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a b s t r a c t

Epigenetic regulation of gene expression occurs due to alterations in chromatin proteins that do not

change DNA sequence, but alter the chromatin architecture and the accessibility of genes, resulting in

changes to gene expression that are preserved during cell division. Through this process genes are

switched on or off in a more durable fashion than other transient mechanisms of gene regulation, such

as transcription factors. Thus, epigenetics is central to cellular differentiation and stem cell linage

commitment. One such mechanism is DNA methylation, which is associated with gene silencing and is

involved in a cell’s progression towards a specific fate. Mechanical signals are a crucial regulator of stem

cell behavior and important in tissue differentiation; however, there has been no demonstration of a

mechanism whereby mechanics can affect gene regulation at the epigenetic level. In this study, we

identified candidate DNA methylation sites in the promoter regions of three osteogenic genes from

bone marrow derived mesenchymal stem cells (MSCs). We demonstrate that mechanical stimulation

alters their epigenetic state by reducing DNA methylation and show an associated increase in

expression. We contrast these results with biochemically induced differentiation and distinguish

expression changes associated with durable epigenetic regulation from those likely to be due to

transient changes in regulation. This is an important advance in stem cell mechanobiology as it is the

first demonstration of a mechanism by which the mechanical micro-environment is able to induce

epigenetic changes that control osteogenic cell fate, and that can be passed to daughter cells. This is a

first step to understanding that will be vital to successful bone tissue engineering and regenerative

medicine, where continued expression of a desired long-term phenotype is crucial.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we address the potential for the micro-
mechanical environment of tissue to alter the epigenetic state of
stem cells. Epigenetics refers to molecular alterations of DNA that
change gene expression without changing DNA sequence, typi-
cally through changes in chromatin proteins that alter DNA
accessibility for transcription allowing some genes to be activated
and others to be silenced. Furthermore, the epigenetic state of a
cell is heritable in the sense that it is preserved during cell
division. Therefore, a cell’s gene expression pattern, or phenotype,
is a result of not only the transient signals it might receive causing

up or down regulation of particular genes, but also the epigenetic
inheritance system that controls which genes are available for
transcription. Thus, epigenetic changes to DNA allow for a cellular
memory and are central to the process of differentiation for cells
and tissues (Bird, 2002; El-Osta and Wolffe, 2000; Li and Zhao,
2008; Nagase and Ghosh, 2008; Reik and Dean, 2001; Zhang et al.,
2007).

The remedial strategies for repair, replacement or augmenta-
tion of damaged or diseased bone tissue through regenerative
medicine applications shows great promise for restoring function,
relieving pain, and improving the quality of life (Goldstein, 2006).
However, understanding the mechanism whereby extracellular
factors regulate stem cell biology and lineage commitment is
critical for successful development of novel strategies in regen-
erative medicine (Estes et al., 2004; McBeath et al., 2004). For
example, to ensure engineered tissues continue to express desired
characteristics, it is crucial to distinguish transient changes in
phenotype from true cellular differentiation.
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In terms of bone tissue engineering, a potent extracellular
factor controlling cell activity is the mechanical micro-environ-
ment. Previous reports show that skeletal loading is a key
regulator of bone metabolism controlling bone turnover, growth,
and mineralization (Dehority et al., 1999; Lafage-Proust et al.,
1998; Triplett et al., 2007; Wronski et al., 1987). In vitro studies
have shown that, at a cellular level, mechanics play a key role in
the regulation of osteogenic activity in both osteoblasts and
osteocytes (Batra et al., 2005; Kim et al., 2006; Malone et al.,
2007; Saunders et al., 2001; Saunders et al., 2003; You et al., 2001;
You et al., 2000). Additionally, recent studies demonstrate that
exposure to loading-induced dynamic fluid flow results in the
transcription of osteoblast-phenotype markers in MSCs, indicat-
ing that the mechanical environment plays an important role in
guiding stem cell differentiation (Friedl et al., 2007; Kreke et al.,
2005; Li et al., 2004).

Cellular differentiation is commonly assessed by particular
protein expression patterns resulting from specific patterns of
gene expression; however, epigenetic modifications modulate
transcription factor accessibility and thus, alter gene expression in
an inherited fashion. The main epigenetic mechanisms of gene
regulation are DNA methylation and histone modification (Nagase
and Ghosh, 2008). DNA methylation is a chromatin alteration that
consists of the addition of a methyl group to the 50 position of
cytosine in a CpG dinucleotide (CpG indicates cytosine–phos-
phate–guanine to distinguish it from CG base pairing between
complementary DNA strands) in gene regulatory regions and
largely contributes to gene silencing (Noer et al., 2006).
Specifically, DNA methylation either directly blocks transcription
factor binding or enhances binding of proteins that induce a more
transcription-resistant condensed chromatin (Antequera, 2003;
Ballestar and Wolffe, 2001; El-Osta and Wolffe, 2000; Fuks et al.,
2003; Wolffe and Matzke, 1999). Given that DNA methylation
regulates gene expression in a durable and heritable manner, it is
a more relevant method of evaluating differentiation than protein
expression alone (Friedl et al., 2007; Lachner, 2002; Lachner and
Jenuwein, 2002). However, although epigenetic modifications are
key in embryonic stem cell biology and development, relatively
little is understood about how DNA methylation patterns change
during differentiation in adult MSCs (Kang et al., 2007; Li and
Zhao, 2008; Noer et al., 2006). Furthermore, the potential of the
micro-mechanical environment to regulate DNA methylation has
never been examined, and is fundamental to understanding stem
cell mechanobiology.

In this study, we examined whether oscillatory fluid flow, an
exogenous physical signal that is regulated by bone loading and
occurs in the microenvironment of bone cells, has the potential to
induce alterations in DNA methylation and gene expression of the
late stage osteogenic genes Collagen 1, Osteocalcin, and Osteo-
pontin in murine derived bone marrow progenitor cells. We used
combined bisulfite restriction enzyme analysis (COBRA) to
determine if mechanical stimuli regulate the induction of gene
expression via modifications to the methylated state of gene
regulatory regions and contrasted the findings with biochemically
induced differentiation. We demonstrate, for the first time, that
mechanical stimulation can cause alterations to the epigenetic
state of chromatin, guiding osteogenic differentiation by hypo-
methylation of the Osteopontin promoter and an associated
increase in Osteopontin mRNA levels. We also sought to
determine the extent to which mechanically and biochemically
induced differentiation shared common molecular mechanisms.
Therefore we examined biochemically induced differentiation for
comparison. Our results suggest a mechanism whereby me-
chanics regulates stem cell fate commitment, which may prove
vital to developing optimal strategies for durable functional tissue
engineering.

2. Methods

2.1. Cell isolation, passage number, media

Bone marrow progenitor cells were isolated from the tibiae of six-week-old

C57/Bl 6 mice. Briefly, hindlimbs were rinsed in ethanol and placed in PBS on ice.

The tibiae were isolated, washed with 70% ethanol and using a 3 mL syringe with a

50 G needle, the bone marrow cavity was flushed with alpha modified minimal

essential medium (Invitrogen) containing 10% fetal bovine serum (Hyclone), 1%

penicillin and streptomycin (PS) (Invitrogen). Cells were maintained at 37 1C and

5% CO2 in a humidified incubator. Media was changed everyday for 5 days and

remaining adherent cells were used in experiments. All experiments were

conducted with cells in their first passage.

2.2. Mechanically induced differentiation

Cells were subcultured on fibronectin-coated glass slides (76 mm�35 mm�1

mm). Once cells reached 80–90% confluence, the glass slides were loaded into

parallel plate flow chambers and experimental cells were exposed to 3 hours of

oscillatory fluid flow. A previously described fluid flow device was used to deliver

fluid flow (Jacobs et al., 1998). In brief, flow was driven by a Hamilton glass syringe

in series with rigid walled tubing and a parallel plate flow chamber. The syringe

was mounted in and driven by a mechanical loading device. The flow rate

was monitored with an ultrasonic flow meter (Transonic Systems Inc.) and was

selected to yield a peak wall shear stress of 1.0 Pa (10 dyn/cm2). The dynamic flow

profile was sinusoidal at a frequency of 1 Hz. Following the cessation of flow, cells

were incubated in fresh growth media and lysed 24 h later for RNA or DNA

isolation. Control cells were cultured on fibronectin glass slides, loaded into

parallel plate flow chambers for 3 h without fluid flow, and then cultured in fresh

growth media for 24 h.

2.3. Biochemically induced differentiation

After an initial 5 days in culture, progenitor cells were subcultured on

fibronectin-coated glass slides in either (1) growth media or (2) osteo-inductive

media consisting of growth media supplemented with 10 mM b-glycerolpho-

sphate (Sigma), and 250 mM ascorbic-acid-2-phosphate (Sigma) and 1 mM

dexamethasone (MP Biomedical). The cells cultured in growth media were lysed

once they reached 80–90% confluence and served as control cells (labeled as Early

Culture Progenitor Cells). Cells in osteo-inductive media were maintained at 37 1C

and 5% CO2 in a humidified incubator and media was changed every two days for

14 days at which point they were lysed for DNA or RNA isolation.

2.4. RNA isolation and real-time RT-PCR

Cells were lysed and total RNA was isolated using Tri-Reagent (Sigma). The

260/280 absorbance ratio was measured using an ND-1000 Spectrometer

(NanoDrop) for verification of the purity and concentration of the RNA. Reverse

transcription was completed using GeneAMP RNA PCR Core kit (Applied

Biosystems) with 1.5 mg of RNA. Analysis by quantitative real-time RT-PCR

(Applied Biosystems) was conducted using Taqman PCR Master Mix and primers

and probes for 18S, Osteopontin and Collagen I (Applied Biosystems), or by using

SYBER green PCR master mix with primers and probes developed by Operon

technologies for Osteocalcin. The primer sequence for Osteocalcin was: Forward

50-GAG TCT GAC AAA GCC TTC A-30; Reverse 50-AGC CAT ACT GGT CTG ATA G-30 .

2.5. DNA isolation

Cells were trypsinized, pelleted, and DNA was extracted by using the DNeasy

Tissue Kit (Qiagen). DNA was eluted in 200 ml of AE buffer, and the concentration

was measured, using an ND-1000 Spectrometer (NanoDrop).

2.6. Bisulfite treatment of DNA and primer design

Initially, 1.5 mg of DNA was mixed with 0.5 ml of EcoRI (20 units/ml; NEB),

4.5 ml of EcoRI buffer (NEB), and DNase free H2O to reach a total volume of 45 ml.

Enzyme digestion was carried out at 37 1C for 4 h. To denature the DNA, samples

were heated at 70 1C for 25 min followed by 97 1C for 5 min. After cooling to room

temperature, bisulfite treatment was conducted using the EZ DNA Methylation kit

(ZYMO Research). Briefly, 5 ml of M-dilution buffer was added, mixed, and then

incubated at 42 1C for 30 min. After incubation, 100 ml of CT conversion reagent

was added, and DNA samples were incubated at 55 1C for 15 h. The resulting

bisulfite-treated DNA was purified. The DNA was eluted in 20 ml of M-elution

buffer, and 4 ml of this was used in each bisulfite-specific PCR amplification. Gene-

specific primers were designed to be bisulfite-specific and complementary to one

of the converted DNA strands with no CpG dinucleotides in the original sequences.

E.J. Arnsdorf et al. / Journal of Biomechanics 43 (2010) 2881–28862882



Author's personal copy

Primer sequences used were: Collagen 1 Forward: 50-ATTG GGAG TAGG GAAA

GGGA GT-30; Collagen 1 Reverse: 50-ATAA CTTA TAAC CCAA AATC TACC CCC-30;

Osteopontin Forward: 50-TGTG GAGT TTTA GAGA TATT AGAT AGTG GG-30;

Osteopontin Reverse: 50-AACA CACT CTTA ACAC CACT AAAT CACC-30; Osteocalcin

Forward: 50-GGGT TTGA TTTA TTGA GTAT ATGA TTTT TAAT TAGT-30; Osteocalcin

Reverse: 50-TACC ATCC CAAA ACAA ATTA TAAA ACCT-30 .

2.7. Bisulfite-specific PCR, restriction enzyme digestion, and gel electrophoresis

PCR amplifications were carried out with Takara LA Taq Hot Start PCR Kit

(Takara Bio Enc, Otsu, Shiga, Japan) with the following regimen: 35� (95 1C for

1 min, 94 1C for 30 s, 58 1C for 30 s, 72 1C for 50 s) and 72 1C for 10 min. 17 ml PCR

product was digested with 2 ml of HpyCH4IV (10 units/ml) and 4 ml of NEBuffer 1 at

37 1C for 2 h. The digested PCR products were separated by agarose gel

electrophoresis. Digital gel images were acquired by using a Fuji Imager and

were analyzed by Fuji Film Multigage software (version 2.3) from Fujifilm Global.

The values of the total intensity minus the background of all of the bands were

exported to Microsoft Excel. The percentage of methylation in a given sample was

calculated as the ratio of the intensity of cleaved PCR products to that of the total

PCR products.

2.8. Data analysis

Data are expressed as mean7SE. Osteocalcin, Osteopontin, and Collagen I

gene expression levels were normalized against 18S rRNA assayed in the same

sample tube. ANOVA statistical analysis was conducted using Statview software. A

post-hoc paired t-test was used to compare control and mechanically stimulated

cells, or to compare early progenitors with biochemically differentiated cells. A

po0.05 was considered significant.

3. Results

3.1. Identification of specific DNA methylation sites in promoter

regions of Collagen I, Osteocalcin, and Osteopontin

Using bisulfite-specific primers for PCR followed by restriction
enzyme digestions and gel electrophoresis, we determined
candidate point locations of methylation in each of the genes
investigated (Fig. 1).

The amplicon for Collagen 1 was 353 bp long and was located
2000 bp upstream of the site of transcription, containing
one potential site for methylation. Digestion with HypCh4IV,
which recognizes the sequence, 50-ACGT-30, followed by electro-
phoresis demonstrated that a large subpopulation of bone
marrow progenitor cells have this CpG site methylated (Fig. 1B).
71.179.5% of early progenitor cells had this target methylated
and upon biochemically induced osteogenic differentiation this
CpG site was only 62.775.6% methylated. Furthermore, progeni-
tor cells that had been exposed to oscillatory fluid flow had
80.872.0% methylation, while controls had 79.572.3% methyla-
tion.

For Ostecalcin, the PCR product was 467 bp in length and had
one potential target for methylation. Enzyme digestion with
HypCH4IV and electrophoresis revealed that a small population
within bone marrow has this site methylated (Fig. 1C). Osteo-
calcin promoter methylation was the same under all conditions
with 12.971.3% methylation in early progenitor cells, 14.172.7%
methylation in differentiated cells, 12.070.3% in cells exposed to
flow, and 12.773.0% methylation in control cells.

Finally, the 227 bp long PCR amplicon for Osteopontin also had
one potential site for methylation and, similar to Osteocalcin, a
small subpopulation had this site methylated (Fig. 1D). Of about
10.571.1% of early progenitor cells had this site methylated,
while 5.970.8% of osteogenically induced cells had the targeted
site methylated. Additionally, 9.671.3% of cells were methylated
after an exposure to fluid flow, while 14.771.5% of controls had
the target CpG site methylated.

3.2. DNA methylation and gene expression are not directly

correlated with biochemically induced osteogenic differentiation

With biochemically induced differentiation, gene expression
levels and percent DNA methylation do not correlate in all genes
examined (Fig. 2). Collagen I was not significantly upregulated
upon osteogenic differentiation; however, both osteopontin and
osteocalcin mRNA expression were increased 32.5-fold (po0.01)
and 1770-fold (po0.01), respectively. Methylation of the
Osteopontin promoter was significantly altered with a 43.9%
decrease with biochemically induced osteogenic differentiation
(po0.01). However, the methylation of the Collagen 1 and
Osteocalcin promoter was not altered by biochemically induced
differentiation.

3.3. Mechanical stimulation upregulates Osteopontin gene

expression and promoter DNA demethylation

Exposing bone marrow mesenchymal progenitor cells to
3 h of oscillatory fluid flow induced alterations in both gene
expression and DNA methylation within 24 h (Fig. 3). Osteopontin
gene expression was increased 2.3-fold (po0.01) and addition-
ally, there was a 35% decrease in DNA methylation in
the promoter region of Osteopontin with exposure to flow
(po0.05). Collagen I and Osteocalcin were not upregulated
with flow, and there was no significant difference in methylation
with flow.

4. Discussion

Stem cell mechanobiology is a complex interplay that
integrates the cutting edge of the fields of mechanics and biology.
Increasingly, breakthroughs are occurring from the application
of biomechanical techniques at the cell and molecular levels.
These new insights are important because mechanics is a critical
regulator of many biological systems. In the context of tissue
engineering, it is vital to understand the mechanisms whereby the
cell’s mechanical environment regulates phenotypic expression so
that engineered tissues can be designed to achieve and maintain
desired characteristics over the long-term. The major finding of
this paper is the first direct demonstration of a mechanism,
whereby mechanical signals alter the epigenetic state of stem
cells and thereby affect cell fate.

We first examined the effect of mechanical stimulation in the
form of dynamic fluid flow on bone marrow derived MSCs. We
found an increase in Osteopontin gene expression similar to that
reported in human MSCs (Li et al., 2004). We also found a CpG
DNA methylation site in the promoter region of the Osteopontin
gene that was demethylated with exposure to flow. Thus, the
change in Osteopontin expression with mechanical stimulation is
likely the result of a heritable epigenetic alteration to chromatin
rather than a transient change in expression. We then contrasted
these results with biochemically induced differentiation, which
also resulted in the upregulation of Osteopontin and hypomethy-
lation of its promoter. However, biochemical stimulation
also resulted in a dramatic upregulation of Osteocalcin. But,
this increase was not associated with alterations in promoter
methylation. This may be reflective of a more transient change
in expression mediated by transcription factors or post-transla-
tional modifications to histone proteins rather than a
durable change in progenitor commitment. This is illustrative of
how understanding the mechanism behind differentiation
rather than phenotypic changes alone can distinguish
durable heritable effects from transient ones. We did not observe
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a change in Collagen I expression or methylation of its promoter
for either stimulus, consistent with prior observation (Li et al.,
2004).

Fig. 1. Schematic depictions of the location and designated lengths of amplicon segments and representative electrophoresis gels for MSCs exposed to biochemical and

biomechanical stimulation. (A) The Osteocalcin amplicon was 467 bp in length and had one potential target for methylation. Methylation was not affected with

biochemical or biomechanical stimulation. (B) The PCR product for Osteopontin was 227 bp long and had one potential target for methylation. MSCs did have this site

methylated and its methylation state altered by both biochemical and biomechanical stimulation. (A) For Collagen 1, the PCR product was a 353 bp amplicon located 2 kbp

upstream of the site of transcription. Our analysis indicates that this target was also methylated, but was not altered with either stimulation.

Fig. 2. Quantification of gene expression and methylation in response to

biochemical stimulation. (A) The gene expression levels of MSCs cultured in

osteo-inductive media for 2 weeks varied in only late stage osteogenic genes.

Osteocalcin and Osteopontin were upregulated 1770.9-fold (po0.01) and 32.5-

fold (po0.01), respectively. (B) Collagen 1 promoter methylation was not

significantly altered by exposure to differentiation media. Furthermore, the

methylation of osteopontin decreased by 43.9% after biochemically induced

osteogenic differentiation (po0.01). Osteocalcin promoter methylation was not

altered. [Error bars: SEM (nZ4)].

Fig. 3. Mechanically induced alterations in gene expression (A) and promoter

methylation (B). Neither gene expression nor promoter methylation of Collagen 1

and Osteocalcin was altered by oscillatory fluid flow. Osteopontin gene expression

increased by 2.3-fold (po0.01), corresponding to a promoter methylation

decrease of 1.5-fold (po0.05). [Error bars: SEM (nZ8)].
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An important limitation of this study is that we only identified
and examined a single methylation site in each gene regulatory
region. Typically, many such sites exist, and to be certain of the
role of DNA methylation in mechanically regulated gene expres-
sion a more systematic high-throughput approach is required.
Furthermore, other epigenetic mechanisms may be involved such
as modification of histone proteins that can also induce chromatin
condensation making DNA less accessible for transcription. These
caveats aside, our results remain an important first step in
showing that the mechanical environment is a potentially critical
epigenetic regulating factor.

Our findings may also be influenced by our source of MSCs.
Bone marrow derived MSCs may have already undergone initial
alterations in methylation of some genes, priming themselves for
osteogenic cell fate commitment. For example, with biochemi-
cally induced differentiation, there was a significant increase in
Osteocalcin gene expression, but there was no observed change in
methylation. This may be explained if the heritable epigenetic
modification had already been pre-programmed in the cells. A
similar conclusion has been described by Noer and colleagues
suggesting that adipose derived MSCs are epigenetically prepro-
grammed for adipogenic differentiation (Noer et al., 2006).
However, a comprehensive examination of DNA methylation as
a function of stem cell source would more definitively address the
extent to which epigenetic pre-programming from the source
tissue limits potential tissues that could be generated.

Mechanical stimulation did not have an effect on Osteocalcin
or Collagen I expression or methylation. However, alterations in
expression or methylation of these two genes may be a late stage
indication of osteogenic differentiation that is not induced by only
3 h of mechanical stimulation and requires continued stimulation.
Interestingly, the altered hypomethylation of Osteopontin that
occurred with two weeks of biochemically induced differentiation
was not dramatically different than that induced by 3 h of
mechanical stimulation, suggesting that mechanical stimulation
is a relatively strong regulator of Osteopontin expression.

In summary, we found that loading-induced oscillatory fluid
flow, a candidate mechanical signal in the microenvironment of
MSCs, has the potential to initiate osteogenic differentiation by
not only upregulating Osteopontin gene expression, but by
altering the methylated state of its promoter. Given that DNA
methylation is preserved during replication, thus inherited by
daughter cells, our results are a first demonstration of a molecular
mechanism, whereby mechanical stimulation can produce dur-
able alterations in gene expression during cell lineage commit-
ment. With this observation of the overall effect of mechanical
stimulation on epigenetic and genetic programs guiding osteo-
genic differentiation, future work can investigate other CpG sites
within the regulatory regions of these and other genes as well as
histone modifications of these regions.
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