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Abstract. Dynamic contrast-enhanced 4-D MR renography has the potential for 
broad clinical applications, but suffers from respiratory motion that limits analysis and 
interpretation. Since each examination yields at least over 10-20 serial 3-D images of 
the abdomen, manual registration is prohibitively labor-intensive. Besides in-plane 
motion and translation, out-of-plane motion and rotation are observed in the image 
series. In this paper, a novel robust and automated technique for removing out-of-
plane translation and rotation with sub-voxel accuracy in 4-D dynamic MR images is 
presented. The method was evaluated on simulated motion data derived directly from 
a clinical patient’s data. The method was also tested on 24 clinical patient kidney data 
sets. Registration results were compared with a mutual information method, in which 
differences between manually co-registered time-intensity curves and tested time-
intensity curves were compared. Evaluation results showed that our method agreed 
well with these ground truth data.  

1 Introduction 

Single kidney glomerular filtration rate and split renal function can be measured by 
gadolinium-enhanced MR renography. Despite the fact that the kidney is a 3-D organ, 
most previous animal and clinical studies have been restricted to serial 2-D MRI data 
[1]. With three-dimensional magnetic resonance renography [2, 3], 3-D MR 
acquisitions are recorded repeatedly for at least 4 minutes after intravenous injection 
of a low dose of gadopentetate dimeglumine. In this context, image analysis of 
perfusion images aims to construct representative time-intensity curves from specified 
regions of interest such as the renal cortex, medulla, and collecting system. When 
patients cannot hold their breath reproducibly during perfusion data acquisition, 
accurate computation of time-intensity curves becomes complicated because of image 
misalignment over time. In an earlier study [2], three-dimensional registration and 
segmentation of all images were performed separately for each kidney by two 
investigators. For each case, manual registration and segmentation required 
approximately 2-3 hours at the workstation. For clinical applications, this workload is 
prohibitively time- and labor-intensive. Therefore, automated and semi-automated 
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image registration techniques to correct respiration motion are of great clinical 
interest. There has been little work related to the registration of dynamic renal 
perfusion MRI data in which registration in time series is restricted in 2-D plus time 
and in-plane motion only [1, 4, 5]. Automated full 3-D serial image registration 
remains an unsolved problem especially in the context of internal organs [6-9]. We 
propose a novel fully automated four-dimensional (3-D plus time) MRI renography 
registration framework based on wavelet and Fourier transforms (WTFT). First, a 
preprocessing of denoising is employed using edge-preserving anisotropic diffusion; 
secondly, an edge detection is implemented using a 3-D overcomplete dyadic wavelet 
expansion; thirdly, based on the previous edge images, a 3-D registration is applied 
using the Fourier transform; then an existing sub-voxel registration scheme, which 
was extended to 3-D, is used to refine the registration results. Our method was 
quantitatively evaluated by phantom studies as well as on 24 clinical data sets 
compared with manually registered ground truth. WTFT was also compared with an 
existing 3-D mutual information based registration method. 

2 Methodology 

2.1 Anisotropic Diffusion 
If edge detection is applied directly on the original serial 3-D images, the edges 
caused by noise prevent the registration process from achieving accuracy. Therefore, 
we needed to apply a denoising process before edge detection. Here, we have applied 
a computationally efficient denoising filter based on anisotropic diffusion previous 
developed by Duan et al. [10]. 

  
(a) (b) 

Figure 1. The effect of anisotropic diffusion comparison (coronal view): (a) original image; (b) 
processed image 

2.2 Wavelet Edge Detection 
Due to the gadopentetate dimeglumine perfusion process, intensities of serial images 
change with time, therefore, it is unreliable to use intensity images directly. Instead, 
we can use edge information which is preserved fairly well in the serial 3-D image 
volumes. Compared with gradient and 3-D Sobel edge detection, wavelet transforms, 
which can also be used for edge detection, provide smooth and strong edge detection 
results. One way of implementing a multi-dimensional discrete dyadic transform is to 
use a filter bank scheme with separable wavelet bases [11]. Since the research in this 
paper focuses on three-dimensional processing, we used a three-dimensional discrete 
dyadic transform. We selected the modulus at level 2 for registration. A comparison 
of the three different edge detection methods is shown in Figure 2. 
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Figure 2. A sample slice (coronal view) to compare different edge-detection methods: (a) 
gradient; (b) 3-D Sobel; (c) 3-D over-complete dyadic wavelet transform modulus. 

2.3 Fourier Based Registration 
Using edge images acquired from previous step, a 4-D registration framework was 
accomplished by considering the first frame the reference as a 3-D object; the 
following 3-D frames were registered to the first one. Our work utilized a 3-D motion 
correction method based on the Fourier transform. The procedure can lead to an 
unsupervised 3-D rigid body registration method. One of the benefits of the method is 
that it makes use of all available information instead of limited features from the 
images. This makes the procedure very robust. Let ( , , )f x y z be a 3-D volume data, 
and let ( , , )g x y z be a translated and rotated version of ( , , )f x y z , then 
 ( , , ) ( )g x y z f Rx t= +  (1) 
where 3t R∈ is a translation vector, and (3)R SO∈ is a rotation matrix. 
The three-dimensional Fourier transform is defined as:  

 2 [ ][ ( , , )] ( , , ) x y zj w x w y w zf x y z f x y z e dxdydzπ
∞ ∞ ∞

− + +

−∞ −∞ −∞

= ∫ ∫ ∫F . (2) 

According to the property of the Fourier transform, 
 2 [ ][ ]( , , ) [ ]( , , ) x y zj w x w y w z R t

x y z x y zg w w w R f w w w e π + +=F F  (3) 
and 
 [ ]( , , ) [ ]( , , )x y z x y zg w w w R f w w w=F F . (4) 
From above equations, we can see that the estimation of rotation has been decoupled 
from the estimation of translation. Thus the first estimation of R  should be 
implemented before the estimation of t . In three dimensional spaces, the rotation 
cannot be expressed in polar or spherical coordinates, in which case it would be 
reduced to a translation and be estimated by phase-correlation [8] as in the 2-D case. 
In other words, whereas rotation in 2-D space can be completely expressed by one 
angle, in order to represent a rotation in 3-D space, three angles are needed (Euler’s 
rotation theorem). Rodrigues’ rotation formula is adopted, which gives an efficient 
method for computing the rotation matrix 

(3)R SO∈ ( ( ){ }3 3 1(3) , ,det 1TSO R R R R× −= ∈ = = is a group of the 3-D special 
orthogonal matrices) corresponding to a rotation by an angle ψ ∈R about a rotation 

axis specified by the unit vector ω ω ω ω= ∈ 3( , , )x y z . Then R is given by 
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Since any unit vector in 3-D space can be expressed by two angles ( , )θ φ , the 
rotation axis unit vector can be calculated by three angles ( , , )θ φ ψ : 
 cos cos , sin cos , sinx y zω θ φ ω θ φ ω φ= = = . (6) 

Since the kidney is a fairly symmetric object in 3-D, if we use the same method in 
Lucchese’s work [7], which is mainly designed for binary images, the solution of the 
rotation axis is not unique because the intensity projection from different directions 
may be equal to the projection on the rotation axis. Furthermore, projection loses the 
information in the spatial domain, where the intensity profile along a fixed direction 
would provide extra information to find the rotation axis. Instead of three steps, in this 
context, only two steps were applied: rotation matrix, R , estimation and translation 
vector, t , estimation. 

Step1. Recovering the rotation matrix.  
By using the relationship between the Fourier transform magnitudes in equation(4)

and to avoid the effects of aliasing introduced by rotation to the energy minimization 
procedure, we use the energy term as  
 ( )2

[ ]( , , ) [ ]( , , )x y z x y z x y zE g w w w Rf w w w dw dw dw= −∫∫∫ F F  (7) 
and the optimum rotation axis and rotation angle can be recovered by 
 ( )

, ,
, , arg min E

θ φ ψ
θ φ ψ =  (8) 

The minimization problem in equation (8) can be efficiently solved by the Quasi-
Newton Method [12]. 

Step2. Recover translation vector.  
After the rotation estimation, the rotational version of f, Rf, is calculated. Thus, the 
translation vector can be easily recovered by a phase-correlation technique: 
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where * denotes complex conjugate and i denotes vector dot product. The inverse 
Fourier transform of the right-hand side of equation (9) is the Dirac impulse function. 
So the translation vector can be trivially found by finding the position of that impulse 
function. According to the rotation and translation estimation, an aligned image from 

( , , )g x y z to ( , , )f x y z can be denoted as ( , , )g x y z and ( , , )f x y z , whose spectrum are 

( , , )x y zF w w w and ( , , )x y zG w w w . 

2.4 Subvoxel Refinement in Frequency Domain 

Based on the integer voxel translation estimation and correction, a subvoxel refining 
process can be used to make more accurate registration results. A 2-D subpixel 
registration method put forward by Stone et al. [9] was extended to a 3-D framework 



in this article for the first time. The method requires integer voxel accuracy because it 
can only correct subvoxel misalignment.  

From the property of the Fourier transform,  
 0 0 0(2 / )( )

0 0 0[ ( , , )] x y zj N w x w y w zG f x x y y z z Fe π− + += + + + =F  (10) 
i.e. 
 0 0 0(2 / )( )/ x y zj N w x w y w zF G e π + += . (11) 
In other words, the phase of /F G should be a plane in the ( , , )x y zw w w space. 
Therefore, the subvoxel registration problem can be converted into a 3-D plane fitting 
problem, which can be solved by least square fitting. For any voxel in 
the ( , , )x y zw w w space, in theory, the following equation holds: 

 0 0 0( / ) (2 / )( )x y zphase F G N w x w y w zπ= + + . (12) 
Using matrix representation, the above equation is equivalent to  

 [ ]0 0 0
2 ( / )T

x y zw w w x y z phase F G
N
π ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ . (13) 

Equation (13) can be solved by pseudo inverse methods or singular value 
decomposition for the subvoxel translation vector [ ]0 0 0, , Tx y z . 

In both Fourier registration and subvoxel refinement process, a 3-D window is 
applied, which is recognized for eliminating the spurious introduction of high-
frequency spectral energy due to the boundary effects [9]. We tried Blackman, Hann, 
and Tukey windows (r=0.5, which is r is the ratio of taper to constant sections), and 
we found that Blackman window worked the best for this dynamic renal data. 
Although in some time frames, when contrast agent intake is maximum and kidney 
boundaries are not clear, inner structures and outside edges surround the kidney, such 
as part of liver edges, will help the registration process.    

3 Experiments and Results 

3.1 Simulated Clinical Study 

Based on a manually registered 4-D MR renography data set, a simulated data set 
with dimension [77 97 40 20] and voxel resolution 1.66mm x 1.66mm x 2.5 mm was 
generated by translating and rotating the kidney. Simulated motions included head to 
feet (HF) translation, left to right (LR) translation, anterior to posterior (AP) 
translation and rotation (Rot) with respect to three different axes, represented in terms 
of ( , , )θ φ ψ , where ( , )θ φ defined the axis of rotation; ψ  the angle of the rotation along 
that axis (Table 1).   

The estimated errors in translation and rotation are shown in Figure 3. Translation 
estimation errors were lower than 1.4 voxels in all the directions with mean value 
0.53± 0.47, 0.51±0.46, and 0.60±0.41 in x, y, and z direction respectively; for 
rotation, except for one case, the errors in the two angles representing the rotation axis 
were less than 0.5 degrees, and the errors in rotation angle were less than 2.5 degrees 
with mean value 0.003±0.003, 0.07±0.26, and 1.14±0.72 degrees in ( , , )θ φ ψ .  



Table 1 Simulated Motion for Each Time Frame (T) 
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Figure 3. Clinical phantom study results: (a) translation error; (b) rotation error. 

3.2 Clinical Evaluation  

In order to evaluate the performance of our algorithm (WTFT) clinically, our 
algorithm was applied to 12 clinical patient datasets (24 kidneys in total), with manual 
registration and segmentation as ground truth. All datasets consisted of at least 41 3-D 
acquisitions, where each 3-D dataset comprised 40 interpolated partitions of 2.5 mm 
thickness, with inplane matrix of 256 and inplane voxel size 1.66 x 1.66 mm. After 
registration, the cortex, medulla, and collecting system were differentiated by 
applying manual segmentation labels on the first frame, assuming following frames 
were been correctly registered. The time-intensity curves of cortex, medulla, and 
collecting systems were calculated based on manual registration treated as ground 
truth and our automatic registration method. As a comparison, the time-intensity 
curves based on Viola-Wells Mutual Information (MI) [13, 14] were also calculated. 
In Figure 4, results from the three registration methods are shown for each kidney 
structure. Qualitatively, time-intensity curves based on WTFT registration are much 
closer to the ground truth than MI. To quantitatively evaluate the performance, root 
mean squared (RMS) relative errors of time-intensity curves between automatic 
registration methods, WTFT or MI, and ground truth were calculated and are shown 
in Figure 5. From the box-plot, the relative errors based on our WTFT method are 
much smaller than the MI methods in terms of average and standard deviation of 
RMS measurements. However, we note that both automated registration methods 
performed best for cortex but lower agreement for the collecting systems. The average 
errors for cortex, medulla and collecting systems in WTFT method were 
3.24%±1.41%, 5.31%±2.19%, and 8.23%±3.35% respectively for the left and 
3.99%±2.23%, 5.67%±4.13%, and 9.26%±5.94% for the right. Evaluation of the 
statistical differences of results from the two registration methods was performed at 
the significance level 0.05 with a Wilcoxon signed rank test for paired data. 

T Motion T Motion T Motion 
1 Baseline 8 LR(-1.66mm)+(90,0,5) 15 HF(3.32mm) 
2 AP(-2.5mm)+(0,90,-9) 9 AP(2.5mm) 16 AP(5.0mm) 
3 LR(3.32mm)+(90,0,-2) 10 Baseline 17 Baseline 
4 HF(6.64mm) 11 HF(1.66mm) 18 HF(-4.98mm) 
5 (0,0,-4) 12 HF(-1.66mm) 19 Baseline 
6 HF(-6.64mm) 13 Baseline 20 LR(-4.98mm) 
7 Baseline 14 LR(6.64mm)   



Significance values for the three tissue types for each pair of registration methods are 
reported in Table 2. Small p values (below 0.0005) indicate a significant statistical 
difference between the methods. From box plot, we can see WTFT had lower mean 
and smaller standard deviation compared with MI, so WTFT statistically performed 
better than MI. 
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Figure 4. Average intensity curves for one of the data sets using manual registration, WTFT, 

and mutual information registration. 

Table 2 Significance values for Left and Right cortex, medulla and collecting systems for pairs 
of two methods. 

Left Kidney Right Kidney P Cortex Medulla CollSys Cortex Medulla CollSys 
WTFT/MI <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 
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(a) (b) 

Figure 5. Boxplot for RMS evaluation of the time-intensity curves generated from WTFT (A) 
and MI (B) methods. ‘ct’ stands for cortex; ‘md’ stands for medulla; ‘cs’stands for collecting 

system. (a) left kidneys, (b) right kidneys. 

4 Conclusion 
In this paper, we proposed a novel fully automated four-dimensional MRI renography 
registration framework based on over complete dyadic wavelet and Fourier transform 
(WTFT), which was tested in terms of automation, robustness, and accuracy. 



Simulated motion studies and clinical evaluation studies were used to evaluate the 
new method. Comparison between different edge detection methods and comparison 
between WTFT and mutual information (MI) were performed to illustrate the 
effectiveness of the proposed scheme. An edge-preserving anisotropic diffusion 
operator was also introduced as a denoising method. Experimental results showed 
accurate registration results when compared to manual registration, by expert 
radiologists. 
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