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Abstract

Arabic handwriting recognition (HR) is a
challenging problem due to Arabic’s con-
nected letter forms, consonantal diacritics and
rich morphology. In this paper we isolate
the task of identification of erroneous words
in HR from the task of producing corrections
for these words. We consider a variety of
linguistic (morphological and syntactic) and
non-linguistic features to automatically iden-
tify these errors. We also consider a learn-
ing curve varying in two dimensions: number
of segments and number of n-best hypotheses
to train on. We additionally evaluate the per-
formance on different test sets with different
degrees of errors in them. Our best approach
achieves a roughly ∼20% absolute increase in
F-score over a simple but reasonable baseline.
A detailed error analysis shows that linguis-
tic features, such as lemma models, help im-
prove HR-error detection precisely where we
expect them to: semantically inconsistent er-
ror words.

1 Introduction

Optical character recognition (OCR) has proven to
be an incredibly valuable technology. After years
of development, OCR systems for Latin-character
languages such as English have been refined greatly.
Arabic, however, possesses a complex morphology
and orthography that makes OCR more difficult
(Märgner and Abed, 2009; Halima and Alimi, 2009;
Magdy and Darwish, 2006). Because of this, only
a few systems for Arabic OCR of printed text have
been developed, and these have not been throughly

evaluated (Märgner and Abed, 2009). OCR of Ara-
bic handwritten text (handwriting recognition, or
HR), whether online or offline, is even more chal-
lenging compared to printed Arabic OCR, where the
uniformity of letter shapes and other factors allow
for easier recognition (Biadsy et al., 2006) – see Fig-
ure 1.

OCR and HR systems are often improved by per-
forming post-processing; these are attempts to eval-
uate whether each word, phrase or sentence in the
OCR/HR output is legal and/or probable. When
an illegal word or phrase is discovered (error de-
tection), these systems usually attempt to gener-
ate a legal alternative (error correction). Common
OCR/HR post-processing strategies are similar to
spelling correction solutions involving dictionary
lookup (Jurafsky and Martin, 2000) and morpholog-
ical restrictions (Domeij et al., 1994; Oflazer, 1996).

Error detection systems using dictionary lookup
can sometimes be improved by adding entries rep-
resenting morphological variations of root words,
particularly if the language involved has a complex
morphology (Pal et al., 2000). Alternatively, mor-
phological information can be used to construct sup-
plemental lexicons or language models (Sari and
Sellami, 2002; Magdy and Darwish, 2006). How-
ever, the precise nature and depth of the morpho-
logical information is important; for example, one
study reported that using a shallow 6-gram morphol-
ogy model based only on Arabic stems and affixes
was less useful than a simple word trigram model
(Magdy and Darwish, 2006).

In this paper, we present a HR error detection
system that uses lexical and morphological feature



Figure 1: Example of aligning printed text (top line) with
handwriting (bottom line). The dark solid lines indi-
cate word boundaries, the dotted lines indicate charac-
ter boundaries and the dashed lines indicate sub-word
boundaries where the script is not connected.

models to locate possible "problem zones" – words
or phrases that are likely incorrect – in Arabic HR
output. We use an off-the-shelf HR system (Natara-
jan et al., 2008; Saleem et al., 2009) to generate an
N-best list of hypotheses for each of several scanned
segments of Arabic handwriting. Our problem zone
detection (PZD) system then tags the potentially er-
roneous (problem) words. A subsequent HR post-
processing system can then focus its effort on these
words when generating additional alternative hy-
potheses. We only discuss the PZD system and not
the task of new hypothesis generation; the evaluation
is on error/problem identification.

This paper is structured as follows: Section 2 pro-
vides background on the difficulties of the Arabic
HR task. Section 3 defines what is considered a
problem zone to be tagged. The experimental fea-
tures, data and other variables are outlined in Sec-
tion 4. The experiments are presented and discussed
in Section 5.

2 Arabic Handwriting Recognition

Arabic has several orthographic and morphological
properties that make HR challenging (Darwish and
Oard, 2002; Magdy and Darwish, 2006; Märgner
and Abed, 2009).

2.1 Arabic Orthography Challenges
The use of cursive, connected script creates prob-
lems in that it becomes more difficult for a ma-
chine to distinguish between individual characters
(see Figure 1). This is certainly not a property

unique to Arabic; methods, such as Hidden Markov
Models, developed for other cursive script languages
can be applied successfully to Arabic (Natarajan et
al., 2008; Saleem et al., 2009; Märgner and Abed,
2009; Lu et al., 1999).

Arabic writers often make use of elongation
(tatweel/kashida) to beautify the script. Arabic also
contains certain ligature constructions that require
consideration during HR/OCR (Darwish and Oard,
2002). Sets of dots and optional diacritic mark-
ers are used to create character distinctions in Ara-
bic. Unfortunately, trace amounts of dust or dirt on
the original document scan can be easily mistaken
for these markers (Darwish and Oard, 2002). Al-
ternatively, these markers in handwritten text may
be too small, light or closely-spaced to readily dis-
tinguish, causing the system to drop them entirely.
While Arabic disconnective letters may make it hard
to determine word boundaries, they could plausibly
contribute to reduced ambiguity of otherwise similar
shapes.

2.2 Arabic Morphology Challenges
Arabic morphology, wherein words are constructed
from affixes and stems (which are themselves con-
structed from many possible root patterns), allows
for tens of billions of potential, legal words (Magdy
and Darwish, 2006; Moftah et al., 2009). The large
potential vocabulary size by itself complicates OCR
methods that rely on conventional, word-based dic-
tionary lookup strategies. In this paper we consider
the value of morpho-lexical features such as lem-
mas and part-of-speech tags that may allow machine
learning algorithms to learn generalizations.

2.3 HR Error Classifications
We can classify three types of OCR errors: substi-
tutions, insertions and deletions. Substitutions in-
volve replacing the correct word by another incor-
rect form. Insertions are words that are incorrectly
added into the OCR hypothesis. An insertion error
is typically paired with a substitution error, where
the two errors reflect a mis-analysis of a single word
split into two words. Deletions are simply missing
words. Examples of these different types of errors
appear in Table 1.

In the evaluation set that we study here, 25.8%
of the words are marked as problematic. Of these,
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Aljwdh̄ ςAlyh̄ ywh n ςlyh tSrfwA An lmn wAlAxð wfArs AlqsTnTynyh̄ bAtAný Almslmwn AyhA θm Âςyr
PZD PROB OK PROB PROB PROB PROB PROB PROB PROB OK OK PROB OK PROB PROB PROB

DELX INS SUB DOTS SUB ORTH INS SUB SUB ORTH INS SUB

Table 1: An example highlighting the different types of Arabic HR errors. The first row shows the reference sentence
in both Arabic script and transliteration. The second row shows an automatically generated hypothesis of the same
sentence. The last row shows which words in the hypothesis are marked as problematic (PROB) words and the
specific type of problem: SUB (substituted), ORTH (substituted by an orthographic variant), DOTS (substituted by
a word with different dotting), INS (inserted), and DELX (adjacent to a deleted word). The remaining words are
tagged as OK. The example words are shown in Arabic visual order (right-to-left). The reference translates as ‘Are
you unable O’Moslems, you who conquered Constantinople and Persia and Andalusia, to manufacture a tub of high
quality butter!’. The hypothesis roughly translates as ‘Was loaned then O’Moslems Pattani Constantinople, and Persia
and taking from whom that you spend on him N Yeoh high quality’.

87.2% are letter-based words (henceforth words), as
opposed to 9.3% punctuation and 3.5% digits. These
ratios are comparable to the overall distribution of
word types in the whole data set (words=86.8%,
punctuation=9.3% and digits=3.9%).

Orthogonally, 81.4% of all problem words involve
a substitution error, 10.6% an insertion error and
7.9% a deletion error. Whereas punctuation symbols
are 9.3% of all errors, they represent over 38% of all
deletion errors, almost 22% of all insertion errors
and less than 5% of substitution errors. Similarly
digits, which are 3.5% of all errors, are almost 14%
of deletions, 7% of insertions and just over 2% of all
substitutions. Punctuations and digits bring different
challenges: whereas punctuation marks are a small
class, their shape is often confusable with Arabic let-
ters or letter components, e.g., �� Ǎ1 and ! or � and ,.
Digits on the other hand are a hard class to language
model since the vocabulary (of multi-digit numbers)
is very large.

Words (non-digit, non-punctuation) still consti-
tute the majority in every category of error: 47.7%
of deletions, 71.3% of insertions and over 93%
of substitutions. Among substitutions, 26.5% are
simple orthographic variants that are often normal-
ized in Arabic NLP because they result from fre-
quent inconsistencies in spelling: Alef Hamza forms
( �/
�
�/ ��/
�
� A/Â/Ǎ/Ā) and Ya/Alef-Maqsura (�� /� y/ý). If

we consider whether the lemma of the correct word
and its incorrect form are matchable, an additional

1All Arabic transliterations are provided in the Habash-
Soudi-Buckwalter transliteration scheme (Habash et al., 2007).

6.9% can be added to the orthographic variant sum
(since these cases can all share the same lemmas).
The rest of the cases, or 59.7% of the words, in-
volve complex orthographic errors. Simple dot mis-
placement can only account for 2.4% of all substitu-
tion errors. The large proportion of errors involving
lemma difference is consistent with the perception
of most OCR errors creating semantically incoher-
ent sentences. This suggests that language models
on word and lemma level can be very helpful in iden-
tifying such errors.

3 Problem Zone Definition

Prior to developing a model for PZD, it is neces-
sary to define what is considered a ‘problem’. In
addition, model training and evaluation requires that
gold problem tags be generated for the training and
test data.2 We define a simple binary problem tag: a
hypothesis word is tagged as "PROB" if it is the re-
sult of an insertion or substitution of a word. Deleted
words in a hypothesis, which cannot be tagged them-
selves, cause their adjacent words to be marked as
PROB instead. In this way, a subsequent HR post-
processing system can be alerted to the possibility
of a missing word via its surroundings (hence the
idea of a problem ‘zone’). Any words not marked as
PROB are given an "OK" tag (see the PZD row of
Table 1).

To locate insertions, deletions and substitutions,
2For clarity, we refer to these tags as ‘gold’, whereas the the

correct segment for a given hypothesis set is called the ‘refer-
ence’.



we run all the data sets through the sclite software
originally developed for speech NLP (Kahn, 2001).
sclite was used to compare each hypothesis with its
reference, which are then used to create the gold tags
for each data set.

4 Experimental Settings

4.1 Training and Test Data
The training and test data used in this system were
produced by the off-the-shelf BBN Byblos OHR
system (Natarajan et al., 2008; Saleem et al., 2009).
This system takes scans of handwritten segments
(see Figure 1) as input and produces a ranked N-
best list of hypotheses for each segment. For this
data, N could be as high as 300, but for some seg-
ments a smaller number was produced. On aver-
age, a segment has 6.87 words (including punctu-
ation), with each segment and its neighbors forming
a larger, complete sentence.

We divide the data into training and test sets. To
reduce the computational times required to gain a
clear understanding of the system performance, the
data sets are further divided into subsets of reduced
size, according to number of segments and maxi-
mum number of hypotheses. For training, sets using
20, 200, 2000 or 4000 segments (Sr) are used, with
1, 10, or 100 of the top-ranked hypotheses (Hr) for
each segment. The references are also included in
the training sets to provide examples of perfect text.
Testing sets use 500 segments (Se), with 1, 10 or 100
of the top-ranked hypotheses (He). Since we are
mainly concerned with improving on the HR sys-
tem’s ranking and its top choice, we mainly focus
on the {Se=500, He=1} test set for evaluation. We
consider a total of 8 different training sets and 3 test
sets.

4.2 PZD Models and Features
The PZD system relies on a set of SVM classi-
fiers trained using morphological and lexical fea-
tures. The SVM classifiers are built using Yamcha
(Kudo, 2005). Over 30 different combinations of
features were considered. Table 2 shows the indi-
vidual feature definitions.

In order to obtain morpho-lexical features, all of
the training and test data is passed through MADA
3.0, a software tool for Arabic morphological anal-

ysis disambiguation (Habash and Rambow, 2005;
Roth et al., 2008). For these experiments, MADA
provides the pos (using MADA’s native 34-tag set)
and the lemma for each word. Occasionally MADA
will not be able to produce any interpretations (anal-
yses) for a word; since this is often a sign that the
word is misspelled or illegal, we define a binary na
feature to indicate when MADA fails to generate
analyses.

In addition to using the MADA features directly,
we also develop a set of nine N-gram models (where
N=1, 2, and 3) for the nw, pos, and lem fea-
tures defined in Table 2. We train these models
using a 220M word excerpt from the Arabic Giga-
word 3 corpus (Graff, 2007) which had also been
run through MADA 3.0 to extract the pos and lem
information. The models were built using the SRI
Language Modeling Toolkit (Stolcke, 2002). Each
word in a hypothesis can then be assigned a proba-
bility by each of these nine models. We reduce these
probabilities into one of nine bins, with each suc-
cessive bin representing an order of magnitude drop
in probability (the final bin is reserved for word N-
grams which did not appear in the models). The bin
labels are used as the SVM features.

Finally, we also use a word confidence (conf)
feature, which is aimed at measuring the frequency
with which a given word is chosen by the HR system
for a given segment scan. The conf is defined as
the ratio of the number of hypotheses in the set that
the word appears in to the total number of hypothe-
ses in the set. These numbers are calculated using
the original N-best hypothesis list, before the data is
trimmed to H={1, 10, 100}. Like the N-grams, this
number is binned; in this case there are 11 bins, with
10 spread evenly over the (0,1) range, and an extra
bin for values of 1 (i.e., when the word appears in
every hypothesis in the set).

5 Results

In the following sections, we describe different ex-
periments conducted by varying the training data
size and Sr/Hr composition (to determine which
has a greater impact on PZD performance), the test
data He distribution (to examine how well the PZD
system works on lower-ranked hypotheses), and the
features used in the PZD model (to determine which



Simple Features Description
word The surface word form
nw Normalized word: the word after Alef, Ya and digit normalization
pos The part-of-speech of the word
lem The lemma of the word
na No-analysis: a binary feature indicating whether a morphological analyzer is

able to produce any analyses for the word
Binned Features Description
nw N-grams 1, 2 and/or 3-gram probabilities of the normword
lem N-grams 1, 2 and/or 3-gram probabilities of the lemma
pos N-grams 1, 2 and/or 3-gram probabilities of the pos
conf Word confidence: the ratio of the number of hypotheses in the set that contain the

word over the total number of hypotheses in the set

Table 2: PZD model features. Simple features are used directly by the PZD SVM models, where as Binned features’
(numerical) values are reduced to a small, labeled category set, and the labels of this set are used as features in the
model.

F-score Sr=20 Sr=200 Sr=2000
Hr=1 38.84 46.21 59.32
Hr=10 49.22 54.36 62.44
Hr=100 50.30 54.60 –
Train Time (sec) Sr=20 Sr=200 Sr=2000
Hr=1 < 1 4 865
Hr=10 1 36 29,659
Hr=100 17 4,417 –

Table 3: PZD F-scores and training times for various
training set Sr/Hr partitions; the model uses all the avail-
able features (all), and was evaluated with the {Se=500,
He=1} test set.

have the most informative impact). We present the
results in terms of F-score only for simplicity; we
then conduct an error analysis that examines preci-
sion and recall.

5.1 Effect of Training Data Composition
Table 3 and Table 4 illustrate the effect of increasing
the number of segments and maximum number of
hypotheses in both the training and test data. In these
experiments, all the features listed in Table 2 (hence-
forth referred to as the all feature set) were used in
the PZD model. In Table 3, there is a clear improve-
ment in PZD F-score when increasing the training
Sr or Hr. For the most part, increases in Sr provide
more improvement than a similar increase in Hr,

% of Gold Trivial F-score
Hypothesis Baseline Sr=2000

PROBs F-score Hr=10
He=1 25.84 41.07 62.44
He=10 31.11 47.45 69.86
He=100 39.06 56.18 77.57

Table 4: F-score of He values (Se=500 in each case). The
first column shows the percentage of PROB tags that exist
in the hypotheses of that test set – a trivial tagger would
have the corresponding F-scores shown in the second col-
umn. The third column shows the F-score derived from
the {Sr=2000, Hr=10, all} model on that test set.

indicating the PZD model benefits more from seg-
ment diversity than from more hypothetical versions
of the same segment. However, increasing Sr (and
to a lesser extent, Hr) comes with a significantly
non-linear increase in training time. The {Sr=2000,
Hr=100} case was not examined because of this.

The first column of Table 4 shows the number of
gold PROB tags present in test sets having differ-
ent values of He. A trivial tagger which marks ev-
ery input word as PROB would have precision equal
to these numbers and perfect recall; the correspond-
ing F-score for this tagger is shown the second col-
umn and can be considered as a trivial baseline. The
third column shows how well a {Sr=2000, Hr=10,
all} PZD model performs when evaluated on these



Feature Set F-score Improvement
word (word only) 43.85 –
word + nw 43.86 0.03 %
word + na 44.78 2.13 %
word + lem 45.85 4.57 %
word + pos 45.91 4.70 %
word + nw
+ pos + lem 46.02 4.94 %
word + nw + pos
+ lem + na 46.34 5.68 %

Table 5: PZD F-scores for simple feature combinations.
The training set used was {Sr=2000, Hr=10} and the
models were evaluated on the {Se=500, He=1} test set.
The improvement over the word baseline case is also in-
dicated.

test sets. Here, there is a marked improvement as
He increases; this is no doubt due to the inclusion
of hypotheses that have lower HR rank, and thus
PROBs are more frequent and more readily identi-
fied. In comparing these scores to the trivial base-
line, we find that the PZD model provides a consis-
tent ∼22% improvement, regardless of He. Since
the intent of PZD is to improve on the top selection
made by the HR system, we focus our evaluations
on the {Se=500, He=1} henceforth.

5.2 Effect of Feature Set Choice
Selecting an appropriate set for PZD requires exten-
sive testing. Even when only considering the few
features described in Table 2, the parameter space
is quite large. Rather then exhaustively test every
possible feature combination, we selectively choose
feature subsets that can be compared to gain a sense
of the incremental benefit provided by individual
features.

5.2.1 Simple Features
Table 5 examines the result of taking a baseline

feature set (containing word as the only feature) and
adding a single feature from the Simple set to it. The
result of combining all the Simple features is also in-
dicated. From this, we see that Simple features, even
collectively, provide only minor improvements. We
note that the word baseline model (henceforth re-
ferred to as the word baseline) is only slightly im-
proved over the trivial baseline shown in Table 4.

5.2.2 Binned Features
Table 6 shows models which include both Simple

and Binned features. First, Table 6 shows the effect
of adding nw N-grams of successively higher orders
to the word baseline. Here we see that even a sim-
ple unigram provides a significant benefit (compared
to the improvements gained in Table 5). The largest
improvement comes with the addition of the bigram
(thus introducing context into the model), but the tri-
gram provides only a slight improvement above that.
This implies that pursuing higher order N-grams will
result in negligible returns.

In the next part of Table 6, we see that the single
feature (pos) which provided the highest benefit in
Table 5 does not provide similar improvements un-
der these combinations, and in fact seems detrimen-
tal. We also note that using all the features in one
model is outperformed by more selective choices.
Here, the best performer is the model which utilizes
the word, nw N-grams, and lem as the only fea-
tures. However, the differences among this model
and the five that follow it in Table 6 are not sta-
tistically significant. The differences between this
model and the other lower performing models are
statistically significant (p<0.05).

5.2.3 Word Confidence
The conf feature deserves special consideration

because it is the only feature which draws on infor-
mation from across the hypothesis set. In Table 7,
we show the effect of adding conf as a feature to
several base feature sets taken from Table 6. Except
for the baseline case, conf provides a relatively
consistent benefit. The large (27.32%) improvement
gained by adding conf to the word baseline shows
that conf is valuable as a feature, but the smaller
improvements in the other models indicate that the
information it provides largely overlaps with the in-
formation already present in those models. The dif-
ferences among the last four models in Table 7 are
not statistically significant. The differences between
these four models and the first two are statistically
significant (p<0.05).

5.3 Effect of Training Data Size
In order to allow rapid examination of multiple fea-
ture combinations, we restricted the size of the train-
ing set (Sr) to maintain manageable training times.



Feature Set F-score Improve.
word baseline (word only) 43.85 –
word + nw unigram 49.51 12.91 %
word + nw unigram and bigram 59.26 35.16 %
word + nw unigram, bigram and trigram (N-grams) 59.33 35.32 %
word + nw N-grams + pos 58.50 33.41 %
word + nw N-grams + pos + pos N-grams 57.35 30.79 %
word + nw N-grams + lem 60.92 38.93 %
word + nw N-grams + lem + na 60.47 37.91 %
word + nw N-grams + lem + lem N-grams 60.44 37.85 %
word + nw N-grams + pos + pos N-grams + lem + lem N-grams 59.63 35.98 %
word + nw N-grams + pos + pos N-grams + lem + lem N-grams + na 59.93 36.67 %
word + nw N-grams + pos + pos N-grams + lem + lem N-grams + na + nw 59.77 36.31 %

Table 6: PZD F-scores for models that include Binned features. The training set used was {Sr=2000, Hr=10} and
the models were evaluated on the {Se=500, He=1} test set. The improvement over the word baseline case is also
indicated. "N-grams" refers to using each of the 1, 2 and 3-grams as included Binned features.

Original F-score Improvement with
Base Feature Set F-score conf conf added
word only 43.85 55.83 27.32 %
word + nw N-grams 59.33 61.71 4.00 %
word + nw N-grams + lem 60.92 62.60 2.76 %
word + nw N-grams + lem + na 60.47 63.14 4.41 %
word + nw N-grams + lem + lem N-grams 60.44 62.88 4.03 %
word + nw N-grams + pos + pos N-grams + lem
+ lem N-grams + na + nw 59.77 62.44 4.47 %

Table 7: PZD F-scores for models when word confidence is added to the feature set. The training set used was
{Sr=2000, Hr=10} and the models were evaluated on the {Se=500, He=1} test set. The improvement generated by
including word confidence is indicated. "Ngrams" refers to using each of the 1, 2 and 3-grams as included Binned
features.

With this decision comes the implicit assumption
that the results obtained will scale with additional
training data. We test this assumption by taking
the best-performing feature sets from Table 7 and
training new models using twice the training data
(Sr=4000). The results are shown in Table 8. In each
case, the improvements are relatively consistent (and
on the order of the gains provided by the inclusion of
conf as seen in Table 7) , indicating that the model
performance does scale with data size. However,
these improvements come with a cost of a roughly
4-7x increase in training time. We note that the
value of doubling Sr is roughly 3-6x times greater
for the word baseline than the others; however, sim-

ply adding conf to the baseline provides an even
greater improvement than doubling Sr. The differ-
ences between the final four models in Table 8 are
not statistically significant. The differences between
these models and the first two models in the table are
statistically significant (p<0.05). For convenience,
in the next section we refer to the third model listed
in Table 8 as the best system (because it has the
highest absolute F-score on the large data set), but
readers should recall that the these four models are
roughly equivalent in performance.

5.4 Error Analysis
In this section, we look closely at the performance
of a subset of systems on different types of prob-



Sr = 2000 Sr = 4000 Improvement with
Feature Set F-score F-score more training data
word only 43.85 52.08 18.77 %
word + conf 55.83 57.50 3.00 %
word + nw N-grams + lem + conf (best system) 62.60 66.34 5.97 %
word + nw N-grams + lem + na + conf 63.14 66.21 4.87 %
word + nw N-grams + lem + lem N-grams + conf 62.88 64.43 2.47 %
all 62.44 65.62 5.10 %

Table 8: PZD F-scores for selected models when the number of training segments (Sr) is doubled. The training set
used was {Sr=2000, Hr=10} and {Sr=4000, Hr=10}, and the models were evaluated on the {Se=500, He=1} test
set. "Ngrams" refers to using each of the 1, 2 and 3-grams as included Binned features.

(a) Sr=4000 Sr=2000
word wconf best all all

Precision 54.70 59.45 67.12 67.35 62.36
Recall 49.69 55.68 65.57 63.98 62.52
F-score 52.08 57.50 66.34 65.62 62.44

(b) %GoldProb word wconf best all all
Words 87.2 51.8 57.3 68.5 67.1 64.9
Punctuation 9.3 39.5 44.7 50.0 46.1 40.8
Digits 3.5 24.1 44.8 34.5 34.5 62.1
Insertions 10.6 46.0 49.4 62.1 62.1 55.2
Deletions 7.9 29.2 20.0 24.6 21.5 27.7
Substitutions 81.4 52.2 60.0 70.0 68.4 66.9

OrthoVariant 21.6 63.3 51.4 52.5 53.7 48.6
Same Lemma 5.6 45.7 52.2 63.0 52.2 54.4

Semantic 48.6 48.5 64.1 79.1 77.1 76.1

Table 9: Error analysis results comparing the performance of multiple systems over different error types.

lem words. We compare the following model set-
tings: for {Sr=4000} training, we use word, word
+ conf, the best system from Table 8 and the model
using all possible features (word, wconf, best and
all, respectively); and we also use all trained with
{Sr=2000}. We consider the performance in terms
of precision and recall in addition to F-score – see
Table 9 (a). We also consider the percentage of re-
call per error type, such as word/punctuation/digit
or deletion/insertion/substitution and different types
of substitution errors – see Table 9 (b). The sec-
ond column in this table (%GoldProb) shows im-
portance of a category as a percentage of all gold-
tagged problem words.

Overall, there is no major tradeoff between preci-

sion and recall across the different settings; although
we can observe the following: (i) adding more train-
ing data helps precision more than recall (over three
times more) – compare the last two columns in Ta-
ble 9 (a); and (ii) the best setting has a slightly lower
precision than all features, although a much better
recall – compare columns 4 and 5 in Table 9 (a).

The performance of different settings on words is
generally better than punctuation and that is better
than digits. The only exceptions are in the digit cat-
egory, which may be explained by that category’s
small count which makes it prune to large percent-
age fluctuations.

In terms of error type, the performance on sub-
stitutions is better than insertions, which is in turn



better than deletions, for all systems compared. This
makes sense since deletions are rather hard to de-
tect and they are marked on possibly correct adja-
cent words, which may confuse the classifiers. One
insight for future work is to develop systems for
different types of errors. Considering substitutions
in more detail, we see that surprisingly, the sim-
ple approach of using the word feature only (with-
out conf) correctly recalls a bigger proportion of
problems involving orthographic variants than other
settings. It seems the more complex the model, the
harder it is to model these cases correctly. Error
types that include semantic variations (different lem-
mas) or shared lemmas (but not explained by ortho-
graphic variation), are by contrast much harder for
the simple models. The more complex models do
quite well recalling errors involving semantically in-
coherent substitutions (around 79.1% of those cases)
and words that share the same lemma but vary in in-
flectional features (63% of those cases). These two
results are quite a jump from the basic word baseline
(around 30% and 18% respectively).

The simple addition of data seems to contribute
more towards the orthographic variation errors and
less towards semantic errors. The different settings
we use (training size and features) show some de-
gree of complementarity in how they identify errors.
We try to exploit this fact in the next section explor-
ing some simple system combination ideas.

5.5 Preliminary Combination Analysis
In a preliminarily investigation of the value of com-
plementarity across these different systems, we tried
two model simple combination techniques. We re-
stricted the search to the systems in the error analy-
sis (Table 9).

First, we considered a sliding voting scheme
where a word is marked as problematic if at least
n systems agreed to that. Naturally, as n increases,
precision increases and recall decreases, provid-
ing multiple tradeoff options. The range spans
49.1/83.2/61.8 (% Precision/Recall/F-score) at one
end (n = 1) to 80.4/27.5/41.0 on the other (n = all).
The best F-score combination was with n = 2 (any
two agree) producing 62.8/72.4/67.3, an almost 1%
higher than our best system.

In a different combination exploration, we ex-
haustively sought the best three systems from which

any agreement (2 or 3) can produce an even better
system. The best combination included the word
model, the best model (both in {Sr=4000} training)
and the all model (in {Sr=2000}). This combination
yields 70.2/64.0/66.9, a lower F-score than the best
general voting approach discussed above, but with a
different bias towards better precision.

These basic exploratory experiments show that
there is a lot of value in pursuing combinations of
systems, if not for overall improvement, then at least
to benefit from tradeoffs in precision and recall that
may be appropriate for different applications.

6 Conclusions and Future Work

We presented a large study with various settings
(linguistic and non-linguistic features and learning
curve) for automatically detecting problem words in
Arabic handwriting recognition. Our best approach
achieves a roughly ∼20% absolute increase in F-
score over a simple baseline. A detailed error anal-
ysis shows that linguistic features, such as lemma
models, help improve HR-error detection specifi-
cally where we expect them to: identifying semanti-
cally inconsistent error words.

In the future, we plan to continue improving our
system by considering smarter trainable combina-
tion techniques and by separating the training for
different types of errors, particularly deletions from
insertions and substitutions. We also plan to inte-
grate our system with a system for producing correc-
tion hypotheses. We also will consider different uses
for the basic system setup we developed to identify
other types of text errors, such as spelling errors or
code-switching between languages and dialects.
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