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ABSTRACT 

Three-dimensional ultrasound machines based on matrix phased-array transducers are gaining predominance for real-

time dynamic screening in cardiac and obstetric practice. These transducer arrays acquire three-dimensional data in 

spherical coordinates along lines tiled in azimuth and elevation angles at incremental depth. This study aims at 

evaluating fast filtering and scan conversion algorithms applied in the spherical domain prior to visualization into 

Cartesian coordinates for visual quality and spatial measurement accuracy.  

Fast 3D scan conversion algorithms were implemented with several orders of interpolation kernels. Downsizing and 

smoothing of sampling artifacts were integrated in the scan conversion process. In addition, a denoising scheme for 

spherical coordinate data with 3D anisotropic diffusion was implemented and applied prior to scan conversion to 

improve image quality. Reconstruction results under different parameter settings, such as interpolation kernel, scaling 

factor, smoothing options, and denoising, are reported. Image quality was evaluated on several data sets via visual 

inspections and measurements of the dimension of a cylindrical phantom object. Error measurements of the cylinder's 

radius, reported in this paper, showed that the proposed fast scan conversion algorithms can correctly reconstruct 

three-dimensional ultrasound in Cartesian coordinates under tuned parameter settings. Denoising via three-

dimensional anisotropic diffusion was able to greatly improve the quality of the resampled data without affecting the 

accuracy of spatial information after the modification of the introduction of a variable gradient threshold parameter.  

Keywords: Real-time three-dimensional ultrasound, scan conversion, anisotropic diffusion, fast interpolation, 

spherical coordinates, matrix phased array, denoising. 

1. INTRODUCTION

The development of three dimensional ultrasound techniques originated in the early 1980s. In the 1990s, Von Ramm 

and Smith developed a new real-time three-dimensional (RT3D) ultrasound probe based on a matrix phased array 

transducer1-2-3-4. This probe could scan a whole volume of interest in a fixed position at a rate of about 70ms per 

volume, offering a faster and more reliable data acquisition protocol than free-hand and rotational ultrasound systems.  

Experiments reported in this study were performed with a Volumetrics© transducer which records the data in 

spherical format. While this ultrasound machine is no longer commercially available the SONOS7500 3D ultrasound 

machine, based on a matrix-phased technology, has been recently introduced by Philips Medical Systems©.  The 

availability of this type of three-dimensional technology from an international medical system manufacturer, may 

facilitate this technology to become the modality of choice for dynamic sonographic screening in cardiac and obstetric 

practice in the next few years. 

Phased array transducers acquire echo lines in spherical coordinates in real-time when scanning a volume of interest. 

Manipulation of the data for conversion to Cartesian representation is required for visualization, border tracing and 

volume measurements. This operation is called scan conversion in this paper. In our previous work5, we developed a 

fast scan conversion algorithm, which combined coordinate transform, downsampling and smoothing to correct for 

acquisition artifacts and generate satisfactory image quality. In this paper, we present an experimental quantitative 

study testing our fast resampling tool with several interpolation kernels, smoothing options, resolution settings and 

addition of a pre-processing in spherical domain with anisotropic diffusion filtering. We evaluated image quality for 
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different parameter settings both qualitatively and quantitatively via measurement of object dimensions on static

phantom data.

2. METHODOLOGY

2.1. Scan conversion algorithm

Real-time three-dimensional (RT3D) is acquired by steering radio-frequency pulses in two orthogonal directions

controlling the azimuth and elevation angles as illustrated in Figure 1. The data is stored in this geometry with the

Volumetric© transducer and accessible to the user. The two steering angles span a 63º angle with 64 positions

symmetric around the axis of the transducer at 1º increment. The radial positions starts at some preset depth (referred

to as the skin depth) and acquires curved ‘slices’ every 0.308mm with up to 512 slices stored by the machine, for each

volume acquisition. Images corresponding to a constant depth along the transducer axis are called C-scan views. Fan-

shaped views orthogonal to the C-scan views are referred to as B-scan views.

Figure 1: Geometry of acquisition of RT3D ultrasound data.

Lines are acquired in spherical coordinates , ,r .

Scan conversion refers to the resampling of the RT3D data sets from spherical to Cartesian coordinates. The backward

resampling process selected in this work is comprised of three steps: (1) coordinate transformation from the Cartesian

grid to the spherical grid, (2) data interpolation on continuous spherical coordinate values, (3) data resampling back to

the Cartesian grid. This process is illustrated in Figure 2 in two dimensions. The coordinate transformation was 

performed with standard formula to convert Cartesian to spherical coordinates. Data interpolation on the spherical data

extrapolates the ultrasound values at continuous point locations via convolution with and an interpolation kernel of 

finite support. Theoretically, a band-limited signal sampled at a rate higher than its Nyquist frequency can be

reconstructed perfectly via convolution with a sinc function. However, in discrete signal processing, only

approximations of this function can be implemented for interpolation.

r
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Figure 2: Illustration of scan conversion on 2D data. Resampling with backward mapping is performed from

radial grid coordinates (r, ) to Cartesian grid coordinates (x,y).

We tested in a previous study5 interpolation kernels of different order (related to smoothness) and support size,

including a nearest neighbor (NN) filter, a linear interpolation (LI) filter, a cubic convolution (CC) filter, a Hann

windowed sinc function (Hann), a Hamming windowed sinc function (Hamming), a Lanczos window (Lan), and a

Gaussian window (Gauss). The one-dimensional shape of these filters is illustrated in Figure 3 along with the

theoretically optimal sinc function.
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Figure 3: 1D profiles of interpolation kernels on interval [-2 2] for: (a) nearest neighbor, (b) linear, (c) cubic 

(a=-0.5), (d) Hamming windowed sinc, (e) Gaussian ( = 0.5), (f) theoretically optimal sinc kernel.

The filter width (i.e. support size) and the shape parameters for each interpolation kernel were optimized in a previous

study5 whose results are summarized in Table 1. 

NN LI CC Hann Hamming Lan Gauss

Filter width 1 1 2 3 3 3 3

Shape

Parameter
- - -0.5 - - - =1

Table 1: Optimal parameter settings for the interpolation kernels.

Smoothing can be introduced in the interpolation process by weighting the kernel coefficients. Downscaling of the

data, referring to the axial resolution of acquisition equal to 0.308mm can also be used to control the reconstructed

pixel size and reduce at the same time acquisition artifacts while avoiding aliasing. We consider in our discussion

scale=1 for a resampling of the data that preserves the highest spatial resolution acquired corresponding to a voxel size

of (0.308mm)3.
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2.2. Anisotropic Filtering

The presence of speckle noise patterns makes the interpretation of ultrasound images, either by a human operator or

with a computer-based system, very difficult. It is highly desirable for certain applications such as automatic

segmentation, to apply some denoising prior to scan conversion in order to remove speckle noise artifacts and improve

signal homogeneity within distinct anatomical tissues. A number of methods have been proposed to de-noise and

improve the ultrasound image quality including temporal averaging, median filtering, maximum amplitude writing

(temporal dilation), adaptive speckle reduction (ASR) (statistical enhancement)6-7-8-9-10, adaptive weighted median

filter (AWMF)11, homomorphic Wiener filtering, and wavelet shrinkage (WS)12-13. Most of these methods suffer from

either insufficient denoising, image quality degradation or large computational cost. Furthermore, some of them

require raw “rf” data, prior to logarithmic compression14. Our group has presented previous work on applying

brushlet denoising in spherical coordinates to RT3D cardiac ultrasound prior to resampling of the data15. Experiments

on phantom and clinical cardiac data sets have shown excellent performance of the method. However, the main

limitation of this type of denoising remains the computational cost that prevents for the moment its implementation for

real-time visualization applications in clinical practice.

In this context we have investigated the performance of a more computationally efficient denoising filter based on

anisotropic diffusion for data represented in spherical coordinates. A similar framework can be found in the work of

Abd-Elmoniem et al.14-16 who used two-dimensional anisotropic filtering in radial coordinates. Anisotropic diffusion

methods are very efficient for speckle reduction in ultrasound and radar images. In recent publications, Yu and

Acton17-18 applied their speckle reducing filter on synthetic aperture radar images and compared their performance to 

Lee and Kuan filters and Frost filters. These filters are all derived from anisotropic diffusion. Finally we cite 

Montagnat et al who applied a three-dimensional anisotropic diffusion filter for rotational cardiac 3D ultrasound

data19.

Anisotropic diffusion methods apply the following heat-diffusion type of dynamic equation to the gray levels of a 

given 3D image data , , ,I x y z t :

( , , ,
I

div c x y z t I
t

) , (1)

where is the diffusion parameter, denotes the divergence operator, and , , ,c x y z t div I denotes the gradient of

the image intensity.

In the original work of Perona and Malik 20-21, the concept of anisotropic diffusion was introduced with the selection

of a variable diffusion parameter, function of the gradient of the data:

, , , , , ,c x y z t g I x y z t  (2)

We used the diffusion function proposed by Weickert22 defined as:

4

3.315

( / )

1 0

( , )

1 0x

x

g x

e x

. (3)

The parameter serves as a gradient threshold, defining edge points kx as locations where
kxI . This bell-

shaped diffusion function acts as an edge-enhancing filter, with high diffusion values in smooth areas and low values

at edge points. The structure of the diffusion tensor with separate weights for each dimension enables to control the

direction of the diffusion process, with flows parallel to edge contours.

Initial experiments on RT3D spherical data showed that selecting a low gradient threshold enabled the filtering to

remove speckle noise components but did not remove blocky sampling artifacts as seen in Figure 5. On the other hand,

a high gradient threshold value was able to smooth out the sampling artifacts but was not efficient at removing noisy

components.
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As the diffusion process evolves, image data properties change and it is desirable to modify the gradient threshold

parameter value. In their paper, Montagnat et al. report a decrease in the value of significant edges as the 

homogeneous regions in the ultrasound data are filtered. They therefore chose to decrease the threshold gradient in

time and proposed values based on a fraction of the cumulative histograms of the data gradients recomputed at each

iteration of the diffusion process.

In our case, with more granular images, as the diffusion evolves in time we obtain higher values of gradient at

significant edges. Indeed as the data is diffused, gradients corresponding to real objects produce much higher values

than gradients due to the smoothed speckle noise oscillations. After trying different strategies for setting the gradient

threshold value, we used a linear model where:

0t a t , (4)

with 0 an initial gradient value, is a slope parameter and t is the time iteration index. Parameters were set 

empirically for the data sets processed.

a

3. DATA

In order to evaluate our scan conversion and denoising methods we performed a qualitative visual inspection as well 

as quantitative measurements on both phantom and clinical data sets. 

3.1. Phantom objects

The phantom consisted of two cylindrical objects with a change of radius in the axial direction as illustrated in Figure 

4. The larger radius was equal to 10mm. The medium in the phantom box varied for each cylindrical object,

mimicking tissues with various contrast measured in terms of signal to noise ratio (SNR).

Figure 4: Phantom objects with two cylindrical objects embedded in medium with different SNR. 

We focused our experiments on a SNR=2db, corresponding to good contrast. The clinical application of our study

focused on echocardiographic data with excellent contrast between the myocardium muscle and the ventricular blood

pool. The phantom was screened with a RT3D Volumetrics© machine with acquisition parameters identical to clinical

settings.

3.2. In-vitro cardiac tissue

A second experiment was performed using an in-vitro phantom consisting of a cardiac muscle sample placed in a 

tank of water. The muscle sample was cut as a cube of cross section equal to 10mm2. The cardiac sample was screened

with a RT3D Volumetrics© machine with acquisition parameters identical to clinical settings.

3.3. Clinical data

We also applied our filtering methods to echocardiographic data set of a healthy volunteer on a single time frame. This 

data set was also denoised with a brushlet expansion as detailed in23 from our previous study.
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4. RESULTS

We performed several experiments with different parameter settings for the scan conversion, with and without

smoothing. Pre-processing of the data with anisotropic diffusion was tested for each data set with the following

parameters:

- 0 =5, a=10, t=0.05, 10 iterations for the phantom,

- 0 =6, a=10, t=0.05, 10 iterations for the muscle sample,

- 0 =6, a=10, t=0.05, 10 iterations for the clinical data set. 

The threshold value 0 was set equal to the average gradient of the background speckle noise, estimated on a

manually-selected region of interest. A second region of interest inside the object to smooth was selected to check

the maximum gradient value. This value was used to set the slope parameter so that after N iterations, the threshold

value reaches the maximum gradient value inside the object. In our experiments, we ran 10 iterations with a small time 

step and set to 10 so that the final gradient threshold valuea was around 100, for the maximum gradient value

inside the phantom objects and the myocardium.

Computation times of the different experiments are reported in Table 2, for an implementation in C, running on a PC

dual Pentium IV 2.2GHz processors workstation with 1.5GBytes of RAM.

Data

Matrix size

in spherical

coordinates

Scale of

scan

conversion

Smoothing

option for

scan

conversion

Matrix size in 

Cartesian

coordinates

Diffusion

computation

time for one

iteration

(seconds)

Scan

conversion

computation

time

(seconds)

Phantom

object
64x64x373 1 No 389x389x376 0.38 106

Cardiac tissue 64x64x258 1 No 274x274x261 0.25 37

Clinical exam 64x64x438 1 No 454x454x441 - 169

Clinical exam 64x64x438 2 No 228x228x221 - 21

Clinical exam 64x64x438 2 Yes 228x228x221 - 23

Clinical exam 64x64x438 1 No 454x454x441 0.51 169

Table 2: Computation times for the different experiments for the scan conversion and the anisotropic diffusion

algorithms.

Overall, anisotropic diffusion filtering with 10 iterations required up to 5 seconds of computation time. Scan 

conversion required about 2 minutes at maximum resolution and 30 seconds at half resolution. These results show

very fast computation speeds of the filtering process applicable for routine use.

4.1. Image quality from scan conversion

Qualitative assessment of phantom and clinical images reconstructed with the fast interpolation kernels showed minor

image quality degradation between scan conversion with full resolution and downscaling with a factor of tow. The

smoothing parameters had minor effects for all interpolation kernels when downscaled by a factor of 2. These results

are illustrated in Figure 5.
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(a)

(b)

(c)

Figure 5: Results of scan conversion on three orthogonal views of a cylindrical phantom object with different 

smoothing and scaling parameters: (a) Scale =1 and no smoothing, (b) Scale =2 and no smoothing. (c) Scale=2

with smoothing.

Higher downscaling factors introduced noticeable degradation of spatial resolution (corresponding to a voxel sizes

above 1mm) and are not recommended for clinical applications.

4.2. Image quality from anisotropic diffusion

Qualitative comparison of phantom data reconstructed with and without anisotropic diffusion showed very good

performance of the non-linear filter at effectively removing speckle noise granularity in low intensity background

areas using an initial low gradient threshold and effectively correcting for the high-intensity object inhomogeneity

using a higher gradient threshold as the diffusion process evolved. As illustrated in Figure 6, controlling the diffusion

process with a time-varying threshold gradient greatly improved filtering performance when compared to a fixed

threshold setting. This result was particularly significant in view of the challenge that speckle denoising represents and

the simplicity of the design of the proposed algorithm. Speckle noise components are typically correlated with the

underlying signal leading to spatially varying statistics and blocky artifacts showing strong edges. These properties

make removal of speckle components a particularly challenging task where traditional filtering typically fail. A

recent work from Yu and Acton18 designed a speckle reducing anisotropic diffusion (SRAD) filter that proposed a

diffusion coefficient based on local statistics of the ultrasound signal. The proposed filter has a more refined design

but was only proposed in 2D and with results only illustrated in one carotid artery ultrasound image. Nevertheless the

authors draw similar conclusion regarding the potential of anisotropic diffusion in reducing speckle noise components

with a proper design of the diffusion coefficient.
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(a)

(b)

Figure 6: Anisotropic diffusion filtering and scan conversion with a cubic interpolation kernel without

smoothing or downscaling. Results are presented for three orthogonal views of a cylindrical phantom object. (a)

Anisotropic diffusion with a fixed gradient threshold. (b) Anisotropic diffusion with a variable gradient

threshold.

We observed similar image quality improvement using the time-varying anisotropic diffusion filter on the static 

myocardium tissue sample data set and the clinical data of the left ventricle of a healthy volunteer. These results are

illustrated in Figure 7 and Figure 8 and confirmed the very good performance of the filter at improving image quality

in the spherical domain prior to scan conversion.

(a)

(b)

Figure 7: Anisotropic diffusion filtering and scan conversion with a cubic interpolation kernel without

smoothing or downscaling. Results are presented for three orthogonal views of an in-vitro myocardium tissue

sample. (a) Original data. (b) Data after anisotropic diffusion with a variable gradient threshold. Note in the B-

scan view the indication of the average dimension measurement performed on the filtered data. 
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Comparing anisotropic diffusion to three-dimensional brushlet denoising, we observed good performance of the

anisotropic diffusion filter at enhancing the ventricular cavity and smoothing the myocardium tissue. Such

improvement in image quality can greatly improve analysis of the data for volume rendering or segmentation for

example. Brushlet denoising on the other hand better preserved the texture of the myocardium muscle and some

details in the anatomical contours of the ventricle. While both denoising methods were able to eliminate the granular

noise texture generated during the data acquisition by speckle interferences, brushlet denoised data showed less 

attenuation of the blocky acquisition artifacts observed in B-scan views when compared to anisotropic diffusion.

(a)

(b)

(c)

Figure 8: Anisotropic diffusion filtering and scan conversion with a cubic interpolation kernel without

smoothing or downscaling. Results are presented for three orthogonal views of an in-vivo data set of a left

ventricle. (a) Original data. (b) Anisotropic diffusion with a variable gradient threshold. (c) Denoising with

brushlet thresholding in space.

Qualitative evaluation of the anisotropic diffusion filters lead to the conclusion that it offered denoising performance

that compared well to more elaborated methods such as brushlet spatial denoising with a tremendous gain in

computation load. Moreover, image quality from scan-conversion of volumes after anisotropic diffusion was almost

insensitive to the choice of the interpolation kernel. These results suggest that 3D non-linear anisotropic diffusion can 

be combined with fast interpolation methods using lower order kernels to optimize the display process and 

significantly improve image quality at low computational cost.

4.3. Measurements of object dimensions 

A quantitative study was performed on the cylindrical phantom objects to evaluate the accuracy of measurement

obtained with the different parameter settings and filters reported above. Radius of the biggest cylinder in the phantom

dataset was estimated via manual tracing on 10 B-scan cross-sections by a single operator. Average radius

measurements (R) along with relative errors (Err) are reported in Table 3.
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Data 1 Data 2 Data 3 Data 4 Data 5 

R (mm) Err % R (mm) Err % R (mm) Err % R (mm) Err % R (mm) Err %

NN 10.03 0.33 9.89 -1.12 10.09 0.89 10.18 1.79 9.97 -0.33

LI 10.10 1.01 9.97 -0.29 10.07 0.74 10.19 1.86 10.11 1.09

CC 10.06 0.61 10.16 1.60 10.06 0.56 9.99 -0.09 9.96 -0.42

Hann 10.10 1.03 10.12 1.23 9.97 -0.27 9.96 -0.45 10.04 0.35

Hamming 10.09 0.87 9.84 -1.57 10.10 1.02 9.91 -0.09 10.10 0.97

Lan 10.20 2.01 9.92 -0.83 10.01 0.14 10.02 0.18 9.94 -0.63

Gauss 9.97 -0.28 9.95 -0.47 10.00 -0.03 9.66 -3.67 9.85 -1.48

Table 3: Measurements of a cylinder radius (exact value is 10mm) for: Data 1: Original data-scale=1-no 

smoothing; Data 2: Original data-scale=2-no smoothing; Data 3: Original data-scale=2-smoothing; Data 4: 

Diffused data (thresholds=5, 10 iterations)-scale=1-no smoothing; Data 5: Diffused data (variable threshold, 10 

iterations)-scale=1-no smoothing. 

Results showed that the combination of interpolation kernel, scaling factor, smoothing options and pre-processing 

with anisotropic filtering had some influence on the accuracy of the object size measurement. The combination of 

processing parameters leading to the smallest measurement error (equal to 0.03%) was: downscaling by a factor of 2, 

smoothing and a Gaussian interpolation kernel. With anisotropic diffusion, variable thresholding systematically 

reduced measurement errors with an optimal configuration at 0.3% error for scale 1 using a nearest neighbor 

interpolation. 

We performed a similar object size measurement experiment on the in-vitro cardiac muscle phantom. The muscle 

sample was cut to have a cross section of 10mm2. Unfortunately, the sample was not carefully positioned during the 

scanning so that C-scan views contained a cross sectional view bigger than the orthogonal cross section of the sample. 

We performed oblique measurements on B-scan views as illustrated in Figure 7(c) and obtained an average 

measurement of 10.77cm, which seems to be a reasonable measure given the potential errors in cutting the 

myocardium sample and positioning of the sample within the scanned volume of interest.    

These quantitative measurements can help in selecting the best parameter settings for filtering and scan conversion. 

They also showed that a measurement precision of 1mm could be achieved on objects and in-vitro myocardium 

samples with three-dimensional ultrasound despite known limitations of hardware transducer design ultrasound 

physics and interferences.  

5. CONCLUSION 

A fast three-dimensional scan conversion algorithm combined with smoothing and anti-aliasing filtering for 

downsampling operations was introduced for spherical three-dimensional ultrasound data. In addition, a fast denoising 

method based on anisotropic diffusion was introduced with a novel time varying gradient-threshold scheme. 

Experiments were performed with a Volumetrics© matrix-phased array transducer on static objects, in-vitro 

myocardium muscle sample and clinical data sets. 

Filtering performance was assessed in terms of visual quality and for quantitative measurements of the phantom object 

dimensions. Our quantitative study showed that very high measurement accuracy could be achieved and required 

suitable parameter settings of the scan conversion method, while visual quality was similar for all interpolation 

kernels. The study also showed a great improvement in visual quality when applying the anisotropic diffusion prior to 

scan conversion and a comparable accuracy of measurements even with first order interpolation kernels. These results 

reveal the critical importance of the scan conversion algorithm design. They also demonstrate that with careful 

reconstruction of the data in Cartesian coordinates, three-dimensional matrix-phased array ultrasound modality can 

provide high spatial accuracy, around 1mm, in a real-time acquisition mode. Anisotropic diffusion can preserve this 

spatial accuracy while denoising the data for high-quality visual display and three dimensional rendering.
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