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ABSTRACT

An approach for speckle reduction and feature enhancement under a framework of multiscale wavelet analysis is
presented. The advantages of both soft thresholding and hard thresholding wavelet shrinkage techniques are utilized
to eliminate noise and preserve the sharpness of salient features. We integrate a method of wavelet shrinkage with
nonlinear processing to enhance contrast within structures and along object boundaries. Feature restoration and
enhancement are accomplished by modifying the gain of a signal's variational energy. In this study, we focus on
multiplicative noise, such as speckle noise. We show that this algorithm is capable of enhancing features of interest,
such as endocardial and epicardial boundaries in 2-D short-axis echocardiograms while at the same time reducing
speckle.

Speckle is modeled as multiplicative noise, and approximated by additive stationary Gaussian white noise on a
logarithmic scale. In our algorithm, shrinkage of wavelet coefficients via soft thresholding within finer scales is carried
out on coefficients of logarithmically transformed echocardiograms. Nonlinear feature emphasis combined with hard
thresholding within middle levels of transform space is performed subsequently on wavelet coefficients. The first
operation reduces speckle while the second step accomplishes structure and object boundary enhancement.

Preliminary results suggest that the algorithm can remove speckle noise and enhance contrast along boundaries
of importance to cardiologist. We have applied this algorithm to echocardiograms of varying quality, and present
both experimental analysis and sample results.

Keywords: wavelet transform, wavelet shrinkage, feature emphasis, speckle reduction, contrast enhancement

1. INTRODUCTION

Signal and image degradation by noise and artifacts is a phenomena of acquisition in the real world. Different
image modalities exhibit distinct types of degradation. Radiographs often have low contrast while images formed
with coherent energy, such as ultrasound, suffer from speckle noise. Image degradation can have a significant impact
on human interpretation and the development of computer-assisted methods. Noise and artifacts often make feature
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extraction, analysis, recognition, and quantitative measurements algorithms unreliable. In this paper, de-noising
and feature enhancement techniques are proposed to assist in the reliability of image processing algorithms for
quantification.

Formation of images using coherent waves results in a granular pattern known as speckle. The granular pattern
is correlated with the surface roughness of an object being imaged. Goodman'° presented an analysis of speckle
properties under coherent irradiance, including laser. The primary differences between laser and ultrasound speckle
were pointed out by Abbott and Thurstone1 in terms of coherent interference and speckle production. For speckle
reduction, earlier techniques include temporal averaging,'0" median ifitering, and homomorphic Wiener filtering.'3
Similar to temporal averaging, one speckle reduction technique23 uses frequency and/or angle diversity to generate
multiple uncorrelated synthetic-aperture radar images which are summed incoherently to reduce the speckle. Ho-
momorphic Wiener filtering is a method which converts multiplicative noise into additive noise and applies Wiener
low-pass filtering to reduce noise. In [12], a coherent image was decomposed into three components, one of which,
called subresolvable quasi-periodic scatter, causes speckle noise. The component was eliminated by a harmonic
analysis algorithm. In [11], a wavelet-based method for speckle reduction was reported, but is distinct from the
homomorphic approach described here. An algorithm22 based on the maximum-likelihood principle and a wavelet
regularization procedure for the logarithm of a radar image was also developed to reduce speckle. In the last two
decades, many image enhancement methods have been developed and reported in the 1iterature.'16"9 Specifically,
various spatial and frequency-based techniques4"3'8"7 have been developed for ultrasound image enhancement. A
method called statistical enhancement9 uses the local standard deviation of a surrounding region centered around
each pixel to replace its value to enhance edges in ultrasound images.

De-Noising and feature enhancement appear to be two conflicting objectives. The purpose of de-noising is to
eliminate noise in high frequency while methods of feature enhancement attempt to enhance high frequency signal
details. The difference is that features often have a wider frequency band than noise. It is even more difficult to
achieve both objectives when signal details are corrupted by noise. Traditional spatial- and filtering-based methods
for de-noising often reduce noise at the price of blurred features while single-scale conventional methods for feature
enhancement may amplify noise. In our approach, we achieve de-noising and feature enhancement under a framework
of multiscale wavelet analysis. We seek to eliminate noise while restoring or enhancing salient features. A discrete
dyadic wavelet transform (DWT) with a first order derivative of a smoothing function as its basis wavelet can separate
feature variational energy (VE) and noise YE in a wavelet domain reasonably well. The objectives of de-noising and
feature enhancement can be achieved by simultaneously lowering noise YE and raising feature YE through judicious
nonlinear processing of wavelet coefficients (WC) in the transform domain.

The organization of this paper is as follows. Section 2 presents the methodology for our de-noising and feature
enhancement algorithm. It includes speckle noise modeling, finite-level discrete dyadic wavelet transform and its
implementation based on two-level recursive relations. It also includes wavelet shrinkage for noise reduction, nonlinear
feature emphasis for contrast restoration and enhancement, and the complete algorithm. In Section 3, we present
experimental results and analysis. A study of clinical images has been conducted to test the effects of de-noising on
the consistency and reliability to manually defined borders by expert observers. Quantitative measurements show
that borders defined by experts on de-noised echocardiograms are more consistent than those on the corresponding
speckled echocardiograms. Statistical results are also presented. For how these echocardiographic sequences were
acquired, see reference.24 Section 4 concludes the paper and suggests some future directions of research.

2. METHODOLOGY

Its non-invasive nature, low cost, portability, and real-time image formation make ultrasound imaging an attractive
means for medical diagnosis, especially in cardiology. One of the limitations of ultrasound images is speckle noise.
Speckle reduction remains a difficult problem due to the lack of reliable models to estimate noise. Speckle under
different imaging media, such as laser, radar, or ultrasound, may look slightly different. However the granular pattern
in each of these is produced by coherent interference related to the roughness of object surfaces. An approximate
speckle noise model'3 is formulated here without temporal averaging. We apply the approximate speckle noise model
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under a framework of multiscale wavelet analysis for speckle reduction and feature enhancement in echocardiographic
images. By incorporating a feature enhancement mechanism into a de-noising process, we are able to not only reduce
noise, but also restore features. Since we are interested in image noise reduction and feature enhancement, the
problems of de-noising and enhancement are directly formulated in two-dimensions.

2.1. Approximate speckle noise model

Jam'3 presented a model for speckle noise as

f(x,y) =g(x,y)i(z,y), (1)

where g(z, y) is an unknown 2-D function, such as a noise-free original image, to be recovered, f(x, y) is a noisy
observation of g(z, y), Tjm(X, y) is multiplicative noise, x and y are the variables, such as spatial locations, and
(z, y) E R2. To separate the noise from the original image, we take a logarithmic transform on the both sides of
(1) and approximate im(X,y) in a log scale as additive Gaussian white noise. We now have option to apply various
multiresolution representations for additive noise reduction. Jam showed a similar homomorphic approach'3 for
speckle reduction of images of stationary and undeformable objects through temporal averaging or homomorphic
Wiener filtering. The dynamic deformable nature of echocardiograms through time prevents us from getting the
same status of the left ventricle for multiple frames. Since we treat noise and features differently, we are able to
accomplish a superior result than de-noising alone algorithms.

2.2. Discrete dyadic wavelet transform

A dyadic wavelet transform was first presented by Mallat and Zhong2° and has been a useful tool in various
application areas, such as data compression, edge detection, texture analysis, noise reduction, and image enhance-
ment. In general, a finite-level discrete dyadic wavelet transform of a 2-D discrete function f(m, n) E L2(Z2) can be
represented as

W[f(m,n)] = {(Wf[f(rn,n)])d=l,2,l<,<J, Sj[f(m,n)J} (2)
where WJ[f(rn, n)] is some wavelet coefficient at scale 2' (or level j), position (in, n), and spatial orientation d (1
for horizontal and 2 for vertical), Sj [f(m, n)] is a coarse scale approximation at the final level J at position (m, n).
d = 1, 2 represent horizontal or vertical spatial orientation. (Wf[f(m, n)])2 is typically referred to as part ofa signal's
energy. W,[f(m, n)] reflects a signal's variation when a basis wavelet is the first-order derivative of a smoothing
function.20 The local maximaof WJ[f(m, n)} in terms ofmagnitude corresponds to sharp variation points in an image
while the minima of Ii'f[f(m,n)JI indicate slow intensity variation. Thus we describe (Wf{f(m, n)])2 as a signal's
variational energy (yE). The finite-level dyadic wavelet decomposition in (2) forms a complete representation for a
J-level dyadic wavelet representation. For a particular class of 2-D dyadic wavelets, such as the first order derivatives
of spline smoothness functions, Mallat and Zhong2° showed that the finite-level direct and inverse discrete dyadic
wavelet transform of a 2-D discrete function can be implemented in terms of four FIR filters, H, G, K, and L. The
dyadic wavelet decomposition in (2) can be formulated in terms of the following recursive relations between the two
levels j and j + 1 in the Fourier domain as

= G(2w)$j[f(w,w)}, (3)

TAT2 r;t \1 — "2' \('.If( \1 and (4'- "yJ 3LJ'"Z,yJJ,

j+i[f(i,w,)J = H(2'w)H(2'w)S [f(c, (5)

where j � 0, and o [f(w, ] =J(,wy). The reconstruction Wy)] from a dyadic wavelet decomposition
can be implemented through the inverse process of the above recursive decomposition. The DWT decomposition
and reconstruction based on the above recursive relations are shown schematically in Figure 1.

2.3. Wavelet shrinkage and feature emphasis

After converting multiplicative noise into additive noise through a log homomorphic transform, we apply vari-
ous new-emerging de-noising techniques7'6'2'3"8'2' to eliminate noise. We also apply methods of contrast enhance-
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ment14'19'15'16 to enhance cardiographic features. To achieve both objectives, we need (1) a representation which
can separate features from noise and (2) effective de-noising and feature enhancement techniques. In this paper,
we have investigated hard thresholding and Donoho's soft thresholding wavelet shrinkage for speckle reduction on a
logarithmic scale. An advantage of soft thresholding is that it provides smoothness while hard thresholding preserves
features. In our approach, we take advantage of both thresholding methods. Donoho's soft thresholding method6 was
developed on an orthonormal wavelet transform,5 with Daubechies's Symmlet 8 basis wavelet. Previous de-noising
results have shown some undesired side-effects, including pseudo-Gibbs phenomena.3 By using DWT and an anti-
symmetric basis wavelet without any oscillations, we are relatively free from such side-effects after de-noising. Our
experiments show that a DWT with a first-order derivative of a smoothing function as its basis wavelet can separate
feature VE and noise VE in the transform domain reasonably well.

2.3.1. Wavelet shrinkage by soft thresholding

A soft thresholding6 operation can be represented as

u(x) = T(v(x),t) = sign(v(x)) (Iv(x)I — (6)

where the threshold parameter t x o noise level, x E D, the domain of v(x), and u(x) is the result of soft thresholding
and has the same sign as v(x) if non zero. DWT coefficients can be modified for noise reduction through this
operation. Donoho's method of soft thresholding uses a single global threshold. Since noise coefficients within a
DWT have average decay through fine-to-coarse scales, we regulate soft thresholding wavelet shrinkage by applying
coefficient dependent thresholds at distinct scales.

2.3.2. Feature emphasis by generalized adaptive gain

Adaptive gain nonlinear processing'4'6 has been successfully used to enhance features in digital mammography.
Here, adaptive gain nonlinear processing is generalized to incorporate hard thresholding to avoid amplifying noise
and remove small noise perturbations within middle scales. A generalized adaptive gain (GAG) nonlinear operator
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is defined as

10 IvI<Ti
EGAG(V) = 4 sign(v)T2 + — b)) — sigm(—c(u + b))) T2 < lvi � T3 (7)

( V otherwise

where v E [—1 1J, a a(T3—T2), u sign(v)(Iv —T2)/(T3 —T2), b E (0 1), 0 T1 T2 < T3 1, C IS a gain factor,
and a can be computed as

.
1

a —
sigrn(c(1 — b)) — sigm(—c(1 + (8)

sigm(v) =
1+1e::v• (9)

EGAG(V) is simply an enhancement operator, and T1, T2, and 1'3 are selected parameters. When T1 =T2 = 0 and
Th = 1, the formula is equivalent to a previous adaptive gain nonlinear operator.14'6 The interval {7'2, 1'3J serves as
a sliding window for feature selectivity. It can be adjusted to emphasize features within a specific range of variation.
By selecting a gain, a window, and other parameters, we achieve distinct enhancement effects. Thus, through this
nonlinear operator, DWT coefficients are processed for feature enhancement.

2.4. Overview of algorithm for speckle reduction and feature enhancement

The complete algorithm is described by the following six major steps.

1 . Performa logarithmic transform to convert an image containing multiplicative noise into an image with additive
noise.

2. Carry out a DWT and obtain a complete representation of the log-transformed image in the transform domain.

3. Shrink coefficients within the finer scales to partially remove noise variation.

4. Emphasize features through nonlinear point-wise processing to increase the energy among features within a
specific range of variation.

5. Perform an inverse DWT and reconstruct the de-noised and enhanced image so that it approximates it's
noise-free original in log scale.

6. Finally, perform an exponential transform on the reconstructed image to convert it from log scale to linear
scale. The resulting image is now de-noised and enhanced.

Speckle noise is the result of coherent imaging. It occurs whenever the surface roughness of objects is in the order
of the wavelength of coherent radiation, and is treated here as multiplicative noise.13 The log transforms used in
Steps 1 and 6 separate noise from some desired object function. We then approximate the noise as additive stationary
Gaussian white noise. In this study, we were interested in enhancing structural features, for example endocardial
and epicardial boundaries in 2-D short-axis echocardiograms.

Steps 2 and 5 were used to carry out the decomposition and reconstruction of a DWT. The selected wavelet
basis was smooth without oscillations.20 Thus smoothing can be achieved without sacrificing mean square error
performance since the feature enhancement mechanism is in the de-noising process itself. The analysis and synthesis
filters employed to perform the DWT have compact support of a few taps.2° The decomposition and reconstruction
is carried out using efficient spatial 1-D horizontal and vertical based convolution operations, making real-time
implementation feasible.

Steps 3 and 4 accomplish de-noising and contrast enhancement via wavelet shrinkage and feature emphasis. In
our implementation, wavelet coefficients are first processed to eliminate noise VE and to add signal YE to features
at scales which more reliably compensate the loss of VE during wavelet shrinkage. This is accomplished through the
energy gain nonlinear operator defined by Equation (7). The justification for adopting regulated soft thresholding
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Figure 2: Results of de-noising and enhancement: (a) An noisy ED frame, (b) Wavelet shrinkage de-noising only
method, and (c) DWT-based de-noising and enhancement.

is that noise VE in the transform domain decreases through fine-to-coarse scaleS. Regulated soft thresholding can
be employed to reliably reduce the portion of transform coefficients responsible for noise and preserve the sharpness
of structure and object boundaries. This is important, especially for ultrasound applications, since we are most
interested in identifying endocardial and epicardial boundaries. Thus we applied relatively small thresholds for
wavelet shrinkage in Step 3. Our test images included some noise-induced spikeS among the WCs at finer scales due
to a significant amount of intensity drop caused by signal cancellation under coherent interference. We incorporated
a spatial weighted averaging operation in the wavelet shrinkage operator to further diffuse the pulse energy within
one or two octaves of high frequency. This effect can be seen on the screexi, but may not be very obvious due
to printing resolution. After wavelet shrinkage, the processed signal also looSes some YE which was reflected by
smoothed features. A technique intended to add signal YE to certain features was developed using a piece wise
nonlinear function with hard thresholding, for removing small noise perturbations. In step 4, range-based YE gain
nonlinear processing and generalized adaptive gain are utilized to enhance certain specific features of importance to
cardiology. As expected, increasing signal YE at the fine scales enhanced high frequency features such as step edges
while increasing signal YE at the coarse scales improved the visibility of large structures and object boundaries.

3. EXPERIMENTAL RESULTS

We tested our multiscale homomorphic algorithm for speckle reduction and feature enhancement on echocardio-
grams of varying quality. Figures 2 and 3 present the results of de-noising with or without feature enhancement on
end diastolic (ED) and end systolic (ES) frames. The speckled original frames are shown first. Results from wavelet
shrinkage dc-noising only and dc-noising with enhancement are shown in the Figures 2(b) and 2(c) respectively.
Experimental results are also compared with other speckle reduction techniques, such as median filtering, extreme
sharpening combined with median filtering,4"7 homomorphic Wiener filtering, and a wavelet shrinkage dc-noising.7'6
Figure 4 shows sample results of the above mentioned methods on a typical frie from an echocardiographic sequence
with the left ventricle as the region of interest. Figure 4(a) is sample noisy image. The result of median filtering with
a 5x5 mask is shown in Figure 4(b). Figure 4(c) displays sample result of extreme sharpening combined with median
filtering. The result from homomorphic Wiener filtering is shown in Figure 4(d). These last two images, 4(e) and
4(f), display the result from wavelet shrinkage dc-noising only and our denoising and enhancement algorithm. The
algorithm produces smoothness inside a uniform region and contrast along structure and object boundaries in addi-
tion to speckle reduction. The dc-noised and enhanced results of noisy echocardiographic images from this algorithm
appear to outperform the results from soft thresholding dc-noising alone. Our current algorithm is implemented such
that most parameters are set dynamically for adaptive dc-noising and feature enhancement.
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Figure 3: Results of de-noising and enhancement: (a) An noisy ES frame, (b) Wavelet shrinkage de-noising only
method, and (d) DWT-based de-noising and enhancement.

4. CLINICAL CASE STUDY

A study of clinical images was conducted to investigate the effect of de-noising on the consistency and reliability
to manually defined borders of the left ventricle in 2-D short-axis echocardiographic images by expert observers.
Experimental results indicate the algorithm is promising. Borders defined by experts exhibit less variation after
processing. It seems that in echocardiograms, where no real borders are clearly visible and incomplete, expert
borders usually indicate a close range where real borders may occur. When two expert borders agree with each
other, the range of real borders is more likely limited around the two expert borders. The study of clinical images
shows that de-noising with features enhanced helps the consistency and reliability of manually defined borders by
expert observers.

The set of test images included in our study of clinical images was selected from an echocardiographic database
exhibiting diverse image quality. Sixty systolic sequences of 2-D short-axis echocardiographic images were selected.
Half of the test images are rated as good quality while the rest were considered as poor quality. Analytic results have
shown that there is some improvement in consistency and reliability for manually defined borders by expert observers
examining de-noised images compared to their original noisy images. Quantitative measurements were calculated
in terms of mean of absolute border differences (MDistDiff) in distance (mm) and mean border area differences
(MAreaDiff) in cm2. The border difference was measured by its close approximation in 64 radial directional difference
from an estimated center24 of the left ventricle. Manually defined borders by experts looking at poor images were
improved after de-noising. The statistical results of quantitative measurements of two set expert manually defined
borders are shown in Table 1 . The statistical computation results listed under the column "On" are the quantitative
measurements between two sets of expert borders on the original speckled images while the results under the column
"Enh" are based on the de-noised and enhanced images. It is worth mentioning that a single set of de-noising and
enhancement parameters was used to process all the test echocardiographic images used in this study. We suggest
that a single value set of parameters should be enough for de-noising and enhancing a class of images with a similar
noise pattern and selected features.

Figure 5 shows the correlation between two sets of manually defined borders by expert observers. The four
diagrams in Figure fign2(a) present the correlation of ED Epi (epicardial) border areas, ES Epi border areas, ED
Endo (endocardial) border areas, and ES Endo border areas on the original noisy images. The four diagrams in
Figure fign2(b) show similar results for the de-noised images with features restored or enhanced. The solid lines
in the figure are the linear regression lines, while the dash and dotted lines are ideal regression lines. From the
diagrams, it is clear that the points which represent the two expert border areas on the same de-noised image are,
in general, more toward the ideal regression line. Additional improvement can be seen on the Endo area correlation
for the de-noised images. In most echocardiograms, there is usually less Endo border information than Epi border
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Figure 4: Results of various de..noising methods: (a) Original image with speckle noise, (b) Median filtering, (c)
Extreme sharpening combined with median filtering, (d) Homomorphic Wiener filtering, (e) Wavelet shrinkage de-
noising only, and (f) DWT-based de-noising with enhancement.

information. Noisy border information affects border interpolation by human observers for the manually defined
borders. After de-noising, Endo border information is improved, so the expert border areas tend to agree with each
other, especially ES Endo areas. The statistical computation results shown in Table 1, support this analysis.

Table 1: Quantitative measurements of manually defined borders
All Test Images
On vs Enh

Good Images
On vs Enh

Poor Images
On vs Enh

MDistDiff Endo (in mm)

Epi (in mm)
MAreaDiff Endo (in cm2)

Epi (in cm2)

2.1040 1.8168
1.7846 1.6743

2.3731 1.8893
2.5676 2.0799

1.5972 1.5322
1.3979 1.5886

1.6597 1.4543
1.5823 1.9540

2.6118 2.1014
2.1713 1.7601

3.0865 2.2058
3.5528 2.3243

5. CONCLUSIONS

In this paper, we presented a multiscale homomorphic approach for speckle reduction and feature enhancement.
We showed that two conflicting objectives of de-noising and enhancement can be achieved through multiscale wavelet
representations. Through fine-to-coarse scale space analysis of a speckled image on a logarithmic scale, distinct be-
haviors of noise and features can be differentiated. We took advantage of both soft thresholding and hard thresholding
wavelet shrinkage techniques. Nonlinear processing was subsequently performed for feature restoration and enhance-
ment. The algorithm was tested by applying it to a variety of ultrasound images from an echocardiographic database
exhibiting diverse image quality. A significant amount of improvement in terms of image quality was visible.

Future directions of this research may include improving de-noising and feature enhancement methods. A possible
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Figure 5: Correlation between manually defined borders by two expert cardiologist observers.

improvement for de-noising and enhancement might be: (1) removing isolated finer scale significant VE by utilizing
the correlation of information of features within spatial-scale space, (2) finding near-optimal thresholds through
coefficient and energy distributions, and (3) local maxima's correlation between scales. Other improvements may be
possible through edge-based feature enhancement •20,1418,19

6. ACKNOWLEDGMENTS

This research was supported in part by ATL (Advanced Technology Laboratories), Washington.

7. REFERENCES

1. J. G. Abbott and F. L. Thurstone, "Acoustic speckle: theory and experimental analysis," Ultrasonic Imaging,
no. 1, pp. 303-324, 1979.

2. R. R. Coifman and F. Majid, "Adapted waveform analysis and denoising," Preprint, Yale University.

3. R. R. Coifman and D. L. Donoho, "Translation-invariant de-noising," Preprint, Stanford University.

4. S. M. Collins, D. J. Skorton, E. A. Geiser, J. A. Nichols, D. A. Conetta, N. G. Pandian, and R. E. Kerber,
"Computer-assisted edge detection in two-dimensional echocardiography: comparison with anatomic data,"
Journal of the American Society of Echocardiography, vol. 53, pp. 1380-1387, 1984.

5. I. Daubechies, "Orthonormal bases of compactly supported wavelets," Commiin. Pure Appi. Math., vol. XLI,
pp. 909—996, 1988.

6. D. L. Donoho, "De-noising by soft-thresholding," Technical Report, Department of Statistics, Stanford Univer-
sity.

7. D. L. Donoho and I. M. Johnstone, "Ideal spatial adaptation via wavelet shrinkage," to appear Biometrika.

666 ISPIE Vol. 2710

ED Epi Area— Original Image

I
ED Endo Area- Original Image

O 1

40

ED Endo Aeca— DcNoiscd Image

3C

ES Endo Arcs— DeNoised Image

(a)

o I
+.T
Ob 1

(b)

Downloaded from SPIE Digital Library on 25 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms



L99 I OLLZ jO/i 31d5 

g661 '006168 dd '6 °' ' jOA 'UOZpU5O13J uvj 'sewt qd12oip 
-;re3oip3 spce-ioqs in uoiernwip rnod iu ziwony,, 'so v a pue UoSI!M D ci f'? 

9L61 "AtOM 'TTTOT dd ' •ou '99 10A ''-V '°S •pIO I 's,rep[ 31n13de-3T3qa&s u uonpi 3pp3d,, 'w i r p ''q i 'sw o 'Oj131Od f r 
66T 'IT dd ' •ou 'uozsz4,j puv fiuz5vuij Jo 

.1' '!PflP1 !ou-Tids pue ueui i-ipei STLJ!P j potjw uoezzeni 3I3A y,, 'uqno 
66I '9—LI9 dd ' ou 'S10A 

'fl4ovJ; •uLLofuI SUVJJ 33J 'Sj3A'CM tU& U!SS33o1d rr uopp 'uH I M P" WHP S I 
66T 'OIL dd 'j •ou 10A 7pUJr 

•tI3vRr iv U%L7VJ SUV41 i3!3!I '99p 3j1flfl WO1J ST12TS Jo Uoiwz!13ptlD 'UOt S P 11W S 0? 

T66T '—g judy r1d 'suozpnddv ivt :jg Jo S5UZpaOJJ 
'UO!USid31 3SijflW USTL S3UU j3pW JO 'Cj9 'r w a P" "i t 61 

66T 'P0 'OH 'UO3i 's'zsiIvuy 
lv:suuJ; puv lbu2nbj-uizj uo wnzsodutfig vuovw.zuj rsa!r.iai Jo s5uzpo 'iruz 1nd3313d 

pire uoiu3s1d31 jsijnm tJrM UOt3fl1 !°N 'X A P 'IH 't P U '19A3M El f 't'I t 81 

0861 'O-LT 'CI 'öUZSS1OJJ 6vwI s,ztjdaq 
ndwo 's!sIcr2Lre wi ezpuioiq ioj suno;sui jo'j,, 'us a p' .r 'i r ii !T 

66I 'O1 dd 'g •oi 'I •JOA '1160702ff puv UZZpJtJ UZ 

5uiJu25u3! 313!I %cqdiowureux ep;o eiuo ioj s3I3AM,, '"A M p 'u f 'Uj y 91 

i66T •Z3Q 'T •°" 't 10A 'flUZ6VUf lPN UO SUVJJ 
ari 's!sAcreUe q U3UI3UtjU 31fl3J 3itjd2iOWUIp,, 'PH M 'ua r 'pps s ''i 66T ' Lr2Tuq3—J icinuf 'y3 '3sor "IS 'UOZVZZ7VTiSiA JVptUOZff puv fiuzflvtzq iwuoa uo uaifuo 
:37c1 g Jo sfiuzpaoj S1UO3 1oJ uiss3o1d jesijnw 3Avdpy,, 'u pm '2uoS S '''I V iT 

696T N 'SifliD P°°I '"'I 'IIH-!Wd '5uzssod fivwz lvthw Jo sjvuatuvpunj 'uti' )j •CT 

i66T 'tpp4 ' 0u ' 1° 'JoLuo3 uiunbaLdf puP 'su 's!uosviflJ2 
uo suvj ami 'sppow ioiso 3o1111j 3pp3ds punoszfl,, J pT PUPIOH H 1 T 

i66t 'AON 'Xl 'Usny 'clIQI °d "a/alv Psq Jvs o uoqijdd tji uotpnpal 
3ppds psq I3JVeM 'snirng pu 'pus 1 'trndo y 'a '''i i 'p'ro r 'ono 11 1T 

9L61 'A0N 
'OTT1tT dd 'fl 0u '99 jOA 'V °S T Ip3cIs jo sqidoid nuzpun; 3tuos,, 'mPooO M t 01 

66I 'p1OJXO 'd S13A!Ufl piojxo '8TL dd '(uv5vuoyij j j pup qwvt,9 
.r p) nr z vuui uy 'sisue uoow jie pu UO9 y 

1661 '9-dd ' ou ' 10A 
'itjdaz4ozpvao Jo Ifzog uvuwy tj Jo ivnor 's3ewT 3Tqdioip oTp jeuoisu3wip-oM ut suoiido 

U3W93UtU3JO UO!flfBA JOJ potpw ,, '!3UO3 V U P 'ii r 'qq'o 'I 0 'U091!M 3 U '"O Y 

Downloaded from SPIE Digital Library on 25 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms


