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Abstract
Rule induction has attracted a great deal of attention in Machine Learning and Data Mining. How-
ever, generating rules is not an end in itself because their applicability is not straightforward espe-
cially when the number of rules is large. Ideally, the user would ultimately like to use these rules
to decide which actions to take. In the literature, this notion is usually referred to as actionability.
The contribution of this paper1 is two-fold: first we propose a survey of the main approaches de-
veloped to address actionability. This topic has received growing attention in the past years. We
present a classification of the main research in this area as well as a comparative study between the
different approaches. Second, we propose a new framework to address actionability. Our goal is to
lighten the burden of analyzing a large set of classification rules when the user is confronted with
an “unsatisfactory situation” and needs help to decide what appropriate actions to take in order to
remedy the situation. The method consists in comparing the situation to a set of classification rules.
This is achieved by using a suitable distance that allows one to suggest action recommendations
requiring minimal changes to improve the situation. We propose the algorithm DAKAR for learning
action recommendations and we present an application to environment protection. Our experiment
shows the usefulness of our contribution for action recommendation but also raises some concerns
about the impact of the redundancy of a set of rules in learning action recommendations of good
quality.

Keywords: Actionability, decision support, rule-based classifier, generalized Minkowski metrics,
maximally discriminant descriptions.

1. A preliminary version of this paper appeared in the proceeding of the European Conference on Machine Learning
2005. Most of this work was done while the first author was a visitor at INRIA, Rennes.

c© A. Salleb-Aouissi, R. Trepos, M.-O. Cordier and V. Masson.
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1. Introduction

Rule induction has attracted a lot of attention in Machine Learning and Data Mining. However, the
exploitation of a set of induced rules is usually left to the user. Overwhelmed by the number of rules,
the user is often frustrated because the applicability of these rules is not immediate. This makes the
post-analysis of induced rules a great challenge, yet it is a necessary step to assist the user in his
work of decision making. Rather than simply presenting the listing of rules to the user, the ideal
would be to translate these rules into feasible and concrete actions. This may be of great interest in
many application domains such as health-care, customer analysis and environmental protection.

We are interested in rule-based classifiers. the user needs to use these rules not only for predic-
tion, but possibly many additional tasks. For example, this occurs when the user wants to decide
which action to take in order to improve a given unsatisfactory situation (for instance, how to cure
an ill patient given a set of rules describing ill and not ill patients). This brings us to the notion of
actionability, described in Silberschatz and Tuzhilin (1996) as follows: “A pattern is interesting to
the user if the user can do something about it; that is, the user can react to it to his or her advantage”.

There is much recent work for learning actionable knowledge (Piatetsky-Shapiro and Matheus
(1994); Adomavicius and Tuzhilin (1997); Ras and Wieczorkowska (2000); Liu et al. (2001); Ling
et al. (2002); Yang and Cheng (2002); Ras and Tsay (2003); Yang et al. (2003); Elovici and Braha
(2003); Lavrač et al. (2004); He et al. (2005); Jiang et al. (2005); Zhao et al. (2005b,a)). In Section 2,
we propose to survey the main approaches developed to address actionability. Basically, this work
can be classified into 3 lines of research: mapping extracted knowledge with predefined actions,
action rules identification, and finally, elaboration of actions. From our point of view, actionability
remains under investigation and deserves more attention. For example, none of these approaches
has addressed the task of mining action recommendations when the user faces an unsatisfactory
situation he wants to improve thanks to a set of classification rules. We propose a new framework,
described in Section 3, to address this kind of actionability. We suggest the algorithm DAKAR
(Discovery of Actionable Knowledge And Recommendations) which works as follows: starting
from an unsatisfactory situation and relying on a set of classification rules, DAKAR discovers a set
of action recommendations that propose to the domain-expert the “little” changes needed in order
to improve that situation.

More precisely, we focus on propositional frameworks, where a situation is expressed by a set
of attribute-value pairs. In our case, an action is a modification of the values of some features
describing a given situation. We compute actions involving “little” changes in the initial situation.
This is achieved in DAKAR by using the generalized Minkowski metric proposed in Ichino and
Yaguchi (1994). This metric gives the distance between two descriptions, a description being a set
of attribute-value pairs. In our approach, a weight is assigned to each feature in order to take into
account how flexible this feature is. The search space of actions is defined as the set of maximally
discriminant descriptions that differentiate a set of classification rules distinguishing a satisfactory
from an unsatisfactory situation, according to a distance threshold δ. Note that unlike other methods,
all classification rules are considered in our framework. This is because induced rules are uncertain
(not implications) and considering all of them enlarges the spectrum of possible actions to consider
in the search space. The search space is explored considering two properties we define, which
are the consistency and the validity of actions. DAKAR adopts a beam-search strategy to find the
best actions to suggest to the user, according to a quality criterion we define. We have conducted an
experimental evaluation of DAKAR on an environmental application as described in Section 3.5. The
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actionable knowledge discovered by DAKAR concerns the possible recommendations for reducing
the pollution by pesticides in a catchment area. Experiments have shown the feasibility and the
usefulness of this task. They have also raised some concerns about the impact of the redundancy of
rules on the quality of actions recommended by our system.

In Section 4, we present a comparative study of the state-of-the-art methods and show how our
approach relates to the previous work. Limits of our contribution as well as future directions are
discussed in Section 5. Finally, we conclude in Section 6.

2. Related Work

This section is a survey of the main approaches developed to address actionability. In Silberschatz
and Tuzhilin (1996), the term actionability is evoked for the first time in the context of interest-
ingness measures for patterns evaluation. The authors have classified such measures into objective
(data-driven) and subjective (user-driven) measures. According to them, from a subjective point of
view, a pattern is interesting if it is :

• Actionable : the end-user can act on it to his advantage.

• Unexpected : the end-user is surprised by such a finding.

As pointed out by the authors, actionability is difficult to capture; they propose rather to capture
it through unexpectedness, arguing that unexpected patterns are those that lead the expert to make
some actions.

While many works have addressed the unexpectedness issue (see for instance Duval et al. (2007)
for a survey), the actionability remains to be further investigated even if we noticed recently a great
interest in developing new methods for the discovery of actionable knowledge. We will focus in
the following on the methods developed to address the actionability issue by using classifiers. We
refer the reader to He et al. (2005) for a relevant state of the art about actionability in other machine
learning tasks such as clustering. We will postpone the comparison of the different state-of-the-art
methods, including our contribution, until later in this article in a comparative study presented in
Section 4.

Approaches to actionability can be classified into three main lines of research: the first one maps
extracted knowledge, such as classification rules and deviations, to actions predefined by the users
(Section 2.1). The second line of research (Section 2.2) sift through a large number of existing rules
to identify actionable ones. Finally, the last approach is based on elaborating actions (Section 2.3).
In the following, we survey the methods proposed in these lines in details.

2.1 Predefined actions

• Piatetsky-Shapiro and Matheus (1994) developed KEFIR, a pioneer health-care system dealing
with deviations. The system embodies a recommendation generator that suggests corrective ac-
tions, defined a priori by health-care experts, in response to some relevant deviations discovered
in the data. More precisely, a deviation is a difference between an observed value taken from the
current data and a reference or an expected value. Deviations are also ranked according to a mea-
sure of interestingness which tries to capture the interest of the user to such patterns and identify
the most relevant findings. Given a database, a domain knowledge and some norms, the KEFIR
engine first computes the deviations in the databases according to the norms. These deviations are
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then evaluated and ordered using a domain-specific interestingness measure estimating the benefit
obtained when actions are undertaken to correct detected deviations. Deviations along with their
explanations and recommendations are presented in a written report to the domain expert.

• A decision-theoretic framework evaluating classification systems from an economic point of view
is proposed in Elovici and Braha (2003). The authors suggest a model that consider a situation
where a decision-maker uses a system to classify an individual (for instance a customer) and then
chooses the action to accomplish with regard to: this classification, the prior probabilities of the
actual classes in the population under study, a set of actions that can be undertaken, and the payoffs
of actions according to the actual classes. For example, in the bank credit domain, an applicant
may be classified as low, medium or high risk applicant. The task addressed in this paper is to
help the decision-maker to decide which action to undertake. Should the credit application be
approved or rejected according to the predicted class? More formally, let S = (s1, s2, . . . , sns)
be the set of actual classes, π = (π1,π2, . . . ,πns) the probabilities a priori of actual classes in
the population under study, Y = (y1, y2, . . . , yny) the predicted classes, which is generally equal
to S, and A = (a1, a2, . . . , ana) the set of actions that can be taken by the decision-maker. The
performance of a classification system is usually evaluated by a confusion matrix, P . It is a ns ×ny

matrix of conditional probabilities. A cell pij defines the probability of deciding a predicted class yj

given an example with actual class si. A payoff matrix U of size na ×ns associates payoffs to pairs
of actions and actual classes. A cell uij gives the payoff when the decision maker applies action ai

and the example actual class is sj . The decision rule is described by a (ny × na) matrix D. Each
cell dij expresses the probability that the decision-maker applies action aj given the predicted class
yi. The following formula gives the expected payoff for a decision rule D where the matrix Π is
square and has the vector of prior probabilities π in its diagonal and zero elsewhere.

EU = trace(P D U Π)

Maximizing the expected payoff is achieved by choosing an optimal binary matrix D∗, called here
the optimal decision rule.

In order to compare the effectiveness of classification systems, the authors suggest to compare
the effectiveness of their confusion matrices: “the confusion matrix Q is said to be more effective
than the confusion matrix R if the maximal expected payoff yielded by R is not larger than that
yielded by Q for all payoff matrices U and all prior probability matrices Π”. The authors rely on
a theorem for ordering confusion matrices due to Blackwell (1951). It states that the confusion
matrixQ is more effective than the confusion matrixR if and only if there exists a stochastic matrix
M such that Q.M = R. In such case, we say that the classification system represented by Q is
more effective than the one represented by R regardless of payoff or class information. Effective
classification systems would increase the expected payoff, or at least do not worsen it. The authors
suggest also to combine two or more classification methods into one Cartesian composite system
using the Cartesian product operator they have introduced. In a certain way, systems composition
provides a ”second opinion” about the classification of examples (Ahituv and Ronen (1988)) and
improves the maximum expected payoff achieved by a standard classifier, regardless of payoff or
class distribution information.

The authors also investigated the relationship between the notions of investment and payoff. For
this purpose, they extended the model above-described to take into consideration the investment
cost of the KDD process. They concluded that the larger the investment in the KDD process, the
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larger the profit. This work considers classification systems from their effectiveness in decision-
making point of view. It relies on a solid theoretical framework and remains suitable for applications
where domain knowledge is available and the decision-maker knows exactly the actions that can be
undertaken given a classification result.

• Adomavicius and Tuzhilin (1997) proposed an approach to discover actionable patterns based on
a concept they introduced called action hierarchy defined as a tree of actions. Here all possible
actions are predefined by the expert of the domain and are organized into a hierarchy. Actions are
organized from the more general actions on the top of the hierarchy to the more specific actions
at the bottom. Note that the authors distinguish clearly the actions which are the nodes of the
hierarchy from the actionable patterns, which are the patterns assigned by the user to each node.
An actionable pattern is either an individual pattern (for e.g. an instantiated association rule), data
mining queries (see for e.g. Imielinski et al. (1996)) or a pattern template (see Klemettinen et al.
(1994)). When executed on a database, a data mining query produces a set of patterns matching this
query. Likewise, when applied to a set of rules, a pattern template extracts only the rules matching
the template. The discovery of actionable patterns is achieved in the proposed method in three steps,
illustrated here through an example from Adomavicius and Tuzhilin (1997):

1. Build an action tree for the application at hand. The root is the most general action such as
Actions for market manager. The internal nodes represent less general action such as product
stocking or how to arrange products in the store. Leaves represent the most specific actions
such as put a product on sale, restock product.

2. Assign a set of actionable patterns to each node. For example, an association rules on product
categories can be assigned to the action node how to arrange products in the store in order to
find the categories of products that are purchased together.

3. Execute the data-mining queries by traversing the whole action tree or focusing on a part of it.
This produces a set of patterns and would give insights to the user about the decision to take.
For example, when the previous template is executed, we get all the associations between
the store products. Such associations may give the manager some hints about choosing the
products to put together on shelves.

Organizing actions into a hierarchy can help the user to discover efficiently useful action pat-
terns. However, this approach “identifies” some predefined action patterns and do not discover truly
new actions. Moreover, conceiving such a hierarchy and finding the data mining queries to be as-
signed to its nodes remain a hard task to the user especially when the hierarchy structure and the
nodes contents change quickly over time.

• In a recent work, Jiang et al. (2005) address the problem of extracting patterns that respond to
actions. Given a data set D(F1, . . . , Fm, U), where Fi are features and U is a utility measure to be
maximized. The domain of Fi and U are small numbers of linearly ordered scales; i.e. the first few
integers. Assuming that the user knows some simple actions A1, . . . , An and how they influence
the features. The authors are interested in how actionable are the actions in terms of increasing
the utility U through the influence of those actions on some features. They assume that if certain
features are correlated with the utility, a change in those features implies a certain change in the
utility. For this purpose, an influence matrix M specifies how actions affect features: an element
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Mij specifies the influence of an action Ai on feature Fj and is called a destination range [a, b]
defined by:

1. a = b = −, if Ai has no influence on Fj

2. a < b, if Ai increases the current value c in [a, b] for Fj to some target value in [c, b]
3. a > b, if Ai decreases the current value c in [a, b] for Fj to some target value in [b, c]

The influence of an actionset (a set of actions) on a feature value Fj = fj is the union of the
destination ranges of applying all the actions in that set separately.

A destination space denoted by DS1,k = ([l1, h1], . . . , [lk, hk]) describes the feature ranges
after applying the action set to any customer described by the features values f̂ = (f1, . . . , fj),
j < k. The actionability of an actionset AS on a customer c in a population P is estimated by
computing the new utility of c after the change. Here, customers that fall into the destination space
DS1,k are called a role model of the population P and is denoted by rm(P ). The underlying idea
is to use the utility of the role model to estimate the utility of c.

The actionability of AS on P is defined as follows:

Act(P,AS, f̂) =
∑

c ∈P

(agg(rm(P )) − c.U)

where the actionability of an actionset AS on a customer c in the population P is measured by
agg(rm(P )) − c.U , agg(rm(P )) being some aggregate operator (for ex. average, sum) on the
utility of customers in rm(P ) and c.U denotes the utility of c.

More generally, the authors define the problem of Action Feature Utility mining as finding a
partition {D1, . . . ,Dq} of the set of customers that maximizes the aggregated actionability, where
the actionability is a real value denoted 2 by PActi

∑

i

PActi

A solution consists of action sets ASi and the description f̂i of the population Di, 1 ≤ i ≤ q.
Given a future customer matching the description Di, one can recommend the actionset ASi.

An approximate solution to this problem is also proposed and consists in iteratively partitioning the
data so as to maximize the utility by adopting decision-tree like approach: initially the root contains
the whole dataset. Nodes are partitioned according to a feature selected by some criteria called
the actionability gain defined for a feature Fk (taking its values in (fk1, . . . , fku)) at a node Np is
computed by:

ActGain(Fk,Np) =
u∑

i=1

Act(Pi, ASi, f̂i) − Act(Pp, ASp, f̂p)

where f̂p = (f1, . . . , fk−1) and f̂i = (f1, . . . , fk−1, fki). To partition the population Pp at node
Np, the feature Fk that maximizes ActGain is selected. The tree is developed until for any leaf
node, there is no available feature or the actionability gain becomes negative. To avoid over-fitting,
a post-pruning is also used to maximize the actionability of future customer.

Only single actions are considered in this framework in the sense that the influence of an action
on a feature is assumed to be independent of the other features and actions. The authors argue that a

2. PActi refers to future customers whereas Act(P,AS, f̂) refers to customers in the given data
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user tends to do one thing at a time and independence hypothesis has already shown good results as
for naive Bayes classifier. Also, categorical and numerical features are not handled by this approach
since feature domains are restricted to the first few integers.

2.2 Actionable rules identification

• In Liu et al. (2001), the authors propose a method for pruning all non actionable rules from a
large set of association rules. The method proposed here is two-step. First, association rules are
generated. Only rules having a class-value in their right-hand sides are considered. Among them,
non significant rules are pruned. The significance is evaluated thanks to the chi-squared χ2 test3.
Second, the remaining rules are analyzed to identify all potentially actionable rules and delete the
rules that are not potentially actionable. In their framework, a potentially actionable rule is defined
as a rule R : A → C which either:

1. does not have any descendant rule. A rule r is descendant of another rule R if both have the
same right-hand side and if the left-hand side of r is a superset of the one of R,

2. or has some potentially actionable descendant rules such that, after removing the data tuples
covered4 by the descendants ofR, the ruleR is still significant w.r.t. the default rule “−→ C”.
This significance is measured once again with the χ2 test.

In other words, the underlying idea is to discard the more general rules using their specialized
rules (having more conditions in their left-hand sides) with higher quality. For instance, consider
these rules, where s denotes the support and c the confidence:

R1 : asthenia = yes −→ flu = yes (s = 18%, c = 55%)
R2 : asthenia = yes ∧ temperature = high −→ flu = yes (s = 10%, c = 90%)
R3 : asthenia = yes ∧ headache = yes −→ flu = yes (s = 5%, c = 80%)

The idea is to use the rules R2 and R3 having better confidences rather than the general oneR1

for performing some actions (as for instance prescribing medicines for fever/headache). However,
before removing R1, one have to verify if, after removing the tuples covered by R2 and R3, R1 is
still not a strong rule.

As pointed out by the authors, the proposed approach may produce a useful by-product: asso-
ciation rules with negative conditions. Notice that such rules, that can be quite useful, cannot be
mined by a traditional association rule discovery process. The following rule is an example:

asthenia = yes ∧ ¬(temperature = high) ∧ ¬(headache = yes) −→ flu = no

An experimental evaluation has been conducted on 30 datasets. It has shown that, on average,
34% of significant association rules are not actionable and are pruned by this method. Furthermore,
this experiment has shown the efficiency of this method.

This approach indeed facilitates the hard task of analyzing large sets of rules by eliminating
non-actionable rules. But, it lies more in the elimination of redundant rules approaches; strictly
speaking, it does not truly identify action rules.

3. The reader interested in the evaluation of association rules thanks to the χ2 test, can refer to the relevant work
proposed in Brin et al. (1997)

4. A rule covers a tuple (record) if the tuple satisfies the condition part of this rule.
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The authors suggested in another contribution Zhao et al. (2005b,a) to identify actionable rules
through visualization. Notice that the rules considered here are associative classification rules,
i.e., association rules having a class value in their right-hand sides and handling well umbalanced
data sets in comparison to decision trees for instance. In this work such rules are mined with the
CBA algorithm proposed in Liu et al. (1998). They proposed a framework called Opportunity
Map Visualization which works tightly with the user as follows: Data and discovered rules are
summarized into an interactive matrix where the columns lists all the attributes and the lines all the
classes. This matrix allows the user to situate where the opportunities are. By opportunity, one
mean important rules (attribute-value combinations) that affect the important classes. The user can
rearrange the disposition of attributes and classes in the matrix. The important classes can be placed
on the top of the matrix and the actionable attributes on the left side. Such rearrangement produces
4 sectors in the matrix that are more or less actionable and interesting to the user. Obviously, the
upper-left sector is the most important one since it concerns the most actionable attributes and the
most important classes according to the user. When an interesting attribute is detected, one can
focus on it by using a drill-down visualization on a particular cell (this attribute and a class value).
This allows the user to visualize the values of that attribute, how many rules involve that attribute,
their confidences and supports, and the original data covered by the rules. This work has been
implemented in an interactive system and applied to a real-life case study for Motorola Mobile
Company. The dataset used have more than 500 attributes, 15 classes and 100,000 tuples. The
evaluation of the system has been assessed subjectively by Motorola’s engineers as an interesting
system for detecting truly useful and actionable rules. Although the concept of organization map is
a quite interesting way to focus quickly on what is important, one may wonder how the system is
successful in discovering actionable knowledge and visualize correctly rules, attributes and classes
as their number goes up.
• The authors in Gamberger and Lavrač (2002) define actionable knowledge as a symbolic knowl-
edge, typically presented in the form of rules, that allows the decision-maker to recognize some
important relations and to perform some actions. This is achieved by uncovering the properties of
subgroups of the population at hand helping in directing some targeting campaign. For instance,
thanks to the following rule expressing a relationship between the weight (assessed by the Body
Mass Index, BMI), age and possibly coronary heart illness of patient,

BMI > 25 ∧ age > 63 −→ Coronary Heart Disease

the practitioner can target the overweighted patients that are over 63 years old, warn them about the
risk of a coronary heart disease and perhaps advise them to start a diet.

The authors consider the two most common approaches in predictive induction, classification
rule learning and decision tree learning. They discussed in Lavrač et al. (2002); Gamberger and
Lavrač (2002) their shortcomings and debated why such knowledge is not actionable just as it is.
The main reasons evoked are that:

- Classification rules formed from the paths of decision trees (leading from the root node to the
class labels in the leaves) are descriptions that best discriminate between classes and thus are
not actionable.

- Classification rules generated by a covering algorithm and forming characteristic descriptions
are not actionable. Indeed, except the first few rules with a sufficient coverage may be of
interest. Covering does not allow to discover subgroup properties of the entire population.

8



FROM CLASSIFICATION RULES TO ACTION RECOMMENDATIONS

- Both of classification rules and decision trees could be used to classify a selected population
but this is unpractical.

Gamberger and Lavrač (2002) suggested a heuristic beam search rule learning algorithm called
Algorithm SD for Subgroup Discovery. Given a target class, this algorithm uncovers rules of the
form:

Condition −→ Target Class

where Condition is a conjunction of features describing target class subpopulations. Such rules
are relatively general rules and may cover also some non target examples. The authors pointed
out the importance of effective expert-guided subgroup discovery in the TP/FP 5 space in order
to induce knowledge with various generalization granularity level. This is achieved by tuning the
parameters in Algorithm SD. More precisely, the algorithm search for the rules with a maximal q
value computed using a user TP/FP-tradeoff function, known as ROC analysis. In the TP/FP space,
False Positive Rate FPr = FP

Neg is plotted on the x-axis and the sensitivity of True Positive Rate
TPr = TP

Pos plotted on the y-axis. FPr need to be minimized while TPr maximized.
Three case studies related to medical and marketing domains and the lessons learned are re-

ported in Lavrač et al. (2002, 2004). It is also interesting to notice how the authors distinguish
actionable rules from operational ones: Operational rules are somewhat actionable “ready to use”
rules, that is, if applied, will affect a target population immediately.

2.3 Elaboration of actions

• Choosing high-utility actions that increase the probability of success of reclassification of an
individual/case while reducing the costs is formulated as a case-based reasoning problem in Yang
and Cheng (2002). In fact, given a new case to reclassify, it seems quite natural to search among the
training cases (examples), those that are close to this case and having the desirable class. In their
framework, mining action recommendations is a two-step process:

1. Mining case bases: Given a dataset containing examples labeled as positive and negative,
perform an analysis on the dataset to find out a number of small and representative cases of
examples that can be role models. Three approach to address mining case-bases are proposed:

(a) Instance-based approach: uses the entire positive population. As pointed out by the
authors, although simple and optimal, this approach is computationally inefficient.

(b) Cluster-centroid-based approach: constructs clusters of positive instances and then ex-
tracts their centroids representing the case-bases. Clustering is done with the k-medoids
method. In this method, we need to specify the number k of clusters to be generated
by the k-medoids method. Moreover, only the positive class distribution is taken into
consideration. The authors suggest the SVM-based mining method to overcome these
two drawbacks.

(c) SVM-based approach: in order to take into consideration both positive and negative
class clusters, this approach identifies the positive cases on the boundary between posi-
tive and negative cases. The underlying idea is as follows: assuming that we have two

5. TP denotes true positive cases, FP false positives. Also, Neg (resp. Pos) denotes the number of negative (resp.
positive) cases.
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clusters, one positive and one negative. If we consider an example from the negative
cluster, there is certainly a nearer example in the border of the positive cluster than its
centroid and thus the total cost of reclassification would be less. These positive cases
along the boundary hyper-plane correspond to the support vectors found by an SVM
classifier. Let us notice that this approach is only appropriate when the distribution of
data shows a net separation between classes. Furthermore, this idea holds for negative
examples of the dataset and is not suitable if one want to reclassify an incoming example
which does not belong necessarily to any negative cluster.

2. Switching plane generation: Negative cases are switched to positive cases using actions sug-
gested by the role models. For a negative example we want to switch to positive, its nearest
neighbor is identified among the positive cases. The difference between a negative case, one
want to reclassify, and its one-nearest neighbor in the case base is then used to generate a
switch plan. Given a test set DB of negative examples to reclassify, the total cost for con-
verting all these examples into positive examples is computed in Yang and Cheng (2002) as
follows:

Cost =

|DB|∑

i=1

l∑

j=1

cost(Aij , v1, v2)

where cost(Aij , v1, v2) denotes the cost of changing the value ofAij , the jth attribute for the
ith example, from v1 to v2. Those costs are set manually. For each nominal attribute, a cost
matrix is associated while for numeric attributes, a mathematical function is defined.

The plan used to recommend actions relies on the least cost, called the MinCost but also on
the rank formula given by:

Rank(x, t) = p(+|t) −
Cost(x, t)

maxCost

where p(+|t) is the probability density of positive instances around a target case t, Cost(x, t)
is the cost of switching from a negative example x to t andmaxCost is the maximum among
the costs of switching from x to every possible case in the case base. The algorithmMaxRank
evoked in this paper takes into account the probability of success of a switching plan from x
to each t in the case base in order to choose the case that maximizes the rank formula and
thus guarantees to generate a plan that will achieve the switching.

Experimental results conducted on both artificial and real datasets have shown that it is recom-
mended to use the SVM-CBMine algorithm for the datasets having a clear separation between the
two classes and to privilege the Centroid-CBMine for the other datasets. Moreover, considering
switching plans that take into consideration the measure of rank are better than those relying only
on the cost.

• Ling et al. (2002); Yang et al. (2003) consider mining optimal actions Customer Relationship
Management (CRM) relying on decision tree models. They aim at finding those actions that change
customers from undesired status to a desired one. In this work, an action is a change in the value of
an attribute. The term hard attribute designates an attribute that cannot be changed while the term

10
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soft denotes an attribute that can be changed with a reasonable cost6. A cost matrix is associated
to each soft attribute. Each cell (vi, vj) gives how much it costs to the company to move the value
of the attribute from the value vi to vj (e.g. changing a loan rate). Actions are chosen so as to
maximize the expected net profit by taking into consideration their costs.

PN = PE × Pgain −
∑

Cost

where PN denotes the net profit, PE the total profit of the customer in the desired status, Pgain the
probability gain and Cost designates the cost of each action involved.

The method consists in searching in the decision tree if it is possible to replace an incoming
customer into a better leaf with a highest net profit. It can be resumed in these steps:

1. Given a database of customers, build a decision tree modeling their profiles. Notice here that
both hard and soft attributes are used in order to get an accurate model.

2. For each incoming customer falling in a particular leaf with a certain probability of being
in the desired status or class (e.g. being loyal), search for optimal actions that move this
customer to another leaf with a better status. For example, if the decision tree predicts that a
customer will churn in the future with a high probability, try to reclassify him/her into another
leaf by modifying his/her attribute values.

As pointed out by the authors, hard attributes may prevent customers from being moved to other
leaf nodes. For example, it will be impossible to move a male customer from a low benefit leaf to a
high benefit leaf concerning women (the classification leading to this leaf was done on Sex=female).
In order to improve this drawback the authors suggest to build multiple decision trees with subsets
of hard attributes. The optimal actions are taken from the best tree with the highest net profit. This
method has been implemented in a system called PROACTIVE SOLUTION in Ling et al. (2002). It
was called proactive because it suggests actions before the situation gets worse, such as loosing a
customer. It has been successfully applied to financial and insurance companies where it increases
effectively the total spending of customers.

This approach maps each leaf node in a decision tree with a separate customer group. The idea
is to find appropriate actions for each customer group to increase its net profit. But in practice,
because of human resources limitations, we may need to merge some leaves together into a number
of segments, say k. The problem is now to find k customer groups and their corresponding action
sets from a decision tree such that applying the discovered actions to the corresponding group will
maximize the net profit. This computational problem is addressed in Yang et al. (2003), where it
is called Bounded Segmentation Problem. Two algorithms were proposed in order to efficiently
discover the best k groups: GREEDY-BSP and OPTIMAL-BSP. They were evaluated on a dataset
from an insurance company.

• In Ras and Wieczorkowska (2000), the authors propose to discover action rules in order to in-
crease the profit of a company. In their framework, they consider that features are divided into two
categories: stable features (those that cannot be changed, e.g. sex, date of birth) and flexible features
(e.g. weight, loan). An action rule involves only flexible features and shows what are the changes to

6. As we will see in the rest of this Section, other approaches use rather the terms flexible and stable to designate soft
and hard attributes respectively.

11
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expend in order to bring some customers from a profit ranking class to a better one. To discover ac-
tion rules, the authors exploit a kind of information system called decision table S = (U ,AS∪AF∪
{d}) where U is a set of objects (in this case customers), andA = AS ∪AF∪ {d} a set of attributes
describing the objects in U (customers features). The sets AS and AF denote stable and flexible
attributes respectively and d /∈ AS ∪ AF is a distinguished flexible attribute called the decision
attribute (generally called class attribute). Given an information system S , the algorithm proposed
in Ras and Wieczorkowska (2000) and implemented as a system called DAR extracts from S a set
of action rules. Basically, discovering action rules in DAR is a two-step process:

1. Extract from S the set of optimal rules having the decision attribute d in their right-hand sides.
Such rules are induced from S so that they describe the values of the decision attribute value
(or class value) d with a minimal subset of AS ∪AF .

2. For each pair of rules extracted in Step 1, say r1 and r2, check if they have d1 and d2 as
decision values (or class values) in their right-hand sides respectively and involve the same
values for all stable attributes in their left-hand sides. If these conditions hold, find the set of
flexible attributes {b1, b2, . . . , bp} on which r1 and r2 differ and derive the (r1, r2)-action
rule of the form:

[(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ · · · ∧ (bp, vp → wp)](x) ⇒ [(d, d1 → d2)](x)
The notation (a, v → w) is used to express that the value of the attribute a has been changed
from v to w and such rule expresses that if the changes of values of the attributes concerning
a customer x match the term [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ · · · ∧ (bp, vp → wp)](x) then
the ranking profit of the customer x will change from d1 to a better rank d2.

This approach has been generalized to distributed knowledge systems by Ras and Gupta (2002).
DAR considers only rules involving the same stable attributes with the same values to construct

action rules. Furthermore, only shared flexible attributes are involved in the generated action rule
which may considerably restrict possible action rules. Consequently, all the situations where at least
an attribute is present in only one of these rules are simply not considered. Ras and Tsay (2003)
addressed this shortcoming of DAR by extending it to the system DEAR (Discovery of Extended
Action Rules). Let us first explain the notion of extended action rule defined in Ras and Tsay (2003)
through an example. Consider two rules:

r1 : A = a1 ∧ B = b1 ∧ C = c1 ∧ E = e1 =⇒ D = d1

r2 : A = a1 ∧ B = b2 ∧ G = g2 ∧ H = h2 =⇒ D = d2

Let us assume that an object x supports r1 and thus assigned to class d1. In order to reclassify x
to the class d2, we need to change its B value from b1 to b2, verify that its stable G value is g2 and
change its H value from its current value to h2. This lead to the extended action rule:

[(B, b1 → b2) ∧ (G = g2) ∧ (H,→ h2)](x) ⇒ [(D, d1 → d2)](x)
Such a rule could not have been extracted with DAR. The process in DEAR is quite similar to DAR,
except that the definition of an extended action rule embodies the attributes that are not shared by
the pair of rules. More precisely, given two rules r1 and r2, the extended (r1, r2)-action rule as
defined in Ras and Tsay (2003) is a rule of the form:
[(s1 = u1) ∧ (s2 = u2) ∧ . . . ∧ (sq = uq) ∧ (b1, v1 → w1) ∧ (b2, v2 → w2) ∧ · · · ∧ (bp, vp →
wp) ∧ (f1,→ t1) ∧ (f2,→ t2) ∧ . . . ∧ (fr,→ tr)](x) =⇒ [(d, d1 → d2)](x)
In this rule, s1, . . . , sq are stable attributes that are not present in the rule r1 but present in r2

and have as values u1, . . . , uq respectively. Likewise, the attributes f1, . . . , fr denote flexible
attributes not present in r1 but having the values t1, . . . , tq respectively in r2.

12
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The system DEAR has also known significant improvements in Tsay and Ras (2005) where it
has been upgraded to the system DEAR2. The authors suggest a way to organize the set of rules that
are used to extract extended action rules. First, the set of rules is partitioned into a set of equivalence
classes, where each class concerns rules having the same decision value. Then, for each decision
value, a tree partitioning each class into new equivalence subclasses is built. This is done so that
two rules belong to the same equivalence subclass if the values of their stable attributes are not
contradicting each other. Finally, rather than considering all pairs of rules as done in DAR and
DEAR, the authors consider only pairs of rules belonging to some of these equivalence subclasses to
construct the extended action rules. The experiments conducted on 3 datasets and reported in Tsay
and Ras (2005) have shown that this strategy implemented in DEAR2 speed up significantly DEAR.

The Support and confidence of an action rule are also defined in Ras and Tsay (2003); Tsay
and Ras (2005). We say that an object x supports the action rule r if there are two rules r1 and r2

extracted from S such that:

- (∀i ≤ p)[[bi ∈ L(r)] −→ [bi(x) = bi(r)]] and d(x) = d1,

- object x supports rule r1,

- if object y is the outcome of the rule r applied on x, then y supports rule r2.

where L(R) refers to attribute values in the left-hand side (condition part) of the rule r. The support
of an action rule in S , denoted by SuppS(r) is the number of objects in S supporting this action
rule. The confidence of an action rule, denoted by ConfS(r) = SuppS(r)/SuppS(r1).

Let us now take a close look to the kind of rules used as a base to extract action rules. In
the works above-cited, covering rules due to Pawlak (1992) called d-reduct and association rules
are used to extract action rules. In another contribution, Ras et al. (2005) used a rough set-based
approach, to induce a set of classification rules from S . Such rules have the decision attribute d in
their right-hand sides and attributes belonging toAS ∪AF in their left-hand sides. To induce such
rules, the authors extended the system LERS Grzymala-Busse (1992) to the system E-LERS which
learns from a decision table the longest classification rules satisfying two thresholds, the minimum
support and the minimum confidence. Action rules are then generated as usual from these rules by
using DEAR or DEAR2.

The cost of an action rule r is introduced in this paper and is given by:

cost(r) =
∑

{ρS(vj, wj) : 1 ≤ j ≤ p}

where ρS(vj , wj) is the cost to modify value vi in vj . r is said to be feasible if cost(r) < ρS(d1, d2).
Let r be an action rule:
r : [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ · · · ∧ (bp, vp → wp)](x) =⇒ [(d, d1 → d2)](x)

The cost of r might be high because of the high cost of one of its subterm, let (bj , vj → wj)
be this subterm. The authors suggest to look for a rule r1 having the smallest cost value among the
rules having this subterm in their right-hand sides.
r1 : [(bj1 , vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ · · · ∧ (bjq , vjq → wjq)](y) =⇒ [(bj , vj → wj)](y)

In order to get another feasible rule with a lower cost than r, we can compose r with r1 which
replace the term (bj , vj → wj) in r by the left-hand side of r1:
[(b1, v1 → w1) ∧ . . . ∧ (bj1 , vj1 → wj1) ∧ (bj2 , vj2 → wj2) ∧ · · · ∧ (bjp , vjp → wjp)
∧ · · · ∧ (bp, vp → wp)](x) =⇒ [(d, d1 → d2)](x)
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The exploitation of the notion of action cost to discover interesting action rules was further
investigated in Tzacheva and Ras (2005) where a heuristic search algorithm for constructing feasible
action rules that have high confidences and the lowest costs is proposed. This is achieved in this
work by building dynamically a directed search graph GS and applying already discovered action
rules to its nodes. Assuming that a set of action rules has been discovered and that we need to
reclassify a set of objects. The initial node n0 contains information provided by the user: the
objects to reclassify from d1 to d2 and the current cost of their reclassification ρS(d1, d2).

Any other node n in GS shows an alternative way to achieve the same reclassification with a
lower cost than all the nodes preceding n. Any node n is obtained by applying an action rule to
it. For example, the rule r : [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ · · · ∧ (bp, vp → wp)](x) ⇒
[(d, d1 → d2)](x) applied to the node n0 = {[d1 → d2, ρS(d1, d2)]} leads to the node n1 = {[v1 →
w1, ρS(v1, w1)], [v2 → w2, ρS(v2, w2)], . . . , [vp → wp, ρS(vp, wp)]}.
An A∗-like heuristic algorithm named BUILD-AND-SEARCH is proposed in Tzacheva and Ras
(2005) and aims at finding the shortest path from the root to the goal node in GS that achieve
the lowest cost and the strongest reclassification. It has been implemented in a system called LOW-
ERCOSTRECLASSIFIER and applied to three databases in medical and financial domain.

A new subclass of attributes called semi-stable is also introduced Ras and Tzacheva (2003);
Tzacheva and Ras (2005). It involves the attributes that are functions of time as for instance age and
height. Some semi-stable attributes can be treated as flexible attributes. The more we have flexible
attributes the more is our chance to get cheaper action rules. This issue is discussed in Tzacheva
and Ras (2005) and the detection of semi-stable attributes in a distributed information system is
proposed in Ras and Tzacheva (2003).

While our approach and the framework presented in this paragraph share many points, we adopt
in our method a quite different strategy: given a situation presented to the user, we construct actions
with respect to this situation, whereas in Ras et al. work, to construct action rules, only couples of
classification rules are considered. Action rules are already computed when a situation is presented.
They are applied to the situation in order to get the lowest cost actions for classification.

Using classification systems to discover action knowledge, as we propose in the following sec-
tion, is not new. Our approach which lies in the action-elaboration approach, works on a whole set
of classification rules rather than considering rules separately. Comparisons between the methods
presented in this section and our contribution are given throughout this paper and in Section 4.

3. Our Framework

We first describe in Section 3.1 the actionability task we want to address, then we discuss in 3.2 the
need of a suitable distance metric in our framework. The search space of actions we explore in our
approach is detailed in Section 3.3, DAKAR algorithm is given in 3.4. We present finally in Section
3.5 an application of DAKAR to the environmental domain related to pollution by pesticides.

3.1 The Learning task

We propose an approach for mining actionable knowledge. The task we address aims at improving
a given situation with regard to a rule-based classifier. It can be defined informally as follows:

14



FROM CLASSIFICATION RULES TO ACTION RECOMMENDATIONS

“Given a situation for which it corresponds an unsatisfactory class,
what are the minimal changes (actions) to do in this situation in

order to improve that situation to a satisfactory class?”

For instance, given a situation describing a high level pollution in an area, what are the advices
to be suggested to reduce that pollution. In this paper, we propose to discover actions through a set
of classification rules. Before giving the algorithm DAKAR, let us first introduce some basic defini-
tions. In the following, letX1, ..,Xn be features taking their values in the domainsDom1, ..,Domn

respectively. We denote an unsatisfactory class by * and a satisfactory class by ⊕. We also write
R⊕ to denote the set of classification rules restricted to the rules concluding on the class ⊕. Simi-
larly, we writeR& to denote R restricted to the rules concluding on the class*. This can be easily
extended to multi-class problems.

Definition 1 (Instance) An instance is an object described by a conjunction of instantiated features
denoted by:

∧

i=1,..,n

(Xi = vi).

Definition 2 (Description) A description is a conjunction defined on a subset of features as follows:
D=

∧

i=1,..,m

(Xki
∈ dki

)

where dki
⊆ Domki

, {k1, ..., km} ⊆ {1, .., n} and ki -= kj∀i, j.

Definition 3 (Extended description) A description can be extended to all the features as follows:
D̂=

∧

i=1,..,m

(Xki
∈ dki

)
∧

j /∈{k1,..,km}

(Xj ∈ Domj)

where dki
⊆ Domki

, {k1, ..., km} ⊆ {1, .., n}.

In the rest of the paper, a description is considered in its extended form.

Definition 4 (Classification rule) A classification rule is an implication of the form:
Descr =⇒ Class

where Descr is a description and Class is the corresponding class label (* or ⊕).

Definition 5 (Coverage) We say that a description D =
∧

i=1,..,n

(Xi ∈ di) covers an instance

I =
∧

i=1,..,n

(Xi = vi) iff ∀i, vi ∈ di. The set of instances (among all possible instances) covered by

D will be denoted by cov(D).

Note that cov(D) = cov(D̂). For a classification rule R : Descr =⇒ Class, we define cov(R) =
cov(Descr).

Definition 6 (Outcome situation) An action applied to a situation leads to another description
called an outcome situation.
Given a situation S =

∧
i=1,..,n(Xi ∈ si) and an action A =

∧
i=1,..,n(Xi ∈ ai), the outcome

situation outcome(S,A) is computed as follows:

outcome(S,A) =
∧

i=1,..,n

(Xi ∈ oi) where oi =

{
si if ai = Domi

ai otherwise
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Definition 7 (Situation and Action) In our framework, a situation or an action is a description.

Definition 8 (Task) Given a set of rules R = R⊕ ∪R&, an unsatisfactory situation S of class *,
find an action A that allows to move S to an outcome situation which belongs to the class⊕.

When proposing actions to the user, we have to take into consideration their practical applica-
bility. This can be achieved by considering the flexibility of the features involved in the action. This
notion is further explained in the following.

3.2 On the need of a suitable distance metric

In Ras and Tsay (2003), the notion of feature flexibility is used to find action rules. Features are
divided into two groups: stable (features that cannot be changed) and flexible. In their approach,
action rules are designed with flexible features.

This division into two groups is interesting but is rather strict and not always sufficient. For
example, a physician would prefer, if possible, prescribing medicines to advising a surgical inter-
vention to an ill patient. However, in their work, such two flexible features are identically consid-
ered. In our approach, to take into account this differentiation, each feature is assigned with a given
flexibility weight. Moreover, the notion of feature flexibility is not sufficient. Here is an example:

Example 1 Making a diet and exercising are in many cases the advices given by physicians to their
overweighted patients. But the feasibility of these advices depends on the goal to achieve. If the
weight to loose is about 80 kilograms, this weight-control option is impractical. The doctor may
suggest other treatments for obesity such as weight-loss medicines or even surgery. On the other
hand, loosing 2 kilograms is quite achievable through a diet and some physical activity.

The outcome situation (when an action is applied) must be relatively “close” to the initial situa-
tion. For these reasons, a metric distance capturing the difficulty of improving a situation thanks to
an action seems indispensable to our problem.

The literature abounds with definitions of metric distances between two descriptions. Relying on
an empirical comparative study Malerba et al. (2001), we have chosen the generalized Minkowski
metric proposed by Ichino and Yaguchi (1994) which handles both qualitative and quantitative fea-
tures. It also integrates weights and deals with dissimilarities between two feature values. We
rewrite it according to our notations. Let us consider two extended descriptions:

D =
∧

1..n

(Xi ∈ di) di ⊆ Domi

D′ =
∧

1..n

(Xi ∈ d′i) d′i ⊆ Domi

Let us consider two sub-domains di and d′i ofDomi (domain of feature Ai), they define the two
following operators (illustrated in Figure 1):

• The Cartesian join ! of di and d′i is given by:

- If the ith feature is quantitative, di = [li, ui] and d′i = [l′i, u
′
i], we have:

di ! d′i = [min(li, l
′
i),max(ui, u

′
i)]

16



FROM CLASSIFICATION RULES TO ACTION RECOMMENDATIONS

- If the ith feature is qualitative, di and d′i are 2 sets and we have:

di ! d′i = di ∪ d′i

• The Cartesian meet " of di and d′i is given by:

di " d′i = di ∩ d′i

!

Domi

"

di

d′i

di !d′i

di "d′i

lilili
li

l′i
l′i ui

uiui
u′

i

u′
i

Figure 1: The operators ! and " for quantitative attributes.

Using these operators, the authors in Ichino and Yaguchi (1994) propose a dissimilarity measure
between two feature sub-domains:

φ(di, d
′
i) = |di ! d′i|− |di " d′i| + γ(2|di " d′i|− |di|− |d′i|)

where i = 1..n and γ ∈ [0, 0.5] controls the inner-side nearness and the outer-side nearness between
di and d′i. The cardinal of di (when Ai is a qualitative attribute) and the length of di (when di is a
quantitative attribute) is noted |di|. When normalized, this measure is rewritten:

ψ(di, d
′
i) =

φ(di, d′i)

|Domi|
, i ∈ {1, .., n}

so that 0 ≤ ψ(di, d′i) ≤ 1. Consider now two extended descriptions:

D =
∧

1..n

(Ai ∈ di) di ⊆ Domi

D′ =
∧

1..n

(Ai ∈ d′i) d′i ⊆ Domi

The normalized and weighted dissimilarity measure called the generalized Minkowski distance of
order p defined in Ichino and Yaguchi (1994) is given by:

dp(D,D′) =

[
n∑

i=1

{wi ψ(di, d
′
i)}

p

]1/p

where the flexibility weights wi > 0, i ∈ {1, .., n} are chosen so that
∑n

i=1wi = 1 and ψ(di, d′i) is
a normalized distance between the sub-domains di and d′i of Domi (see Ichino and Yaguchi (1994)
for more details). The generalized Minkowski distance satisfies 0 ≤ dp(D,D′) ≤ 1 and it is proved
that this distance satisfies all the axioms for a metric.

Finally, as pointed out in subsection 3.2, we favor actions that involve a little change in the initial
situation. This is achieved by verifying that the distance between the outcome situation (obtained
when an action is applied to the initial situation) and the initial situation itself does not exceed a
threshold δ given by the user. We term such privileged actions δ-cost actions.
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3.3 The search space of actions

In this subsection, we define the search space of actions. We are given an initial situation S =∧
i=1,..,n(Ai ∈ si) classified in * and a set of rules R = R⊕ ∪ R&. An obvious approach is

to define the search space of actions as the whole large space of descriptions. This space is first
restricted thanks to the property of validity (Definition 9). The consistency property (Definition 11)
of the actions constructed is checked and their quality values (Definition 12) are computed.

Definition 9 (The validity of an action relatively to a situation) An action A is said to be valid
relatively to a situation S if

cov(S) ∩ cov(A) = {}

Thus, an instance covered by the initial situation is not covered by the outcome situation when
a valid action is applied. To consider only valid actions, we use the maximally discriminant set
defined as follows:

Definition 10 For a situation S and a description D = ∧i=1,..,n(Xi ∈ di), the maximally discrim-
inant set denoted by discr is defined by:

discr(S,D) =
n⋃

i=1

⋃

∆∈diff(si,di)

{Xi ∈ ∆}

The set diff(si, di) is computed according to the kind of the attribute Ai concerned. It is:

• the set of elementary intervals of di with a maximal size, excluding si if Ai is a quantitative
attribute.

• the set difference between di and si if Ai is a qualitative attribute.

Example 2 Let Xi be a qualitative attribute, a,b and c 3 values in Domi. If di = {a, b, c} and
si = {b} then diff(si, di) = {{a, c}}.
Let Xi be a quantitative attribute, x,y and z 3 values in Domi s.t. x < y < z. If di = [x, z] and
si = [y] then diff(si, di) = {[x, y[, ]y, z]}.

For a description D, an element of discr(S,D) is a valid action w.r.t. the situation S. For a
rule R : Descr =⇒ Class, we define discr(S,R) = discr(S,Descr). Notice that an element in
discr(S,D) is a valid action relatively to S. The notion of maximally discriminant has already been
used in Sebag (1996) in designing a learner inspired by the version spaces framework introduced in
Mitchell (1982).

In order to consider descriptions that are likely to be “good” actions, we construct the maxi-
mally discriminant set between S and the description part of one rule inR⊕. Intuitively, this set is
composed of the attribute-value pairs that make the difference between the rules of class ⊕ and the
situation of class *.

Example 3 Let { weight, medicines} be a set of features taking their values in Dom1 = [40, 120]
and Dom2 = {no, tablets, syrup} respectively. The quantitative feature weight represents the
weight of a patient while the qualitative feature medicines represents the treatment prescribed
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to the patient. Let R⊕
1 , R

⊕
2 and R&

3 be 3 rules:
R⊕

1 : weight ∈ [50, 80] → not ill
R⊕

2 : weight ∈ [90, 110] ∧ medicines ∈ {syrup} → not ill
R&

3 : weight ∈ [65, 120] ∧ medicines ∈ {no} → ill
We consider an ill patient in the following situation S: weight ∈ [70] ∧ medicines ∈ {no}.
We compute the maximally discriminant sets:

discr(S,R⊕
1 ) = {weight ∈ [50, 70[, weight ∈]70, 80], medicines ∈ {tablets,syrup}}

discr(S,R⊕
2 ) = {weight ∈ [90, 110],medicines ∈ {syrup}}

In Ras and Wieczorkowska (2000), for each couple of rules in R⊕ corresponds an action rule that
guarantees the switch from * class to ⊕ class. An action rule relies only on one rule inR⊕. In our
point of view, since the rules are uncertain (not implications), an action should rely on the entire set
of rules. Thus, by combining attribute-value pairs of these rules, new actions can be suggested.

The set of elementary actions A is given by

A =
⋃

R∈R⊕

discr(S,R)

and an action is a conjunction of such elements. Thus, our search space of actions is the set:

{
∧

elem∈E

elem|E ⊆ A}

Actions considered by our method embodies those that would be suggested by the system in Ras
andWieczorkowska (2000). Let us also notice that the search space as defined above embodies some
actions that are not to be considered because they do not fulfill the consistency property defined as
follows:

Definition 11 (The consistency of an action) An action A is said to be consistent if cov(A) -= {}.

In practice, an action is not consistent if it involves an empty value for at least one attribute.

Example 4 In Example 3, the set of elementary actions A is {weight ∈ [50, 70[, weight ∈
]70, 80],medicines ∈ {tablets,syrup}, weight ∈ [90, 110], medicines ∈ {syrup}}.
An action is a conjunction composed by elements of a subset of A. We have to discard the action
weight ∈ [50, 70[∧weight ∈ [90, 110] equivalent to weight ∈ [ ] which is not consistent.

Let us emphasize that applying an action to a situation does not guarantee to get an outcome situation
with a better class than the initial situation. That is why, we need a criterion for assessing the quality
of actions. We classify the outcome situation using the set of rules. We rely on the confidence of
the rules covering the outcome situation to evaluate the quality of an action.

Definition 12 (The quality of an action) Let S be a situation, A an action and O the outcome
situation O = outcome(S,A), the quality of A is :

quality(A) =
∑

R∈R⊕, cov(O)⊆cov(R)

conf(R) −
∑

R∈R#, cov(O)⊆cov(R)

conf(R)

where conf(R) is the usual confidence7 of the rule R.

7. The confidence of a rule R : Descr =⇒ C is the number of examples of class C covered by Descr divided by the
total number of examples covered byDescr.
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Algorithm 1: Dakar algorithm
Input:
- a set of rules R = R⊕ ∪R&

- a situation S
- a distance threshold δ
- a maximal beam size N
Output: - a set of actions
A =

⋃
R∈R⊕ discr(S, R)1

Beam = {}2
NewBeam = {true}3
while Beam -= NewBeam do4

Beam ← NewBeam5
foreach action ∈ Beam do6
foreach elem ∈ A do7

newaction ← (action ∧ elem)8
if newaction consistent and δ-cost then9

NewBeam ← NewBeam ∪ {newaction}10
while card(Beam) > N do11

worstaction ← ArgminA∈NewBeamquality(A)12
NewBeam ← NewBeam − {worstaction}13

return sorted Beam14

Notice that quality(A) > 0 means that O is covered by at least one rule inR⊕.
Since we are relying on the whole set of classification rules to compute the set of actions and

the quality of those actions, our method allows using an inconsistent set of rules as shown in the
Example 5 below.

Example 5 The set of rules given in Example 3 is inconsistent: both of the rules R⊕
1 and R&

3 cover
the situation S. The action A : weight ∈]70, 80] belonging to the search space transform S into
the situation S′ : weight ∈]70, 80] ∧ medicines ∈ {no} which is covered by R⊕

1 and R&
3 . We still

can compute the quality of the action A by quality(A) = conf(R⊕
1 ) − conf(R&

3 ).

3.4 DAKAR algorithm

The aim of DAKAR (Discovery of Actionable Knowledge and Recommendations) is to find the set
of the best actions, i.e. those maximizing the quality criterion (Definition 12). DAKAR is given in
Algorithm 1. The algorithm explores the search space of actions using a beam search strategy: it
maintains a set (called a beam) of the best actions the algorithm has constructed up till now. Initially
the beam is set to {true} (line 3), which means that no action is constructed. During the exploration
of the search space, DAKAR specializes actions (line 8) of the beam and keeps only the best ones
w.r.t. the criteria defined in sub sections 3.2 and 3.3 (consistency and distance in line 9 and quality
in line 12). In a beam search, the size of the beam must not exceed a maximal sizeN , this is ensured
by the lines 11-13 of the algorithm.
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3.5 Experiments

We have implemented DAKAR in Sicstus Prolog and we have conducted an experimental evaluation
of our algorithm on an environmental application related to stream-water pollution by pesticides.
This application is developed in the context of the SACADEAU project Cordier (2005); Cordier et al.
(2005, 2006). In our experiments, we used a dataset generated by a model which outputs a class of
pollution given information about farming works, climate, soil, etc. The set of attributes and their
descriptions is given in Table 1.

Name Domain Flexibility Description
strat {pre,post} 0.001 pesticide application strategy of the farmer
molec {atrazine,new} 0.003 pesticide used by the farmer
hedge {0%,90%} 0.006 percentage of river border with a hedge
basin {concave,convex} 0.33 typology of the catchment area
orga matter {2%,5%} 0.33 soil composition in organic matter
climate [1;5] 0.33 wetness of the climate (1: not wet)
class {0,1,2,3,4} - severity of the pollution (0: no pollution)

Table 1: Some attributes of the SACADEAU application and their descriptions

It is a multi-class application where pollution classes are ordered by experts by taking into
account legal thresholds (class 4 is the least satisfactory class). The model is an oracle since it
provides the function simulation : situation → class and we define the benefit of an action A
applied to a situation S, by benefit(A) = simulation(S) − simulation(outcome(S,A)). An
action A is said positive when its benefit is positive.

Our system was tested on 150 unsatisfactory situations (of class 1, 2, 3 or 4). In the presented
experiments, the size of the beam was 5; thus, DAKAR proposed 5 actions for each situation. We
varied the distance threshold δ from 0 to 0.5. A set of rules, with minimal support 20, was generated
by ICL Raedt and Laer (1995) (rules are not ordered).

A first evaluation is to show qualitatively the utility of using a distance for recommending ac-
tions. Let us give an example of DAKAR execution on a situation of class 4:

strategy=post, molecules=atrazine, hedge=0%,
basin=convex, orga_matter=5%, climate=4

The 2 best actions recommended by DAKAR, with benefit 2 and 1 respectively, are given below:

1 - hedge=90%, molec=new, strat=pre 2 - molec=new, strat=pre
(quality=1.50 ; distance=0.005) (quality=1.35 ; distance=0.002)

Both actions suggest to apply pesticides before plants grow up (pre-emergence strategy) and
to use new molecules rather than atrazine. The actions have almost the same quality whereas the
distance involved by the first action is more than two times the distance involved by the second.
Concretely, experts could decide that in the short term, installing a hedge on 90% of the river border
is not a necessary action for improving the situation.

A second qualitative evaluation concerns the interest of the quality criterion. Here is an example
of situation of class 3:
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Figure 2: Actions plotted according to their
quality and their effective benefit
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Figure 3: Percentage of positive recommended
actions according to the size of the
rule set and the distance parameter δ

strategy=pre, molecules=new, hedge=0%,
basin=convex, orga_matter=2%, climate=3

The 2 best actions recommended by our system (having a benefit of 1 and -1 respectively) are:

1 - hedge=90% 2 - hedge=90%, strat=post
(quality=0.64; distance=0.005) (quality=-0.56; distance=0.005)

The first action is the only one, among the five recommended actions, to get a positive quality.
Installing a hedge on 90% of the river border seems to be the necessary action for improving the
situation.

From this point, only the action maximizing the quality criterion in the beam was considered.
We plotted, in Figure 2, the recommended actions according to their quality and their effective bene-
fit. Note that the quality of an actionA is a good prediction of the efficiency ofA if (quality(A) < 0
and benefit(A) ≤ 0) or (quality(A) > 0 and benefit(A) > 0).

Our experiment raises another concern about the relationship between the redundancy in a set of
classification rules and the efficiency of recommended actions. In Torgo (1993), the author studied
the effect of the redundancy of a classification rule set on the task of predicting a class. In his
experiments, a redundant classification rule set has better accuracy on classification (Figure 3).
Using ICL, three classification rule sets were learned with a support parameter equal to 1, 10
and 20, leading to set of 19, 35 and 63 rules respectively. We evaluated the three sets of rules, by
comparing the efficiency of the actions they suggested when used in DAKAR. We plotted in Figure
3 the efficiency of recommended actions in function of the parameter δ for the three sets of rules.
As expected, the efficiency of actions proposed by DAKAR is globally increasing in the parameter
δ. Moreover, we notice that the more the classification rule set is redundant, the more the actions
are effective. The impact of the redundancy in rules on Sebag’s distance between two instances
expressed by Horn clauses was also pointed out in Sebag (1997). Her distance is based on the
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coverage of instances by a theory and the more the theory is redundant, the more this distance is of
interest.

We repeated the same experiment for three rule sets generated by three systems: C4.5 Quinlan
(1993), ICL Raedt and Laer (1995) and Apriori 8 Agrawal et al. (1993). Supposing that Apriori is
more redundant than ICL which is more redundant than C4.5, we compared the efficiency of the
actions suggested by the three sets of rules. Remarkably, here again, the more the set of rules is
redundant, the more the actions are effective.

4. Comparative Study

Table 2 summarizes and compares the main characteristics of DAKAR and the different approaches
described in Section 2. In this table, the term approach refers either to an implemented system or to
an algorithm. These approaches are compared according to:

• Knowledge extracted: The kind of actions discovered.

• Model/domain knowledge: The model on which the method relies to discover actionable
knowledge and the domain knowledge used.

• Measures: The quality criteria used to discover and assess actionable knowledge.

• Method: A brief description of the learning strategy of the approach detailed in Section 2.

5. Discussion and Future Work

In our algorithm, the possible new actions are chosen if they are consistent and involve a little
change in the initial situation (delta-cost actions). Then they are sorted under their quality and the n
best actions are proposed if the beam cardinality is n. We could use a multicriterion choice for the
new actions. We can imagine an algorithm using both quality and distance in the criterion as done
in Ling et al. (2002) where a function of profit is maximized. The aim of profit-based optimization
approach is to provide the user with the best-profit actions. The problem is to define an optimization
function to maximize combining quality and distance. This task is complex and moreover it is also
interesting to propose a list of feasible/possible actions with their computed quality and let the user
operate the ultimate choice.

The metric distance, capturing the difficulty of improving a situation thanks to an action, is very
important in our method. It relies on flexibility weights which take into account differentiation of
features (more or less flexible). The most important difficulty for the user is to choose these weights.
How to determine if changing pesticide application strategy is more or less flexible than changing
pesticide molecule used? The expert is here essential and the choice may be subtle.

Another point is that a metric distance is a symmetric notion. For example, increasing or de-
creasing a quantitative attribute with the same value leads to the same distance with the initial value.
In our application there is no problem with this but generally, we can imagine some non-symmetric
attributes. In medical care applications, the attribute “age” can only grow. An action implying
smaller age is no-sense. An adaptation for such attributes is then needed as in Tzacheva and Ras
(2005).

8. We constrained the association rules generated by Apriori to contain only the class label in their right-hand side

23



SALLEB-AOUISSI, TREPOS, CORDIER AND MASSON

Approach Knowledge
extracted

Model/domain
knowledge

Measures Method
Pr
ed
efi
ne
d
ac
tio
ns

KEFIR [Piatetsky-
Shapiro and
Matheus (1994)]

corrective
actions

corrective
actions

deviation,
impact of
deviation,
interest-
ingness

Compute deviations according to the
norms, order them using interesting-
ness/impact measure, present key devia-
tions, explanations and corrective actions
in a written report.

[Adomavicius and
Tuzhilin (1997)]

actionable
patterns

actionable
patterns

- Build an action tree, assign an actionable
pattern to each node. Traverse the tree in
order to get an insight about decisions to
undertake.

[Elovici and Braha
(2003)]

actions any classifi-
cation model,
actions

payoff Use a classification system to classify an
individual and then chose the action to do
so as to maximize the expected payoff.

[Jiang et al. (2005)] actionsets influence matrix
of actions on
features

utility, ac-
tionability

Compute the new utility of an actionset on
a population P using the utility on a role
model of P. Partition data so as to maxi-
mize the actionability w.r.t. utility.

A
ct
io
na
bl
e
ru
le
si
de
nt
ifi
ca
tio
n SUBGROUP DIS-

COVERY [Lavrač
et al. (2004)]

descriptive
rules

- coverage,
weighted
relative
accuracy

Find rules conditions → target-class.
Expert-guided subgroup discovery in
TP/FP space to search the rules with a
maximal q value computed using a user
TP/FP-trade off function.

FINDNA [Liu et al.
(2001)]

association
rules

association rules
with a class-
value on their
right-hand sides

χ2, cov-
erage,
support

Discard the more general rules using their
specialized rules with higher quality. Be-
fore removing any general rule, check that
it is not still a strong rule after removing
the tuples covered by the specialized rules
from the dataset.

OPPORTUNITY
MAP [Zhao et al.
(2005b,a)]

- associative clas-
sification rules
(CBA)

- Interactive visualization of attributes,
classes, data and rules in a matrix. Drill-
down visualization of cells.

El
ab
or
at
io
n
of
ac
tio
ns

DAR AND DEAR
[Ras and Wiec-
zorkowska (2000)]

action rules decision rules,
stable and
flexible features

coverage Consider all pairs of decision rules with
contradicting conclusions and same val-
ues for all stable attributes to generate ac-
tion rules.

DEAR2 [Tsay and
Ras (2005)]

action rules decision rules,
stable and
flexible features

coverage Organize decision rules into equivalence
subclasses. Consider only pairs of rules
belonging to some equivalence subclasses
to construct extended action rules.

PROACTIVE SO-
LUTION [Ling et al.
(2002)]

action rules decision trees net profit Build a decision tree modeling customers
profiles. If a customer falls in an unde-
sired leaf, search for the optimal actions
that move the customer to another leaf.

[Yang and Cheng
(2002)]

actions case bases cost, rank Mining case bases to identify represen-
tative role models. Three approaches:
instance-based, cluster-based and SVM-
based. Switching plan generation where
negative cases are switched to positive
cases using actions suggested by role
models.

DAKAR [Trepos
et al. (2005)]

actions classification
rules, weights of
flexible features

coverage,
quality,
distance,
benefit

Given an unsatisfactory situation and re-
lying on a set of classification rules, dis-
cover a set of action recommendations
that propose minimal changes to improve
that situation.

Table 2: Characteristics of the state-of-the-art methods for learning actionable knowledge
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In our application, flexibility weights were fixed in function of the amount of work to do in order
to modify a value. But they could be fixed in function of the required time for modifying this value.
In next future, we propose to build a user-friendly interface which allows the user to change easily
flexibility weights.

A first issue we plan to address in future work is to extend our work to propose not only promis-
ing actions but also unwise actions with respect to a situation. Let us look closer at the actions
computed in the example given before:

1 - hedge=90% 2 - hedge=90%, strat=post
(quality=0.64; distance=0.005) (quality=-0.56; distance=0.005)

It is clear that the second best classified action has a bad quality and that the only one which
should be recommended is the first one, i.e. make an hedge grow. However, the second one brings
information: if this hedge planting action is combined with changing the pre-emergence strategy
for a post-emergence strategy, the quality becomes low. The good recommendation is then: plant
an hedge but without changing your weeding strategy. Our intention is thus to collect both good
and bad quality rules and to combine them in order to suggest more sophisticated recommendations
including what not to do ones.

A second issue we plan to address is a more intensive use of the simulator. The simulator is
currently used to provide examples to the learning step in order to get classification rules. It is
also used in the validation step to check whether the recommended actions are or not beneficial
as explained in sub section 3.5. An extension of our work would be to use the simulator during
the search step to evaluate the quality of a rule. In our current work, we evaluate the quality of a
rule by using the classification rules on the outcome situation (see definition 12). Our plan is to
use the simulator to assess the quality of an action during the search step. Another view could be
to incorporate the recommendation step into an interactive process where the user requires help by
describing a situation, gets recommendation rules and can test them by using the simulator.

6. Conclusion

We investigate the task of learning actionable knowledge and recommendations. We first propose
a survey of the main approaches addressing actionability. We also suggest a classification of these
approaches into 3 classes. There are approaches that map extracted knowledge (e.g. deviations)
to predefined actions, others identify actionable rules among a large set of rules and finally, the
approaches that rely on models to create new actions.

In the second part of this paper, we attempt to answer the following question: how to make
classification rules actionable and go beyond their restricted use in prediction? We propose a new
framework to address the actionability task which can be described as follows: given a situation,
the algorithm we propose allows the user to further exploit a set of classification rules in order to
decide what are the actions to accomplish in order to improve that situation. The algorithm looks
for the best actions involving a little change in the initial situation. This is achieved thanks to an
actionability approach relying on a distance.

Our framework has been applied to an environmental dataset related to pollution. We have
learned some actionable knowledge concerning the possible recommendations one can adopt in
order to reduce pollution. Such recommendations take into account the degree of flexibility of each
feature. Experiments have shown the feasibility and usefulness of this task. They have also raised
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some concerns about the impact of the redundancy of rules on the quality of actions recommended
by our system.

The approach we propose can be improved in the following directions. First, extend the frame-
work to first order learners. In this case, we need other kinds of distance metrics handling literals,
such as those proposed in Hutchinson (1997); Ramon et al. (1998). Second, study the impact of the
chosen distance metric on the quality of the recommended actions.

Action recommendation is a promising issue in Machine Learning and Data Mining with many
practical applications such as health-care, environmental protection and customer analysis. There is
clearly much research to be done in the formalization of the task of learning useful and actionable
knowledge from both methods and interestingness measures points of view.
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N. Lavrač, B. Cestnik, D. Gamberger, and P. Flach. Decision support through subgroup discovery:
Three case studies and the lessons learned. Machine Learning, 57(1-2):115–143, 2004. ISSN
0885-6125. doi: http://dx.doi.org/10.1023/B:MACH.0000035474.48771.cd.

C. X. Ling, T. Chen, Q. Yang, and J. Cheng. Mining optimal actions for profitable CRM. In ICDM,
pages 767–770, 2002.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD, pages
80–86, 1998.

B. Liu, W. Hsu, and Y. Ma. Identifying non-actionable association rules. In KDD ’01: Proceed-
ings of the seventh ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 329–334, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-391-X. doi:
http://doi.acm.org/10.1145/502512.502560.

D. Malerba, F. Esposito, V. Gioviale, and V. Tamma. Comparing dissimilarity measures in symbolic
data analysis. In Joint Conferences on ”New Techniques and Technologies for Statistcs” and
”Exchange of Technology and Know-how”(ETK-NTTS’01), pages 473–481, 2001.

27



SALLEB-AOUISSI, TREPOS, CORDIER AND MASSON

T. M. Mitchell. Generalization as search. Artif. Intell., 18(2):203–226, 1982.

Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publish-
ers, Norwell, MA, USA, 1992. ISBN 0792314727.

G. Piatetsky-Shapiro and C. Matheus. The interestingness of deviations. In AAAI Workshop on
Knowledge Discovery in Databases, pages 25–36, Menlo Park, CA, 1994. AAAI Press.

J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993. ISBN 1-55860-238-0.

L. De Raedt and W. Van Laer. Inductive constraint logic. In ALT ’95: Proceedings of the 6th
International Conference on Algorithmic Learning Theory, pages 80–94, London, UK, 1995.
Springer-Verlag. ISBN 3-540-60454-5.

J. Ramon, M. Bruynooghe, and W. Van Laer. Distance measures between atoms. In CompulogNet
Area Meeting on Computational Logic and Machine Learing, pages 35–41. University of Manch-
ester, UK, May 1998.

Z. W. Ras and S. Gupta. Global action rules in distributed knowledge systems. Fundam. Inf., 51(1):
175–184, 2002. ISSN 0169-2968.

Z. W. Ras and L.-S. Tsay. Discovering extended action-rules (system dear). In IIS, pages 293–300,
2003.

Z. W. Ras and A. A. Tzacheva. Discovering semantic inconsistencies to improve action rules min-
ing. In IIS, pages 301–310, 2003.

Z. W. Ras and A. Wieczorkowska. Action-rules: How to increase profit of a company. In PKDD,
pages 587–592, 2000.

Z. W. Ras, A. A. Tzacheva, L.-S. Tsay, and O. Gurdal. Mining for Interesting Action Rules. In Pro-
ceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT’05), pages 187–193. IEEE, 2005.

M. Sebag. Delaying the choice of bias: A disjunctive version space approach. In ICML, pages
444–452, 1996.

M. Sebag. Distance induction in first order logic. In ILP ’97: Proceedings of the 7th International
Workshop on Inductive Logic Programming, pages 264–272. Springer-Verlag, 1997. ISBN 3-
540-63514-9.

A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge discovery
systems. IEEE Trans. On Knowledge And Data Engineering, 8:970–974, 1996. URL
citeseer.ist.psu.edu/silberschatz96what.html.

L. Torgo. Controlled redundancy in incremental rule learning. In ECML, pages 185–195, 1993.

R. Trepos, A. Salleb, M.-O. Cordier, V. Masson, and C. Gascuel. A distance-based approach for
action recommendation. In ECML 2005, 16th European Conference on Machine Learning, LNAI
3720, pages 425–436. Springer-Verlag Berlin Heidelberg, 2005.

28



FROM CLASSIFICATION RULES TO ACTION RECOMMENDATIONS

L.-S. Tsay and Z. W. Ras. Action rules discovery: system DEAR2, method and experiments.
Journal of Experimental & Theoretical Artificial Intelligence, 17(1-2):119–128, 2005.

A. A. Tzacheva and Z. W. Ras. Action Rules Mining. Special Issue on knowledge discovery, Z.W.
Ras (ed.) International Journal of Intelligent Systems, 20(7):719–736, 2005.

Q. Yang and H. Cheng. Mining case bases for action recommendation. In ICDM, pages 522–529,
2002.

Q. Yang, J. Yin, C. X. Ling, and T. Chen. Postprocessing decision trees to extract actionable
knowledge. In ICDM, pages 685–688, 2003.

K. Zhao, B. Liu, T. M. Tirpak, and W. Xiao. Opportunity Map: A Visualization Framework for Fast
Identification of Actionable Knowledge. In Proceedings of the ACM Fourteenth Conference on
Information and Knowledge Management CIKM’05, 2005a.

K. Zhao, B. Liu, T. M. Tirpak, and W. Xiao. A Visual Mining Frmework for Convenient Identifica-
tion of Useful Knowledge. In Proceedings Fifth IEEE International Conference on Data Mining
ICDM’05, 2005b.

29


	CCLS-08-01-coverpage
	CCLS-08-01-content

