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Abstract. In this paper a novel approach for the registration and segmentation 
of dynamic contrast enhanced renal MR images is presented. This integrated 
method is motivated by the observation of the reciprocity between registration 
and segmentation in 4D time-series images. Fully automated Fourier-based 
registration with sub-voxel accuracy and semi-automated time-series 
segmentation were intertwined to improve the accuracy in a multi-step fashion. 
We have tested our algorithm on several real patient data sets. Clinical 
validation showed remarkable and consistent agreement between the proposed 
method and manual segmentation by experts.  

1   Introduction 

Four dimensional dynamic contrast enhanced renal magnetic resonance (MR) imaging 
is increasely used to assess renal functions. This noninvasive and safe procedure is 
based on renal T1-weighted imaging acquired during 5-10 minutes after intravenous 
injection of a low dose of gadopentetate dimeglumine. For each kidney, the signal 
intensity can be measured in intrarenal compartments (cortex, medulla, and collecting 
system) and combined with arterial input function, used to compute the renal blood 
flow, blood volume, single kidney glomerular filtration rate (GFR) and other 
functional parameters in vivo [1]. Dynamic MR renography has broad clinical 
applications, but it requires an extensive image analysis that is complicated by 
respiratory motion. Since each examination yields at least 10-20 serial 3D images of 
the abdomen, manual registration and segmentation are prohibitively labor-intensive. 
Therefore, automated and semi-automated image registration and segmentation 
techniques to analyze dynamic MR renography are of great clinical interest.  

1.1   Kidney Segmentation 

The challenging part for dynamic contrast enhanced image segmentation is that when 
contrast agent wash-in and wash-out ocurrs, image intensity values change rapidly as 
the time series evolves. Of course poor kidney function or stenotic vasculaturemay 
prevent the uptake of contrast agent, resulting in disjoined bright regions. Accurate 
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and continuous boundary delineation is not always feasible. Moreover, the contrast 
agent can also wash into neighbor tissues, such as the spleen and liver.  

Basically, kidney segmentation techniques can be divided in two basic categories: 
spatial or temporal. In the spatial approach segmentation is performed separately at 
each time point [2, 3]. Temporal or vector segmentation considers each voxel’s 
intensity time course as a vector and classifies the tissues according their different 
features and behaviors occurring in the temporal domain [4-7].   

Because the passage of contrast needs to be observed for several minutes over 
multiple breath-holds, dynamic imaging is affected by respiratory motion. Clearly the 
accuracy of kidney segmentation will strongly depend on robust registration over 
time.  

1.2   Kidney Registration 

There has been limited work related to the registration of dynamic MRI data 
applicable to the abdominal region. These methods include mutual information (MI) 
[5], contour and template matching based methods [7-10], and phase correlation [11]. 
Prior work was restricted to either in-plane 2D motion or 3D translation only. The 
proposed automated method is more general and it corrects for both rotation and 
translation motion in 3D.  

Without kidney contour segmentation, time series image registration is 
challenging. Therefore, for dynamic perfusion images, segmentation and registration 
presents the well-known dilemma of “chicken and egg”. Next we show that when the 
two methods are integrated and implemented alternatively, the overall performance is 
improved.  

2   Methodology  

With this synergy in mind, a computer-aided integrated method was developed to 
cross thread image registration and segmentation processing of dynamic 3D MR 
renography. The flowchart of our method is shown in Fig. 1. The diagram shows the 
specific modules of interlacing registration and segmentation procedures used to 
improve overall performance of the integrated system. Similar ideas can be found in 
[7], where rough registration, segmentation, and fine registration were performed 
respectively.  



 

Input cropped 4D Data 

3D Anisotropic Diffusion (Step I) 

3D Wavelet Edge Detection (Step II) 

4D Fourier Based Registration (Step III) 

4D Subvoxel Registration (Step IV) 

4D Segmentation (Step V) 

4D Refined Registration and Segmentation 
for intrarenal structures (Step VII) 

Refined Segmentation for Whole Kidney (Step VI) 

Fig. 1.Flowchart of proposed integrated algorithm showing intertwining of processing modules. 

2.1   Preprocessing and Rough Registration (Steps I-IV) 

Given a 4D MR renography data set, after cropping kidney out of the whole body 
images, 3D anisotropic diffusion with time-varying gradient threshold was applied to 
suppress noise as well as preserve image features. Then, a 3D over-complete dyadic 
wavelet expansion was applied and the modulus of wavelet coefficients from the 
detail channel at the 2nd level served as robust edge information. These representations 
were fed into the next step, rough 4D registration. The rough 4D registration utilized a 
Fourier-based method to provide a robust estimation with voxel-wise accuracy for 
translation and rotation between each frame. Rotation and translation processing were 
separated by the Fourier Transform. The rotation between each frame was recovered 
by minimizing following energy function 
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and the optimum rotation axis and rotation angle was recovered by 
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The minimization problem in equation (1) can be efficiently solved by the Quasi-
Newton Method [12]. This was the first time that 3D rotation issue was addressed in 
4D MR renography image processing techniques.  

Next, the translation vector was estimated by a phase-correlation technique  
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where R stands for the rotation matrix and  stands for 3D Fourier Transform. F
To improve the registration accuracy, a 3D subvoxel registration method, extended 

from the work of Stone, et al [13] to three-dimensional gray-scale images in [14], was 
applied. By using phase properties of the Fourier transform, estimation for sub-voxel 
registration can be modeled as a classical linear fitting problem of the following 
system: 
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which can be solved by pseudo inverse methods or singular value decomposition for 
the subvoxel translation vector [ 0 0 0, , T]x y z .  For details of the preprocessing and 
rough registration steps, please refer to our previous work [14]. 

2.2 4D Time-Series Segmentation (Step V) 

The temporal pattern of contrast uptake is a strong feature to distinguish kidney 
tissues from surrounding tissues as well as to differentiate different intrarenal tissues. 
Due to differences invasculature, filtration, and reabsorption, different tissue of 
interest enhance at different phases of the acquisition. For example, in a normal 
kidney, the peak uptake in the cortex occurs about 30 seconds after injection, in the 
medulla at 2-3 minutes, and in the collecting system at 4-6 minutes. In order to utilize 
the temporal information, a normative template pattern was constructed for the 
background and three renal tissues (cortex, medulla, collecting systems). Then the 
mean temporal dynamics for each class was derived for further temporal resolution. 
Thus the time-series segmentation algorithm is based on minimization of the 
following energy functional 
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where 
nCTD  denotes the normative temporal dynamic pattern of tissue . In 

equation 
nC

(5), v presents for a voxel belonging to class Cn.  The function dis stands for 
the Euclidean distance in T-dimensional vector space, where T is the total number of 
frames in each 4D series; TD(v) stands for the temporal dynamics for voxel v. After 
this step, rough segmentation for each tissue of interest was generated. 

2.3   Refined Segmentation for Whole Kidney Volume (Step VI) 

In order to reduce errors resulting from initial registration and segmentation, 
additional registration and segmentation steps are applied. The initial mask for the 
whole kidney was generated by combining the segmentation results for the cortex, 
medulla, and collecting system from the previous step.  A narrowband mask 
containing voxels apart from the initial boundary of the whole kidney within ±3 



voxels distance range was generated for each frame. Then, within this mask, a refined 
kidney boundary for each frame was segmented using the methods described in [15]. 

2.4 4D Refined Registration and Segmentation for Intrarenal Structures  
(Step VII) 

After the segmentations for the kidney boundaries were refined for each frame in the 
previous step, the binary images series of the kidney shell was used for calculating the 
refined parameters for registration, i.e. translation and rotation, using the binary 
version of the Fourier-based registration method with sub-voxel accuracy proposed in 
[14]. After the image series was realigned using the refined registration step, an 
additional temporal segmentation similar to the method used in Step V was applied to 
segment the intrarenal tissues of the kidney. 

2.5   Clinical Evaluation 

The above procedure was first tested on 16 pairs (object image and target image) of 
kidney contours (four subjects, four pairs of volumes) that represented small, medium 
and large (<1mm, 1-5mm, and >5mm) degrees of kidney motion. The images were 
selected from MR examinations of four subjects with renal insufficiency. An expert 
observer manually traced kidney contours to provide registration ground truth to 
evaluate the performance of the automated registration. Coordinates were defined as: 
x = head to feet, y = left to right, z = anterior to posterior). Conventional rotation 
angle parameters were expressed in degrees (θ, φ, ψ).  

The proposed method was then evaluated on 4D MR renography data sets from 
four patients with 41 time phases per kidney, with manual segmentation and 
registration performed by two M.D. experts in body radiology. Manual segmentations 
of the cortex, medulla and collecting system were used as the reference standard to 
identify segmentation overlap and volume evaluation. All translation results were 
expressed in voxels and an absolute voxel size (1.66, 1.66, 2.5) mm was used 
throughout the study.  

3   Experiments and Results 

Fig. 2 shows coregistration erros derived from 16 pairs fo images. The mean value of 
rough translation errors were [0.5344, 0.6390, 0.1508] voxels; the mean value of 
refined translation errors were [0.2416, 0.5540, 0.1292] voxels. Rotation errors were 
mainly from the third parameter ψ, which is the rotation angle. Averaged rotation 
errors were [0.0000, 0.0003, -0.6630] degrees, which represents rotation in the sagittal 
plane. It was also shown that the refinement in registration improved the accuracy in 
the final alignment. 



 
Fig. 2. Distribution of errors in 3D translation and rotation. 

On the four patient data sets, segmented volumes of intrarenal regions were 
calculated and compared with experts’ results which are shown in Fig. 3. Since the 
computer-based method excluded the dark boundaries around kidney from the cortex 
whereas experts tended to include them, our method yielded consistent under-
segmentation compared to manual segmentation for the cortex; for the medulla and 
collecting system, our method was comparable to manual segmentation. Computer 
aided segmentation results and experts’ segmentation are illustrated at different time 
frames in Fig. 4. A 3D visualization of the registration results based on manually 
segmented ROIs and computer calculated results are also shown in Fig. 5 to illustrate 
the misalignment before registration and alignment after registration using manual 
segmentation or the computer-based method.  

 

 
Fig. 3. Volumes of cortex, medulla and collecting system on four patient’s data from 1 to 4. (a) 
and (b) are volumes from our two experts, and (c) are volumes from our automated method. 

 
 

1 a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c
0

50

100

150

200

250

V
ol

um
e 

(c
c)

Volume Stack Plot

Cortex
Medulla
CollSys

X Y Z
-3

-2

-1

0

1

2

3

V
ox

el
s

Translation Errors

X Y Z
-3

-2

-1

0

1

2

3

V
ox

el
s

Refined Translation Errors

Theta Phi Psi
-3

-2

-1

0

1

2

3

D
eg

re
es

Rotation Errors



 
(1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c) 

Fig. 4. Segmentation results for three different time points 1~3 on one patient. (a) and (b) are 
segmented ROIs from two experts; (c) is the final segmentation from proposed algorithm, 
which shows great agreement with manual results. Green is cortex; red is medulla; blue is 
collecting system. Color labels are transparently displayed over the original gray images. 

(a) (b) (c) 
 

Fig. 5. Illustration of typical registration results for two different time points: (a) original 
position (b) registered image using manual binary ROIs, and (c) registered images using our 
algorithm on gray-level images. 

4   Conclusions 

In 4D (3D plus time) MRI renography, manual alignments and delineation for each 
4D dataset usually requires approximately 3-4 hours of a radiologist time at a 
workstation per case. This remains prohibitively costly and labor-intensive for 
practical clinical use. In this paper, we proposed a novel four-dimensional MRI 
renography registration-segmentation framework. The strength of the algorithm are in 
the integration of image segmentation and registration, which improved the overall 
performance of analysis.  The proposed method was quantitatively evaluated on 
several real patient data sets, which yielded accurate and robust results. Refined 
average translation errors were almost less than half of a voxel; averaged rotation 
error was within one degree. Therefore, the proposed image registration and 
segmentation algorithm appears suitable for automated analysis of clinical MR 
renography data. 
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