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ABSTRACT

Detection of active areas in the brain by functional magnetic resonance imaging (fMRI) is a challenging problem in medical
imaging. Moreover, determining the onset and end of activation signals at specific locations in 3-space can determine
networks of temporal relationships required for brain mapping. We introduce a method for activation detection in fMRI data
via wavelet analysis of singular features. We pose the problem of determining activated areas as singularity detection in the
temporal domain. Overcomplete wavelet expansions at integer scales are used to trace wavelet modulus maxima across scales
to construct maxima lines. From these maxima lines, singularities in the signal are localized corresponding to the onset and
end of an activation signal. We present results for simulated phantom waveforms and clinical fMRI data from human finger
tapping experiments. Different levels of noise were added to two waveforms of phantom data. No assumptions about specific
frequency and amplitude of an activation signal were made prior to analysis. Detection was reliable for modest levels of
random noise, but less precise at higher levels. For clinical fMRI data, activation maps were comparable to those of existing
standard techniques.

Keywords: Singularity detection, fMRI, brain imaging, wavelet modulus maxima.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a noninvasive method of measuring spatially distributed brain activity as a

function of local vasodilations!, which are characterized by hemodynamic responses. FMRI techniques are based on changes
associated with the ratio of oxyhemoglobin to deoxyhemoglobin commonly referred to as the BOLD effect, i.e., Blood
Oxygenation Level Dependent. This implies that the level of blood oxygenation acts as an inherent contrast agent giving rise
to temporal signal changes of T,* approximately 2~6% from a baseline (resting state) compared to an activation state. Thus,
an MR pulse sequence that is sensitive to a magnetic susceptibility variation can be used to observe these changes in signal as

a function of time!" 2. Typically, an Echo Planar Gradient Echo Sequence (EPI) is used for image acquisition.
The ultimate goal of our method of analysis of 4-D fMRI data (3 spatial dimensions and time) is to be able to identify BOLD
activations including an initial dip of an activation. An initial dip prior to activation (“negative BOLD response”,

see Figure 1) has been consistently observed only in high-field systems and is still under debate3 4. For analysis two
anatomic representations are of interest, (1) identification of small structures that form the functional anatomic units of the
brain, such as the cortical columns (0.5-1mm diameter) in the visual cortex (“functional localization”), and (2) the macro
structural relationships between activated regions, both spatially and temporally, which can describe network relationships
between brain regions (‘‘connectivity”).

Due to small magnitude of detectable signals, scanner-induced noise, and intrinsic biological heterogeneity, fMR images
typically have poor signal-to-noise-ratio (SNR). Problems with BOLD methods have been attributed to the presence of

artifacts associated with head and/or vessel motion>, as well as vascular inflow® 7, and drainage effects. Hence, detection
and localization of areas of activation is a difficult task challenging state-of-the-art methods of acquisition.
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Figure 1: Schematic waveform of an activation signal including an initial dip (“negative BOLD response”).

Most common fMRI experiments are block designs with “On” (activation) and “Off” (baseline) blocks of certain duration for
specific activation tasks (see, egd 10y In addition to block design experiments, single event fMRI has been used more
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recently! ! 12, Several analysis methods of fMRI data already exist, including cross-correlation!3' 9, sinusoidal regressionlo,
and general linear model!4. More recently, fMR images have been analyzed using mutual information!S, contextual
clusteringm, sulcal basins!7, fuzzy logic clusteringls, neural networks!9, and Bayesian inference20.

In comparison, our approach is to perform activation detection in fMRI data via multi-scale wavelet analysis in the temporal
domain. Wavelet based denoising schemes have been applied prior to the detection of activation?!* 22, Activation detection

using an orthogonal wavelet decomposition with a two-step statistical testing procedure has also been reported23. Our
method poses the problem of determining areas of activation as singularity detection. Sharp variations of the signal
corresponding to the onset or end of activations are traced in scale-space via maxima lines of wavelet modulus24. Three
parameters (“length”, “strength”, and *“Lipschitz alpha”) are computed for each maxima line and thresholded. In addition,
interscale criteria are applied to the thresholded maxima lines to separate singularities corresponding to activation from those
of noise. Only singularities that meet all conditions are “accepted” as true signal transitions, or activations.

We suggest that multi-scale methods could prove superior to single-scale spatial domain testing, since the analysis functions
can be locally adapted to signal properties, e.g. two different voxels/pixels having different activation patterns. Also,
wavelets can better analyze non-stationary events of hemodynamics, since they are the time-frequency method of choice.

2. METHODS

2.1. Overview

In principle, our method of analysis includes preprocessing steps of background elimination, oversampling of the acquisition
signals, and the localization of activated areas through multi-scale singularity detection. We validated our detection procedure
by applying it to simulated phantom and human fMRI data obtained from finger tapping experiments on volunteer subjects.

2.2, Preprocessing: Elimination of Background Pixels

Since our analysis is restricted to intra-cranial pixels, background pixels are eliminated through a simple thresholding
process. Each pixel of a slice, for which the maximum intensity of its time series is below a certain threshold is set to zero,
i.e. its entire time series is set to zero. These pixels are excluded from further processing. The threshold is computed as a
fraction of the maximum intensity value of the 3-D dataset (2-D slices in time). The fraction is chosen empirically for each

data set as in19. For our data acquired on a 1.5 Tesla scanner it was set to the value 0.1.

2.3. Preprocessing: Oversampling of Acquisition Signals

We oversample the acquisition signals by rates of 4 to 8 times the original sampling using cubic or cubic spline interpolation.
Filtering oversampled signals results in smoother representations in the transform domain by allowing us to apply longer
discrete filters (more taps). The oversampling procedure is completely invertible, shift-invariant, and preserves activations at
the original sampling locations.

2.4. Overcomplete Wavelet Expansions at Integer Scales
The wavelet transform of a function f'is defined as

W)= f(t)%w‘(’%“)dr (.

For the continuous wavelet transform the signal is projected on a family of translated and dilated basis functions (wavelets)

0) =%w(’%‘) @).

Both, translation and dilation parameters are continuous, and the transform corresponds to the correlation of the function f
with a particular wavelet y, (¢) . The amplitude of the wavelet transform therefore tends to be maximum at those scales and

u,s
locations where the signal most resembles the analysis template (waveform), thus similar to “matched filter” approaches.
Overcomplete discrete representations, including the dyadic wavelet transform?5 compute the continuous wavelet transform
at integer values of the translation parameter u, but only at dyadic scales (scale parameter s is always some power of 2).
However, if the activation signal in the temporal domain is not best characterized at a dyadic scale, activations might go
undetected, since they will only yield small coefficient values. Thus, we extend overcomplete expansions to include more
scales by computing integer scales in a discrete implementation. This enabled us to trace singularities produced by activation
signals more precisely in the scale-space domain. A fast algorithm implementation of the wavelet transform at integer scales

is described in26. Mirror extension was used to treat boundary effects, and the first derivative of a quartic B-spline enlarged
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by a factor of 2 was selected as a basis function. This wavelet is truly symmetric around zero and has more discrete filter taps
than the corresponding wavelet without enlargement centered around %2. According to the rule of differentiation for B-splines

the resulting wavelet is a cubic B-spline26. The quartic B-spline is depicted in Figure 2(a), and the corresponding first
derivative wavelet is shown in Figure 2(b). A first derivative wavelet was intentionally chosen, since it has been shown to be

suitable for purposes of detection?4 27, Moreover, these wavelets were selected, because they are compactly supported and
approximate derivatives of Gaussian functions28. Aside from optimal time-frequency properties, Gaussian functions generate
a causal scale space (in a sense that a coarse scale depends exclusively on the previous finer scale)29. The last property makes
possible scale-space tracking of emergent features.
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Figure 2: (a) Quartic B-spline enlarged by a factor 2. (b) First derivative cubic B-spline analysis wavelet.

To demonstrate an expansion over integer scales Figure 3 shows a simulated activation signal of a “boxcar” together with its
wavelet transform computed at integer scales 1 to 10. In Figure 3(a) a noiseless signal is transformed, and in Figure 3(b) and
Figure 3(c) Gaussian white noise of 1% and 3% of baseline intensity, respectively, was added to the signal. In all cases the
signals were oversampled by a factor of 4 prior to analysis. Note the strong changes of the signal, reflected as large negative
(white) or large positive (black) wavelet coefficients across integer scales. The characteristic of the expansion indicates rising
and falling edges of the signal correctly for all three cases. Note also that no assumptions about a specific frequency (width)
and amplitude of an activation signal need to be made prior to analysis. This is a clear advantage over methods such as the
cross-correlation analysis. From Figures 3(b) and 3(c) it can be seen that with increasing noise a distinction between wavelet
maxima due to signal and those due to noise is more difficult at finer scales, but that only maxima due to true signal are
preserved into the coarser scales. Figure 3(d) depicts scales 2 and 9 from the three cases to support this claim.

2.5. Localization of Activations through Singularity Detection

Our method to localize activation through singularity detection is based on the observation that for each location (x, y, z) the
time course of a voxel/pixel can be considered as a piecewise regular function. Thus, a wavelet transform along the temporal
dimension yields a sparse representation of the data with most coefficients close to zero (vanishing property of the wavelet

transform30). A few large coefficients are obtained at time points, where the signal consists of jump-like changes or
singularities from a baseline to an activation state or vice versa. Singularity detection can be undertaken by describing the
local regularity of a signal. In our approach we took advantage of the ability of the wavelet transform to characterize the local
regularity of functions. The mathematical background justifying this method is described in24 31, For a given signal we
compute all modulus maxima of its wavelet transform and chain maxima across scales to obtain maxima lines. If the signal is
noisy, maxima lines due to noise are mostly concentrated at fine scales, whereas maxima lines due to signal changes should
be persistent across coarser scales. Mathematically, singularity detection can be carried out by finding the abscissa where the
wavelet modulus maxima converge at finer scales. If no wavelet modulus maxima exist at fine scales for a point t=u, it was
shown that the signal is regular in u (Lipschitz n, where y(z)e C" )24,

The major task is to distinguish singularities caused by noise fluctuations from those that are generated from sharp signal
transitions. Similar to the approach of Evertsz et al.32 three criteria are used: “Length, strength, and Lipschitz alpha”. Only
maxima lines that persist across all scales of analysis are considered as true signal transitions, since noise fluctuations should
have less persistence in scale-space. In addition, the strength of a maxima line is computed as the sum of the modulus
maxima along the line (across scales). This criterion reinforces the first, since longer maxima lines tend to have larger values
for their strength, and strong signal variations yield wavelet coefficients with large amplitudes resulting in values of greater
magnitude. These two criteria may not be sufficient, since noise fluctuations can be of similar magnitude as signal variations,
and signal changes may be corrupted by noise influence. Thus, we try to characterize the regularity of singularities through
their Lipschitz exponent a. In general, the point-wise regularity of a function can be characterized by Lipschitz exponents.
Mallat and Hwang24 showed that Lipschitz exponents could be estimated from the decay of wavelet modulus maxima.
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Figure 3: Expansion of phantom data at integer scales: Activation signal of a boxcar phantom and its wavelet transform at integer
scales 1-10. Black, grey and white points correspond respectively to positive, zero and negative wavelet coefficients. In (a)
a noiseless signal is transformed, and in (b) and (c) Gaussian white noise of 1% and 3% of baseline intensity,
respectively, was added to the signal. In all cases the signals were oversampled by a factor of 4 prior to the transform.
Part (d) depicts scales 2 (top) and 9 (bottom) from parts (a), (b), and (c) for comparison.

More specifically, this holds for isolated singularities, i.e. non-oscillating singularities, that “live” in the “cone of influence”
W (u, 9)| < As*™? ©)

where A is a constant and s the scale parameter. The “cone of influence” of a singularity that converges to ¢ =V is defined as
|u—v| < Cs, where [-C,C] is the support of the mother wavelet . Equation (3) is equivalent to

log, [Wf (u,5)| < log, A+ (a+%) log, s (4).

Hence, the Lipschitz regularity can be estimated from the slope of log, |Wf (u,s)| as a function of log, s along the maxima

lines converging to v. Since the scale s should be smaller than the distance between two consecutive singularities, we can
estimate Lipschitz « from the decay slope of log, IWf (u,s)] for the first three integer scales of our transform. The wavelet

used in our analysis has one vanishing moment, and therefore only Lipschitz exponents smaller or equal to 1 can be
measured, which is sufficient for our purposes. Essentially, singularities with more negative exponents should be attributed to
noise, whereas signal transitions should have more positive exponents, since noise is highly singular (negative ). Note that a
step edge is Lipschitz 0, and activation signals following a boxcar stimulation paradigm will have singularities close to step
edges (in the ideal noise-free case). Threshold values for all parameters were obtained empirically for each data set. Initial
settings were obtained from sample data points, and during processing all quantities for strength and Lipschitz alpha of
maxima lines that satisfied the length criterion were recorded. Threshold values were then adjusted to the characteristics of
each data set.

Thus, we identified singularities as onset and end of activations that passed these criteria. The sign of the wavelet transform
can also provide information about whether a rising or a falling edge has been detected. An example for this procedure for a
time-course of clinical fMRI data is shown in Figure 4. The oversampled signal from clinical fMRI data is shown in Figure
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4(a) (solid) displayed together with a schematic of an idealized (noise-free) signal (dashed). Wavelet modulus maxima are
shown in Figure 4(b). Figure 4(c) displays the maxima lines for scales 1-10 before thresholding, and Figure 4(d) shows the
maxima lines after thresholding. As mentioned previously, the expansion was carried out with a first derivative cubic spline
wavelet. The resulting activation map with respect to the temporal domain assigns “1” to activated time points and “0”
otherwise (see Figure 4(e)). Detected singularities are indicated by bold lines shown in Figure 4(e).
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Figure 4: Analysis of clinical fMRI data: An example of determining activation through singularity detection by tracing wavelet
transform modulus maxima across scales: The oversampled signal from clinical fMRI data is shown in (a) (solid)
together with a schematic of an idealized (noise-free) signal (dashed). Wavelet modulus maxima are shown in part (b).
Part (c) displays the maxima lines for scales 1-10 before thresholding, and part (d) the maxima lines after thresholding.
The expansion was carried out with a first derivative cubic spline wavelet. Activation for the oversampled signal with
respect to the temporal domain is shown in (e), where the detected singularities are indicated by bold lines.

For expository purposes Figures 3 and 4 show examples for the first 10 integer scales of analysis. However, we typically
carried out our analysis for 25 scales. When computing even coarser scales (> 25), undesirable boundary effects start to affect
detection of singularities.

Since initial results using these three criteria did not seem to provide a means for reliably distinguishing singularities, we
added additional criteria to better characterize the regularity of singularities. Instead of only considering wavelet modulus
maxima, another quantity, the so-called “wavelet transform modulus sum (WTMS)”, provides information about the

regularity of signals. This quantity was introduced in33 and used for the denoising of 1-D signals and 2-D images. The
WTMS for a point u is defined as

Nf(us)= [ Wf(,s)|dt 5).

|r-ul<cs

where the integral is taken over the cone of influence mentioned above. Using Theorem 1 from24 it can be shown that the
WTMS is bounded by

Nf (u,s) < A’s*" (6).
Hsung and collaborators then derived the criteria of interscale ratios and interscale differences of the WTMS for dyadic
scales s =2/ . These criteria describe how much the WTMS for a point « should increase from one scale s, to the next coarser
scale s"=(s, +1), if the signal is regular in u. We derived such criteria for the transform at integer scales. The interscale ratio

can then be expressed as
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and the interscale difference as

N (5o +1)) = N(,5,) = A's ‘“‘((H%

a+l

) - l) 2y20 (8).
0
Note that these criteria are derived from the inequality (6), so that their correct formulation should be in terms of the suprema
of the WTMS at each scale. The interscale ratio R is dependent on the scale sy, and the factor y for the interscale difference
was used to remove small irregular signals and generally depends on the amplitude of the signal. For y =0, inequality (8)
simply restates (7).
To finally determine activated pixels in a slice of the brain or simulated phantom data, i.e. to obtain an activation map with
respect to the spatial distribution of activation, we applied all criteria to the extracted maxima lines. Only maxima lines that
met all thresholding and regularity conditions were considered as signal transitions in the time series of a pixel corresponding
to an onset or end of an activation signal. If the number of those maxima lines exceeded a number of “outliers”, a pixel was
considered as activated. For our studies the number of outliers was chosen to be 2.

3. MATERIALS FOR VALIDATION

3.1. Phantom Models

We tested our detection paradigm on functional magnetic resonance data from a finger tapping task by a human and computer
generated phantoms, which served as idealized models. The phantom data was modeled as single slices that contained
Gaussian white noise. The assumption of Gaussian white noise is widely used, though not completely accurate, especially for
low signal-to-noise ratios (SNRs), where a signal dependent bias also has to be taken into account for the Rician noise
distribution34 in magnitude images of magnetic resonance data. Nevertheless, in35 it is shown that the Gaussian
approximation is already valid for moderately high SNRs, e.g. SNR = 3. Each slice of the phantom (fixed z) consisted of 64 x
64 data points in the x- and y-dimensions and 128 values for the temporal domain. Various waveforms were designed for
activation signals with three different levels of noise added, similar to block design experiments. The activation signals were
shifted with respect to time to simulate delay. A matrix of the different types of simulated waveforms with possible
parameters of shape are given in Table 1.

Waveform Magnitude of Added Noise Width of Activation Deiays of Szgxza%s
. Activation (% of baseline) (# of time points) |
............................... ...} (%oftbaselmey | . . .
Boxcar 5% 1%, 2%, 3% 10 0,5,8,10
Trapezoid 5% 1%, 2%, 3% 6 0,5,8,10

Table 1: Simulated waveforms of phantom data and experimental parameters.

3.2 Clinical fMRI Experimental Data from 1.5 Tesla Magnet

Data was acquired from finger tapping experiments carried out at Columbia-Presbyterian Medical Center. The corresponding
stimulation task consisted of 30 seconds of finger tapping for the active state (A), followed by 30 seconds of rest for the
baseline state (B). This was repeated for three cycles, i.e. (BA, BA, BA). The total time for one run was 3 minutes and 30
seconds resulting in 70 time points for each location. This task was selected because of its robustness to activate the primary
motor cortex on both sides of the brain (bilateral activation). Scanning was carried out on a GE Signa MRI Scanner (1.5 T)
retrofitted for Echo Planar Imaging (EPI). The scanner software version was Signa 5.7. A gradient echo sequence was used
with the following parameters: TE = 80 msec, TR = 3000 msec, Flip angle = 90, one nex, zero gap, FOV = 20*20 cm in
plane, matrix 64*64 in plane, and slice thickness (in z-direction) of 7 mm. A Bird cage quadrature head coil was used to
acquire the T2* weighted images, which had voxel dimensions of 3.125, 3.125, and 7 mm in x, y, z dimensions, respectively
for the field-of-view (FOV) and matrix mentioned above. Before the analysis the slices were co-registered using Woods’

algorithm36 and ratio-normalized. These standard procedures were applied to correct for artifacts due to patient movement
and global signal variations that might be caused by the scanner.

4. RESULTS

We present results for simulated phantom data and clinical fMRI data from bilateral finger tapping experiments. In general,
distinguishing singularities caused by noise and singularities generated by signal transitions proved difficult. Thresholding
and regularity conditions described in Section 2.5 clearly helped to detect “true-positives”, i.e. transitions corresponding to
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activation signals, and to reduce the number of “false-positives”, i.e. transitions due to noise fluctuations, but could not
completely reliably distinguish signal and noise. Next, we present results followed by a discussion of the influence of the
parameters of maxima lines and possible improvements of our method before the concluding section.

4.1. Phantom Models

For phantom data the analysis was carried out with an oversampling factor of 4, and a wavelet expansion using the first
derivative cubic B-spline wavelet described in Section 2.4 was computed at 25 integer scales. As expected, correct singularity
detection was strongly dependent on the level of noise added to the signal. For phantom data of the boxcar type (see Figure 5
for examples of this type of data) that resembled the time-course of stimulation paradigms with “on” and “off” blocks, perfect
detection was achieved for data with 1% noise (1% of baseline intensity as standard deviation of added Gaussian white
noise). By perfect detection we mean here not only zero “false-negatives” (missed activations) in the resulting spatial
activation map, but also the correct identification of all “activation edges”, i.e. the onset and end points of activation signals
with respect to their time-course, as shown in Figure 5. Perfect detection could be accomplished, since a clear separation of
maxima lines corresponding to signal as compared to noise was possible by thresholding. All small noise fluctuations were
successfully rejected. If the level of noise was increased to 2%, nearly perfect detection was still observed. A further increase
to a higher level (3% of baseline intensity) to produce singularities that were equal or even larger than those generated by
activation, yielded a decreased detection performance, since maxima lines due to noise persisted across all scales. The exact
time course of the onset and end of activation could not always be identified in this case. Thus, a trade-off between correctly
detecting signal transitions and rejecting “false-positives” was made. Parameter values of maxima lines of strong noise
fluctuations were in a similar range as those of signal variations. Applying the interscale criteria discussed in Section 2.5
across many scales led to improved rejection of “false-positives”(specificity), but at the same time to a decrease in the
detection of activation edges (sensitivity). Similar behavior was observed for phantom data of the trapezoid type, where the
activation signals were modeled with rising and falling edges of finite slope compared to the step edge behavior of boxcar
type data at noise levels of 1% and 2%. At 3% noise detection performance was less than observed in the case of boxcar type
data. However, this was to be expected, since the first derivative wavelet yields higher coefficients for more rapid signal
transitions, which improves detection performance.
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Figure 5: Examples of phantom data of boxcar type: (a) 1% noise, (b) 2% noise, and (c) 3% added noise (% of baseline intensity).

Examples for these types of observations are given in Table 2, where we listed the number of “false-positives”(FP) for the
case of zero “false-negatives” in the resulting spatial activation map. Due to the simplicity of our phantom data zero “false-
negatives” could always be achieved, even though not all onset and end points of activation signals could be detected. That
the detection performance decreased with increasing noise is demonstrated by listing the percentage of correctly detected
activation edges (% DAE) shown in Table 2.

_ Waveform 1% Noise , 2% Noise . 3% Noise |
FP % DAE FP % DAE FP % DAE
Boxcar 0 100 0 99.6 28 83.7
Trapezoid 0 100 0 99.8 91 62.2

Table 2: Number of “false-positives” and percentage of correctly detected activation edges (%DAE) for phantom data. The noise
level is given in % of baseline intensity of the phantom data. The number of false-negatives in the resulting activation map
was zero in all cases.

4.2, Clinical fMRI Experimental Data from 1.5 Tesla Magnet

We also applied our method to clinical fMRI data from bilateral finger tapping experiments carried out in a 1.5 Tesla magnet.
As mentioned above, we used an oversampling factor of 8 and computed the wavelet transform at 25 integer scales for time
series of single slices (fixed z-coordinate). Each slice contained 64 by 64 pixels, and 66 time points of a slice were included
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in the analysis. The first 4 time points for each slice were discarded to eliminate a large signal spike that was attributed to a
spin history artifact at the beginning of image acquisition. A larger oversampling factor compared to the analysis of phantom
data was chosen, in order to be able to compute more scales without severe boundary effects. Smaller factors and fewer
scales were tried experimentally, but detection improved by using more scales. Initially, the observations from experiments
with phantom data with increased levels of noise were confirmed. For the sample case processing (Figure 4) detection of
activation signals worked very well. However, it was difficult to reject “false-positives”. Only after applying the interscale
criteria across many scales of our analysis, better rejection was realized.

(a) (b) ©

Figure 6: Color-washed activation maps for 3 slices of clinical fMRI data: Colored pixels show locations of detected activations in
the brain. (a) Results from singularity detection via wavelet modulus maxima. (b) Results from cross-correlation analysis
with z-score > 3.0. (c) Results from detection by the method of sinusoidal regression also using a z-score > 3.0.

Figure 6 shows the resulting activation maps for three slices of the brain containing activation obtained with three detection
methods. Maps are presented as color-washed overlays on the original intensity data. In Figure 6(a) results from singularity
detection via wavelet modulus maxima are shown, and Figure 6(b) presents results obtained from cross-correlation analysis
with z-score >3.0. Figure 6(c) shows activations detected with the method of sinusoidal regression also using a z-score >3.0.
The numbers in the upper left corner of the images in Figures 6(b) and 6(c) refer to the z-coordinate of the corresponding
slice. Activation locations in Figure 6(a) are indicated with the same color since our method only assigns a fixed value (1)
for each activated voxel. The other two techniques map a range of z-scores into a color scale (the higher the z-score, the more
yellow the pixel).
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As seen from Figure 6, results obtained with our method are very similar to those obtained with the other two standard
detection techniques. The centroids of areas of activation are at the same locations, though activated regions are of smaller
extent in Figure 6(a) compared to Figure 6(b) and Figure 6(c). However, note that only very few “false-positives” were
observed, which for testing purposes was confirmed experimentally by viewing the time-course of activated pixels.

These results are certainly encouraging. Nevertheless, we note that in detecting activations in clinical data (similar to
phantom data with noise levels of 3%) not all onset and end points of activation signals were detected. More precisely, not all
activation edges met the thresholding and regularity conditions necessary to reject “false-positives”. Adjusting threshold
values and regularity conditions to allow detection of more activation edges resulted in an increased number of “false-
positives”. Thus, possible improvements of the method might be to develop an algorithm for adaptive parameter changes.

4.3. Discussion

As mentioned in Section 1 the general characteristics of fMRI data, low SNR with Rician noise that adds a signal dependent
bias to the data, together with weak activation signals make correct detection of activated areas in the brain a challenging
task. Our method of singularity detection via the analysis of wavelet modulus maxima was able to find small signal
transitions, even, if these changes were sometimes deeply “buried” in noise. Maxima lines spanned across integer scales for
all signal variations. A challenging problem remains to distinguish between singularities caused by true signal from those
generated by noise or, in other words, to reject “false-positives”. Unfortunately, we found that the parameters “length”,
“strength” and “Lipschitz alpha” take similar values for strong noise fluctuations and weak signal transitions, so that a clear
separation between them was not possible. This was observed for clinical data as well as for phantom data with higher levels
of noise.

To measure the local regularity of a signal through estimating Lipschitz exponents did not prove to be truly reliable. Though
this measure worked well for test cases, such as step edges or discrete delta impulses, its numerical precision was limited.
One explanation stems from the fact that estimating Lipschitz exponents is based on inequality (4), not on an equation. In
addition, the computation of fine scales of the wavelet transform used for the estimation is limited by the finite sampling
resolution of discrete data. Lipschitz exponents are estimated from the decay of wavelet modulus maxima at the finest scales,
which, in theory, approach O, but cannot be realized in practice. Similar considerations hold for the interscale criteria,
interscale ratio R from (7) and interscale difference y from (8), which are also derived from inequalities and might not
provide sufficient numerical precision to correctly characterize regular parts of a signal. Since noise fluctuations are highly
singular, their Lipschitz exponents are negative. For example, a (Gaussian) white noise distribution is uniformly Lipschitz

- %—6, for any € > 024, and signal transitions have positive Lipschitz exponents, if they are not more irregular than step

edges. But since noise may strongly corrupt the hemodynamic signal, Lipschitz exponents of the sum of signal and noise can
be negative, if the influence of noise dominates. All interscale criteria are based on the assumptions of positive Lipschitz
exponents for signal variations. Hence, rejection of “false-positives” due to noise might remove activation edges as well that
do not meet the interscale criteria. This makes the correct detection of the temporal onset and end points of activation signals

more difficult. One remedy could be to include information about neighboring pixels into the analysis (“clustering”16). Since
our current method focused on the time-course of each voxel, it had the advantage of enabling detection of activated areas of
small size. To design a mathematical model for the characteristics of Rician noise in terms of Lipschitz exponents for
singularities of a signal corrupted with this type of noise is a possible direction of future work that might improve detection
performance. Alternatively, the temporal pattern of detected singularities could be examined to determine true signal
transitions. Certainly, this would require information about the stimulation paradigm, which would limit flexibility. Another
line of improvement for our method lies in the derivation of thresholding parameters for maxima lines from the data directly.
Though we record parameter values of maxima lines that span across integer scales, we have not analyzed these data in
depth. The processing strategy could be simplified and sped up, if data dependent patterns for the parameters were
determined.

A few additional observations are briefly summarized next. As mentioned earlier different oversampling parameters were
used for phantom and clinical data. Since oversampling was carried out by standard interpolation, a larger oversampling
factor resulted in more regular singularities equivalent to more positive Lipschitz exponents. Thus, for phantom data the
threshold for Lipschitz alpha T, was chosen to be slightly negative, e.g. T, = —0.25, but for the analysis of clinical data this
threshold was positive, e.g. T, = +0.45. The detection performance was not influenced by different choices of the
oversampling parameter. In general, changes of the threshold for Lipschitz alpha did not have a strong effect on detection
performance. The method was more sensitive with respect to varying the threshold for the strength parameter. If this
threshold was too low, the number of “false-positives” increased strongly. Thresholding the strength parameter with a large
value and applying the interscale criteria across many scales led to better results in terms of rejection of “false-positives”,
while preserving true activation edges.
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For continuing validation we plan to compare our results with those from existing standards, such as cross-correlation
analysis and sinusoidal regression. Further work is in progress to evaluate our detection procedure quantitatively and to
increase statistical power of simulated experiments with more sophisticated phantom data. This includes adding of signal
dependent Rician noise to allow our models to more closely resemble the noise characteristics of fMRI data.

5. CONCLUSIONS

We suggest that multi-scale singularity detection of fMRI data has the potential to precisely and adequately determine areas
of activation within the brain. By detecting singularities through the tracing of modulus maxima of wavelet transform
coefficients across integer scales activation signals can be identified. No assumptions about a specific frequency or time
course of activation signals need to be made prior to processing. From singularity detection maps, activated brain areas can
be identified, when singularities caused by noise are rejected. However, our current procedure can be improved. In particular,
the characteristics of singularities created by noise can be analyzed more precisely to distinguish them from singularities
produced by signal. To achieve this, the Rician noise model for fMRI data should be analyzed in the transform domain. This
should reduce the number of “false positive” activations (increase specificity), while detecting more “true-positives”

(increase sensitivity). Denoising through non-linear hard- or soft-thresholding37 prior to detection, may also improve
detection performance.
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