �rm developed

by both Alchian and Demsetz (1972) and Grossman and Hart (1986), that emphasize the role that �rms

play in arbitrating the con�icts that arise when all parties in the organization provide costly inputs.

The examples discussed in Demsetz (1967) (beaver trapping) and Ellickson (1991) (fencing of farm land)

further highlight the economic importance of the distinction between two-sided and one-sided holdup. In

both cases, the authors discuss the creation of property rights in land. Demsetz observes that Native Indians

during colonial times quickly developed claims over the right to trap beavers in speci�c regions once the fur

trade expanded. This ensured that each group would provide the e¢ cient level of care in maintaining the

resource. Ellickson showed that the obligation to construct and maintain a fence in Shasta county fell to the

person for whom it was cheaper to install and maintain. In both cases, the e¢ cient solution entails having

a single party make all the relationship speci�c investments. These are examples of the e¢ cient evolution of

18 If we restricted the model to only a single possible investment level the resulting stochastically stable bargaining convention

would exactly match the Nash bargaining solution with the outside option as threat point.
19See Moore (1992) a review of the mechanism design literature, and Tirole (1999) for an evaluation of its relevance for

contract theory.
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property rights, and are consistent with the results of Troger (2002) and Ellingsen and Robles (2002) who

�nd that e¢ cient behavior is stochastically stable in a model with one-sided holdup.

In the one-sided holdup model stability is achieved because the system drifts to a boundary point where

all rents are allocated to one party, and hence o¤ equilibrium beliefs are not important. This is not the case

in the two sided holdup model model. In this case norms evolve only for events that occur with su¢ cient

frequency. This is assured when investment has a stochastic e¤ect on productivity. In this case we �nd that

the egalitarian bargaining norm is stable inducing investment incentives below the e¢ cient level.

The standard economic solution to the problem is to increase competition. We �nd that this can indeed

reduce the ine¢ ciencies caused by such norms. In cases where investments are substitutes the stable norm

provides even stronger investment incentives compared to the Nash bargaining solution and for strong sub-

stitutes e¢ cient investment levels are induced. However, we also show that if competition is too strong it can

prevent the evolution of norms, which can in turn result in increased ine¢ ciency due to bargaining failures

and con�ict. This result is consistent with some of the documented problems that have been associated

with the transition from planned to market economics, a question that deserves further research (see Roland

(2000)).
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Appendix A: Description of the Learning Dynamics

Sampling, memory and belief formation:

The memory of an individual consists of the following data:

1. m observations of types of individuals where all these observations stem from t � 1. Let p̂it 2 P :=

f0; 1=m; 2=m; : : : ; 1g denote the fraction of individuals in this sample with Ti;t�1 = H.

2. m observations of demands made by high and low types in HL matches. Since in general the sample

taken in period t consists of fewer than m HL matches some older observations may remain in the

sample. The oldest data is dropped as new observations are inserted. This sample is used to estimate

the empirical distribution functions F̂H(:) and F̂L(:). Both of these empirical distribution functions

are elements from the �nite set

F = fF : X (k)! f0; 1=m; 2=m; :::; 1g jF (x) is increasing, F (SA) = 1g :

The set of all possible beliefs of an agent is then given by B = P �F2.

Expected payo¤s:

The expected payo¤ of an agent with type H or L choosing a 2 X (k) under beliefs b 2 B; is given recursively
by:

UL (a; b) = (1� p̂ (b))SL=2 + p̂ (b)
�
F̂H (SA � a; b) a+ �

�
1� F̂H (SA � a; b)

�
UL (a; b)

�
;

UH (a; b) = p̂ (b)SH=2 + (1� p̂ (b))
�
F̂L (SA � a; b) a+ �

�
1� F̂L (SA � a; b)

�
UH (a; b)

�
:

Investment Decision

Given beliefs bit 2 B agent i entering the population in period t chooses to invest if:

max
(xL;xH)2X(k)2

(1� �)UH
�
xH ; b

i
t

�
+ �UL

�
xL; b

i
t

�
� c � max

(xL;xH)2X(k)2
(1� �)UL

�
xL; b

i
t

�
+ �UH

�
xH ; b

i
t

�
:

Determination of demands in step 2. of the timeline

Individual i chooses ait 2 X (k) to maximize UT i
�
ait; b

i
t

�
; given her type T i 2 fL;Hg and beliefs bit 2 B:

When indi¤erent over demands she chooses the smallest demand. The agent�s strategy is uniquely de�ned

by her beliefs and type. Hence, we write ait = �
�
T i; bit

�
:

State space of the process

The state space is given by all possible distributions of n individuals over the set C = fH;Lg �B:

S = fs 2 [0; 1]jCjj
X
c2C

sc = 1; nsc 2 IN0 8c 2 Cg;

Appendix B: Proofs

Proof of Proposition 1:

E¢ ciency implies SH � c > SA > 0; therefore if one sets x̂L = 0; then conditions 1 and 3 for a self-enforcing
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norm are strictly satis�ed for � = 0. The trade condition implies that SA > � (SL + SH) =2 > �SH=2 and

therefore condition 2 is strictly satis�ed. Given that the expressions in the de�nition of a self-enforcing norm

are continuous for small �, these conditions are satis�ed for small �: 2

Proof of Lemma 1:

Let s and s0 be two arbitrary states in S. We show that there is a positive multi-step transition probability
from s to s0 and a positive one-step transition probability from s0 to s0. This then implies that the process

is irreducible and aperiodic.

Assume that �t = s. With positive probability the bargaining strategy of all agents at time t is such

that all agents carry out the project (some mutations of bargaining strategies might be needed) and leave

the population. Hence, with positive probability in period t+1 the types of all agents in the population are

determined anew and with a positive probability the resulting distribution of types matches exactly the one

in s0. Every period there is positive probability that the distribution of types stays like that. If there are both

high and low types in s0 it is straight-forward to see that any set of observations needed to create empirical

distribution functions which have positive weight in s0 can be created by multiple mutations of bargaining

behavior of the agents given the type distribution. In case there are only high or only low types in s0 consider

the transition where �rst all but one agent get the type required in s0, then all the observations needed to

create all the beliefs in s0 are created by mutations and �nally the single agent with a di¤erent type leaves

the population and changes her type. In any case there is a positive probability that s0 is reached in multiple

steps. Furthermore, since there is always a positive probability that all agents only observe matches between

the same types during a period and therefore do not change their beliefs, there is a positive probability that

the process stays in s0 once it has reached s0. Hence, the process is irreducible and aperiodic. 2.

Proof of Proposition 3:

We say that a bargaining norm is compatible with p̂ and � if both parties are better o¤ than their respective

expected outside option. By waiting for an partner of same type, an agent with beliefs b expects a payo¤

of p̂(b)
1��(1�p̂(b))

SH
2 if she is of type H and 1�p̂(b)

1��p̂(b)
SL
2 if she is of type L. Hence, a bargaining norm (xL) is

compatible with p̂ and � if xL 2 [xL(p̂); �xL(p̂)], where xL(p̂) 2 X(k) such that

(5) xL(p̂)� � <
�(1� p̂)
1� �p̂

SL
2
� xL(p̂)

and �xL(p̂) 2 X such that

(6) �xL(p̂) � SA �
�p̂

1� �(1� p̂)
SH
2
< �xL(p̂) + �:

De�ne

BL(�) = fxL 2 Xj9p 2 P s.t. xL = xL(p) or 9p 2 P s.t. xL = �xL(p)g

BH(�) = fxH 2 Xj9p 2 P s.t. xH = SA � �xL(p)

or 9p 2 P s.t. xH = SA � xL(p)g
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as the set of all demands which lie just above the outside option for some p̂ 2 P and the best responses

to that. The larger m is the larger these sets are and for su¢ ciently large m we simply have BH(�) =
X \

�
SA � �SL

2 ;
�SH
2

�
and BL = X \

�
SA � �SH

2 ; �SL2
�
.

To prove our claim we show that for su¢ ciently large m, n and k the unique stochastically stable set of

the process f�tg is a set L where for all states s 2 L we have s� > 0 only if � = (T; b) for some T 2 fH;Lg
and some b such that supp(F̂H(�; b)) 2 BH(�), supp(F̂L(�; b)) 2 BL(�).
Assume �t = s for an arbitrary state s 2 S. Assume further that there are at least m low types and at

least m high types in the population (if this is not true, there is a positive probability that at least m low and

high types will be in the population within two periods). Then, there is a positive probability that in period

t+ 1 all low types have beliefs p̂i = 0 and at least m are matched with high types. The resulting demands

at t+ 1 of these low types are larger or equal to xL(0). There is a positive probability that at least m high

types observe these m demands in t + 2 and that the same m high types in period t + 3 have beliefs such

that p̂(bi) = 1 and are matched with low types. For these individuals we have F̂L(�; b) = P(xL(0)). Since the
trade condition does not hold, we have xL(0) > �xL(1). Accordingly, the outside option is binding for all these

high types and they demand xH = SA � �xL(1) in period t+ 3. With positive probability these m demands

are sampled by all agents in t+4 and hence all agents have beliefs such that F̂H(�; b) = P(SA� �xL(1)). With
positive probability these beliefs stay unchanged till t + 5 whereas the belief about the type distribution

changes to p̂(b) = 0. With positive probability in t + 5 now at least m low type agents are matched with

high types and since xL(0) > �xL(1) their outside option is binding and their demands are xL = xL(0). With

positive probability all agents sample the demands of these m low types in t + 6 and hence all agents have

beliefs b such that (p̂(b) = 0; F̂H(�; b) = P(SA � �xL(1)); F̂L(�; b) = P(xL(0))). We denote this state by ~s.
The fact that there exists a positive multi-step transition probability from every state to ~s implies that the

Markov chain has a single limit set which includes ~s. Obviously, this single limit set consists of all states

which can be reached with positive probability from ~s. Taking into account that every demand of a high

type where the outside option is binding has to be in BH and that the best response of a high type with

some beliefs F̂L with support in BL and p̂ 2 P must lie in BH as well, shows that all demands of high types

have to be in BH once ~s has been reached. Similarly for a low type. Accordingly, given that � = 0, any

observation outside BH � BL has probability zero once ~s has been reached before. This shows that L is the
only limit set in the state space which implies that this set has to be stochastically stable. Finally, it is easy

to see that with � = 0 there is a positive transition probability from ~s to some state with heterogeneous

demands of agents. This is due to the fact there is always a positive probability that individuals obtain

di¤erent samples of productivity types and that under the beliefs F̂L; F̂H in ~s the outside option is binding

for any agent with p̂ 2 (0; 1). Accordingly the set L has to include states where demands and beliefs about
demands are heterogenous. 2

Proof of Lemma 2:

First, we observe that lim�!0 ~�~�(�) > 0 can only hold if ~� is an element of a minimal absorbing set (limit

set) for � = 0. Furthermore, in state ~� = 0 (~� = 1) we necessarily have p̂ = 0 (p̂ = 1) for all individuals.

Accordingly, all individuals make identical investment decisions and for � = 0 one of the following four cases
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has to hold, where we denote by Q(�) = [qij(�)]i; j 2 ~S the one-step transition matrix of the Markov process
f~�tg:

1. q00(0) = 1; q10(0) = 1

2. q01(0) = 1; q11(0) = 1

3. q00(0) = 1; q11(0) = 1

4. q01(0) = 1; q10(0) = 1

It can also be easily established that qi0 + qi1 > 0 for all i 2 ~S and therefore no state other than � = 0

or � = 1 can be part of a limit set. In cases 1. and 2. f0g respectively f1g are the only limit sets. In case 3
there are two co-existing limit sets, f0g and f1g. Well known results about stochastic stability of equilibria
in coordination games (e.g. Kandori, Mailath, and Rob (1993)) can be applied to show that generically we

have either lim�!0 ~�0(�) = 1 or lim�!0 ~�1(�) = 1. Finally, in case 4. the only limit set is f0; 1g. Using
lim�!0 ~�

�
i (�) = 0 for all i 2 ~S n f0; 1g we get from the Chapman-Kolmogoro¤ equation at state 0,

~��0(�)

0@ X
i2 ~Snf0g

q0;i

1A =
X

i2 ~Snf0g

qi;0~�
�
i (�);

that lim�!0 ~�
�
0 = lim�!0 ~�

�
1 = 0:5. 2

Proof of Proposition 4:

We start with providing a characterization of possible limit sets of f�tg in a lemma. Denote the set of all
bargaining norms which are compatible (see the de�nition in the proof of Proposition 3) with all p̂ 2 [0; 1]
for a certain discount factor by C(�). We �rst show the following lemma, where � = �LH = �HL is the

minimum unit of account for dividing the surplus, as de�ned in the game form of section 2.

Lemma 3 a) The set C(�) is non-empty for su¢ ciently small � if and only if the trade condition holds.

b) Suppose that � is su¢ ciently small and the trade condition holds. Then for each xL 2 C(�) there exists
a limit set 
(xL) consisting of all s 2 S such that s� > 0 only if � = (T; b) for some some T 2 fH;Lg
and some b such that F̂H(�; b) = P(SA � xL) and F̂L(�; b) = P(xL).

Proof of the Lemma:

a) De�ne xL and �xL as in (5) and (6). Considering the monotonicity of these expressions with respect to p̂

we get C(�) = [xL(0); �xL(1)]. Simple calculations now establish that C(�) 6= ; for su¢ ciently small � if and
only if � < 2SA

SL+SH
. This is exactly the trade condition, hence part a) of the Lemma.

b) First we show that all the sets given in b) are limit sets, i.e. we have to show that for � = 0 they are

absorbing and for each pair of states in such a set there is a positive (multi-step) transition probability.

It follows from the de�nition of C(�) that if x 2 C(�) and all individuals have point beliefs b such that
F̂L(�; b) = P(x); F̂H(�; b) = P(SA � x), all individuals have the optimal bargaining strategy xL = x; xH =

SA�x. Therefore, in the absence of mutations these point beliefs can never be altered and therefore 
(x) is
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absorbing. Furthermore, since in every period every distribution of types has a positive probability regardless

of the actual investment behavior, and so also for every p̂ 2 P there is a positive probability that a sample

yielding such an estimator is observed, all possible distributions of types and p̂ can be reached with positive

probability. Hence, the set 
(x) is connected, which implies that it is a limit set.

To prove that these are the only limit sets, we show that from every state which is not in one of the

limit sets described above there is a positive probability to reach one of these sets. This comes down to

showing that a homogeneous bargaining norm which is consistent with all p̂ 2 P can always be reached with
positive probability. The transition can go as follows: assume �t = s for some arbitrary state s 2 S. With
positive probability there are at least m low types in �t+1 and with positive probability at t + 2 there is

some pairing of a low type agent aL and a high type agent aH with bids ~xH ; ~xL, where aL has beliefs b such

that p̂(b) = 0 and accordingly ~xL � �SL
2 . With positive probability this pairing is repeated m times from

period t+2 till t+m� 1 and one agent, we call him bH , in the population samples all these pairings but no

other high-low pairings. Accordingly, at t+m she has beliefs such that F̂L(�; bt+m) = P(~xL). Furthermore,
there is a positive probability that the beliefs of aL (or the agent who replaces her) only observes high-high

meetings during this period and her beliefs stay unchanged. Furthermore there is a positive probability

that aL and bH are matched in periods t + m till t + 2m � 1. In each such matching the two bids are
~xL of aL and SA � ~xL of bH . Again, there is a positive probability that all individuals sample only these
high/low pairings during periods t + m to t + 2m � 1. Then in t + 2m all agents have beliefs such that

F̂L(dot; bt+2m) = P(~xL); F̂H(�; bt+2m) = P(SA � ~xL). If SA � ~xL � �SH
2 we have ~xL 2 C(�) and the proof of

(a) is complete.

If SA � ~xL < �SH
2 , there is a positive probability that in period t + 2m + 2 there is a high type with

p̂ = 1. This agent then makes a bid ~~xH such that ~~xH � � < �SH
2 � ~~xH and the same arguments as above

imply that there is a positive probability that a homogeneous state will evolve where all agents hold beliefs

b such that F̂L(�; b) = P(SA � ~~xH); F̂H(�; b) = P(~~xH). Since � < 2SA
SH+SL

implies �SH
2 > SA � �SL

2 , we have

SA � ~~xH 2 C(�) for su¢ ciently small �. 2

We have to determine which of the limit sets characterized in Lemma 3 b) are stochastically stable. We

use the radius modi�ed coradius criterion introduced in Ellison (2000). For a union of limit sets 
 the radius

R(
) is de�ned as the minimum number of mutations needed to get to a state outside the basin of attraction

of 
 with positive probability. The modi�ed coradius CR�(
) is de�ned as follows: consider an arbitrary

state x 62 
 and a path (z1; z2; : : : ; zT ) from x to 
 where L1; L2; : : : ; Lr � 
 is the sequence of limit sets
the path goes through (this implies Lr � 
). We de�ne the modi�ed costs of this path by

c�(z1; : : : ; cT ) = c(z1; : : : ; zT )�
r�1X
i=2

R(Li);

where c(z1; : : : ; zT ) gives the number of mutations needed on the path (x1; : : : ; zT ). Denoting by c�(x;
)

the minimal modi�ed costs for all paths from x to 
 we de�ne the modi�ed coradius as

CR�(
) = max
x62


c�(x;
):
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Ellison (2000) proves that every union of limit sets 
 with R(
) < CR�(
) contains all stochastically stable

states.

In what follows we calculate the radius and modi�ed coradius of the bargaining norms described in

Lemma 3. In the case of substitutes the limit sets are of the form 
(xL) for xL 2 C(�). Let ~xL be an
arbitrary bargaining norm with ~xL 2 C(�). To destabilize the norm upwards either a su¢ cient number of

high types have to mutate to a xH smaller than SA � ~xL, in the extreme case xH = 0, such that the best

response of a high type who has sampled all these mutants becomes xL = SA, or a su¢ cient number of low

types have to mutate to xL = ~xL + � such that the best response of a high type who has sampled all these

mutants becomes xH = SA � ~xL � �, where � = SA
k . As has been demonstrated in Young (1993b), for

su¢ ciently small � the second of these two possibilities yields transitions with a lower number of mutations

(the number goes to zero as � goes to zero). Similar arguments hold for a downwards destabilization and

therefore in order to leave a norm ~xL with the minimal necessary number of mutations either the path to

~xL+� or the path to ~xL�� has to be taken. We de�ne by c+(xL) the minimal number of mutations needed
to get to ~xL+� and by c�(xL) the minimal number of mutations needed to get to ~xL��. We �rst calculate
c+(~xL).

The number of mutations needed to destabilize a norm also depends on the beliefs p̂. We �rst show that

the minimal number of mutants either occurs at p̂ = 0 or at p̂ = 1. Consider a low type whose beliefs F̂H
attach probability q to xH = SA� ~xL+� and 1� q to xH = SA� ~xL. Denote by v the expected discounted
payo¤ of this individual given that he faces a high type and bids xL = ~xL whenever facing a high type.

Taking into account that he will always trade immediately when he meets another low type we get

v = (1� q)~xL + �q
�
p̂v + (1� p̂)SL

2

�
and

v(q; p̂) :=
(1� q)~xL + �q(1� p̂)SL=2

1� �qp̂ :

Note that this expression is monotonic in p̂ for p̂ 2 [0; 1] (increasing or decreasing). The minimal number of
mutations needed to destabilize the norm is given by dm~qe, where ~q is the minimal q such that:

v(q; p̂) < ~xL � �

holds for some p̂ 2 [0; 1]. Since the right hand side is constant in q and p̂ and the left hand side is monotonous
in p̂ for all q the minimal q is either attained at p̂ = 0 or at p̂ = 1.

With p̂ = 0 we get

v(q; 0) = (1� q)~xL + �q
SL
2
;

which gives

q > q1�(~xL) :=
�

~xL � � SL2
:

For p̂ = 1 we have

v(q; 1) =
1� q
1� �q ~xL:
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Accordingly, the norm can be destabilized downwards if

q < q2�(~xL) :=
�

~xL(1� �) + ��
:

Comparing the two we see that q1�(~xL) < q2�(~xL) if and only if ~xL > SL
2 + �. All-together we have

c�(~xL) =

8<: q1�(~xL); if ~xL � SL
2 + �;

q2�(~xL); if ~xL < SL
2 + �:

Similar reasoning for destabilizations upwards shows that for a high type, who is matched with a low

type and who believes that a fraction q of low types demands xL = ~xL +� and a fraction 1� q of low types
demands xL = ~xL, has the following expected payo¤ from demanding xH = SA � ~xL:

w(q; 0) = 1�q
1��q (SA � ~xL)

w(q; 1) = (1� q)(SA � ~xL) + �q SH2 :

This implies

c+(~xL) =

8<: q1+(~xL); if ~xL � SA � SH
2 � �;

q2+(~xL) if ~xL < SA � SH
2 � �:

where

q1+ =
�

(SA � ~xL)(1� �) + ��
q2+ =

�

SA � ~xL � � SH2
:

The function c� is decreasing in ~xL whereas c+ is increasing in this variable which implies that they

have a unique intersection. We denote this intersection point by x̂L. Clearly at this point min[c�; c+] is

maximized. For

(7) � � 2(SH � SA)
SH � SL

x̂L lies on the intersection of q1� and q1+ and is given by

(8) x̂L =
SA
2
� �

2(2� �) (SA � SL � 2�):

To establish (a) we �rst observe that under the assumptions made in (a) the condition (7) holds and

x̂L 2
�
�SL
2 ; SA �

�SH
2

�
for small �. Hence, there exists a ^̂xL 2 C(�) that maximizes min[c+; c�] over C(�)

and whose distance from x̂L is smaller than �. Taking into account Lemma 3 this in particular implies that

there is a limit set corresponding to the bargaining norm ^̂xL.

From the arguments above it follows that for every xL 2 C(�) with xL < ^̂xL we have for the radius of

the limit set 
(xL): R(
(xL)) = dmc+(xL)e and for every xL 2 C(�) with xL > ^̂xL we have R(
(xL)) =

dmc�(xL)e. From every limit set 
(xL) there is a path to 
(^̂xL) along a graph g which connects every limit
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set 
(xL) where xL < ^̂xL with 
(xL + �), and every limit set 
(xL) where xL > ^̂xL with 
(xL � �). This
implies that

CR�(
(^̂xL)) � max
xL2C(�)nf^̂xLg

R(
(xL)):

For su¢ ciently large m we have R(
(^̂xL)) > R(
(xL)) for all xL 2 C(�) n f^̂xLg and therefore R(
(^̂xL)) >
CR�(
(^̂xL)). Using the radius-modi�ed coradius criterion we can conclude that the limit set corresponding

to ^̂xL is stochastically stable. For k ! 1 we have ^̂xL ! x̂L and get (a). Exactly the same arguments

establish (b), where it has to be taken into account that in this case x̂L lies at the intersection of q1� and

q2+ which is given by

x̂L =
SA
2
� �

4
(SH � SL)

2

Proof of Proposition 5:

For a given bargaining norm x̂L, investment is optimal i¤

(1� �)
�
p̂
SH
2
+ (1� p̂)(SA � x̂L)

�
+ �

�
p̂x̂L + (1� p̂)

SL
2

�
� c

� (1� �)
�
p̂x̂L + (1� p̂)

SL
2

�
+ �

�
p̂
SH
2
+ (1� p̂)(SA � x̂L)

�
:

Taking into account that (SH + SL) =2�SA < 0 this gives the following condition for high investment to be
optimal:

(9) p̂ � p�(x̂L;�) :=
SA � x̂L � SL=2� c=(1� 2�)

SA � SH=2� SL=2
:

Taking into account the arguments in the proof of Lemma 2 it follows immediately that an investment norm

is induced if p� > 1, a no-investment norm is induced if p� < 0, whereas for p� 2 (0; 1) a cyclical investment
is induced. Inserting the expression for the stable norm derived in proposition 4 and letting � go to zero

gives the expressions c1; c2 and c3. 2.

Proof of Proposition 6:

The proof of (b) is identical to the proof of part (a) of proposition 4. To proof (a) we again follow the proof

of proposition 4 but observe that for SA < �
2 ((2� �)SH + SL) we have x̂L > SA � �

SH
2 . Therefore the point

which maximizes min[c+; c�] over C(�) is given by ^̂xL where ^̂xL � SA�� SH2 < ^̂xL+�. Stochastic stability of

the limit set 
(^̂xL) is established analogous to the proof of proposition 4 but here we have ^̂xL ! SA � � SH2
for k !1. 2

Proof of Proposition 7:

We show that p�(x̂sL) > 0:5 implies that no-investment is induced. Inserting the expression for x
s
L obtained

in proposition 6 gives the expression for c4. To show that lim�!0 ~�
�
0 = 1 we can again apply the radius-

modi�ed coradius criterion. For � = 0 there are two limit sets, namely f0g and f1g. In order to invest high an
individual has to sample at least dmp�e high types. Therefore the radius of f0g is given by R(f0g) = dmp�e.
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On the other hand, the state where the maximal number of mutations is needed to have a positive transition

probability into f0g is the state 1 and therefore we have CR�(f0g) = dm�mp�e. For p� > 0:5 this implies
that R(f0g) > CR�(f0g) for su¢ ciently large m and therefore lim�!0 ~�

�
0 = 1. 2
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