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ABSTRACT

In tomographic reconstruction, the inversion of the Radon transform in the presence of noise is numerically unstable. Recon-
struction estimators are studied where the regularization is performed by a thresholding in a wavelet or wavelet packet decom-
position. These estimators are efficient and their optimality (minimax sense for bounded variation images) can be established
when the decomposition provides a near-diagonalization of the inverse Radon transform operator and a compact representation
of the object to be recovered. Several new estimators are investigated in different decompositions. First numerical results
already exhibit a strong metrical and perceptual improvement over current reconstruction methods. These estimators are im-
plemented with fast non-iterative algorithms, and are expected to outperform Filtered Back-Projection and iterative procedures
for PET, SPECT and X-ray CT devices.
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1. INTRODUCTION

1.1. Tomographic reconstruction

We are interested in the recovery of an imagef from its tomographic projectionsY , also called sinograms, and defined as:

Y = Rf +W (1)

wheref [n1; n2] 2 CN
2

is the observed image,W is an additive noise, usually modeled as Gaussian or Poisson, andR is the
discrete Radon transform. The discrete Radon transform is derived from its continuous versionR c, which is equivalent to the
X-ray transform in two dimensions and is defined as1

(Rcfc)(t; �) =

Z 1

�1

Z 1

�1

fc(x1; x2)Æ(x1 cos�+ x2 sin�� t)dx1dx2: (2)

wherefc(x1; x2) 2 L2(R2 ), Æ is the Dirac mass,� 2 [0; 2�), andt 2 R. In the discrete Radon transform, a line integral along
x1 cos�+x2 sin� = t can be approximated by a summation of the pixel values inside the stript�1=2 � n 1 cos�+n2 sin� <
t+ 1=2.

Tomographic reconstruction is ubiquitous in medical imaging. Imaging devices such as X-ray CTs, Positron Emission To-
mography (PET), Single Positron Emission Computerized Tomography (SPECT) measure the density or the metabolic activity
of a section of the patient’s body (ie, roughly speaking, produce sinogramsY ), and an estimation of the imagef representing
the observed section is derived by a tomographic reconstruction procedure from the sinograms.

A direct inversion of the Radon transform is computed with an amplification of high frequency components ofY in the
direction oft, followed by a spatial interpolation. A fundamental difficulty of tomographic reconstruction comes from the fact
that the Radon transform is a smoothing transform, and inverting the Radon transform in presence of additive noise is anill-
posed inverse problem,2 becauseRc

�1 is not a bounded linear operator; numerically speaking, a direct computation ofR �1f
would be contaminated by a huge additive noiseZ = R�1W .
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1.2. Regularization Procedures

Filtered Back-Projection (FBP) and its derivatives are the most popular regularization methods for tomographic reconstruction.
These are linear filtering techniques in the Fourier space. In these procedures, the amplification of high frequencies to compute
the inverse Radon transform is attenuated to damp out high frequency components in which the amplitude of the noiseZ =
R�1W would be too high. However, FBP suffers from serious performance limitations, due to the fact that the vectors of the
Fourier basis provide a good representation (diagonalization) of the Radon operator, but are not adapted to represent spatially
inhomogeneous data such as medical images. In other words, the Fourier basis is suboptimal for the denoising and restoration
of piece-wise regular signals because it does not provide a compact representation of this type of objects.

To improve the performance of tomographic reconstruction procedures, researchers have studied iterative statistical model-
based techniques, designed to implement Expectation-Maximization (EM) and Maximum A Posteriori (MAP) estimators.3,4

In some cases, these approaches can provide a significant improvement over FBP. However, these estimators suffer from the
following drawbacks:

� Computation time. Almost all the corresponding algorithms are too computer-intensive and not usable yet for clinical
applications, with the exception of OS-EM5 (an accelerated implementation of an EM estimator). In MAP methods,
useful priors usually give local maxima, and the computational cost of relaxation methods is prohibitive.

� Theoretical understanding and justification. EM estimators lack theoretical foundations to understand and characterize
the estimation error. Some MAP estimators are in some cases better understood, yet no optimality for a realistic model
has been established.

� Convergence. EM estimators are ill-conditioned, in the sense that the corresponding iterative algorithms have to be
stopped after a limited number of iterations. Beyond this critical number, the noise is magnified, and EM and OS-EM
converge to a non-ML (Maximum Likelihood) solution.

This study aims at building a family of non-linear estimators, for which the estimation error is understood and the opti-
mality is established for a realistic prior model of the data, which can be implemented with fast non-iterative algorithms, and
which provide better numerical results, both metrically and perceptually. Such algorithms should also be flexible enough to be
compatible with other specific needs, such as local tomographic reconstruction, limited angle tomography, and post-processing
algorithms.

1.3. Non-linear Diagonal Estimators

A general strategy was recently advocated by Kalifa and Mallat6 to solve linear inverse problems:

1. “Diagonalization” of the problem. Design a decomposition in which the Gram inverse operator -here,R �1�R�1- of
the operator to be inverted is nearly diagonal, and in which the object to be estimated is compactly represented.

2. Design diagonal operators (typically thresholding rules) in this representation to estimate the decomposition coefficients
of the signal to be recovered.

The Wavelet-Vaguelette Decomposition of Donoho,7 which has been studied numerically by Kolaczyk8 for tomographic
reconstruction and refined by Lee and Lucier,9 and the curvelet-based estimator of Cand`es and Donoho,10 are particular
examples. Section 2 briefly recalls the underlying formalism and the justifications of this approach. The asymptotic optimality
is characterized on a set modeling the prior information on the signals, which often happens, especially for natural images, to be
a more realistic and simpler model than probabilistic priors. Section 3 implements this strategy to build simple minimax optimal
estimators for bounded variation images in 1-D and 2-D orthogonal wavelet bases. Section 4 investigates the benefits of wavelet
packets, as well as directional selectivity on images using better 2-D wavelet transforms. The corresponding estimators have
similar minimax optimality properties than the estimators in orthogonal wavelet bases of section 3, but can provide significant
numerical enhancements. Section 5 shows a numerical application on a simulation of PET acquisition of the Shepp-Logan
phantom. Preliminary results already show a strong metrical and perceptual improvement over Filtered Back-Projection.

Notation: if �1 and�2 depend upon the parameters of the problem, such as the signal sizeN or any other parameter, we
write�1 � �2 and say that they are equivalent, if there exists two constantA;B > 0 such that for all values of these parameters
A�1 � �2 � B �1.
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2. DIAGONAL ESTIMATORS FOR LINEAR INVERSE PROBLEMS

The results summarized in this section are detailed in.6 We consider the estimation problem in (1), which is also equivalent to
the denoising problem

X = f + Z (3)

whereX = R�1Y andZ = R�1W . The noiseW is considered Gaussian of variance� 2 to simplify the explanations.Z is
still Gaussian because the inverse Radon transform is a linear operator. Its covariance operator isK = � 2R�1

�
R�1.

2.1. Thresholding Estimators

A thresholding estimator~F of f in a basisB = fgmgm is computed with

~F =
X
m

�Tm (hX; gmi) gm ; (4)

when the denoising is performed after the application of the inverse operatorR�1, or with

~F = R�1

 X
m

�Tm (hY; gmi) gm

!
; (5)

when the denoising is performed before the application ofR�1. �Tm is a thresholding operator.Tm are the threshold values,
and are different in (4) and (5). Typical thresholding rules include hard thresholding

�Tm(x) =

�
x if jxj > Tm
0 if jxj � Tm

; (6)

and soft thresholding

�Tm(x) =

8<
:

x� Tm if x � Tm
x+ Tm if x � �Tm
0 if jxj � Tm

: (7)

If the noiseZ in (3) was white, the choice of the basisB would only depend on the prior information on the objectf . Indeed,
Donoho and Johnstone11 proved that, with a proper choice of threshold valuesTm, thresholding estimators in an orthonormal
basis are nearly optimal for white noise removal if the basis provides a sparse signal representation, which means that the basis
concentrates the energy of the signal on a few coefficients. In our situation, the choice ofB also depends on the noiseZ.

2.2. Near-Diagonalization of the Estimation Problem

The assumption underlying diagonal estimators in a basis is that each coefficient in this decomposition can be estimated inde-
pendently. As a consequence, such estimators are efficient if the coefficients of the noise and of the object to be recovered are
indeed nearly independent in the basisB. This means thatB must provide a near-diagonalization of the covariance operatorK
of the noiseZ and of the prior information on the objectf .

The near-diagonalization of the covariance operatorK of Z is measured by preconditioningK with its diagonal. LetK d

be the diagonal operator in the basisB, whose diagonal values are equal to the diagonal values ofK, noted� 2
m:

�2m = hKgm; gmi:

The square rootK1=2
d is the diagonal matrix whose coefficients are�m. The diagonal preconditioning factor ofK �1 in the

basisB is defined as
�B = kK

1=2
d K�1K

1=2
d ks : (8)

It satisfies�B � 1. We have�B = 1 if and only ifK = Kd, which means thatK is diagonal inB. The closer�B is to 1 the
more diagonalK.

The best method to measure the near-diagonalization of the prior information onf depends on its nature. In a classical
Bayes estimation framework,f is modeled as a realization of a random processF , whose probability distribution is known
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a priori. However, complex signals such as natural images are highly non-Gaussian, and there is no probabilistic model that
incorporates their spatial inhomogeneity. The prior information often defines a set� to which signals are guaranteed to belong,
without specifying their probability distribution. For example, many images have some form of piecewise regularity, which
can be characterized by bounded Besov norms12 or a bounded total variation, which specify a prior set�. With this type of
prior model, the near-diagonalization of the prior information can be measured with orthosymmetric sets. Any signalf can be
decomposed asf =

P
m fB[m]gm. A set� is orthosymmetric in B if for any f 2 � and for anya[m] with ja[m]j � 1 thenX

m

a[m] fB[m] gm 2 � :

This means that the set� is elongated along the directions of the vectorsgm of B.

2.3. Minimax estimation

When the prior model on the signals is a set�, the estimation error for an estimator~F = DX is characterized by the maximum
risk over�:

r(D;�) = sup
f2�

EfkDX � fk2g:

Theminimax risk is the lower bound computed over all operatorsD:

rn(�) = inf
D2On

r(D;�):

In practice, one must find a decision operatorD that is simple to implement and such thatr(D;�) is close to the minimax risk
rn(�).

Minimax estimation aims at studying the robustness of estimators; In a Bayesian framework, one has to be careful to design
a Bayes prior which is not too optimistic, otherwise its performance will be overestimated for some natural signals. This task
is difficult for complex signals such as natural images, and yields Bayes priors which are usually close to the “worst” signals
of the set� used as a model for minimax estimation. This means that, for complex signals, a robust Bayesian prior will be
roughly similar to a minimax prior, while more complex to design and with a less convenient formalism.

2.4. Minimax optimality

Let B be a decomposition in which the covarianceK of the noiseZ is nearly diagonal with a preconditioning factor� B
defined in (8), and in which the set� is orthosymmetric. LetD be a thresholding estimator inB, as defined in section
2.1. The corresponding maximum thresholding risk isr t(�) = r(D;�) = supf2� EfkDX � fk2g , and we clearly have

rt(�) � rn(�). Let us chooseTm = �m
p

2 logeN for the threshold values in (6) and (7) when the estimator is given by
equation (4), and letTm = �

p
2 logeN when the estimator is given by equation (5). One can show6 that

rt(�) � rn(�)�B logeN: (9)

This shows that the thresholding riskrt(�) remains of the same order as the minimax riskrn(�) up to a�B logeN factor. In
some cases, the factorlogeN can even be reduced to a constant independent ofN . �B is independent ofN is R�1

�
R�1 is

nearly diagonal inB.

We now apply these results to the tomographic reconstruction of images.

3. APPLICATION TO THE INVERSION OF THE RADON TRANSFORM

This section shows that orthogonal 1-D and 2-D wavelet transforms are simple examples of decompositions which satisfy the
conditions of section 2 for the inversion of the Radon transform. The prior set� of images is defined with a bounded variation
norm.

The thresholding estimation for tomographic reconstruction can be performed in the spatial domain, on the signalX [n 1; n2]
of equation (3), which is obtained after the application of the inverse Radon transform. It can also be performed in the Radon
domain on the sinogramsY of equation (1), before applying the inverse Radon transform.
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3.1. Bounded Variation Images

The set� used as a prior model on the objectf is defined with a bounded variation norm. Bounded variation images may
include sharp transitions such as discontinuities. Large classes of images including medical images, in fact images with no
fractal textures, have a bounded total variation. For square discrete image ofN 2 pixels, the total variation is defined as

kfkV =
1

N

N�1X
n1;n2=0

����f [n1; n2]� f [n1 � 1; n2]
���2 + ���f [n1; n2]� f [n1; n2 � 1]

���2�1=2 :
We say that an image has a bounded variation ifkfkV is bounded by a constant independent of the resolutionN . Let� be the
set of images that have a total variation bounded byC

� =
n
f : kfkV � C

o
:

The co-area formula13 proves that the total variation has a simple interpretation as the average length of level sets in the image.

3.2. Wavelet bases

1-D Wavelet Basis A discrete orthonormal wavelet basis ofC N is constructed with a dilated discrete wavelet j [n] at each

scale1 < 2j � N . The wavelet j is translated: j;m[n] =  j

h
n�2jm

2j

i
, and at the largest scale N;0[n] = 1. One can

construct such discrete wavelets so that the resulting family

B1 = f j;mg1<j�log
2
(N) ; 0�m<2j (10)

is an orthonormal basis ofC N . Moreover, theN wavelet coefficients in this basis can be calculated withO(N) operations,
with a fast filter bank algorithm.14

2-D Wavelet Basis A separable wavelet basis ofC N2

is constructed with the one-dimensional wavelets j defined in
(10). At each scale2j there are three wavelets �

j [n1; n2] for � = 1; 2; 3. These wavelets are uniformly translated to define

 �j;m1;m2
[n1; n2] =  �j

h
n1�2

jm1

2j ; n2�2
jm2

2j

i
, and 0

N [n1; n2] = 1=N . The separable wavelet family

B2 =
n
 0
N ;  1

j;m1;m2
;  2

j;m1;m2
;  3

j;m1;m2

o
1<j�log

2
(N) ; 0�m1;m2<2j

is an orthonormal basis ofC N2

. Fast wavelet decomposition and reconstruction algorithms are implemented withO(N 2)
operations, with a separable filter bank algorithm.14

Orthosymmetry in Wavelet Bases The set� of bounded variation images is not orthosymmetric in the 2-D wavelet basis.
However, it can be embedded in two close orthosymmetric sets� 1 and�2 such that�1 � � � �2. For a given estimator
~F = DX , the estimation risks satisfyr(D;�1) � r(D;�) � r(D;�2). If one can show thatr(D;�1) � r(D;�2), it follows
immediately thatr(D;�) is of the same order. The set� of bounded variation images can be embedded in two sets defined
with discrete Besov norms12 in which the risk equivalence is satisfied for the estimators under study.

The representation of bounded variation images using the 1-D wavelet basis is slightly more difficult to characterize, but
follows a similar idea. Images are segmented in different directions, and each direction is studied independently. Once again,
the set� is embedded in two close sets in which the orthosymmetry can be established for the different directions.

3.3. Near-Diagonalization of the Operator

For a given�, letR�f(t) = Rf(t; �), and letY� = R�f +W� be the noisy tomographic projection off at the angle�.
The 1-D orthogonal wavelet decomposition inB1 is used to estimate each projectionsY�; here, the operator to be inverted is
R�, and the operation is repeated for each value of�.

The 2-D wavelet basisB2 is used to perform the whole estimation on the sinogramsY or on the back-projected dataR �1Y
in a single pass, without separating the estimation in each direction�. In that case,R is the operator to be inverted.
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The inverse Radon transform is a particular example of a class of linear homogeneous operators, often referred as Calder´on-
Zygmund operators, for which the vectors of the wavelet basis are almost eigenfunctions. For a detailed presentation of the
mathematical relations between wavelet bases and Calder´on-Zygmund operators, we refer to.15 Theorem 3.1 shows that this
property is satisfied in both the 1-D case whereB1 is used for the inversion ofR� and in the 2-D case, whereB2 is used for the
inversion orR.

Let K1 andK2 be respectively the operators�2R�1�
�
R�1� and�2R�1

�
R�1. Let K1;d andK2;d be respectively the

diagonal operators in the basesB1 andB2, whose diagonal values are respectively equal to the diagonal values ofK 1 andK2

in B1 andB2.

THEOREM 3.1. There exists �1 and �2 such that for all N > 0, K1 and K2 satisfy

� In the 1-D wavelet basis B1

kK
1=2
1;d K

�1
1 K

1=2
1;d ks � �1:

� In the 2-D wavelet basis B2

kK
1=2
2;d K

�1
2 K

1=2
2;d ks � �2:

This theorem shows that the diagonal preconditioning factors� 1 and�2, which correspond to the factor�B in (9) do not
grow withN .

3.4. Minimax optimality of wavelet estimators

Different orthogonal wavelet estimators The thresholding estimation in the 2-D orthogonal wavelet basisB 2 can be
performed before or after the application ofR�1. The latter is given by equation (5), whereB = B2, and it is equivalent to the
Wavelet-Vaguelette Decomposition (WVD) estimator of Donoho.7 Let ~F iw

2 = Diw
2 Y be this estimator.

The estimator is given by equation (4) when it is performed in the Radon domainIm(R). It is equivalent to the Vaguelette-
Wavelet Decomposition (VWD) as studied by Abramovich and Silverman.16 Let ~Fwi

2 = Dwi
2 Y be this estimator.

The thresholding estimation in the 1-D basisB1 is simple to compute when performed in the Radon domain. The estimation
is computed independently in each direction� according to

~F� = R�1�

0
@X

j;m

�Tj;m (hY�;  j;mi) j;m

1
A : (11)

The 1-D wavelet denoising must be implemented before the spatial interpolation for the inverse Radon transform, but can be
implemented before or after the amplification of high frequencies. This defines two different but very close estimators. We
write formally that the estimation is always performed before the inversion of the Radon transform and that the corresponding
estimator is unique, because the properties of the 1-D wavelet denoising before or after the amplification of high frequencies
are extremely similar. Let~F1 = D1Y be this estimator. Note that the same formal simplification is made for the estimator~Fwi

2

in the 2-D wavelet basis, which can be implemented before or after the amplification of high frequencies.

Relation with the ridgelet transform The application of the 1-D wavelet transform in the basisB 1 in the Radon domain
Im(R) is related to the ridgelet transform.17 The ridgelet transform is a decomposition in a collection of ridge functions.
Roughly speaking, the ridgelet transform can be implemented by computing the 1-D wavelet transforms of the Radon transform
R� in each direction�. Ridgelets are designed to provide an optimal representation of straight contours in images. As a
consequence, one can show that the thresholding estimator using a 1-D wavelet decomposition in the Radon domain is not only
optimal to recover bounded variation images, but also to recover straight edges in images.

Thresholding estimation risk Let rtiw2 (�) = r(Diw
2 ;�), let rtwi2 (�) = r(Dwi

2 ;�), and letrt1(�) = r(D1;�) be
respectively the three estimation risks of the thresholding estimators~F iw

2 ; ~Fwi
2 ; ~F1.

Theorem 3.2 shows that the asymptotic behavior of the estimation risk is identical for the three thresholding estimators
~F iw
2 ; ~Fwi

2 ; ~F1 and that these estimators are quasi-minimax optimal. Recall thatrn(�) is the minimax estimation risk defined in
section 2.3. Under mild conditions, one can show that
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THEOREM 3.2.
�

4

3CN
3

2 � rn(�) � rt
iw
2 (�) � rt

wi
2 (�) � rt1(�) � �

4

3CN
3

2 logeN (12)

The thresholding risks are of the same order as the minimax risk up to alog eN factor, which can in some cases be reduced to
a constant independent ofN .

One can also characterize the linear minimax riskr l(�), which is the minimax risk when restricting to linear estimators.
The linear minimax risk gives the best possible performance than can be achieved by Filtered Back-Projection and other linear
procedures in the Fourier space.r l(�) satisfies, under mild conditions

rl(�) � �
2

3N
5

3C
4

3 : (13)

Equations (12) and (13) show that the minimax and thresholding risks are smaller than the minimax linear risk. A linear
estimator tries to reduce the noise without smoothing too much the singularities. A non negligible residual noise will remain in
the smooth parts of the signal.

4. REFINING THE CHOICE OF DECOMPOSITION

Section 3 provides theoretical foundations which justify the use of wavelet thresholding estimators for tomographic recon-
struction. While the asymptotic minimax optimality has been established for the estimators under study, their numerical perfor-
mances can be enhanced. This section studies different refinement in the choice of the decompositions in which the thresholding
estimation is computed. These enhanced estimators still satisfy the same asymptotic minimax optimality properties.

4.1. Translation-invariant decompositions

Improved estimators can be obtained with the translation invariant algorithm of Coifman and Donoho,18 by averaging esti-
mators for translated versions of the degraded signal. Such an estimator can be calculated by thresholding the non-decimated
coefficients computed with the “algorithme `a trous”, which can implement a fast wavelet or wavelet packet transform, without
subsampling.19 This fast translation-invariant filter bank algorithm requiresO(N) operations to compute the estimation for a
signal ofN samples.

4.2. Benefits of Wavelet Packets

Wavelet packet bases are constructed with the conjugate mirror filters used for wavelet transforms. Wavelet packet bases divide
the Fourier domain in separate intervals of various sizes,20 and can enhance the near-diagonalization of the Radon transform
operator. In equation (8), the preconditioning factor�B can be made closer to1 in wavelet packets bases than in conventional
wavelet bases. On the other hand, wavelet packet bases provide in general less compact representations of natural piece-wise
regular signals and images.

The Fourier basis achieves a strict diagonalization of the Radon transform operator, while the wavelet basis provides a good
representation of inhomogeneous signals such as medical images. It is natural to search for the best basis which achieves an
optimal trade-off between the spatial representation of the data and the representation of the Radon transform operator. Suppose
we have a dictionaryfBg of orthogonal wavelet packet bases. The best basis algorithm of Coifman and Wickerhauser20 can
be used to determine the best basisB1 = fg1m gm in this dictionary. The additive criterion to be minimized must be an
approximation of the final estimation error. If one has a prior model on the decomposition coefficients of the data, which is the
case in tomography since phantoms are available, the criterion can be chosen as the ideal attenuation or projection risk.11,21

This approach can be used with 1-D or 2-D bases, and for any of the three wavelet estimators studied in section 2.3. In each
case, the resulting estimation risks will be equal or lower than their wavelet counterpartsr t

iw
2 (�); rt

wi
2 (�); rt1(�) of section

3.4, while sharing the same asymptotic quasi-minimax optimality properties. The benefits of using thresholding estimators in
wavelet packet bases rather than in wavelet bases depend on the nature of the dataf , and especially on its spectral distribution
and on the importance of its oscillatory elements, and on the level and nature of the noiseW .

Remark: Wavelet packet bases can achieve an arbitrarily fine dyadic segmentation of the Fourier domain. The amplification
of frequencies to invert the smoothing effect of the Radon transform can be accurately approximated by an amplification of
the wavelet packet coefficients, without having to perform a Fourier transform and its inverse. Usually, the vectors of the
wavelet packet basisB2 in which the amplification is performed need to have a more compact support in the Fourier domain
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than the best wavelet packet basisB1 for the estimation. Because of the tree structure of wavelet packet decompositions, it
is not necessary to reconstruct the signal to compute directly the wavelet packet coefficients in the best basisB 1 from the
amplified coefficients inB2 . This procedure is simpler and can also save computation time in some cases, as compared to the
computation of a Fourier transform and reconstruction.

4.3. Better Wavelet Transforms

Thedyadic wavelet transform,22 which is implemented with the translation-invariant “algorithme `a trous”, provides an orien-
tation selectivity in 2-D.

In two dimensions, orientation plays a crucial role to correlate the wavelets with the signal structures. In a 2-D dyadic
wavelet decomposition composed of two wavelets, all orientations are recovered with an appropriate linear combination of the
two wavelets. The dyadic wavelet transform is a decomposition in a family of wavelets which are dilated and translated from
two functions d;1 and d;2 respectively oscillating in the horizontal and vertical directions.

Let  ~a(x1; x2) = a1 
d;1(x1; x2) + a2 

d;2(x1; x2) be the wavelet whose orientation is~a. The vector~aopt such that, for
any imagef ��hf;  ~aopti��2 = sup

~a

��
f;  ~a���2 = a1
��
f;  d;1���2 + a2

��
f;  d;2���2 (14)

is given by :~aopt =

 

f;  d;1

�
M

;



f;  d;2

�
M

!
, and we have

M2 =
��
f;  d;1���2 + ��
f;  d;2���2:

This means that, instead of applying the thresholding estimation algorithm to the wavelet decomposition in the two directions,
we must threshold the modulus. This is equivalent to selecting first a direction in which the partial derivative is maximum at
the scale2j , and thresholding the amplitude of the partial derivative in this direction. This can be viewed as an adaptive choice
of the wavelet direction in order to maximize the correlation with the signal.

The complex wavelet transform of Kingsbury23 is designed to bring similar benefits. The fast complex wavelet decom-
position provides shift invariance and a good directional selectivity, while not as accurate as the modulus of a dyadic wavelet
transform.

To take further advantage of the geometrical prior information on images, and of the fact that images incorporate many
curved edges, Cand`es and Donoho have investigated the benefits of acurvelet decomposition,10 which is designed to recover
curved edges. The theoretical properties of this approach are appealing, however numerical applications do not yet fulfill the
expectations.

5. NUMERICAL EXAMPLES

Figure 1 shows a simulation of acquisition on the classical Shepp-Logan phantom, using the characteristics of a standard PET
scanner, with 256 angular positions and 192 detectors. Figure 1(a) is a reconstructed image from sinograms without noise. This
image will be used as our reference image. Figure 1(b) is a reconstructed image from sinograms degraded with Poisson noise,
using the Filtered Back-Projection algorithm. The Signal-to-Noise Ratio (SNR) of this image as compared to the reference
image is27:2db.

Section 3 and 4 show that many non-linear minimax thresholding estimators can be implemented. One can choose between
1-D or 2-D decompositions, regularization in the Radon domain or after the inversion of the Radon transform, wavelet or
wavelet packets, different 2-D wavelet decompositions, etc... The choice of threshold values and thresholding operator is also
important. Note that in some cases, the combination of regularization algorithms in both the Radon domain and the spatial
domain can also provide a supplemental numerical enhancement on the results. The wavelet/wavelet packet representation in
the Radon domain has different numerical properties in terms of signal/noise discrimination than the wavelet/wavelet packet
representation in space. Combining the best of these different representations can be made by choosing the right combination
of threshold values and thresholding procedures.
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Figure 1(c) shows a reconstructed image using hard thresholding in a 1-D wavelet decomposition in the Radon domain, as
suggested in section 3.4, starting from the same noisy sinograms as in Figure 1(b). The resulting SNR is33:1db. Figure 1(d) is
a reconstructed image with a hard thresholding operator in a 2-D wavelet packet basis in the spatial domain, after the inversion
of the Radon transform. The resulting SNR is32:3db. These two simple estimation algorithms already provide a significant
metrical and perceptual improvement over an optimized Filtered Back-Projection method, while many possible enhancements
have not been implemented yet. The increase in SNR is between5db and6db as compared to the image reconstructed with
Filtered Back-Projection.

6. NEXT DEVELOPMENTS

Non-linear thresholding estimators are expected to provide fast reconstruction algorithms which will outperform current FBP-
methods and iterative procedures in X-ray CTs, PET and SPECT devices. An extensive work has to be conducted to apply and
evaluate these estimators on medical data from different devices . Promising results have already been obtained on simulations
of PET and SPECT data.

It is important to mention that the wavelet representations are very useful for different applications in tomography. Holschnei-
der,24 Walnut,25 Peyrin et al.26 have established relations between wavelet transforms and the Radon transform. Since then,
many publications have specifically studied the benefits of wavelets for local tomographic reconstruction,27{34 and for limited
angle tomography.35,36 Also, the dyadic wavelet transform is an ideal tool for edge detection and segmentation22 which are
common problems in medical imaging. One can expect a wavelet-based representation for global tomographic reconstruc-
tion to be a convenient and flexible framework for other specific problems arising from tomographic reconstruction, and for
post-processing algorithms. This issue calls for deeper investigations.
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(a) (b)

(c) (d)

Figure 1. (a) Reference image. (b) Reconstructed image with a Filtered Back-Projection. (SNR=27:2db) (c) Reconstructed
image with a 1-D wavelet thresholding in the Radon domain (SNR=33:1db) (d) Reconstructed image with a wavelet packet
thresholding after the inversion of the Radon transform (SNR=32:4db).
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