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Abstract

Ranking problems arise in a wide range of real world
applications where an ordering on a set of examples is pre-
ferred to a classification model. These applications include
collaborative filtering, information retrieval and ranking
components of a system by susceptibility to failure. In this
paper, we present an ongoing project to rank the feeder
cables of a major metropolitan area’s electrical grid ac-
cording to their susceptibility to outages. We describe our
framework and the application of machine learning rank-
ing methods, using scores from Support Vector Machines
(SVM), RankBoost and Martingale Boosting. Finally, we
present our experimental results and the lessons learned
from this challenging real-world application.

1. Introduction

Electrical infrastructure has four main components: gen-
eration, transmission, primary distribution, and secondary
distribution. Between the high-voltage transmission system
and the household-voltage secondary system, electricity is
sent through primary distribution feeders, cables which
move energy around a metropolitan area.

In the urban electrical grid under consideration, most of
the system is organized into networks, where each network
is served from a particular substation. Within the network
part of the system, a fault anywhere along a feeder will
cause the entire feeder to disconnect itself from the grid.
Every customer is redundantly connected to the substation
so that a single feeder failure will not cause loss of service.
However, such a failure increases the stress on the surviving
feeders in the network, and subsequent failures will raise
the stresses higher still. Eventually, the network may suffer

a cascade failure, and the entire network must be shut down
until the problems can be repaired.

In the metropolitan area considered in this study, there
are three regions of interest – A, B and C – which together
have over 1000 feeders. Individual feeders fail with some
regularity. On average there were over five failures per day
over all regions during summer 2007. One of the most im-
portant tasks for keeping the electrical grid running is the
maintenance and swift repair of primary feeders. For both
long-term upgrade and maintenance planning, as well as
short-term problem management, engineers and operators
would like to know which feeders are at high risk of failure.

Our goal was to create an ordered list of feeders in the
system ranked from most susceptible to failure to least sus-
ceptible. There are a number of significant challenges. The
number of attributes is very large, while failures are rela-
tively rare. The system is believed to exhibit concept drift,
where the causes of failures change significantly over the
course of the year. Many of the attributes are in the form
of time series which must be aggregated. Other attributes
map to feeder sub-components (e.g. cable sections, averag-
ing 150 per feeder) or super-components (e.g. substations,
which serve many feeders), and must be aggregated or dis-
aggregated to the feeder level. Even constructing a metric
to evaluate our ranking performance is not trivial.

This paper has a number of contributions to the area of
component susceptibility rankings. First, it is a compar-
ative study of a pairwise ranking algorithm (RankBoost),
a classification score-based ranking algorithm (SVM score
Ranker) and a sorting-based ranking algorithm (Martingale
Boosting, also known as MartiRank). Second, the dataset
generation process solves a number of problems inherent in
learning to predict events that are rare in space and time.

The rest of the paper is organized as follows: Section
2 describes related work; Section 3 provides a detailed de-



scription of our application, the data generation process and
pre-processing steps before machine learning; Section 4 de-
scribes the ranking algorithms we use and presents our re-
sults. Finally Section 5 presents possible directions for fu-
ture work.

2. Related Work

The problem of learning to rank [1] has received much
attention in the machine learning community in recent
years.

Pairwise ranking [7] assumes that the learner is pro-
vided with information about the relative ranking of in-
dividual pairs of instances. Freund et al. [17] proposed
a boosting based approach called RankBoost that com-
bines many “weak” rankings into a single accurate rank-
ing. A brief review of this algorithm is presented in Section
4.2. Long and Servedio developed another boosting-based
method for ranking named Martingale Boosting [14] and
applied it successfully to some power engineering problems
[8]. Joachims [12] used pairwise ranking to design retrieval
functions for search engines using Support Vector Machines
(SVMs). He utilized the query log of search engines in con-
nection with the log of clicked links to present a ranking
and hence determine which documents are more relevant
than others.

Cao et al. [4] studied the problem of “listwise” rank-
ing as opposed to the “pairwise” approach described above.
They used lists of objects as “instances” in learning and
propose a probabilistic model to describe the listwise loss
function. In addition to pure ranking methods that learn
ranking functions, some classification functions that output
scores have also shown good performance in ranking [18].
For instance, Herbrich et al. [9] showed that Support Vector
Machine (SVM) classifiers are good rankers as well. Typ-
ically, the SVM produces a classifier that labels examples,
then thresholds the outputs. Instead, one can rank the exam-
ples by how strongly the classifier predicts the class of each
example.

Other contributions include a gradient-descent method
[3], a naive Bayes approach [19] and new approaches for
ordinal regression proposed by Wei and Keerthi [5]. For
the feeder susceptibility ranking application described in
this paper, we consider three different ranking algorithms:
(1) RankBoost, a pairwise ranking algorithm (2) The SVM
Score Ranker, a classification score-based ranking algo-
rithm, and (3) Martingale Boosting, a sorting-based ranking
algorithm.

In the following section we describe the feeder suscepti-
bility ranking application in more detail.

3. The Feeder Susceptibility Application
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Figure 1. Number of Feeder Outages per
Day, 2006-2007, below with axis at left, and
Normalized Systemwide Peak System Load
above with axis at right

As can be seen in Figure 1, a small number of feeder
failures occur daily throughout the year. However, this rate
noticeably increases during warm weather. Air conditioning
units put substantial load on the system, causing electricity
usage to increase by roughly 50% during the summer. It is
during these times when the system is most at risk. As op-
erations resources are limited, any information which could
help with the optimal allocation of manpower would be of
great assistance in keeping the grid running reliably.

A substantial amount of data was made available to us
for training and testing, but converting the data into a form
suitable for machine learning presents a number of chal-
lenges.

3.1. Overall Architecture and Data Sources

For the feeders themselves, the attributes can be char-
acterized as physical characteristics, known from the un-
derlying components that compose the feeder cable; elec-
trical characteristics, from electric load flow simulations;
and dynamic data, from real-time telemetry attached to the
feeder. Additionally, we use some derived attributes, com-
puted from formulas developed by domain experts.



Our data on the physical composition of feeders is noisy:
errors in database entry and rewiring of components from
one feeder to another make it impossible to get a perfect
snapshot of the current state of the system. However, the
main complexity with the physical characteristics is com-
ponent aggregation: a typical feeder is composed of over a
hundred cable sections, connected by a similar number of
joints, and terminating in a few tens of transformers. For
a single feeder, these subcomponents are a hodgepodge of
types and ages. It is possible for a brand-new cable section
to be connected to one that is many decades old.

We have considered a number of approaches to solve
this “roll-up” problem, including looking at maxima, av-
erages, 90th percentile (similar to max, but avoids outliers),
domain-expert-suggested thresholds, and histogram counts.
Feature selection is discussed below in section 3.4.

Electrical characteristics (e.g., how much current a
feeder is expected to carry under various network condi-
tions) are necessarily imprecise, as the electric load-flow
simulations that generate them must assume the correctness
of the given system model, and can only guess at the status
of various complex interconnections in the secondary net-
work for which there is little telemetry.

Dynamic data presents a similar problem to physical
data, but here the problem is aggregation in time instead
of space. Telemetry data is collected at rates varying from
hundreds of times per second (for power quality data) to
every two minutes (most standard current and voltage mea-
surements) or slower (weather data). We aggregate these
over time, again using functions such as max or average,
using different time windows. Some of the time windows
are relatively simple (e.g. aggregating over 4 or 24 hours,
or 7, 15, and 45 days), while others take advantage of the
system’s periodicity (see Figure 1), and aggregate over the
most recent data, plus data from the same time of year in
previous year(s).

An additional problem with dynamic data is its sheer vol-
ume. We would like to create a dynamic tool, able to pro-
vide rerankings every hour, if not faster. Our interest in
more elaborate aggregations must be balanced against the
time to run them against gigabytes of dynamic data.

Finally, even the labels of the examples present difficulty.
Feeders can go offline for a variety of reasons, including
being taken offline due to a field worker noticing a problem,
failing when being brought back online after repairs, failing
a scheduled test, and so forth. We have restricted ourselves
to the most serious failure type, where the entire feeder is
automatically taken offline by emergency substation relays,
due to some sort of fault being detected by sensors.

3.2. Outage Derived Data Sets (ODDS)

Our current system for generating data sets attempts

to address the problem of the rarity of positive examples
(feeder failures), in space as well as time. An actual feeder
failure incident is instantaneous. A snapshot of the system
at that moment will have only one failure example. To bet-
ter balance the data, we tried labeling any example which
had experienced a failure over some time window as posi-
tive. However, the dynamic data for these examples did not
correspond with the conditions at the time they failed. This
was a problem, as the domain experts believed that some
of the dynamic data might only have predictive value in the
period right before the failure.

To solve this problem, we decided to switch to time-
shifted positive examples, including examples of all past
outages within some time window, along with dynamic data
from the moment before they failed. Additionally, we in-
clude the current snapshot of all feeders in the system. Not
only does this approach (which we call Outage Derived
Data Sets, or ODDS) capture the dynamic data from right
before the failure, it helps to reduce the massive imbalances
between positive and negative examples we see in our data.

A simplified diagram of the overall system is shown be-
low in Figure 2. A number of applications use the data in the
Output Data Repository to highlight areas of risk through
graphical displays and map overlays.



































 









Figure 2. Simplified diagram of ODDS and ML
application architecture

3.3. Data Pre-processing

As in many real-life applications, our application suffers
from the problem of missing data. The system is being con-
tinually upgraded and reconfigured, and new data for var-
ious attributes may not be available. Figure 3 shows the
extent of missing data on each attribute. Since most well
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Figure 3. Percentage of missing values per at-
tribute for August 13th, 2007 dataset.

established machine learning algorithms assume fully pop-
ulated feature vectors, after linearly scaling each attribute
to the range [0, +1] to give the same importance to each at-
tribute, we perform a mean imputation to fill in the missing
values, by replacing missing values with the mean of the
attribute.

3.4. Feature Selection

Our datasets contain a relatively large number of static
and dynamic attributes (about 237 in all). However, not all
the attributes collected are useful for the purpose of feeder
susceptibility ranking.

We subjected the attributes collected in our application
to a univariate feature selection mechanism. Each feature
was used individually to rank feeders (using the RankBoost
algorithm1) according to their susceptibility to failure on
training data collected over a 7 day period in summer and
tested on data collected over the next 7 days. We recorded
the Area Under the Curves (AUCs described in Section 4)
for each feature. The AUC values collected over each week
in summer were then averaged and sorted to obtain the best
features for ranking.

In Figure 4, we present statistics of how well the indi-
vidual features performed in all regions combined, and sep-
arately for each region. The figures suggest that the features
that perform well in each region are substantially different.
About 48 features have AUC greater than 0.6 in Region A,
5 in Region B, 44 in Region C and 77 if all the regions
are taken into consideration at one time. This motivates the
need for using different learning models for each region.

Tables 1 and 2 list the top 5 attributes we found in each
region, and all regions combined.

1For brevity, we do not provide results of feature selection with SVM
and Martingale Boosting.
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(d) All Regions

Figure 4. Histogram of AUC values of features
when used individually for feeder ranking



Region A Region C
Feature AUC Feature AUC

PILC Count 1 0.644565 Bad Joint Count 1 0.699328
Cable Length 1 0.643745 PILC Count 4 0.681529
Cable Length 2 0.642091 Joint Rank 0.667768
PILC Count 2 0.641425 Bad Joint Count 2 0.662215
PILC Count 3 0.640964 Bad Joint Count 3 0.659523

Table 1. Top 5 features found by our feature selection mechanism in Regions A and C, renamed to
indicate the type of the attribute. A number of the features relate to counts of known bad subcom-
ponents: Paper-Insulated Lead Cable (PILC), and problematic types of connecting joints

Region B All
Feature AUC Feature AUC

Bad Joint Count 4 0.625402 Bad Joint Count 5 0.658598
Bad Joint Count 2 0.617278 Bad Joint Count 2 0.657514

PILC Count 5 0.606627 Bad Joint Count 1 0.657362
Electrical Importance 0.604762 Cable Length 1 0.655841

Bad Joint Count 5 0.596526 PILC Count 1 0.654492

Table 2. Top 5 features found by our feature selection mechanism in Region B, and all regions.

In the following section we describe in detail the ranking
algorithms we use for the feeder ranking application.

4. Ranking Algorithms

We address the problem of supervised ranking of data.
The term ranking refers to the process of taking a collection
of data and ordering it in a meaningful and useful order.
Supervised ranking outputs such order using the features
and guided by the label assigned to each object.

More formally, we would like to order a set of examples

(x1, y1), . . . , (xn, yn)

where x1, . . . , xn are vectors of features describing a set
of examples, and each example is given a label yi ∈
{+1,−1}. The sets of positive and negative examples are
denoted by X+ and X−, respectively.

Ideally, we want to learn a scoring hypothesis h that will
rank all positive examples above all negative ones. That
is, ∀xi ∈ X+, ∀xj ∈ X−: h(xi) > h(xj). Since a per-
fect ranking is unrealistic in practical applications, we allow
mistakes where some negative examples are ranked higher
than some positive examples.

We use Receiver Operating Characteristic (ROC) curves
[2] to analyze the ranking results, since they provide a good
way of measuring the quality of a ranking when the only
ground truth we have is whether or not each data point be-

longs on the top of the ranking (labeled +1) or on the bot-
tom (labeled −1). ROC is essentially normalized by the
class cardinality. The quality of an ROC curve is measured
by the area under the curve (AUC), which is in the range
[0, 1], where an AUC of 0.5 can be achieved by a random
ordering of the data, and an AUC of near 1.0 is achieved by
perfectly ranking the positive examples at the top and the
negative ones at the bottom.

4.1. SVM Ranking

Even though we want to output a ranking, our problem
inputs consist of positive and negative examples, not pair-
wise rankings. Therefore, we use a classification method
and convert its output into a ranking. Specifically, we rank
objects by sorting the decision values of a linear support
vector machine (SVM) ([16]). The SVM is:

min
w,ξ

1
2
||w||2 + C

∑
yi=−1

ξi + RC
∑

yj=+1

ξj

s. t. ∀k, yk[wT xk + b] ≥ 1− ξk (1)

where the ξ variables are slack variables and the C pa-
rameter determines the tradeoff between regularization and
penalizing misclassification. The R parameter scales the
penalty for the positive class. Since we want to penalize
mislabeling of an example by the proportion of the total
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Figure 5. AUC values for RankBoost, SVM
score Ranker and MartiRank for summer
2007 in each region, as well as combined

population of the class, we can set parameter R by the fol-
lowing:

R =
number of true negatives
number of true positives

(2)

Typically, the SVM produces a classifier that labels exam-
ples x with y = sign(wT x + b), but we do not threshold
our outputs so we can sort and rank our examples by how
strongly the linear classifier predicts the class of each exam-
ple.

To find a good setting of the regularization parameter
C, we used a four-fold cross validation on our training set.
Here we randomly split the training data into four subsets
and use each of these subsets as a validation set for the SVM
trained on the remaining three subsets. Trying various val-
ues of C, we choose the setting for which the ranking pro-
duced by the resulting weight vector scores the highest AUC
on the validation sets. Finally, we train on the full training
set using the optimal setting of C and use the weight vector
w obtained from the SVM to rank the testing set.

4.2. RankBoost

Another algorithm for ranking used in our application is
RankBoost [6]. Here, a set of weak rankings are first found
that can be “boosted” to obtain a final ranking. For this pur-
pose, we partition all the feeders into only two equivalence
sets, those that had an outage and those that did not. We
start with a ranked list of feeders that has all the positive
examples at the top of the list and the negative examples at
the bottom.

Formally, let Dt be the distribution over X ×X where X
represents the set of all the positive and negative examples.
Suppose that x0 ∈ X and x1 ∈ X is a pair so that we
want x1 to be ranked higher than x0. At each iteration of
RankBoost, the distribution Dt is updated as follows:

Dt+1(x0, x1) =
Dt(x0, x1) exp(αt(ht(x0)− ht(x1)))

Zt
(3)

where Zt is a normalization factor chosen so that Dt+1 is
a distribution. If the parameter αt > 0, then this equa-
tion decreases the weight Dt(x0, x1) if ht gives a correct
ranking and increases the weight otherwise. This enables
Dt to concentrate on the pairs whose ranking is hardest to
determine.

4.3. Martingale Boosting

Martingale Boosting, also known as MartiRank, is a
boosting-style ranking algorithm invented by Long and
Servedio [14]. MartiRank combines several “weak learn-
ers”, or simple classification rules, each with low individ-



ual accuracy, into a powerful single model with high pre-
dictive accuracy. In our case, the weak learners are func-
tions defined by the ranking produced by sorting on a sin-
gle attribute. More precisely, MartiRank operates in sev-
eral rounds and greedily selects in each of its rounds the
attribute that is most correlated with the positive examples
(in our case outages) in the training data set. The algorithm
records the selected attribute along with the direction of its
sort (ascending or descending). Thus, in round t, it splits the
total data set into t sub-lists, on which it applies its greedy
attribute selection procedure; the list is partitioned so that
each sub-list contains the same number of positive exam-
ples. The trained model is used to obtain a susceptibility
ranking of the whole list of examples. This is achieved by
repeatedly sorting the list according to the attributes chosen
by the trained model.

4.4. Ranking Results

The results from feature selection (described in Section
3.4) suggest that the characteristics of data from different
regions vary significantly. For example, no one attribute
can be voted as the most important attribute in Tables 1 and
2. Similarly, Cable Length 2 seems to play a significant
role in ranking for Region A data, but this does not occur
in the top five feature lists for other regions. We hypothe-
size that the underlying processes leading to feeder failure
in each region are significantly different. This is also veri-
fied by domain experts, who proposed studying each region
independently.

Learning on regions separately was also suggested by
our SVM experiments(using SVM-Light [11]). Indeed, as
shown in the scatter plot of all the examples in Figure 6(a),
one can notice an agglomeration of Region A feeders within
a small range of negative score values (representing good
feeders). In fact, an SVM model trained for all regions was
unable to discriminate good from bad feeders in Region A,
leading us to do experiments on each region separately. Fig-
ure 6(b) shows Region A feeders along with the SVM mar-
gin that discriminates good from bad feeders.

We suspect the length of feeders to be the cause of Re-
gion A’s particular behavior: This region has much shorter
feeders in general, due to higher density of customers.
Within this distribution of feeders, length makes a large dif-
ference in the likelihood of failure, as extremely short feed-
ers are less likely to fail. This is reflected in the most impor-
tant attributes chosen by feature selection given in Table 1
where cable lengths appear among the top attributes for Re-
gion A. In contrast, even the shortest feeders in regions B
and C are quite long in comparison, and thus feeder length
has a less pronounced effect.

Training Data: We trained our models over a fixed 45-
day time window. For example, for the week of August
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(c) 7-day correlation coefficient
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(d) 15-day correlation coefficient

Figure 6. Top graphs: Scatter plot of August
13th data with SVM confidence margin for all
regions and just Region A. Feeders are or-
dered by region and serial id. Filled (resp.
empty) circles represent positive (resp. neg-
ative) examples. Lower graphs: Correlation
coefficients between pairs of learning meth-
ods for 7 and 15 days.
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(c) Martingale Ranking

Figure 7. ROC curves for all regions on 13th August, 2007 using RankBoost, SVM Score Ranker, and
Martingale Ranking

Algorithm Reg. A Reg. B Reg. C All
RankBoost 7d 0.6373 0.5777 0.6431 0.6247

RankBoost 15d 0.6163 0.5563 0.5855 0.6096
SVM 7d 0.6431 0.5700 0.6162 0.6562

SVM 15d 0.6277 0.5608 0.6108 0.6377
MartiRank 7d 0.5215 0.5092 0.5077 0.5715
MartiRank 15d 0.5423 0.5292 0.5331 0.5738

Table 3. Average AUC Values for RankBoost,
SVM and MartiRank in all regions over 7 day
and 15 day test periods

13th, 2007 our model is trained on data aggregated over
fifteen days prior i.e. from 30th July - 13th August, 2007.
In addition, we incorporate data from the previous year i.e.
from 30th July, 2006 - 27th August, 2006. This is because
the performance of the electrical grid is heavily dependent
on temperature fluctuations. Assuming weather fluctuations
follow similar trends over years, we expect to capture this
trend in our ranking models.

Each training data snapshot contains 237 attributes and
is an outage-derived data set (ODDS) described in section
3.2; the label is binary: 1 if the feeder had an outage other-
wise -1. We built the linear-kernel SVM2, RankBoost, and
Martingale Boosting models on this training data.

Test Data: In order to evaluate the performance of the mod-
els, we chose two test periods: 7 days and 15 days from
the date under consideration. Thus for the week of August

2An RBF kernel did not show improved performance.

13th, 2007 our 7-day test data contains all the outages that
occur during 13-20 August, 2007, and the 15-day contains
outages occurring during 13-27 August, 2007. We are in-
terested in testing whether feeders ranked high on the sus-
ceptibility ranking list actually failed.

Figure 7 presents the ROC curves obtained for the Rank
boost, SVM and MartiRank models in all regions for the
week of 13th August, 2007. The solid line represents an
AUC of 0.5 which can be achieved by a random ranking.
We tested the performance of the ranking models for June,
July, and August, 2007. For each regions, we present 7-day
and 15-day test results for RankBoost, SVM Score Ranker,
and Martingale Ranking. Figure 5(a), Figure 5(c), Fig-
ure 5(b) and Figure 5(d) present results for individual re-
gions and all regions combined. In order to quantify the
differences between the three ranking methods, we intro-
duced two metrics: (1) Performance Correlation (2) Aver-
age AUC. Performance Correlation is defined as the corre-
lation coefficient between the AUCs obtained from a pair of
ranking techniques. Figures 6(c) and 6(d) show the Perfor-
mance Correlation between RankBoost-SVM, SVM-Marti
and RankBoost-Marti for each region when combined to-
gether over summer. While Performance Correlation pro-
vides a metric of how well the model performed with re-
spect to another, we rely on the average AUC (Table 3) to
indicate which one has the best performance.
Our experiments revealed three interesting results:

1. For our application, the pairwise ranking model Rank-
Boost performs as well as an SVM score Ranker. Mar-
tiRank appears to perform worse than both RankBoost
and SVM score Ranker.



2. Prediction over 7 days appears to be better than 15
days since AUCs obtained are higher for the former.
This is probably due to the time sensitivity of dynamic
attributes. As weather and system load changes, the
models trained on outdated data become less accurate
at prediction.

3. The system seems to exhibit concept drift, and all the
algorithms agree on the time periods when such drifts
occur. For example, in the week of July 9th, there ap-
pears to be a sudden drop in AUC values in almost all
regions. We believe this is due to a change in underly-
ing behavior of the electrical grid.

In addition to these results, we observe that our ranking re-
sults for Region C are particularly inconsistent among the
different ranking techniques we used. We suspect this to
be because of the relatively few examples we can use for
training.

4.5. On the Detection of Concept Drift

The machine learning results presented so far use a sim-
ple batch mechanism. The ODDS dataset uses a current
snapshot of all the feeders, plus a time-shifted example for
every outage that happens during a fixed time window. We
were interested in detecting concept drift using SVMs. Con-
cept drift can be defined as a phenomenon that occurs when
the underlying distribution of the data changes over time.
So the models need to be able to track such changes, in or-
der to predict future events well.

Joachims presented a window-adjustment algorithm in
[13] to detect concept drift in a classification framework.
We adapted this to our ranking problem as follows: for each
time t, the algorithm trains an SVM using various window
sizes, first trying to predict with just the training data of
t−1, then with t−1∪ t−2, and so forth, extending further
and further back in time. The window size minimizing the
ξα classification error estimate (as described in Joachims
[13]) is selected. In our case, we select the window size
maximizing the AUC on the the predictions of t.

The goal of this experiment was to find out whether an
adaptively-sized window would potentially improve results
in our framework and possibly detect when concept drift
occurred. We considered a set of 35 independent, non-
overlapping datasets (called batches [13] ) of 7 days each,
from January through August 2007. The number of outages
per week ranged from 10 to 50. We tried to predict each
dataset t using up to 6 earlier datasets. The results are re-
ported in Figure 8 for C=0.05. Experiments with other C
settings are not reported here as they had very similar re-
sults.

Figure 8 compares the best AUC learned using a fixed-
size window of 7 days to the adaptive window scenario.

Clearly, adaptive window learning exhibits significantly
higher AUC than the fixed-size window. Figure 8 also
shows the window size chosen by the algorithm. Here we
can see some evidence for concept drift. When the opti-
mal window size drops to 1, we deduce that the system has
changed, as only new data is useful for prediction. The old
data no longer reflects the current status of the system and
is not helpful for learning. Concept drift seems to happen
several times in the range time of study.

In particular, drift seems to have occurred at the end of
March, the end of April and the last week of July. Note
that the system recovered quickly after the end of July, once
again successfully using data from before the apparent drift.
Thus the causes of failures seem to have shifted at that time,
and then changed back to their earlier state.

Detecting concept drift in our complex system is chal-
lenging and we plan in future work to address this issue
using SVMs, RankBoost and MartiRank.
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Figure 8. Lines above, with axis at left: Com-
parison of the maximum AUC obtained with
a fixed size window versus an adaptive size
window. Bars below with axis at right: Win-
dow size selected for each batch.

In the following section we present directions for future
work for the feeder susceptibility application.

5. Contributions and Future Work

The main previous work in the field of susceptibil-
ity ranking of electrical components is the Ranker for
Open-Auto Maintenance Scheduling (ROAMS) [8]. Our
approach, using simpler, non-ensemble machine learning
methods, differs from the ROAMS approach in several
ways. First, we present a comparative study of a pairwise
ranking algorithm (RankBoost), a classification score based
ranker (SVM score Ranker) and Martingale Boosting. Sec-
ond, our datasets are generated to address a number of prob-



lems. They address the rarity of positive examples (i.e.
feeder failures) described in Section 3.2; the difficulty of
capturing the state of dynamic features immediately before
outages happen; the integration of rankings of subcompo-
nents that make up the feeder such as cables and joints; and
the integration of weather-related attributes, which our do-
main experts believe to be a primary source of concept drift
in the electricity grid.

The application of feeder susceptibility ranking is a rel-
atively new one and there are several directions for future
work. For instance, in the data collection step, we are con-
stantly experimenting with new attributes which are desig-
nated useful by domain experts. These include attributes
pertaining to electrical characteristics and dynamic data re-
lated to feeders. Furthermore, since feeders are removed
or new ones added on a yearly basis, our attributes pertain-
ing to the physical characteristics of feeders also undergo
changes.

We also believe that good features are a key compo-
nent for good performance of machine learning algorithms;
hence we are working on using different algorithms for
combining subsets of features that produce the best AUC
values. One such approach that we are investigating is a
Wrapper-based multivariate feature selection scheme [10].
In addition, we hope to study different techniques of imput-
ing missing variables and aggregating time series data.

We have used SVM score Ranker, RankBoost and Mar-
tingale Boosting algorithms for the purpose of ranking. An-
other direction of future work involves developing theoret-
ical results for analyzing the effect of noise on the perfor-
mance of our models. This is particularly challenging since
modeling noise in real world data is a non-trivial problem
in itself. While most of our ranking techniques are based on
Boosting and SVM based techniques, we are also investi-
gating decision tree based ranking models such as Probabil-
ity Estimate Trees (PETs) [15] and their variants. Since our
preliminary results and domain knowledge indicate that the
system may experience concept drift, we hope to integrate
into our application algorithms that track and predict such
drift.
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