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ABSTRACT

In this paper, we establish a mathematical connection between dyadic-wavelet--based contrast
enhancement and traditional unsharp masking. Our derivation is completely based in the discrete
domain. These findings may provide a better theoretical understanding of these algorithms, and
facilitate the acceptance of multiscale enhancement techniques applied to medical imaging.

1. INTRODUCTION

Recently, researchers have used wavelet analysis as a tool for image enhancement, including
mammographic images and other medical imaging modalities [1, 2, 3, 4, 5, 6, 7]. However, the
connection between these new appoaches and previously known schemes, as well as the relative
advantages of emergent methods of wavelet processing remains open. A rigorous comparative study
may allow us to identify possible redundancy within existing techniques. Lame et al [11] laid bare
the connection between dyadic-wavelet-based enhancement and traditional unsharp masking, but
their proof was in the continuous domain. In this paper, such a connection is proved rigorously
based on discrete formulas.

2. REVIEW OF UNSHARP MASKING

Unsharp masking is a traditional image enhancement method currently used in radiology and
other more general image processing applications. Its original definition [8] (in 1-D) is

s(x) = s(x) —

where = L is the 1-D Laplacian operator. In its discrete form, the Laplacian operator can be
written as

s[i] = s[i +1] — 2s{i] + s[i —1] = —3 {s[i] — (s{i +11+ s[i] + s{i — i])}.
The above formula shows that the discrete Laplacian operator can be implemented by substracting
from the value of a central point its average neighborhood. A more general form of unsharp masking
[9] can thus be written as

[i] = s[i] + k {s[i] — s[i] * h[i]} (1)
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where h[i} is a discrete averaging filter, and * denotes convolution.

3. A LINEAR ENHANCEMENT

3.1. Discrete One-dimensional dyadic wavelet transform

A block diagram of a 1-D discrete dyadic wavelet transform (DDWT) is shown on Figure 1.

Figure 1: A three-level discrete dyadic wavelet transform (forward and inverse).

However, the structure shown in Figure 1 is equivalent to the multi-channel system shown in

Figure 2,

Figure 2: An equivalent multi-channel structure for a three-level DDWT.

where the filters H(w), G(w) and K(w) satisfy condition

H(w)2 + G(w)K(w) = 1. (2)

The equivalent forward filters for this system are

rn—i

Fo(w) = G(w), Frn() = II H(21w) G(2mw), 1 m N —1,
1=0

FN(w) = II H(21w).
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and the equivalent inverse filters are

rn—i

Io(w) = K(w), Irn() fJ H*(21w) K(2mw), 1 m N —1,
1=0

N—i

IN(W) = ;g H*(21w).

In respect of condition (2), >Fi(w)Ii(w) = 1.

3.2. Linear enhancement by applying uniform gains.

In this case, transform coefficients within channels 0 m N — 1 are enhanced (multiplied)
by the same gain factor G0 > 1, or Grn G0 > 1, 0 m N — 1. Thus, the system frequency
response may be written as

N—i

V(w) = EGrnFrn(W)Irn(W)+FN(W)IN(W)
rn=0

N
= G0 Frn()Irn() — (G0 — l)FN(w)IN(w)

rn=0

= G0 — (G0 — l)FN(w)IN(,)
= 1+(Go—1)[1—FN(w)IN(w)]

or,
V(w) = 1 + (G0 — 1) [1 — FN(w)IN(w)} . (3)

For an N-channel system,

N—i N—i 2

FN(w)IN(w) = fJ H(2'w) = [II H(2lw)]

We now consider an extended class of filters that was originally introduced by Mallat et al [10]
for edge detection,

I fw\121)H(w) = &2
[cos t-)j

where p = 0, or 1. For this class of filter, it is not difficult to prove

rn—i rn—i 2n+p
2rn—i 2n+p

II H(2'w)D = [n cos(21iw)] = [.)]
and therefore,

sin(2rw) 2(2n+p)
FN(W)IN(W) = [2Nsin()]
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Figure 3: (a) 0(w) with n = 1, N = 2,p = 0 compared with a Gaussian function 62.8w2
( b) e(w) with n = 1, N = 2,p = 1 compared with a Gaussian function 63.8w2,

Thus, Equation (3) may be written as

I sin(2N_lw)
4Th+2P

V(w)=1+(Go—1)11— 2Nsin()
Furthermore, if we let

sin(2N_lw) 4n+2p
®(w)=

2Nsin()
then the input—output relationship of the system is simply

,[n] = s[n} + (G0 — 1) {s[n] — s[n] * O{n]} . (4)

The equivalency of this scheme to unsharp masking is apparent by comparing the terms in
Equation 4 to Equation 1. The filter e(w) is a low-pass filter, that approximates a Gaussian, as
shown in Figure 3. However, as shown in [8], a centrally weighted average is better in preserving
resolution than that of even-weighted averaging [9].

4. DISCUSSION AND CONCLUSION

We have proved that linear enhancement with uniform gain factors applied to discrete dyadic
wavelet transform coefficients is equivalent to traditional unsharp masking. Although wavelet ap-
proaches may have an advantage in terms of efficiency, we suggest that simply applying uniform
gain across all channels does not exploit the full advantage of multiscale analysis and its properties.
In addition, we suggest that some other variations, such as applying uniform gain to all edge pixels
as proposed in [6], may also exhibit properties similar to unsharp masking.

Future work shall include the design of non-linear enhancement schemes [5, 11] for enhancement

of radiographic images, and stratagies for adaptive filtering.
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